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and Danilo Demarchi , Senior Member, IEEE

Abstract—Hand gesture recognition has recently increased its
popularity as Human-Machine Interface (HMI) in the biomed-
ical field. Indeed, it can be performed involving many different
non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG)
or PhotoPlethysmoGraphy (PPG). In the last few years, the in-
terest demonstrated by both academia and industry brought to a
continuous spawning of commercial and custom wearable devices,
which tried to address different challenges in many application
fields, from tele-rehabilitation to sign language recognition. In this
work, we propose a novel 7-channel sEMG armband, which can
be employed as HMI for both serious gaming control and rehabil-
itation support. In particular, we designed the prototype focusing
on the capability of our device to compute the Average Threshold
Crossing (ATC) parameter, which is evaluated by counting how
many times the sEMG signal crosses a threshold during a fixed time
duration (i.e., 130 ms), directly on the wearable device. Exploiting
the event-driven characteristic of the ATC, our armband is able
to accomplish the on-board prediction of common hand gestures
requiring less power w.r.t. state of the art devices. At the end
of an acquisition campaign that involved the participation of 26
people, we obtained an average classifier accuracy of 91.9% when
aiming to recognize in real time 8 active hand gestures plus the idle
state. Furthermore, with 2.92 mA of current absorption during
active functioning and 1.34 ms prediction latency, this prototype
confirmed our expectations and can be an appealing solution for
long-term (up to 60 h) medical and consumer applications.

Index Terms—Artificial Neural Networks, Edge Computing,
Event-based, Embedded Machine Learning, Real Time Gesture
Recognition, Surface Electromyography, Wearable Devices.

I. INTRODUCTION

DURING the last decade, hand gesture recognition has been
increasingly investigated by both academia and industry,

following the versatility and easiness of its implementation.
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Indeed, thanks to technology progresses in the electronics fields,
the recognition of hand movements can be now performed
directly with body sensors [1], without the needing of a complex
equipment, making it one of the best candidates for Human-
Machine Interface (HMI) systems.

The main market response to this phenomenon is surely the
realization of the Myo armband by Thalmic Labs, which is
composed by 8 channels for the acquisition of surface Elec-
troMyoGraphic (sEMG) signals. Thanks to its capability to
adapt to many different scenarios [2], this armband received
a huge positive feedback from the community. Indeed, even
if its production was halted some years ago, the literature is
still packed with several contributions which involve the Myo
armband as the main acquisition device [3], [4], [5], [6], ex-
ploiting its small, compact design which fits into many different
practical applications. On the other hand, there are still many
studies where the circumstances demand the design of a custom
armband, e.g., to address specific constraints like low power
consumption [7] or low noise contribution on the signal [8], or to
obtain solutions with augmented functionalities and an increased
number of recognized gestures [9], [10], [11], [12], [13].

Therefore, the large availability of commercial devices and
the knowledge acquired by multiple research groups around the
world made hand gesture recognition be involved in many HMI
use-cases. Among the most active, we can find computer interac-
tion [14], outdoor music handling [15], biomedical applications
like prostheses [16], [17], [18] and robotic arm control [6],
[19], [20], or even sign language communication [21], [22],
which requires a lot of sensitivity in recognizing each single
finger movements. Furthermore, by exploiting the other actor
of the HMI (i.e., the machine), hand gesture recognition can
be involved also in the (tele-)rehabilitation field, both with
passive and active approaches. Indeed, standard rehabilitative
sessions can motivate the patients making them interact with
the so-called serious games [23], [24], [25] or by giving them
more simple feedback during movements execution [26], [27],
[28]. On the other hand, for people which are not able to
autonomously perform the rehabilitation routine, the therapist
can, for example, apply the functional electrical stimulation on
the injured muscle(s), both involving data compression [29] and
maintaining the association of the gestures one by one [30], [31].

