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Andrea Prestia , Graduate Student Member, IEEE, Paolo Motto Ros , Member, IEEE,

Massimo Ruo Roch , Member, IEEE, Maurizio Martina , Senior Member, IEEE,
and Danilo Demarchi , Senior Member, IEEE

Abstract�Hand gesture recognition has recently increased its
popularity as Human-Machine Interface (HMI) in the biomed-
ical �eld. Indeed, it can be performed involving many different
non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG)
or PhotoPlethysmoGraphy (PPG). In the last few years, the in-
terest demonstrated by both academia and industry brought to a
continuous spawning of commercial and custom wearable devices,
which tried to address different challenges in many application
�elds, from tele-rehabilitation to sign language recognition. In this
work, we propose a novel 7-channel sEMG armband, which can
be employed as HMI for both serious gaming control and rehabil-
itation support. In particular, we designed the prototype focusing
on the capability of our device to compute the Average Threshold
Crossing (ATC) parameter, which is evaluated by counting how
many times the sEMG signal crosses a threshold during a �xed time
duration (i.e., 130 ms), directly on the wearable device. Exploiting
the event-driven characteristic of the ATC, our armband is able
to accomplish the on-board prediction of common hand gestures
requiring less power w.r.t. state of the art devices. At the end
of an acquisition campaign that involved the participation of 26
people, we obtained an average classi�er accuracy of 91.9% when
aiming to recognize in real time 8 active hand gestures plus the idle
state. Furthermore, with 2.92 mA of current absorption during
active functioning and 1.34 ms prediction latency, this prototype
con�rmed our expectations and can be an appealing solution for
long-term (up to 60 h) medical and consumer applications.

Index Terms�Arti�cial Neural Networks, Edge Computing,
Event-based, Embedded Machine Learning, Real Time Gesture
Recognition, Surface Electromyography, Wearable Devices.

I. INTRODUCTION

DURING the last decade, hand gesture recognition has been
increasingly investigated by both academia and industry,

following the versatility and easiness of its implementation.
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Indeed, thanks to technology progresses in the electronics fields,
the recognition of hand movements can be now performed
directly with body sensors [1], without the needing of a complex
equipment, making it one of the best candidates for Human-
Machine Interface (HMI) systems.

The main market response to this phenomenon is surely the
realization of the Myo armband by Thalmic Labs, which is
composed by 8 channels for the acquisition of surface Elec-
troMyoGraphic (sEMG) signals. Thanks to its capability to
adapt to many different scenarios [2], this armband received
a huge positive feedback from the community. Indeed, even
if its production was halted some years ago, the literature is
still packed with several contributions which involve the Myo
armband as the main acquisition device [3], [4], [5], [6], ex-
ploiting its small, compact design which fits into many different
practical applications. On the other hand, there are still many
studies where the circumstances demand the design of a custom
armband, e.g., to address specific constraints like low power
consumption [7] or low noise contribution on the signal [8], or to
obtain solutions with augmented functionalities and an increased
number of recognized gestures [9], [10], [11], [12], [13].

Therefore, the large availability of commercial devices and
the knowledge acquired by multiple research groups around the
world made hand gesture recognition be involved in many HMI
use-cases. Among the most active, we can find computer interac-
tion [14], outdoor music handling [15], biomedical applications
like prostheses [16], [17], [18] and robotic arm control [6],
[19], [20], or even sign language communication [21], [22],
which requires a lot of sensitivity in recognizing each single
finger movements. Furthermore, by exploiting the other actor
of the HMI (i.e., the machine), hand gesture recognition can
be involved also in the (tele-)rehabilitation field, both with
passive and active approaches. Indeed, standard rehabilitative
sessions can motivate the patients making them interact with
the so-called serious games [23], [24], [25] or by giving them
more simple feedback during movements execution [26], [27],
[28]. On the other hand, for people which are not able to
autonomously perform the rehabilitation routine, the therapist
can, for example, apply the functional electrical stimulation on
the injured muscle(s), both involving data compression [29] and
maintaining the association of the gestures one by one [30], [31].

