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A multi‑layer network model to assess 
school opening policies during a vaccination 
campaign: a case study on COVID‑19 in France
Christian Bongiorno1† and Lorenzo Zino2*†  

Introduction
The ongoing COVID-19 pandemic has called for an unprecedented mobilization of the 
scientific community toward understanding the transmission mechanisms, designing 
and assessing non-pharmaceutical intervention policies (NPIs) to mitigate its spread, 
and developing effective vaccines. Within this joint effort, a forefront role has been 
played by the development of accurate mathematical models to predict the spread of the 
pandemic and assess the effectiveness of the implementation of different NPIs, such as 
wearing face masks, enforcing social distancing, and enacting travel bans (Estrada 2020; 

Abstract 

We propose a multi-layer network model for the spread of an infectious disease that 
accounts for interactions within the family, between children in classes and schools, 
and casual contacts in the population. The proposed framework is designed to test sev-
eral what-if scenarios on school openings during the vaccination campaigns, thereby 
assessing the safety of different policies, including testing practices in schools, diverse 
home-isolation policies, and targeted vaccination. We demonstrate the potentialities 
of our model by calibrating it on epidemiological and demographic data of the spring 
2021 COVID-19 vaccination campaign in France. Specifically, we consider scenarios 
in which a fraction of the population is vaccinated, and we focus our analysis on the 
role of schools as drivers of the contagions and on the implementation of targeted 
intervention policies oriented to children and their families. We perform our analysis by 
means of a campaign of Monte Carlo simulations. Our findings suggest that transmis-
sion in schools may play a key role in the spreading of a disease. Interestingly, we show 
that children’s testing might be an important tool to flatten the epidemic curve, in par-
ticular when combined with enacting temporary online education for classes in which 
infected students are detected. Finally, we test a vaccination strategy that prioritizes the 
members of large families and we demonstrate its good performance. We believe that 
our modeling framework and our findings could be of help for public health authori-
ties for planning their current and future interventions, as well as to increase prepared-
ness for future epidemic outbreaks.
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Vespignani 2020; Bertozzi et  al. 2020). These works, grounded in the theory of math-
ematical modeling of epidemic diseases (Bailey 1975; Hethcote 2000) and on its recent 
application on complex networks (Pastor-Satorras et al. 2015; Mei et al. 2017; Nowzari 
et al. 2016; Paré et al. 2020; Zino and Cao 2021), have provided effective tools to assist 
public health authorities, by highlighting the epidemic risk, predicting its spatial and 
temporal spread, indicating limitations of the NPIs currently enacted, and suggesting 
potential strategies to improve them (Chinazzi 2020; Giordano et al. 2020; Gatto et al. 
2020; Della Rossa et al. 2020; Parino et al. 2021; Arenas et al. 2020; Köhler et al. 2021; 
Carli et al. 2020).

From the inception of the epidemic outbreak, pharmaceutical researchers have started 
working at an unprecedented pace toward developing vaccines for the novel coronavirus 
SARS-CoV-2—which is the virus responsible for the COVID-19 disease—achieving the 
astonishing goal of developing, testing, and obtaining approval by national regulatory 
authorities for several vaccines in less than 1  year (https:// ourwo rldin data. org/ covid- 
vacci natio ns). Hence, in spring 2021, many countries around the world have started 
implementing an unprecedented vaccination campaign (https:// ourwo rldin data. org/ 
covid- vacci natio ns), while struggling with a second or third wave of the epidemic out-
break (World Health Organization 2020). Even in this phase, mathematical models have 
been valuable supports to assist public health authorities in their decisions on the vac-
cination strategies and on the policies that should be implemented during these phases 
(Grauer et al. 2020; Bubar et al. 2021; Truszkowska et al. 2021; Foy et al. 2021; Parino 
et al. 2021).

Among these questions, the policies concerning the management of schools and chil-
dren play a crucial role for their impact on the education system and on their families 
(Gurdasani et al. 2021; Hyde 2020). Moreover, the impossibility of reducing contagions 
in schools by means of vaccinations—trials for vaccines on children started just as of 
February 2021 (https:// www. nytim es. com/ 2021/ 02/ 12/ health/ covid- vacci nes- child ren. 
htm)—makes crucial to understand how to calibrate NPIs in order to flatten the epi-
demic curve. For these reasons, understanding the effect of different policies for school 
opening, including increasing the testing rate for children and implementing temporary 
online education in order to home-isolate the entire class whenever a child is tested pos-
itive in that class, is a problem of paramount importance. We also believe that similar 
issues might emerge again in the case of future pandemics, since new drugs and vaccines 
are typically initially tested on adult individuals, while trials on children start at a later 
stage. Hence, developing a mathematical framework to assess the safety of school open-
ing policies and test what-if scenarios focused on the role of children in the spread of 
infectious diseases might be key not only to face the current problems, but also to create 
preparedness against future threats.

Motivated by these important public health problems, we propose a temporal network 
modeling framework (Holme and Saramäki 2012; Holme 2015) with a multi-layer struc-
ture (Kivelä et al. 2014), tailored to capture the spreading of airborne diseases, with a 
specific focus on the transmission between children in schools and in their families. Spe-
cifically, the proposed model is developed on four layers: a family layer, which represents 
the interactions between family members living in the same household; a class layer that 
models the interactions between children in the same class, a school building layer that 

https://ourworldindata.org/covid-vaccinations
https://ourworldindata.org/covid-vaccinations
https://ourworldindata.org/covid-vaccinations
https://ourworldindata.org/covid-vaccinations
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
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represents the interactions between students of different classes that are placed in the 
same building (e.g., when entering/exiting the building or during sports activities or 
class breaks); and a contact layer, which captures casual interactions between adults, 
for instance, in shops or in public transport. While the family layer is assumed to be 
fixed, the other three layers are time-varying, allowing to capture different phenomena, 
including the implementation of home-isolation policies. In particular, while we assume 
that students’ membership to classes does not change in the time-horizon of our mod-
eling framework, the interactions between students that belong to the same class may 
change if students—or even entire classes—are home-isolated. The time-varying school 
building layer and the contact layer, instead, are generated in a stochastic fashion, rep-
resenting casual contacts between students of different classes and between adults that 
are not home-isolated, respectively. These stochastic time-varying interactions are gen-
erated using an activity-driven network model (Perra et al. 2012; Zino et al. 2016), which 
has emerged as a valuable modeling framework to generate heterogeneous time-varying 
networks of interactions (Starnini and Pastor-Satorras 2013).

The network model is combined with a generic and flexible compartmental model for 
the disease progression that captures key features common to most airborne diseases 
(Pastor-Satorras et  al. 2015). Specifically, the proposed model encapsulates a latency 
period, partial detection of infected individuals, and vaccinations. Furthermore, the 
disease progression model takes into account the inherent differences in infectious-
ness and in the emergence of symptoms (and thus in the detectability) between children 
and adults. To this aim, we consider two distinct classes of individuals—children and 
adults—each one characterized by different parameters for the infection probability and 
the detection rate. It worth commenting that both the network model and the compart-
mental model can be easily extended by including further features (e.g., an age-stratifi-
cation structure or further compartments), or incorporated as a component of a larger 
modeling framework (as often happens with agent-based models).