Regarding the features involved in the recognition, many
studies take the raw sEMG signal as input, sampling wide time
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Fig. 1. Example of the armband application: the device streams the ATC values
and the related recognized gesture, which are represented on the graphical user
interface.

windows (e.g., longer than 250 ms) on the available channels
and, in most cases, feeding a deep learning algorithm like the
Convolutional Neural Network (CNN), which can be configured
with multiple internal structures [16], [32], [33] emulating the
functions of the human brain. Furthermore, few studies tried
to exploit the real brain behavior as classifier for hand ges-
ture recognition, both designing liquid spiking network struc-
tures [34] and trying to directly classify the brain electrical sig-
nals [27]. However, considering that we are in the era of Internet
of Things (IoT) and embedded devices, some studies [28], [35],
[36], [37] focus on the implementation and on the optimiza-
tion of less complex Machine Learning (ML) algorithms (e.g.,
Artificial Neural Networks (ANNs), Support Vector Machines
(SVM) and Decision Trees (DTs)) to fulfill the requirements of
most common microcontrollers, which typically have less than
1 MB of memory space and cannot perform computations at
high speed.

In this work, we extended the application domain of our
last live demonstration [38], which involved two standalone
channels only, by leveraging our previous knowledge of hand
gesture recognition [39], [40], [41]. In particular, we designed
a custom prototype of a modular armband, in Fig. 1 captured
during real time operations, in order to improve the spatial
resolution of our acquisition system, thus being able to recognize
more gestures than the previously achieved three [38], while
maintaining the power consumption as low as possible.

Contrary to our previous applications [39], [40], [41], which
were all based on an old hardware version of our acquisition de-
vice [42], the armband we designed in this work is equipped with
seven identical custom Printed Circuit Boards (PCBs), which are
an upgraded version of the board described in [43] and already
integrated in our last live demonstration [38]. These acquisition
devices feature a digital part and an Analog Front-End (AFE) cir-
cuit for sEMG acquisition each, both designed with off-the-shelf
components only. The AFE acquisition chain mainly consists

of a differential high-pass filter, an instrumentation amplifier,
a programmable gain stage, and a low-pass filter, to obtain a
standard-conditioned sEMG signal. After that, a hardware volt-
age comparator is configured to extract the Threshold Crossing
(TC) signal. This bio-inspired signal is driven to the on-board
microcontroller which simply counts the incoming TC events
during predefined (i.e., 130 ms) time windows, thus obtaining the
Average Threshold Crossing (ATC) parameter [44], which has
been demonstrated to be positively correlated with the exerted
muscular force [45].

With the ATC parameter as our unique feature, proceeding
with the analysis started in the live demonstration [38], we
chose to maintain the ANN as the recognition algorithm because
it adequately fits the hardware resources (i.e., 1 MB of Flash
memory, 384 kB of RAM, and a dedicated floating-point unit)
provided by the on-board Ambiq Apollo3 Blue Micro Controller
Unit (MCU) [46]. Furthermore, thanks to the minimal compu-
tational overhead introduced by the ANN forward propagation,
the energy required by each gesture prediction was reduced as
much as possible.

To summarize, taking advantage of our previous research on
the bio-inspired field [38], [40], [43], in this work we introduced
the following novel contributions:
� a modular armband structure, inclusive of specific 3D-

printed cases for each board and an elastic band to make it
adjustable to different forearm sizes;

� a custom communication protocol, developed on top of the
I2C serial bus, to manage inter-boards communications;

� two additional operating modes (w.r.t. the simpler ATC
streaming previously available), allowing the user to re-
quest the prediction class alone or concurrently to the ATC
values transmission;

� a dedicated external software package, composed of an
Application Programming Interface (API) and a Graphical
User Interface (GUI), to decode the commands of the user
and transmit them to the armband, as well as letting her/him
supervise its status;

� an embedded ANN architecture, constrained to 2 hidden
layers of 50 nodes each in order to fit the memory size of
the MCU;

� acquisition protocols for both the training and testing
campaign, aimed at obtaining data with equally repre-
sented gestures while ensuring the necessary rest for the
subjects.