Regarding the features involved in the recognition, many
studies take the raw sEMG signal as input, sampling wide time
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Fig. 1. Example of the armband application: the device streams the ATC values
and the related recognized gesture, which are represented on the graphical user
interface.

windows (e.g., longer than 250 ms) on the available channels
and, in most cases, feeding a deep learning algorithm like the
Convolutional Neural Network (CNN), which can be configured
with multiple internal structures [16], [32], [33] emulating the
functions of the human brain. Furthermore, few studies tried
to exploit the real brain behavior as classifier for hand ges-
ture recognition, both designing liquid spiking network struc-
tures [34] and trying to directly classify the brain electrical sig-
nals [27]. However, considering that we are in the era of Internet
of Things (IoT) and embedded devices, some studies [28], [35],
[36], [37] focus on the implementation and on the optimiza-
tion of less complex Machine Learning (ML) algorithms (e.g.,
Artificial Neural Networks (ANNs), Support Vector Machines
(SVM) and Decision Trees (DTs)) to fulfill the requirements of
most common microcontrollers, which typically have less than
1 MB of memory space and cannot perform computations at
high speed.

In this work, we extended the application domain of our
last live demonstration [38], which involved two standalone
channels only, by leveraging our previous knowledge of hand
gesture recognition [39], [40], [41]. In particular, we designed
a custom prototype of a modular armband, in Fig. 1 captured
during real time operations, in order to improve the spatial
resolution of our acquisition system, thus being able to recognize
more gestures than the previously achieved three [38], while
maintaining the power consumption as low as possible.

Contrary to our previous applications [39], [40], [41], which
were all based on an old hardware version of our acquisition de-
vice [42], the armband we designed in this work is equipped with
seven identical custom Printed Circuit Boards (PCBs), which are
an upgraded version of the board described in [43] and already
integrated in our last live demonstration [38]. These acquisition
devices feature a digital part and an Analog Front-End (AFE) cir-
cuit for sEMG acquisition each, both designed with off-the-shelf
components only. The AFE acquisition chain mainly consists

of a differential high-pass filter, an instrumentation amplifier,
a programmable gain stage, and a low-pass filter, to obtain a
standard-conditioned sEMG signal. After that, a hardware volt-
age comparator is configured to extract the Threshold Crossing
(TC) signal. This bio-inspired signal is driven to the on-board
microcontroller which simply counts the incoming TC events
during predefined (i.e., 130 ms) time windows, thus obtaining the
Average Threshold Crossing (ATC) parameter [44], which has
been demonstrated to be positively correlated with the exerted
muscular force [45].

With the ATC parameter as our unique feature, proceeding
with the analysis started in the live demonstration [38], we
chose to maintain the ANN as the recognition algorithm because
it adequately fits the hardware resources (i.e., 1 MB of Flash
memory, 384 kB of RAM, and a dedicated floating-point unit)
provided by the on-board Ambiq Apollo3 Blue Micro Controller
Unit (MCU) [46]. Furthermore, thanks to the minimal compu-
tational overhead introduced by the ANN forward propagation,
the energy required by each gesture prediction was reduced as
much as possible.

To summarize, taking advantage of our previous research on
the bio-inspired field [38], [40], [43], in this work we introduced
the following novel contributions:

� a modular armband structure, inclusive of specific 3D-
printed cases for each board and an elastic band to make it
adjustable to different forearm sizes;

� a custom communication protocol, developed on top of the
I2C serial bus, to manage inter-boards communications;

� two additional operating modes (w.r.t. the simpler ATC
streaming previously available), allowing the user to re-
quest the prediction class alone or concurrently to the ATC
values transmission;

� a dedicated external software package, composed of an
Application Programming Interface (API) and a Graphical
User Interface (GUI), to decode the commands of the user
and transmit them to the armband, as well as letting her/him
supervise its status;

� an embedded ANN architecture, constrained to 2 hidden
layers of 50 nodes each in order to fit the memory size of
the MCU;

� acquisition protocols for both the training and testing
campaign, aimed at obtaining data with equally repre-
sented gestures while ensuring the necessary rest for the
subjects.