The model is demonstrated in a scenario inspired by the COVID-19 pandemic. The 
network model is calibrated by generating a population corresponding to a small-
medium size urban area, with a demographic distribution calibrated to the French 
demographic data (https:// www. insee. fr/ fr/ stati stiqu es/ 42776 30? somma ire= 43182 
91& fbclid= IwAR3z- EUWTc RXgeE 5VK- XE3Mk k6Sug qJXZG 1ox4r 0qi7t Ro220 DpvLE 
rRKvY, https:// www. educa tion. gouv. fr/ les- chiff res- cles- du- syste me- educa tif- 6515), and 
by tailoring the epidemic progression model to COVID-19, by calibrating the epidemic 
parameters utilizing reliable estimations from the epidemiology literature (Prem 2020; 
Zhang et al. 2020; Davies et al. 2021; Dattner et al. 2021). We use the calibrated model 
to investigate the role of children and schools in the spreading of COVID-19 and to per-
form what-if analyses toward assessing the effectiveness of different policies during the 
spring 2021 vaccination campaign. Our analyses, performed through an extensive cam-
paign of Monte Carlo simulations, allow us to draw some conclusions. First, we use the 
model to support the intuition that children play a key role in the spreading of COVID-
19, and thus—being the vaccination of children still not viable (https:// www. nytim es. 
com/ 2021/ 02/ 12/ health/ covid- vacci nes- child ren. htm)—the management of NPIs in 
schools seems crucial to keep the infections under control while vaccinating the adults. 
Second, massive testing campaigns in schools seem to be effective in mitigating the 

https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.education.gouv.fr/les-chiffres-cles-du-systeme-educatif-6515
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
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spread. However, these campaigns may be practically unfeasible, since they may require 
detecting at least 70% of the infections (including asymptomatic) to be able to flatten 
the curve—an objective that might be far beyond the current estimates (Pullano et al. 
2020). Third, the enforcement of online education for schoolmates of detected infected 
children seems to be an effective practice to keep the number of infections under con-
trol, in combination with a moderate testing campaign in schools. Finally, we find that 
prioritizing vaccination of large families may be a valuable strategy to reach herd immu-
nity faster, limiting the need for massive testing campaigns in schools. We believe that 
these findings might be of help to assist public health authorities during the next phases 
of the fight against COVID-19. Moreover, the generality of our modeling framework and 
its flexibility suggests that it could be a valuable tool to investigate issues that may arise 
in the future stages of the pandemic (e.g., due to the spread of new highly-contagious 
strains), and to increase preparedness for future airborne epidemic outbreaks.

In summary, the main contribution of this paper is twofold. First, we extend the litera-
ture on networks epidemic models by proposing a well-grounded agent-based method 
for the study of the interplay of an airborne epidemic disease and human decisions. This 
method allows for accurately reproduce the social structure that underlies disease trans-
mission in communities with families, schools, and other social interactions, and enables 
the assessment of different control strategies to mitigate the spread. Second, we adopt 
the proposed model to study a case study calibrated on the vaccination campaign dur-
ing the COVID-19 pandemics, gaining novel insights that could be of interest to help 
assist public health authorities during the current and future phases of the COVID-19 
pandemics.

The rest of the paper is organized as follows. In “Model” section, we present our multi-
layer network epidemic model. In “Model calibration to COVID-19 in France and simu-
lation setting” section, we calibrate our general modeling framework to investigate the 
ongoing COVID-19 challenges. In “Results” section, we present our main results and 
discuss their implications. “Discussion and conclusions” section concludes the paper by 
summarizing the take-home message and outlining future research directions.

Model
Population

We consider a population of n individuals, n ∈ Z
+ , indexed by V = {1, . . . , n} , where Z+ 

is the set of non-negative integer numbers. Individuals are divided into two types: chil-
dren C = {1, . . . , ñ} and adults A = {ñ+ 1, . . . , n} . The entire population is partitioned 
into a set F = {F1, . . .Fk} of k mutually exclusive families (so that V =

⋃k
ℓ=1

Fℓ ). Simi-
larly, children are partitioned into a set S = {S1, . . .Sm} of m mutually exclusive school 
classes (so that C =

⋃m
ℓ=1

Sℓ ). In a hierarchical fashion, children are also assigned to a 
set of p mutually exclusive school buildings B = {B1, . . .Bp} (so that C =

⋃p
ℓ=1

Bℓ ). We 
assume that the population and its partitioning in families and school classes remain 
constant throughout the duration of the epidemic outbreak.

We define three functions φ , ψ , and β that associate each individual with their fam-
ily, and each child with their class and school building, respectively. Specifically, we 
denote by φ : V → F  the function that associates each individual with the correspond-
ing family; by ψ : C → S the function that associates each child with their class; and 
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by β : C → B the function that associates each child with the school building in which 
their class is. Clearly, due to the hierarchical structure, if ψ(i) = ψ(j) , then necessarily 
β(i) = β(j) . Hence, each adult i ∈ A is associated with their family φ(i) , while each child 
j ∈ C is associated with their family φ(j) , class ψ(j) , and building β(j) . A schematic of the 
population structure is illustrated in Fig. 1.

Network

Most airborne diseases spread through human-to-human interactions between indi-
viduals. In this section, we introduce a time-varying network structure such that the 
presence of a link between a pair of individuals at a certain time means that the two 
individuals have an interaction at that time (of duration sufficiently long to allow conta-
gion). Specifically, we define a time-varying multi-layer network structure (Kivelä et al. 
2014), which accounts for the presence of steady interactions within each family, inter-
mittent interactions in classes, and casual time-varying contacts (Holme and Saramäki 
2012; Holme 2015). To this aim, we propose a four-layered undirected network structure 
G = (V , EF , ES(t), EB(t), EC(t)) , t ∈ Z

+ , in which the four layers capture the interactions 
between family members living in the same household, between classmates, between 
children in different classes, and other casual contacts, respectively. Note that the edge 
set EF is assumed to be constant, while the other three layers are time-varying, reflecting 
the assumption that—at least on a time-scale relative to an epidemic outbreak—families 
do not change, while the implementation of online education may reduce the physical 
interactions between classmates, and the pattern of casual contacts in school buildings 
and between adults may vary day-to-day. The four layers are defined as follows.

Family layer. The family layer is defined by the time-invariant edge set EF ⊆ V × V , 
which captures the interactions between family members, that is,

Hence, the family layer is formed by a set of cliques, connecting all the individuals in 
the same family Fℓ . This is based on the assumption that all the individuals that share 
a room or an indoor environment with an infected individual for several hours per-day 

(1)(i, j) ∈ EF ⇐⇒ φ(i) = φ(j) .

Fig. 1 Schematic of the population structure. In this simple example, four children C = {1, 2, 3, 4} and four 
adults A = {5, 6, 7, 8} are partitioned into three school classes (red circles above), placed into two different 
buildings (violet rectangles), and two families (green squares below), by means of the functions ψ and φ
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(e.g., in the household) have a non-negligible probability of being infected (Bazant and 
Bush 2021; Lewis 2021).

Class layer. The class layer is defined by a time-varying edge set ES(t) , which repre-
sents the interactions between classmates at time t. Formally, for each children i ∈ C , we 
define a variable Ai(t) ∈ {0, 1} termed home-isolation state representing whether i goes 
to school at time t ( Ai(t) = 1 ) or if they stay at home ( Ai(t) = 0 ). Note that children 
can stay at home either for periodic school closures (for instance, during weekends) and 
for the implementation of NPIs (for instance, by enforcing online education for infected 
children, or for their entire class). The interactions within the classes at time t are then 
defined as follows:

Similar to the family layer, also the class layer is made of cliques, since all the children 
that share a class for several hours with an infected individual may be infected.

School building layer. The school building layer is defined by a time-varying edge 
set EB(t) , which represents the interactions between children in different classes but in 
the same building at time t, which may occur in the corridors, when entering and exit-
ing the building or during class breaks. We generate the random interactions between 
children in different classes EB(t) by using an extension of a discrete-time activity-driven 
network (ADN) (Perra et al. 2012). We adopt ADNs—which have emerged as a power-
ful modeling framework to realistically reproduce time-varying heterogeneous networks 
(Starnini and Pastor-Satorras 2013)—because of their flexibility (Rizzo et al. 2014; Moi-
net et al. 2015; Nadini et al. 2018; Bongiorno et al. 2019) which allows us to incorporate 
the specific features of our model such as different home-isolation policies, and for their 
amenability to efficiently perform fast numerical simulations (Rizzo et al. 2016). Similar 
to a standard ADN (Perra et al. 2012), each child is characterized by a constant param-
eter ai ∈ [0, 1] , i ∈ C , called activity, expressing their propensity to interact with others; 
all the children have a common parameter mc ∈ Z>0 , which represents the number of 
interactions that active children initiate. Then we define the following algorithm to gen-
erate the school building layer EB(t) , at each time step t, independently of the previous 
time steps: 

1 The edge set is initialized as an empty edge set EB(t) = ∅;
2 Each child i ∈ C that is not home isolated ( Ai(t) = 1 ) activates with probability equal 

to ai , independent of the others and of the previous history of the process;
3 If i activates, then the children generates mc undirected links with a mc

-tuple of (non-home-isolated) children outside their class ( ψ(i) ) but 
in the same building ( β(i) ), selected uniformly at random in the set 
{j : j ∈ C,ψ(j) �= ψ(i),β(j) = β(i),Aj(t) = 1} ; the generated links are added to the 
set EB(t);