II. METHODOLOGY

This section guides the reader to a detailed description of all
the design, application and validation phases of the proposed
armband. The first subsection II-A, II-B, II-C, II-D, and II-E
report the key-aspects for the conceptual development of the
armband, from its logical architecture to the definition of its
internal and external data communication. The 3D-printed real-
ization of the wearable case is shown in subsection II-F, while
subsection II-G introduces the control software, also equipped
with a graphical user interface, to easily use the armband from
an external computer. The remaining subsections explain the
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Fig. 2. The architecture diagram (left) shows the technical differences between the modules: the master (blue) has the major workload, while the slaves (gray)
only need to count the TC events, with the exception of CH 7, i.e., the predictor, also responsible of ANN predictions. In the physical prototype (right), with the
elastic band keeping the cases together, power and I2C wires electrically connect the boards.

procedures we followed to collect the hand gesture dataset for
the ANN training (II-H) and the validation setup for the online
testing phase (II-J).

A. Armband Concept

The armband has been designed as a circular ring, to fit around
the forearm, composed by seven units: one working as the master
board, which provides the wireless interface with the user and
controls all the operations, and the remaining six acting as its
slaves, which respond to the master’s commands. Data commu-
nication among the armband’s boards is achieved by arranging
the units in an I2C closed-loop daisy-chain configuration, whose
API implements a custom protocol.

As already anticipated in Section I, all the modules are based
on our custom sEMG acquisition channel (detailed in [43]).
Being equipped with an adaptable AFE for the TC signal, a low-
power MCU for embedded ATC computations, and a Bluetooth
Low Energy (BLE) [47] transceiver for wireless connectivity,
the acquisition channel represents our wearable edge-computing
node. Evolving from [43], this second version of our prototype
features more selectable AFE gains w.r.t. its predecessor, as the
unique difference relevant to this project. In particular, while
the first version included a programmable gain spanning from
500 V/V to 2500 V/V, with 500 V/V steps, this new prototype
provides to the user an extended gain range from 250 V/V to
4000 V/V, with lower steps of 250 V/V, thus obtaining higher
flexibility and resolution.

In [43] and [38] each board worked as a standalone module,
streaming the ATC data independently. In this work, we main-
tained the same exact PCB design, fabrication and assembly

to ensure the interchangeability of each board (e.g., in case of
hardware faults) and to allow us to distribute the computational
effort among the boards, if needed. Thus, we only reconfigured
the firmware of the devices to operate their functional role in the
armband setup. In particular, the master board is responsible for
the wireless (i.e., BLE) communications with the external host
and for the wired (i.e., I2C) transmission of commands to the
slave boards, which only have to wait for the master triggers and
to count TC events when requested. On the other hand, regarding
gesture recognition, we preferred to move the ML computation
to a separate board from the master to not overload it, considering
both the computational effort during the classification task and
the memory requirements needed to store the ANN parameters.
Thus, we introduced the slave (sub-)role of the predictor.

Hence, merging the above roles, we defined the following or-
ganized and functional structure for the armband, as represented
in Fig. 2:
� Channel 1: master board – it represents the operative

center of the device, which translates the user actions into
executable tasks; as the first channel, it is employed to
arrange the armband in the right location of the forearm;

� Channels 2 - 6: slave board – it silently waits a command
from the master to perform the related function;

� Channel 7: predictor board – as a slave, it responds only to
a master interaction; additionally, it is in charge of gesture
recognition.

A single rechargeable battery has been supposed to power up
all the boards. Therefore, a total of seven bridging connectors,
each one composed by four wires (i.e., power (VDD), GND, I2C
data, and I2C clock), have been provided for the interconnection
between the boards.
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In the last prototyping phase, we designed a 3D-printed case
for each board, similar to the one of [43], to ensure the robustness
and the modularity of the armband. Then, to physically define
the armband itself, we bound the boards together with an elastic
band, which also tightens the armband in contact with the skin
and allows it to suit the anatomical dimensions of different limbs.