II. METHODOLOGY

This section guides the reader to a detailed description of all
the design, application and validation phases of the proposed
armband. The first subsection II-A, II-B, II-C, II-D, and II-E
report the key-aspects for the conceptual development of the
armband, from its logical architecture to the definition of its
internal and external data communication. The 3D-printed real-
ization of the wearable case is shown in subsection II-F, while
subsection II-G introduces the control software, also equipped
with a graphical user interface, to easily use the armband from
an external computer. The remaining subsections explain the
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Fig. 2. The architecture diagram (left) shows the technical differences between the modules: the master (blue) has the major workload, while the slaves (gray)
only need to count the TC events, with the exception of CH 7, i.e., the predictor, also responsible of ANN predictions. In the physical prototype (right), with the
elastic band keeping the cases together, power and I2C wires electrically connect the boards.

procedures we followed to collect the hand gesture dataset for
the ANN training (II-H) and the validation setup for the online
testing phase (II-J).

A. Armband Concept

The armband has been designed as a circular ring, to fit around
the forearm, composed by seven units: one working as the master
board, which provides the wireless interface with the user and
controls all the operations, and the remaining six acting as its
slaves, which respond to the master’s commands. Data commu-
nication among the armband’s boards is achieved by arranging
the units in an I2C closed-loop daisy-chain configuration, whose
API implements a custom protocol.

As already anticipated in Section I, all the modules are based
on our custom sEMG acquisition channel (detailed in [43]).
Being equipped with an adaptable AFE for the TC signal, a low-
power MCU for embedded ATC computations, and a Bluetooth
Low Energy (BLE) [47] transceiver for wireless connectivity,
the acquisition channel represents our wearable edge-computing
node. Evolving from [43], this second version of our prototype
features more selectable AFE gains w.r.t. its predecessor, as the
unique difference relevant to this project. In particular, while
the first version included a programmable gain spanning from
500 V/V to 2500 V/V, with 500 V/V steps, this new prototype
provides to the user an extended gain range from 250 V/V to
4000 V/V, with lower steps of 250 V/V, thus obtaining higher
flexibility and resolution.

In [43] and [38] each board worked as a standalone module,
streaming the ATC data independently. In this work, we main-
tained the same exact PCB design, fabrication and assembly

to ensure the interchangeability of each board (e.g., in case of
hardware faults) and to allow us to distribute the computational
effort among the boards, if needed. Thus, we only reconfigured
the firmware of the devices to operate their functional role in the
armband setup. In particular, the master board is responsible for
the wireless (i.e., BLE) communications with the external host
and for the wired (i.e., I2C) transmission of commands to the
slave boards, which only have to wait for the master triggers and
to count TC events when requested. On the other hand, regarding
gesture recognition, we preferred to move the ML computation
to a separate board from the master to not overload it, considering
both the computational effort during the classification task and
the memory requirements needed to store the ANN parameters.
Thus, we introduced the slave (sub-)role of the predictor.

Hence, merging the above roles, we defined the following or-
ganized and functional structure for the armband, as represented
in Fig. 2:

� Channel 1: master board – it represents the operative
center of the device, which translates the user actions into
executable tasks; as the first channel, it is employed to
arrange the armband in the right location of the forearm;

� Channels 2 - 6: slave board – it silently waits a command
from the master to perform the related function;

� Channel 7: predictor board – as a slave, it responds only to
a master interaction; additionally, it is in charge of gesture
recognition.

A single rechargeable battery has been supposed to power up
all the boards. Therefore, a total of seven bridging connectors,
each one composed by four wires (i.e., power (VDD), GND, I2C
data, and I2C clock), have been provided for the interconnection
between the boards.
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In the last prototyping phase, we designed a 3D-printed case
for each board, similar to the one of [43], to ensure the robustness
and the modularity of the armband. Then, to physically define
the armband itself, we bound the boards together with an elastic
band, which also tightens the armband in contact with the skin
and allows it to suit the anatomical dimensions of different limbs.

B. Firmware Implementation

The MCUs of each board were configured according to their
role, through custom firmware modules, with the main differ-
ence lying between the master version and the slave ones, as
represented in the architecture diagram in Fig. 2.