Contact layer. The contact layer is defined by the time-varying edge set EC(t) ⊆ A×A , 
representing the casual interactions that are generated, for instance, in a shop, or in 
public transportation, or at work. We assume that only adults individuals are involved 
in this type of interaction, while children only interact with their family members and 

(2)(i, j) ∈ ES(t) ⇐⇒ ψ(i) = ψ(j) and Ai(t) = Aj(t) = 1 .
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their classmates. This is consistent with the presence of mobility restrictions and with 
the closure of most non-essential activities during the early vaccination stages. Simi-
lar to children, also each adult is associated with a home-isolation state Ai(t) ∈ {0, 1} , 
i ∈ A , representing whether i is allowed to have social interactions at time t ( Ai(t) = 1 ), 
or if they are home-isolated ( Ai(t) = 0 ). Similar to the school building layer, we gener-
ate these random interactions by using an extension of a discrete-time activity-driven 
network (ADN) (Perra et al. 2012). Specifically, we associate to each adult their activity 
ai ∈ [0, 1] , i ∈ A and we fix a common parameter ma ∈ Z>0 . Then, at each time step t 
(and independently of the previous time steps), the contact layer is defined as follows: 

1 The edge set is initialized as an empty edge set EC(t) = ∅;
2 Each adult i ∈ A that is not home isolated ( Ai(t) = 1 ) activates with probability 

equal to ai , independent of the others and of the previous history of the process;
3 If i activates, then the adult generates ma undirected links with a ma-tuple of (non-

home-isolated) adults outside their family ( φ(i) ), selected uniformly at random in the 
set {j : j ∈ A,φ(j) �= φ(i),Aj(t) = 1} ; the generated links are added to the set EC(t);

The multi-layer network structure obtained is illustrated in Fig. 2.

Remark 1

This multi-layer structure can be extended to incorporate further real-world features, 
which have been proven to play a key role in the spread of epidemics (Rader et al. 2020). 
For instance, workplaces for adults can be modeled in a hierarchical structure with offices 
and buildings, similar to classes and schools; and households can be placed in neighbor-
hoods. All these extensions can be implemented by simply adding layers, without chang-
ing the very fabric of our modeling paradigm.

Disease progression and spreading

We consider an extension of a stochastic network susceptible–exposed–infectious–
removed (SEIR) model on networks, which captures several important features of common 

Fig. 2 Schematic of the four-layered network structure with a sample realization of the four distinct layers 
in a time-step t (top), and of the corresponding aggregate network of interactions (bottom). Orange nodes 
represent children (which are partitioned into two classes in the same building), blue nodes represent adults
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airborne diseases (Pastor-Satorras et al. 2015; Zino et al. 2017). In this model, we include 
two additional compartments to account for vaccinations and for the presence of asymp-
tomatic unaware infectious individuals. Specifically, at discrete time instant t ∈ Z

+ , each 
individual i ∈ V is characterized by a variable Xi(t) ∈ {S,E, ID, IU ,R,V } , representing the 
health state of the individual at time t. The state S represents susceptible individuals, who 
are healthy and can be infected by the disease, while individuals that have been vaccinated 
and are immune to the disease are denoted by V. Susceptible individuals who have been 
exposed to the disease and are thus infected, but not yet infectious, are represented by E. 
Infectious individuals are divided into two compartments: those that are detected (due to 
the emergence of symptoms or because of receiving a positive test), denoted by ID , and 
those that are asymptomatic and not tested, and thus unaware ( IU ). Finally, individuals that 
recover (or die) are denoted by R. We assume that recovered individuals become immune 
to the disease. The progression of the disease is described in the following and illustrated in 
Fig. 3.

At each time-step t, susceptible individuals ( Xi(t) = S ) may enter in contact with the 
pathogen due to interactions with infectious individuals ( ID and IU ) and thus they may 
become exposed ( Xi(t + 1) = E ). The per-contact infection probability �j ∈ [0, 1] , is a 
constant parameter that captures the probability that the disease is transmitted through a 
physical contact with an infectious individual j, and may differ depending on the individual 
j. Specifically, we assume that children and adults may have different contagion probabili-
ties. Hence, we introduce two parameters �a ∈ [0, 1] and �c ∈ [0, 1] to model the adults per-
contact infection probability and the children per-contact infection probability, respectively, 
and we set

Hence, the contagion probability for each individual i ∈ V is equal to

where, denoted by | · | the cardinality of a set, 

(3)�j =

{
�c if j ∈ C,
�a if j ∈ A.

(4)P[Xi(t + 1) = E|Xi(t) = S] = 1− (1− �c)
NF ,c
i (t)+NS

i (t)(1− �a)
NF ,a
i (t)+NC

i (t) ,

(5a)NF ,c
i (t) = |{j ∈ C : (i, j) ∈ EF , Xj(t) ∈ {IU , ID}}|,

Fig. 3 State transitions characterizing the epidemic spreading model. Susceptible individuals (S) that have 
interactions with infectious individuals ( ID and IU ) may become exposed (E), and then infectious. Infectious 
individuals can be either detected ( ID ) or unaware ( IU ). Then, they may recover or die, becoming removed (R). 
Vaccinated individuals cannot contract the disease
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 are the number of infectious individuals that have a link with individual i at time t on 
the family (children and adults, separately), class and school building, and contact layer, 
respectively. Note that, while the interactions on the family layer are split into two sets 
NF ,c
i (t) and NF ,a

i (t) to separately account for children and adults (since in general they 
may have different per-contact infection probability), the interactions on the school 
buildings and class layers involve only children ( NS

i (t) ⊆ C ) and those on the contact 
layer involves only adults ( NC

i (t) ⊆ A).
Besides the contagion, at each time-step t, each exposed individual E may become 

infectious, with probability ν ∈ [0, 1] . Infectious individuals may be aware ( ID ) due to 
being symptomatic or receiving a positive test, or unaware ( IU ) due to being asympto-
matic and untested. We denote by qi ∈ [0, 1] the probability that individual i is detected 
if infected. We assume that such a probability depends on whether the individual is a 
children or an adult, as a consequence of different probabilities of developing symptoms 
and different testing policies that can be implemented for the two types of individuals. 
Hence, we introduce two parameters qa ∈ [0, 1] and qc ∈ [0, 1] to model the adults detec-
tion rate and the children detection rate, respectively, and we set

Infectious individuals recover or die and become removed (R), with probability 
µ ∈ [0, 1] . These transitions, illustrated in Fig.  3, are thus governed by the following 
probabilistic rules: 

 Table 1 summarizes the notation use throughout this paper.

Remark 2

The disease progression model is amenable to several extensions, to incorporate further 
features of real-world epidemics. For instance, further compartments and transition 
probabilities can be included in the model to account for the different stages and pos-
sibility of treatment (e.g., in standard hospital beds or in intensive care unit), the possible 
implementation of quarantine, to differentiate the possible outcomes of the disease (e.g., 
recovery or death), and to account for possible reinfections. See, e.g., the recent models 

(5b)NF ,a
i (t) = |{j ∈ A : (i, j) ∈ EF , Xj(t) ∈ {IU , ID}}|,

(5c)NS
i (t) = |{j∈ C : (i, j) ∈ EC(t) ∪ ES(t), Xj(t) ∈ {IU , ID}}|,

(5d)NC
i (t) = |{j∈ A : (i, j) ∈ EC(t), Xj(t) ∈ {IU , ID}}|,

(6)qi =

{
qc if i ∈ C,
qa if i ∈ A.

(7a)P[Xi(t + 1) = ID |Xi(t) = E] = qiν ,

(7b)P[Xi(t + 1) = IU |Xi(t) = E] = (1− qi)ν ,

(7c)P[Xi(t + 1) = R |Xi(t) ∈ {ID, IU }] = µ .
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developed to capture the disease progression of COVID-19 (Estrada 2020; Giordano et al. 
2020).

Remark 3
The contagion probability in (4) can be expanded by utilizing location-dependent per-
contact infection probabilities, as it is often assumed in agent-based models (Chinazzi 
2020; Truszkowska et al. 2021), so that interactions in different places may be associated 
with different transmission probabilities (e.g., to model indoor vs. outdoor locations or the 
use of personal protective equipment).