B. Firmware Implementation

The MCUs of each board were configured according to their
role, through custom firmware modules, with the main differ-
ence lying between the master version and the slave ones, as
represented in the architecture diagram in Fig. 2.

The firmware needed by the master board was based on the one
developed in [43] and was extended by adding the I2C message
module, which was made necessary to handle communications
with the slave boards along the armband loop. At the same time,
we reconfigured the BLE server structure to handle information
and commands to and from multiple boards, and to accept bigger
payloads. The timer in charge of the ATC window duration
runs unmodified; however, the end of the timer cycle was made
transmittable to the other boards to synchronize the acquisition
window among them. Differently, the counting of TC events was
moved from the GPIO interrupts routines to a dedicated timer
unit operating in counter mode, thus achieving a fully-hardware
event detection without the need to wake up the Central Pro-
cessing Unit (CPU) each time a TC edge reaches the MCU. The
concurrent execution of these different tasks made the use of
the FreeRTOS operating system [48], as the kernel of the master
board, still necessary. Although this real-time operating system
would increase the firmware complexity of this single device,
its involvement allows the BLE module to send and receive data
while the CPU is performing other computations.

The slave boards, instead, do not need an embedded OS
because of their reduced functionalities. Indeed, their BLE
transceivers have not been enabled, and the only modules which
have been activated are the counter module for the ATC eval-
uation and the I2C interface to handle master communications.
The reduced number of active functionalities allows the CPU
to stay in a deep sleep state for most of the time (with the
I2C triggered-actions as the only exceptions during run-time),
thus saving the battery life. On the other hand, the predictor
firmware is enhanced with dedicated custom functions to re-
produce the ANN structure and to perform online predictions,
thus consuming more energy during the active state. However,
we implemented these software routines relying on the CMSIS
package [49], which perfectly exploits the hardware capabilities
of the ARM 32-bit Cortex-M4F processor. Indeed, being aware
of the low-level mechanisms of the MCU, the CMSIS DSP
sub-package is able to optimize the hardware execution of the
floating-point matrix multiplications needed for ANN forward
propagation, thus consuming a smaller quantity of energy and
taking less time to execute w.r.t. unvectorized floating-point
operations.

Regarding code memory requirements, the firmware we de-
veloped does not occupy the entire 1 MB of Flash memory
available [46]. Indeed, even the master code, which has the most

TABLE I
BLE SERVER FOR THE ARMBAND APPLICATION

complicated structure having to handle so many different mod-
ules, can fit into the minimum settable Flash size (i.e., 500 kB).
The data memory (i.e., RAM) was configured at its minimum
size available too, i.e., 96 kB, to power down the unnecessary
memory banks, thus minimizing leakage currents. In fact, the
data space required by master and slave is around 50 kB and
20 kB, respectively. Only the RAM size of the predictor would
be configured separately, after the hyper-parameters training,
because the needed space strictly depends on the number of
hidden nodes selected for the ANN.

C. BLE Server

As briefly introduced in Section II-A, data exchange and user
controls are based on the BLE server built on the master board,
which acts as the peripheral node in a client/server communica-
tion with a central device (e.g., a laptop, tablet, or smartphone).
Starting from the private service introduced in [43], considering
the seven channels configuration of the armband, which involves
the stream of multiple data for each acquisition period, we
extended the structure of the BLE server (see Table I), redefining
the available characteristics as follows:
� Command: when written, it triggers the execution of a

specific task (e.g., ATC threshold calibration);
� Status: it represents the current operating state of the arm-

band; its value can be read or directly notified to the user
every time it is updated on the board;

� ID: when a read request is issued by the host, the identifi-
cation number of each board is returned;

� Gain: it can be read, to obtain the gain multiplier (i.e., from
1 to 16) of each board, or written, in order to set a specific
gain for one or more AFE(s);

� ATC: the seven values contained in this characteristic rep-
resent the latest computed ATC data, which are updated
every ATC window (i.e., 130 ms) if the related notifications
are enabled;

� Gesture: when requested, the value of the latest predicted
class (i.e., hand gesture) is notified.