The firmware needed by the master board was based on the one
developed in [43] and was extended by adding the I2C message
module, which was made necessary to handle communications
with the slave boards along the armband loop. At the same time,
we reconfigured the BLE server structure to handle information
and commands to and from multiple boards, and to accept bigger
payloads. The timer in charge of the ATC window duration
runs unmodified; however, the end of the timer cycle was made
transmittable to the other boards to synchronize the acquisition
window among them. Differently, the counting of TC events was
moved from the GPIO interrupts routines to a dedicated timer
unit operating in counter mode, thus achieving a fully-hardware
event detection without the need to wake up the Central Pro-
cessing Unit (CPU) each time a TC edge reaches the MCU. The
concurrent execution of these different tasks made the use of
the FreeRTOS operating system [48], as the kernel of the master
board, still necessary. Although this real-time operating system
would increase the firmware complexity of this single device,
its involvement allows the BLE module to send and receive data
while the CPU is performing other computations.

The slave boards, instead, do not need an embedded OS
because of their reduced functionalities. Indeed, their BLE
transceivers have not been enabled, and the only modules which
have been activated are the counter module for the ATC eval-
uation and the I2C interface to handle master communications.
The reduced number of active functionalities allows the CPU
to stay in a deep sleep state for most of the time (with the
I2C triggered-actions as the only exceptions during run-time),
thus saving the battery life. On the other hand, the predictor
firmware is enhanced with dedicated custom functions to re-
produce the ANN structure and to perform online predictions,
thus consuming more energy during the active state. However,
we implemented these software routines relying on the CMSIS
package [49], which perfectly exploits the hardware capabilities
of the ARM 32-bit Cortex-M4F processor. Indeed, being aware
of the low-level mechanisms of the MCU, the CMSIS DSP
sub-package is able to optimize the hardware execution of the
floating-point matrix multiplications needed for ANN forward
propagation, thus consuming a smaller quantity of energy and
taking less time to execute w.r.t. unvectorized floating-point
operations.

Regarding code memory requirements, the firmware we de-
veloped does not occupy the entire 1 MB of Flash memory
available [46]. Indeed, even the master code, which has the most

TABLE I
BLE SERVER FOR THE ARMBAND APPLICATION

complicated structure having to handle so many different mod-
ules, can fit into the minimum settable Flash size (i.e., 500 kB).
The data memory (i.e., RAM) was configured at its minimum
size available too, i.e., 96 kB, to power down the unnecessary
memory banks, thus minimizing leakage currents. In fact, the
data space required by master and slave is around 50 kB and
20 kB, respectively. Only the RAM size of the predictor would
be configured separately, after the hyper-parameters training,
because the needed space strictly depends on the number of
hidden nodes selected for the ANN.

C. BLE Server

As briefly introduced in Section II-A, data exchange and user
controls are based on the BLE server built on the master board,
which acts as the peripheral node in a client/server communica-
tion with a central device (e.g., a laptop, tablet, or smartphone).
Starting from the private service introduced in [43], considering
the seven channels configuration of the armband, which involves
the stream of multiple data for each acquisition period, we
extended the structure of the BLE server (see Table I), redefining
the available characteristics as follows:

� Command: when written, it triggers the execution of a
specific task (e.g., ATC threshold calibration);

� Status: it represents the current operating state of the arm-
band; its value can be read or directly notified to the user
every time it is updated on the board;

� ID: when a read request is issued by the host, the identifi-
cation number of each board is returned;

� Gain: it can be read, to obtain the gain multiplier (i.e., from
1 to 16) of each board, or written, in order to set a specific
gain for one or more AFE(s);

� ATC: the seven values contained in this characteristic rep-
resent the latest computed ATC data, which are updated
every ATC window (i.e., 130 ms) if the related notifications
are enabled;

� Gesture: when requested, the value of the latest predicted
class (i.e., hand gesture) is notified.

As it can be seen from Table I, both ATC and Gesture charac-
teristics present a variable size. If only one of their notifications
is requested, the dimension of the characteristics matches the
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TABLE II
I2C API FOR ARMBAND LOOP FUNCTIONALITIES

data representation of the values they are carrying (i.e., 7 B
for 7 channels ATC values, and 1 B to store the gesture class).
Alternatively, if both of them stream concurrently, we resize
the above dimensions by adding one more byte, standing as the
packet number, in order to correctly pair the two BLE packets
in the receiving software routine.