Dynamics

Under the reasonable assumption that whether an individual is home-isolated at time t 
depends only on the health state of the system at that time and on the time instant t, that 
is, that Ai(t) is a deterministic function of X(t) and of t, the network formation process of 
the two time-varying layers at time t is a function of X(t) and of t. Hence, the stochastic 
process X(t) is ultimately a Markov chain on the state space {S,E, ID, IU ,R,V }n , whose 

Table 1 Notation used in the paper

Notation Meaning

V = {1, . . . , n} Population

C = {1, . . . , ñ} Children

A = {ñ+ 1, . . . , n} Adults

F = {F1, . . . ,Fk} Families

S = {S1, . . . ,Sm} School classes

B = {B1, . . . ,Bp} School buildings

φ : V → F Function that associates individuals with their 
families

ψ : C → S Function that associates children with their classes

β : C → S Function that associates children with their build-
ings

EF ⊆ V × V Family layer

ES(t) ⊆ C × C Class layer at time t

EB(t) ⊆ C × C School building layer at time t

EC (t) ⊆ A×A Contact layer at time t

ai ∈ [0, 1] Activity of individual i

mc ∈ Z>0 Interactions initiated by an active child

ma ∈ Z>0 Interactions initiated by an active adult

Xi(t) ∈ {S, E , ID , IU , R, V} Health state of individual i at time t

Ai(t) ∈ {0, 1} Home-isolation state of individual i at time t

�a ∈ [0, 1] Adult per-contact infection probability

�c ∈ [0, 1] Children per-contact infection probability

ν ∈ [0, 1] Probability of becoming infectious

µ ∈ [0, 1] Recovery probability

qa ∈ [0, 1] Adults detection rate

qc ∈ [0, 1] Children detection rate
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state transitions are governed by Eqs. (4) and (7). Furthermore, if Ai(t) depends on t only 
through X(t), then the Markov chain is time-invariant (Levin et al. 2006). The latter is the 
case in which home-isolation policies are feedback of the state (for instance, if detected 
individuals, their family members, and/or their classmates are home-isolated), but no 
time-dependent policy is enacted (for instance, school attendance on alternating days 
or weeks). The Markovianity of the process X(t) allows performing fast simulations of 
the systems, to shed light on the role of children and schools in the transmission of the 
disease, and to investigate the effectiveness of different home-isolation and vaccination 
strategies, as illustrated in “Results” section.

Model calibration to COVID‑19 in France and simulation setting
We demonstrate the potentialities of our modeling framework by studying some sce-
narios inspired by the spring 2021 vaccination campaign against COVID-19 in France. 
In this case study, we consider a daily temporal granularity, that is, each time-step coin-
cides with a day. Hence, before presenting the findings of our simulation studies, we pro-
vide some details on the model calibration, based on demographic and epidemiological 
data, and on the setting we have designed to perform the simulations.

Population and network

We generate a network composed of k = 50, 000 families. Families are generated accord-
ing to France census data from the French National Institute of Statistics and Economic 
Studies (Institut national de la statistique et des études économiques) (https:// www. 
insee. fr/ fr/ stati stiqu es/ 42776 30? somma ire= 43182 91& fbclid= IwAR3z- EUWTc RXgeE 
5VK- XE3Mk k6Sug qJXZG 1ox4r 0qi7t Ro220 DpvLE rRKvY). Specifically, census data 
report that 35.8% of the families are formed by a single member, 6% by single adults 
with one or more children, 21% by a couple with one or more children, and 36.7% by two 
or more adults without children. Accordingly, we determine that 13,500 families have 
children (27%): 3000 of them include a single adult, while the others 13,500 have two 
adults. Then, to each of these 13,500 families, we assign a variable number of children ns , 
generated from a zero-truncated Poisson random variable (r.v.) with an expected value 
equal to �ns� = 1.79 , each one independent of the others. Such a variable is calibrated on 
the average number of school children for families in France (https:// www. insee. fr/ fr/ 
stati stiqu es/ 42776 30? somma ire= 43182 91& fbclid= IwAR3z- EUWTc RXgeE 5VK- XE3Mk 
k6Sug qJXZG 1ox4r 0qi7t Ro220 DpvLE rRKvY). Of the remaining 36,500 families, 17,900 
(36.7%) are formed by a single adult. The remaining 18,350 families are formed by a vari-
able number of children na , generated from a one-truncated Poisson random variable 
(r.v.) with an expected value equal to �na� = 2.41 , each one independent of the others. 
This variable is calibrated to fit the average family size in France, according to France 
census data (https:// www. insee. fr/ fr/ stati stiqu es/ 42776 30? somma ire= 43182 91& fbclid= 
IwAR3z- EUWTc RXgeE 5VK- XE3Mk k6Sug qJXZG 1ox4r 0qi7t Ro220 DpvLE rRKvY). Note 
that the total number of individuals in the network n is a r.v. with an expected value 
equal to �n� = 110, 000 , being equal to 85,835 adults and the 24,165 children, on average.

The children are randomly associated with their classes. Specifically, the number 
of children in each class is set to be nc = 24 , consistent with the average class size 
in French schools (https:// www. educa tion. gouv. fr/ les- chiff res- cles- du- syste me- educa 

https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.education.gouv.fr/les-chiffres-cles-du-systeme-educatif-6515
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tif- 6515). We randomly partition the classes in buildings with 20 classes each. The 
school building layer is generated according to the algorithm described in the previ-
ous section. Specifically, the activity of i ∈ C is a power-law distributed r.v. with lower-
barrier at amin = 0.1 , upper-barrier at amax = 1 , and exponent equal to α = −2.09 , 
as in Aiello et  al. (2001) (additional simulations to demonstrate the robustness of 
our findings with respect to different choices of the parameter of the power-law are 
reported in the “Appendix”, Fig.  8). The number of connections initiated by each 
active individual is set to be equal to mc = 7 . Such a variable is calibrated on the 
SocioPatterns primary school dataset (Stehlé et al. 2011), by considering the average 
daily number of contacts between students in different classes that last for a suffi-
ciently long time. Specifically, consistent with the European Union guidelines on the 
definition of contacts at risk (https:// ec. europa. eu/ health/ eheal th/ covid- 19_ en), we 
have only considered contacts that last cumulatively at least 15  min. Fourth, while 
we have explored some potentialities of our modeling framework, a fundamental and 
complete analysis of the proposed model is still missing. Despite its complexity may 
hinder the analytical derivation of theoretical results, we believe that its amenability 
to perform fast simulations poses the basis for future numerical studies on the gen-
eral properties of the model, including the numerical computation of the epidemic 
threshold.

The contact layer is generated according to a discrete-time ADN (Perra et al. 2012). 
Specifically, the activity of i ∈ A is a power-law distributed r.v. with lower-barrier at 
amin = 0.1 , upper-barrier at amax = 1 , and exponent equal to α = −2.09 , as in Aiello 
et  al. (2001). The number of connections initiated by each active individual ma is 
computed as follows. Based on empirical observations, the authors in Mossong et al. 
(2008) identify that active adults have on average 18 daily interactions (including 
those within the family, and those initiated by other individuals). Hence, we set the 
value of ma such that the expected degree of active adults matches with this estima-
tion, rounded to the closest integer. Specifically, we enforce

where

is the average activity, and

is the average number of links of adults on the family layer, computed from the distribu-
tion of adults in families described in the above.

We can compute the average degree for children an adults in the absence of home-
isolation as the sum of the degrees on the four layers, that is,

(8)18 = (1+ �a�)ma + �kf � =⇒ ma = round

(
18− �kf �a

1+ �a�

)

= 13 ,

(9)�a� =

∫ 1
amin

x1+αdx
∫ 1
amin

xαdx
=

∫ 1
0.1 x

−1.09dx
∫ 1
0.1 x

−2.09dx
= 0.247

(10)�kf � = 1.56

https://www.education.gouv.fr/les-chiffres-cles-du-systeme-educatif-6515
https://ec.europa.eu/health/ehealth/covid-19_en
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and

respectively, where the term 5/7 accounts for school closure in the weekend, and �kf � = 3 
is the average number of links of children on the family layer computed from the distri-
bution of adults in families described in the above. Finally, the average degree of an indi-
vidual is obtained as their weighted average, that is,

COVID‑19 epidemic parameters

The epidemic parameters � , ν , and µ for COVID-19 are set from epidemiological data as 
follows. Reliable estimations of the average latency period τE = 6.4 days and of the aver-
age period of communicability τI = 5 days are available Prem (2020). From these data, 
similar to Prem (2020), we obtain 

The per-contact infection probabilities �c and �a are estimated from the basic repro-
duction number R0 , which is the average number of secondary infections generated by 
an infectious individual, assuming that the rest of the population is susceptible and in 
the absence of NPIs. Note that estimating the per-contact infection probabilities from 
the basic reproduction number (and not from the effective reproduction number) allows 
us for avoiding the possible confounding due to the effect of NPIs on the contagion pro-
cess. Hence, since τI is the average time that an individual is infectious, we write

In this paper, we consider three possible scenarios, making different assumptions on the 
contagiousness of children and adults, and considering either the original strain and the 
Alpha variant (B 1.1.7), which quickly became dominant in Europe in spring 2021, dur-
ing the vaccination campaign.