As it can be seen from Table I, both ATC and Gesture charac-
teristics present a variable size. If only one of their notifications
is requested, the dimension of the characteristics matches the
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TABLE II
I2C API FOR ARMBAND LOOP FUNCTIONALITIES

data representation of the values they are carrying (i.e., 7 B
for 7 channels ATC values, and 1 B to store the gesture class).
Alternatively, if both of them stream concurrently, we resize
the above dimensions by adding one more byte, standing as the
packet number, in order to correctly pair the two BLE packets
in the receiving software routine.

D. Armband Communication Protocol

Fulfilling its role of master node of the armband, the main
board also handles the I2C loop protocol. We defined a custom
structure for the communication packet which shows the follow-
ing data fields (see Fig. 3):
� I2C ADDR: it represents the address of the receiving

board, generally set to 0x41 because of the simple peer-
to-peer communication among each couple of boards;

� #Byte: it identifies the total number of bytes included into
the payload of the I2C packet;

� Target: this value points the message to the right re-
ceiver; it could be a board ID (if the command has to be
performed only by one board) or0xFF, acting as broadcast
indicator (if the operation has to be executed by each board
on the armband);

� Command: it gives the information about which action
needs to be executed;

� B1–Bn: they composed the variable length payload.
On the master side, every time an armband action is requested,

the corresponding I2C packet is built and sent through the loop.
Then, the master waits for the packet to come back and, once
received, checks the correctness of its payload. On the slaves
side, any time an I2C message is correctly received (check on the
I2C ADDRfield), the#Byte andTargetblocks are processed
to verify the payload entirety and the addressee board. If the
target does not correspond to the ID of the receiving board, the
I2C packet is put again in the loop unmodified; otherwise, if
the target coincides, the requested task is executed, its result
(when expected) is appended to the packet’s payload, and the
I2C message is sent to the next board.

Fig. 3. I2C packet structure.

Since the I2C loop functionality strictly depends on the proper
functioning of each board, a timeout (whose value depends on
the expected processing time of each task) has been implemented
on the master side as a control mechanism. If no message is
received by the master within the timeout, a hardware error is
arisen.

Additional operation failures are supervised by checking the
content of the payload: it can be achieved by assessing the task
result (e.g., auto_thr) or by verifying the appropriate data range
of values (e.g., req_gain). Consequently, errors are handled
by updating the server Status characteristic and sending the
notification to the user.

An inclusive list of all the implemented commands, their
description, timeout definition, and I2C packet structure are
reported in Table II.

E. Functional Operations

Apart from the configuration commands, two main armband
functionalities are defined, i.e., ATC mode and ML mode, de-
signed for data acquisition and class prediction, respectively.
Their implementation was performed by interfacing the prop-
erties of the BLE server, the defined I2C commands, and the
firmware routines corresponding to the different board roles.

In ATC mode, after enabling the ATC notifications, the master
board starts the ATC timer and sends the start_ATC command
to activate the TC signal edge-detection for all the slave boards.
Then, every time the capture and compare unit of the timer raises
an interrupt for the end of an ATC window, the master loops the
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Fig. 4. I2C protocol communication example during ATC and ML modes working concurrently: the master board sends the ATC_win command (attaching its
TC count as first payload’s value) to request for the ATC values of all the boards; the predictor, after checking the payload’s dimension, firstly attaches its TC count
to return the ATC I2C packet to the master, then predicts the gesture and closes the loop sending the recognition result.

Fig. 5. Detailed views of the 3D-printed cases, and their internal organization, for both the master and slave units.