D. Armband Communication Protocol

Fulfilling its role of master node of the armband, the main
board also handles the I2C loop protocol. We defined a custom
structure for the communication packet which shows the follow-
ing data fields (see Fig. 3):

� I2C ADDR: it represents the address of the receiving
board, generally set to 0x41 because of the simple peer-
to-peer communication among each couple of boards;

� #Byte: it identifies the total number of bytes included into
the payload of the I2C packet;

� Target: this value points the message to the right re-
ceiver; it could be a board ID (if the command has to be
performed only by one board) or 0xFF, acting as broadcast
indicator (if the operation has to be executed by each board
on the armband);

� Command: it gives the information about which action
needs to be executed;

� B1–Bn: they composed the variable length payload.
On the master side, every time an armband action is requested,

the corresponding I2C packet is built and sent through the loop.
Then, the master waits for the packet to come back and, once
received, checks the correctness of its payload. On the slaves
side, any time an I2C message is correctly received (check on the
I2C ADDR field), the #Byte and Target blocks are processed
to verify the payload entirety and the addressee board. If the
target does not correspond to the ID of the receiving board, the
I2C packet is put again in the loop unmodified; otherwise, if
the target coincides, the requested task is executed, its result
(when expected) is appended to the packet’s payload, and the
I2C message is sent to the next board.

Fig. 3. I2C packet structure.

Since the I2C loop functionality strictly depends on the proper
functioning of each board, a timeout (whose value depends on
the expected processing time of each task) has been implemented
on the master side as a control mechanism. If no message is
received by the master within the timeout, a hardware error is
arisen.

Additional operation failures are supervised by checking the
content of the payload: it can be achieved by assessing the task
result (e.g., auto_thr) or by verifying the appropriate data range
of values (e.g., req_gain). Consequently, errors are handled
by updating the server Status characteristic and sending the
notification to the user.

An inclusive list of all the implemented commands, their
description, timeout definition, and I2C packet structure are
reported in Table II.

E. Functional Operations

Apart from the configuration commands, two main armband
functionalities are defined, i.e., ATC mode and ML mode, de-
signed for data acquisition and class prediction, respectively.
Their implementation was performed by interfacing the prop-
erties of the BLE server, the defined I2C commands, and the
firmware routines corresponding to the different board roles.

In ATC mode, after enabling the ATC notifications, the master
board starts the ATC timer and sends the start_ATC command
to activate the TC signal edge-detection for all the slave boards.
Then, every time the capture and compare unit of the timer raises
an interrupt for the end of an ATC window, the master loops the
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Fig. 4. I2C protocol communication example during ATC and ML modes working concurrently: the master board sends the ATC_win command (attaching its
TC count as first payload’s value) to request for the ATC values of all the boards; the predictor, after checking the payload’s dimension, firstly attaches its TC count
to return the ATC I2C packet to the master, then predicts the gesture and closes the loop sending the recognition result.

Fig. 5. Detailed views of the 3D-printed cases, and their internal organization, for both the master and slave units.

ATC_win command to collect the TC count from all the other
boards and, after appending its value last, it updates the server’s
characteristic and sends the notification. The ATC_win cycle
continues until the notifications are disabled, stopping the timer
and commanding the stop_ATC, which consequently inactivates
the counter of the TC edges on all the boards. Considering the
above configuration, only the master board runs the timer for the
ATC window while all the slaves wait for the ATC_win command
to end their observation window and to attach their TC count.

Differently, during the ML mode (gesture notifications en-
abled), the master slightly changes the above behavior during
the ATC collection by attaching its own value as first byte of
the payload while looping the ATC_win command. In this way,
the I2C packet arrives to the predictor board with the payload
containing the ATC values of all the other modules which,

integrated with its one, represent the entire input to perform
the gesture prediction. Once the ML operations are completed,
the predictor puts the result into the prediction packet and sends
it to the master.

Therefore, as depicted in Fig. 4 for the ML case, the predictor
board passively understands which operation it needs to perform
by checking the length of the I2C packet’s payload (when the
command is ATC_win), i.e, 5 B in ATC mode and 6 B in ML
mode.

Moreover, both modalities can work together, with the master
sending both the ATC and the gesture notifications to the BLE
host, as the unique functional difference. Indeed, the predictor
board would identify the message as if in ML mode and would
correctly perform the prediction, and the master would be the
only board to be aware of the requested concurrency.


