Scenario I (original strain, uniform contagion probability) In the first scenario, we 
consider the original COVID-19 strain, and we assume that children and adults have 
the same per-contact infection probability, that is �a = �c = �̄ . According to reliable 
results on the estimation of the basic reproduction number (Zhang et al. 2020), we set 
R0 = 2.28 . In this scenario, by inverting (15) we obtain �̄ = 0.040.

(11)�k�a =
(
�kf �a + 2�a�ma

)
= 7.98

(12)�k�c =

(

�kf �c +
5

7
(�nc� − 1+ 2�a�mc)

)

= 21.9,

(13)�k� =
85, 835

110, 000
�k�a +

24, 165

110, 000
�k�c = 15.

(14a)ν = 1− exp

(

−
1

τE

)

= 0.1447,

(14b)µ = 1− exp

(

−
1

τI

)

= 0.1813.

(15)R0 =

(
ñ

n
�c�k�c +

n− ñ

n
�a�k�a

)

τI .
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Scenario II (original strain, different contagion probability) In the second scenario, 
we consider the original COVID-19 strain ( R0 = 2.28 ), and we assume that children are 
less contagious than adults. Empirical studies suggest that children may have a transmis-
sibility reduced by 37%, with the extreme value of the 95% confidence interval (CI) at 
63% Dattner et al. 2021; (15) yields �a = 0.047 and �c = 0.029 . The corresponding 95% 
CI are �a ∈ [0.040, 0.053] and �c ∈ [0.020, 0.040].

Scenario III (Alpha variant) In the third scenario, we consider the Alpha variant (B 
1.1.7), which is estimated to be more infectious than the original one (Davies et al. 2021), 
with a increased transmissibility increased by 43–90% (95% CI). We assume that chil-
dren and adults have the same per-contact infection probability, that is �a = �c = �̄α . In 
this scenario, we obtain �̄α ∈ [0.057, 0.076] , with an average of �̄α = 0.067.

The detection rates qa and qc are control parameters that reflect the effort and the 
effectiveness of testing practices and they are lower-bounded by the symptomatic rates 
qa ≥ 0.25 and qc ≥ 0.12 , as suggested in (https:// www. edgeh ealth. co. uk/ post/ as- many- 
as-1- in-5- people- in- engla nd- have- had- the- covid- 19- disea se) and Han et  al. (2021), 
respectively.

Note that, in our disease progression, we assume that individuals become immune 
after recovery. Such an assumption is consistent with recent clinical analysis of COVID-
19, which suggest that immunity lasts on average at least 6–8 months (i.e., the same 
duration of the time-horizon of our simulations) (Gudbjartsson 2020; Dan 2021).

Home‑isolation policies

Our work considers the implementation of different home-isolation policies. Differently 
from vaccinations, which are set at the beginning of each simulation, isolation policies 
are dynamical. Common to all policies we have that individuals that are detected ( ID ), 
are always home-isolated, that is,

Besides this basic rule, further policies may be enacted to enforce home-isolation of 
non-detected individuals that may be (potentially) infected. Specifically, we consider the 
two policies described in the following.

Policy A (family-isolation policy) Under this policy, when an individual is detected, 
then all their family members are home-isolated, that is

Policy B (class-isolation policy) Under this policy, when an individual is detected, then 
all their schoolmates are home-isolated, that is

In all our simulations, we assume that the family-isolation rule is enacted, while in some 
of the simulations, we will also enforce the class-isolation policy. We will explicitly 
report when both policies are implemented.

(16)Xi(t) = ID =⇒ Ai(t) = 0.

(17)Xi(t) = ID =⇒ Aj(t) = 0, ∀j ∈ φ(i).

(18)Xi(t) = ID =⇒ Aj(t) = 0, ∀j ∈ ψ(i).

https://www.edgehealth.co.uk/post/as-many-as-1-in-5-people-in-england-have-had-the-covid-19-disease
https://www.edgehealth.co.uk/post/as-many-as-1-in-5-people-in-england-have-had-the-covid-19-disease
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Vaccination strategies and initialization

In all our simulations, we initialize the system by setting a fraction V ∈ [0, 1] of the pop-
ulation in the vaccinated (V) health state. Such a fraction may vary across the simulation 
settings, as detailed in the next section, when describing the results. Fixed the fraction 
of vaccinated individuals, the following three different vaccination strategies are consid-
ered and compared.

Vaccination strategy I (uniform adult vaccination) A fraction V of the population 
chosen uniformly at random among the adults is vaccinated.

Vaccination strategy II (uniform vaccination) In this strategy, the fraction V is cho-
sen uniformly at random among the entire population, including children. Even though 
this strategy is not realistically viable in the current stage of the vaccination campaign 
(https:// www. nytim es. com/ 2021/ 02/ 12/ health/ covid- vacci nes- child ren. htm), its imple-
mentation in our simulations allows us to better understand the impact of children in 
the spreading of COVID-19.

Vaccination strategy III (targeted vaccination) Similar to the uniform adult vaccina-
tion, a fraction V of the population is chosen for vaccination. However, the individuals 
are not selected uniformly at random, but vaccinated in decreasing order of size of the 
corresponding families.

Note that, for different vaccination policies, the population eligible for vaccination is 
different. In particular, while for I and III the eligible population coincides with all the 
adults, for II the entire population is eligible to be vaccinated.

More realistic vaccination strategies can be modeled in a dynamic fashion, by starting 
the vaccination campaign in a specific date (possibly after the beginning of the simula-
tions) and adding a transition mechanism from the susceptible state to the vaccinated 
one (possibly time-varying to model the increased vaccination capacity of the health-
care system and the growing supplies), and by including further features such as vaccine 
hesitancy and other orders of prioritization. These features could be easily incorporated 
within our modeling framework, following implementations similar to the one pro-
posed in the recent literature (Grauer et al. 2020; Bubar et al. 2021; Truszkowska et al. 
2021; Foy et al. 2021; Parino et al. 2021). Here, however, we opt to model vaccination in 
a simplified and “static” fashion. Such a choice allows us to reduce the impact of possible 
confounding variables added by the dynamic vaccination process, and thus focus our 
analysis on the role of schools and children on the disease spreading, given that a certain 
stage of the vaccination rollout has been reached. For the sake of discussing the flex-
ibility of our modeling framework and the robustness of our findings, simulation results 
with simple dynamic vaccination policies are reported in the “Appendix”.

The rest of the population, that is, those not vaccinated, are initialized by randomly 
assigning 1% of the population to the exposed health state (E), compatible with estima-
tions on the number of active COVID-19 cases in France (including undetected indi-
viduals) as of May 2021 (https:// dashb oard. covid 19. data. gouv. fr), while all the others are 
susceptible (S). In the “Appendix”, we report some additional simulations to show that 
the choice of the initial condition has a negligible impact on the epidemic process. The 
parameters common to all the simulations are reported in Table 2.

https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
https://dashboard.covid19.data.gouv.fr
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Results
In this section, we utilize the model calibrated to COVID-19 to investigate several sce-
narios. Specifically, we will devote the first set of experiments toward shedding light on 
the role of children in the spreading of COVID-19. Then, the second set of simulations 
is performed to explore the effectiveness of increasing the testing of adults and children, 
showing that massive testing campaigns among children are necessary to effectively 
reduce the contagions. Then, we assess the performance of the class-isolation policy pre-
sented in subsection Home-isolation policies, demonstrating that it seems an effective 
strategy to flatten the epidemic curve without the need for massive (and often unfeasi-
ble) testing campaigns. Finally, we compare the uniform adult vaccination strategy with 
the prioritization of large families proposed in subsection Vaccination strategies and ini-
tialization, showing that the proposed strategy might be a viable strategy to reach herd 
immunity faster.

Key role of children in the spreading of COVID‑19

In the first set of experiments, we investigate the role of children in the spreading of 
COVID-19. To remove any other confounding elements, we set the detection rates 
at their minimal values, coinciding with the symptomatic rates, that is, qa = 0.25 and 
qc = 0.12 , and we consider the simplest home-isolation policy A, described in subsec-
tion Home-isolation policies, in which only family members of detected individuals are 
enforced to home-isolate themselves. To highlight the role of children in the spreading 
process, we report the fractions of infections among children and adults separately.

Figure 4 reports the temporal evolution of the number of infections among the chil-
dren and the adults in the absence of vaccination ( V = 0 ), both under the assumption 
that children and adults have the same per-contact infection probability (Fig. 4a), and 

Table 2 Value of the parameters used in the simulations. The last three parameters, namely qa , 
qc , and V, vary across the simulations and their values are explicitly reported when presenting the 
results

Meaning Value

k Number of families 50,000

ns Children in each family with children Zero-truncated Poisson r.v., mean 1.79

na Adults in each family with no children One-truncated Poisson r.v., mean 2.41

nc children in each class 24

ai Activity of node i [0.1, 1], power law r.v., exponent −2.09

ma Interactions of active adults 13

mc Interactions of active children 7

�̄ Per-contact infection probability (S I) 0.040

�a Adult per-contact infection probability (S II) 0.047 (95% CI [0.040,0.053])

�c Children per-contact infection probability (S II) 0.029 (95% CI [0.020, 0.040])

�̄α Per-contact infection probability (S III) 0.067 (95% CI [0.057,0.076])

ν Probability of becoming infectious 0.1447

µ Recovery probability 0.1813

qa Adults detection rate –

qc Children detection rate –

V Population vaccinated –
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assuming that children have a lower infection probability (Fig.  4a). Both simulations 
show that the infections among children grow faster, while the infections among adults 
seem to follow the children’s wave. This observation intuitively suggests that control 
of the children spreading might be crucial toward successfully flattening the epidemic 
curve.

To support our intuition, we design a set of experiments to investigate the difference 
between two vaccination strategies, and we perform a set of Monte Carlo simula-
tions of the epidemic process for different fractions of the vaccinated population—
spanning from no vaccinations to vaccinating 70% of the population. Specifically, we 
compare strategy I, in which only adults are vaccinated, and strategy II, in which all 

Fig. 4 Role of children in the spreading of COVID-19. We show the temporal evolution of the fraction of 
infections among the adults (blue dots) and children (orange dots) in a representative simulation, in the 
absence of vaccination V = 0 . The solid curves illustrate the 7-day moving average of the two quantities. In 
(a), we consider Scenario I (original strain, uniform contagion probability), in which all the individuals have 
the same per-contact infection probability; in (b), Scenario II (original strain, different contagion probability), 
in which children have a decreased per-contact infection probability. The parameters used in the simulations 
are listed in Table 2, qa = 0.25 , and qc = 0.12

Fig. 5 Effect of children vaccination. We show the Monte Carlo estimation (over 100 independent 
simulations) of the cumulative fraction of infections among non-vaccinated adults (blue) and children 
(orange) at the end of the pandemic outbreak, as a function of the fraction of vaccinated population V. The 
solid curves refer to Vaccination strategy I, in which only adults are eligible for vaccination; the dashed curve 
refers to Vaccination strategy II, in which vaccine shots are randomly assigned to the entire population. In 
(a), we consider the original strain; the vertical bands represent the confidence interval with respect to the 
decreased infectiousness of children. In (b), we consider the Alpha variant; the vertical bands represent the 
confidence interval with respect to the increased infectiousness of the Alpha variant. The parameters used in 
the simulations are listed in Table 2, qa = 0.25 , and qc = 0.12
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the population is eligible for vaccination, for both the original strain (Scenario II, in 
Fig. 5a) and the Alpha variant (Scenario III, in Fig. 5b).

The results of our simulations, illustrated in Fig.  5, show some non-trivial behav-
iors. Specifically, our simulations suggest that Strategy I (vaccinating only adults, solid 
curves in the figures) has a weak overall impact on the epidemics, as the cumulative 
number of infections among children is marginally reduced, even when the major-
ity of the adult population is vaccinated. This suggests that it might be difficult to 
reach herd immunity, without vaccinating children (or implementing specific policies 
to reduce contagions in schools, as we shall discuss in the following). On the con-
trary, Strategy II (vaccinating all the individuals, dashed curves in the figures) seems 
to drastically impact the course of the outbreak, as it allows to reduce the cumulative 
number of infections in both groups, leading to herd immunity when about 60% and 
70% of the population is vaccinated, for the original strain and the UK one, respec-
tively. Interestingly, while in the early stages of the vaccination campaign Strategy I 
seems to be beneficial in reducing the number of cumulative infections at least among 
adults, when the vaccination rollout reaches a critical fraction (close to 40% and 60% 
for the two strains, respectively), Strategy II seems to outperform Strategy I not only 
among children, but also among adults (even though Strategy II entails fewer vaccina-
tions among adults than Strategy I). We believe that this phenomenon is due to the 
increasing herd immunity gained by children corresponding to the sharp decrease in 
the number of cumulative infections among children that can be observed in Fig. 5a 
when 30% of the population is vaccinated (50% for the Alpha variant in Fig. 5b). Such 
a sharp decay strongly impacts the contagions within the family.

Unfortunately, the above-mentioned strategy, although attractive, could be of difficult 
application in the case of the COVID-19 pandemic, being children excluded from the 
trials of the first vaccines https:// www. nytim es. com/ 2021/ 02/ 12/ health/ covid- vacci nes- 
child ren. htm). We also would like to stress that similar issues will be likely faced also 
with future novel viruses, for which new drugs and vaccines will be first tested on adults. 
Therefore, in the next sections, we will test alternative strategies to mitigate the disease, 
which do not entail the vaccination of children.

Flattening the curve through testing and home‑isolation policies

In the second set of experiments, we investigate the possibility of flattening the epidemic 
curve by means of increasing the testing capacity and implementing effective home-iso-
lation policies. In our simulation study, we thus fix the fraction of the vaccinated popula-
tion at 60% of the entire population ( V = 0.6 ), selected uniformly at random among the 
adults according to vaccination strategy I and we consider the Alpha variant (Scenario 
III). Then, we first explore different testing strategies by estimating the cumulative num-
ber of infections for different values of qa ∈ {0.25, 0.5, 0.8} and qc ∈ [0.12, 1] . The results 
of our analysis, illustrated in Fig. 6a, suggest that, even when a non-negligible fraction of 
the population is already vaccinated, massive outbreaks are still possible. Moreover, we 
observe that the ability to detect most of the infections among adults is not sufficient to 
flatten the epidemic curve, as only a mild decrease in the number of cases is observed. 
On the contrary, massive screening campaigns among children seem to be effective in 
reducing the cumulative number of infections, not only among children but within the 

https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
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entire population. However, according to this model, effective screening policies should 
be able to detect at least 80% of the infections among children, which may be realistically 
unfeasible or extremely costly, considering the large number of tests that such a practice 
would require to process (Pullano et al. 2020).

To address this issue, we utilize our model to investigate whether targeted home-iso-
lation policies for children can be enacted to reduce the testing effort needed to flat-
ten the epidemic curve. Specifically, we consider combining the family-isolation policy 
A with the school-isolation policy B, described in subsection Home-isolation policies, 
in which not only the family members of detected individuals have to home-isolate, but 
also all the classmates of children that are detected are home-isolated until their infected 
mate has recovered. The results are illustrated in Fig. 6b. Predictably, this strategy has a 
moderate impact for low values of qc , since only a small fraction of the infected children 
could be detected, and thus few classes are home-isolated. As the children detection rate 
qc increases, the fraction of infections (among children and adults) abruptly drops down, 
and a detection rate of 60% seems to be sufficient to guarantee successful mitigation of 
the outbreak. This result compares favorably to our previous findings, since it seems that 
disease mitigation can be achieved with more realistic testing practices. Note that, even 
in this scenario, increasing the adult detection rate has a minor impact on the outcome 
of the outbreak.

Targeted vaccination campaign

Finally, we hypothesize that the latter strategy can be further improved by prioritizing 
the vaccination of families with a large number of sons. To test this hypothesis, we com-
pare the outcome of the uniform adult vaccination strategy I, with the targeted vaccina-
tion strategy III, in which vaccinations are performed on adults, prioritizing members 
of large families. It is worth stressing that this approach is way more simple than prior-
itizing vaccination of the most active individuals based on their social activity pattern 

Fig. 6 Effect of testing and different home-isolation policies. We show the Monte Carlo estimation (over 100 
independent simulations) of the cumulative fraction of infections among adults (blue) and children (orange) 
at the end of the pandemic outbreak as a function of the children detection rate qc and for three different 
values of adult detection rate, representative of low testing qa = 0.25 (solid), moderate testing qa = 0.5 
(dashed), and massive testing qa = 0.8 (dash-dotted). In (a), we utilize the family-isolation policy (Policy A). 
In (b), we consider a scenario in which also the class-isolation policy (Policy B) is present. The comparison of 
the two panels shows that the application of both policies (dashed) sensibly outperforms utilizing only A 
(solid). The parameters used in the simulations are listed in Table 2 and V = 0.6 . All the simulations are done 
in Scenario III (Alpha variant), utilizing the average infectiousness reported in Table 2
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(as proposed in Liu et al. 2014), being the size of each family a non-ambiguous number, 
easily accessible for public health authorities and regulators. All these simulations are 
performed for the Alpha variant (Scenario III).

In Fig. 7b, we show a heat-map of the cumulative number of infections among adults 
at the end of the outbreak under the two vaccination strategies, for different values of the 
children detection rate qc and of the fraction of population vaccinated V. Under Vaccina-
tion strategy I (uniform adult vaccination), the figure clearly depicts a trade-off between 
children testing and vaccinations. In plain words, when a small fraction of the adult 
population is vaccinated, a massive testing campaign on children is necessary to con-
trol the spreading; then, when the vaccine has reached a sufficiently large portion of the 
adult population, the effort placed in children testing can be reduced. Under Vaccination 
strategy III (prioritization of large families), instead, the children detection rate seems to 
play a less important role.

In fact, when comparing the two vaccination strategies, we observe that, in many sce-
narios, strategy III (namely, the targeted vaccination) outperforms strategy I (the uni-
form one), as can be observed in Fig. 7. In particular, while in the very early stages of 
the vaccination campaign strategy I may provide a very small benefit (in particular in 
the presence of massive testing campaigns), strategy III becomes more efficient when 

Fig. 7 Comparison between different vaccination strategies. In (a) and (b), we show the Monte Carlo 
estimation (over 100 independent simulations) of the cumulative number of infections among adults at 
the end of the epidemic outbreak, for different values of the fraction of eligible individual vaccinated (V) 
and different children detection rate ( qc ). In (a), we adopt vaccination strategy I, in which the vaccinated 
individuals are selected uniformly at random among the adult population. In (b), we adopt vaccination 
strategy III, in which the vaccination of adults belonging to large families is prioritized. In (c), the two 
strategies are compared, showing the variation in the cumulative numbers of infections between the two 
strategies. The parameters used in the simulations are listed in Table 2 and qa = 0.25 . All the simulations are 
done in Scenario III (Alpha variant), with the average infectiousness reported in Table 2
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about 30% of the population is vaccinated, and becomes more and more advantageous as 
the number of vaccinated individuals increases, in particular for smaller values of chil-
dren detection rate. For instance, when 40% of the population is vaccinated, the targeted 
vaccination strategy reduces the infections up to 20%, when no testing campaigns are 
implemented. Interestingly, the vaccination strategy that prioritizes large families seems 
to yield herd immunity with 50% of the population vaccinated, whereas a similar result 
with the uniform vaccination strategy requires a much higher number of vaccinations, 
or a massive (and unrealistic) children testing ( qC > 0.7).

Discussion and conclusions
In this paper, we have proposed a stochastic multi-layer network model for the spread-
ing of epidemic diseases. The model is specifically oriented toward studying the role of 
children and schools in the spread of airborne diseases. To this aim, the proposed model 
incorporates four layers of social contacts to account for interactions between family 
members, within classes, casual interactions between children in their school building, 
and between adults, respectively. The network model is then combined with a tunable 
disease progression model that accounts for a limited detectability of infectious indi-
viduals, inherent differences between adults and children, the possible implementation 
of home-isolation policies, and vaccination. The proposed model is general and flexible, 
enabling its use to perform different analyses and investigate what-if scenarios toward 
understanding the role of schools in the spreading of epidemic diseases, and assessing 
different vaccination strategies, testing practices, and home-isolation policies.

We have demonstrated the potentiality of our modeling framework by analyzing a case 
study, inspired by and calibrated on the spring 2021 COVID-19 pandemic and vacci-
nation campaign in France (https:// www. insee. fr/ fr/ stati stiqu es/ 42776 30? somma ire= 
43182 91& fbclid= IwAR3z- EUWTc RXgeE 5VK- XE3Mk k6Sug qJXZG 1ox4r 0qi7t Ro220 
DpvLE rRKvY, https:// dashb oard. covid 19. data. gouv. fr, https:// www. educa tion. gouv. fr/ 
les- chiff res- cles- du- syste me- educa tif- 6515). During this vaccination campaign, NPIs 
are still implemented (reducing thus the number of contagions in other locations), while 
schools are open for in-person education. Echoing the concerns of several researchers 
(Gurdasani et al. 2021; Hyde 2020), we hypothesize that schools may play a key role in 
the spreading of the disease. Under this hypothesis, implementing intervention poli-
cies oriented to prevent contagions in schools—such as targeted home-isolation strate-
gies and testing campaigns—is crucial to flatten the epidemic curve. We thus utilize our 
modeling framework to test such a hypothesis, by means of a campaign of Monte Carlo 
numerical simulations.

Our findings have confirmed our hypothesis. Specifically, they have provided novel 
insights into the role of schools on the spreading of epidemics and into the effectiveness 
of different testing practices and home-isolation policies. First, our model, has allowed 
us to disentangle the role of children and adults in the spreading process. Specifically, 
we have shown that during the phase considered in the case study, contagions in schools 
are key drivers of the epidemics and intervention policies aiming at reducing the trans-
missions between children are thus crucial toward mitigating the spread. Considered 
the impossibility of vaccinating children in the early stages of a vaccination campaign 
(https:// www. nytim es. com/ 2021/ 02/ 12/ health/ covid- vacci nes- child ren. htm), the only 

https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://www.insee.fr/fr/statistiques/4277630?sommaire=4318291&fbclid=IwAR3z-EUWTcRXgeE5VK-XE3Mkk6SugqJXZG1ox4r0qi7tRo220DpvLErRKvY
https://dashboard.covid19.data.gouv.fr
https://www.education.gouv.fr/les-chiffres-cles-du-systeme-educatif-6515
https://www.education.gouv.fr/les-chiffres-cles-du-systeme-educatif-6515
https://www.nytimes.com/2021/02/12/health/covid-vaccines-children.htm
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way to control contagions in schools is by means of testing campaigns and implementing 
targeted temporary online education. In this vein, our second main result suggested that 
a massive testing campaign of children may be effective in flattening the epidemic curve, 
in particular, when testing is combined with the implementation of temporary online 
education for the classes in which infectious children are detected. With the imple-
mentation of such a home-isolation practice, we have shown that a reasonable testing 
effort (able to detect about 60% of the infected children) is sufficient to keep the pan-
demic under control (even considering the more infectious Alpha variant of COVID-19). 
Finally, we have tested the effectiveness of a targeted vaccination policy. In the proposed 
strategy, the vaccination of adults in large families is prioritized. The goal of such a pol-
icy is to reduce the probability of generating epidemic clusters in large families, whose 
many children go to different classes and could potentially infect a large number of indi-
viduals. Such a strategy may possibly avoid those super-spreading events that are typical 
of the inception of outbreaks of airborne diseases, including COVID-19 (Wong and Col-
lins 2020). The results of our simulations have confirmed our intuition that the proposed 
vaccination strategy might be beneficial to reduce the number of infections, favoring the 
faster reaching of herd immunity.

When evaluating the outcome of our study, one should carefully acknowledge its 
limitations. First, the model relies on the simplifying assumption that all interactions 
yield the same transmission probability (with a possible differentiation for adults and 
children), irrespective of their duration, intensity, and location in which they occur. 
However, the duration and intensity of social contacts may impact the transmission 
probability, while interactions in different locations may be associated with different 
risks. We believe that our framework can be extended by assigning weights to the links 
(i.e., by considering a weighted network) to account for heterogeneity in the duration 
and intensity of interactions, and by using location-dependent infection probabilities. 
Second, in our model, we assume that the country is in partial lockdown, that is, most of 
the adults work from home or in safe environments and most of the non-essential activi-
ties are canceled (e.g., sports and cultural activities, large gatherings). Even though, at 
the beginning of the 2021 COVID-19 vaccination campaign many countries are under-
going a (partial or total) lockdown due to the ongoing second and third epidemic waves, 
addressing similar issues for future questions (e.g., a potential booster dose vaccination 
campaign) may require to consider scenarios with the relaxation of the current NPIs. 
Thanks to the flexibility of our model, further sources of social interactions—and, thus, 
of potential contagions—can be incorporated within our modeling framework by includ-
ing additional layers in the multi-layer network to account for interactions in leisure 
and non-essential locations, similar to Truszkowska et  al. (2021). This, allows to cap-
ture, for instance, social interactions in work-places, in sport and cultural centers, and 
between groups of friends. Third, in this paper, we consider simplified vaccination strat-
egies, which do not take into account important factors such as prioritization of high-
risk groups and the presence of vaccine hesitancy. The inclusion of these factors within 
our modeling framework would be a necessary step toward performing further stud-
ies and designing realistic vaccination campaigns. Such inclusion may be implemented 
by explicitly incorporating a vaccination mechanism that makes individuals dynami-
cally transition from the susceptible state to the vaccinated one. Fourth, the multi-layer 
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network structure is tailored to capture the French socio-demographic and educational 
system. Hence, some adjustments may be required to apply it to different social and edu-
cational systems, such as the US one, in which colleges play a key role.

To conclude, in this work we have focused on the role of schools in the spreading of 
infectious diseases, highlighting how some intervention policies and vaccination strate-
gies can be beneficial for mitigating the epidemics. Our work can thus be relevant to 
help inform public health authorities in their decisions. We have also discussed the main 
limitation of our work, discussing how our formalism can be easily generalized to incor-
porate further real-world features, without any fundamental change in its main mecha-
nisms. Such a flexibility would allow the scientific community to utilize our modeling 
framework and adapt it to the analysis of future issues related to the control of COVID-
19 and to increase preparedness for future epidemic outbreaks.

Appendix
In this appendix, we provide some additional simulations that illustrate the robustness 
of our findings with respect to the model parameters.

In Fig. 8, we show that the exponent of the power-law used in the ADN mechanism 
has no impact on the qualitative behavior of the epidemic outbreaks. Our findings sug-
gest that the parameter of the power-law does not change the qualitative behavior of the 
system, whereby children seem to be key drivers of the contagions when no specific poli-
cies are implemented. In fact, increasing the exponent of the power-law seems to have 
a moderate effect in decreasing the peaks of the outbreak (in particular for adults), but 
does not shift the curves. This observation allows us to conclude that our choice of set-
ting it equal to −2.09 , based on Aiello et al. (2001), does not reduce the generality of our 
numerical findings.

In Fig. 9, we show that the initial number of exposed individuals has no statistically 
significant impact on the total number of exposed individuals in the population. This 

Fig. 8 Role of the negative exponent of the power-law distribution in the ADNs. In (a), we show the 
temporal evolution of the number of infected children and adults (averaged over 10 runs), for two different 
choices of the power-law exponent. In (b), we show the peak of the epidemic prevalence (estimated over 
100 runs), for increasing values of the negative exponent of the power law. All simulations are performed in 
the absence of vaccination V = 0 for Scenario I (original strain). The parameters used in the simulations are 
listed in Table 2, qa = 0.25 , and qc = 0.12
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observation allows us to conclude that our choice of initiating the system with 1% of 
exposed individuals has no impact on the output and, thus, on the results of our numeri-
cal analysis.

In Fig.  10, we simulate a simple dynamic vaccination procedure, in which a con-
stant fraction of the population is vaccinated on a daily basis, until the total amount 
of population eligible for vaccination is reached, similar to Truszkowska et al. (2021). 
For the sake of simplicity, we assume that vaccinations start the same day in which 
the simulations start. The simulations are performed with the same parameters of 
Fig. 5 (that is, considering the original strain and the Alpha variant), and fixing the 
maximum fraction of the population eligible for vaccination to 60%. For low vaccina-
tion rates ( < 0.5% population/day), in both scenarios, the epidemic outbreak spreads 

Fig. 9 Role of the initial condition. We show the cumulative number of infections (over 100 independent 
runs) among (a) adults and (b) children, for three different initial conditions. Our findings suggest no 
statistically significant difference between the outcomes of the simulations. All simulations are performed in 
the absence of vaccination V = 0 for Scenario I (original strain). The parameters used in the simulations are 
listed in Table 2, qa = 0.25 , and qc = 0.12

(a) Original Strain (Scenario II) (b) Alpha variant (Scenario III)

Fig. 10 Effect of vaccination speed. We show the Monte Carlo estimation (over 100 independent 
simulations) of the cumulative fraction of infections among all adults (blue) and children (orange) at the 
end of the pandemic outbreak, as a function of the vaccination speed in percentage of the total population 
daily vaccinated, the vaccination is stopped when V = 60% . The solid curves refer to Vaccination strategy I, 
in which only adults are eligible for vaccination; the dashed curve refers to Vaccination strategy II, in which 
vaccine shots are randomly assigned to the entire population. In (a), we consider the original strain; the 
vertical bands represent the confidence interval with respect to the decreased infectiousness of children. In 
(b), we consider the Alpha variant; the vertical bands represent the confidence interval with respect to the 
increased infectiousness of the Alpha variant. The parameters used in the simulations are listed in Table 2, 
qa = 0.25 , and qc = 0.12
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faster than the vaccination campaign, resulting in a dramatic diffusion of the infec-
tion. On the contrary, we observe that if the vaccination speed is sufficiently fast (that 
is, above 0.5/1% population/day), then the vaccination campaign is successful in pro-
tecting a large majority of the population, obtaining results that are consistent with 
those obtained in the simplified scenario of a static vaccination (Fig. 5). We further 
note that, once this critical threshold for the vaccination speed is reached (which is 
approximately equal to the peak speed of the vaccination campaign reached during 
spring 2021), we do not observe any remarkable benefit in further speeding up the 
vaccination process. The flexibility of our modeling framework allows to perform fur-
ther analyses on the dynamic vaccination policies, including shifting the starting day 
of the vaccination campaign and considering non-constant vaccination speeds. We 
believe that these analyses, which are beyond the scope of this paper, could be pur-
sued in future studies, toward better understanding the design of optimal vaccination 
policies during epidemic outbreaks.

The case study presented in this paper was calibrated to the situation in France 
during the spring 2021 COVID-19 pandemic, where the Alpha variant was quickly 
becoming dominant and replacing the original strain. At the end of spring 2021, the 
more infectious Delta variant (B 1.617.2) started spreading in most European coun-
tries and quickly became dominant as of the beginning of July 2021. In Fig.  11, we 
report the simulations performed in Fig.  6 for a fourth scenario, calibrated to the 
Delta variant of COVID-19. Specifically, in Liu and Rocklöv (2021) it was estimated 
that the Delta variant has a basic reproduction number of 5.08, with 95% confi-
dence interval of [3.2, 8], yielding �̄α ∈ [0.056, 0.14] , with an average of �̄α = 0.09 . The 
results of our simulations are qualitatively consistent with our other findings, further 
highlighting the importance of vaccination for highly infectious variants (as already 
observed in Scenario III, for the Alpha variant).

Fig. 11 Scenario of the Delta variant. We show the Monte Carlo estimation (over 100 independent 
simulations) of the cumulative fraction of infections among non-vaccinated adults (blue) and children 
(orange) at the end of the pandemic outbreak, as a function of the fraction of vaccinated population V. The 
solid curves refer to Vaccination strategy I, in which only adults are eligible for vaccination; the dashed curve 
refers to Vaccination strategy II, in which vaccine shots are randomly assigned to the entire population. The 
vertical bands represent the confidence interval with respect to the increased infectiousness of the Delta 
variant (parameters reported in the “Appendix”). The other parameters used in the simulations are listed in 
Table 2, qa = 0.25 , and qc = 0.12
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