ATC_win command to collect the TC count from all the other
boards and, after appending its value last, it updates the server’s
characteristic and sends the notification. The ATC_win cycle
continues until the notifications are disabled, stopping the timer
and commanding the stop_ATC, which consequently inactivates
the counter of the TC edges on all the boards. Considering the
above configuration, only the master board runs the timer for the
ATC window while all the slaves wait for the ATC_win command
to end their observation window and to attach their TC count.

Differently, during the ML mode (gesture notifications en-
abled), the master slightly changes the above behavior during
the ATC collection by attaching its own value as first byte of
the payload while looping the ATC_win command. In this way,
the I2C packet arrives to the predictor board with the payload
containing the ATC values of all the other modules which,

integrated with its one, represent the entire input to perform
the gesture prediction. Once the ML operations are completed,
the predictor puts the result into the prediction packet and sends
it to the master.

Therefore, as depicted in Fig. 4 for the ML case, the predictor
board passively understands which operation it needs to perform
by checking the length of the I2C packet’s payload (when the
command is ATC_win), i.e, 5 B in ATC mode and 6 B in ML
mode.

Moreover, both modalities can work together, with the master
sending both the ATC and the gesture notifications to the BLE
host, as the unique functional difference. Indeed, the predictor
board would identify the message as if in ML mode and would
correctly perform the prediction, and the master would be the
only board to be aware of the requested concurrency.
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F. 3D Modeling

Besides the electronic aspects discussed until here, the physi-
cal realization of the armband still needs to be presented in order
to complete the wearable prototype. As reported in Fig. 5, we
designed two distinct cases for the master and slave boards by us-
ing a commercial 3D printer, which employs a photopolymeric,
bio-compatible and lightweight resin to extrude the model.

Both the printed cases feature the openings to dispose the dry
electrodes, arranged in lines following the sensing-reference-
sensing configuration, on their bottom surface, just barely below
the acquisition unit to minimize electrodes-to-circuit interfer-
ence. The electrodes are kept in a secure position thanks to
internal metal clips, which grab the tips of the electrodes, and by
some blocker cogwheels, that limit their vertical displacements.
At the right and left sides, we opened two rectangular slots for
the insertion of the four pins connectors to attach the bridging
(among the boards) cables carrying the I2C and power supply
lines. The micro-USB connector remains accessible from the
front wall, thus giving to the user the possibility to easily debug
and flash the modules. As last common trait, both cases provide
a push-button slot on one side, to manually achieve the MCU
reset when needed.

Additionally, the internal space of the master package was
arranged to contain also a small rechargeable battery (i.e., a
175 mAh LiPo battery [50]), and two switches, which allow
the user to modify the power configuration of the device. In
particular, one switch is placed on the positive pole of the battery,
to completely turn off the armband when needed, and the other
one is inserted onto the VDD branch of the slave boards, to cut
them off during battery charging.

At last, the boxes are closed by means of sliding covers, which
also provide the hooking spots for the elastic band to shrink the
armband around the forearm. Indeed, the strip is sewed to one of
the two wings of the master cover, while, at the other extremity,
it is pulled until the armband is properly positioned. Differently,
the slave case features an eyelet U-path inside its cover, which,
thanks to the internal squared corners, avoids the band to slip
away once the armband is worn.

In conclusion, we obtained the armband prototype shown in
Fig. 2, with the dimension of the modules of 50.8 mm length,
22.5 mm height, and 28.5 mm or 23.5 mm width depending on
the master or slave case, respectively.

G. PC Interface

Once the physical structure of the armband and its commu-
nication protocols were defined, we implemented the software
for controlling the armband from a computer using the Python
programming language. The code is divided into three layers
with a bottom-up structure: the lowest layer corresponds to the
BLE module, which establishes the connection with the arm-
band and handles the data communication with it, accessing the
server functionalities and dispatching the input/output packets;
at the mid-layer, the armband module translates all the user
commands into executable actions, driving the correspondent
BLE antenna operations, and processes the received packet’s
content to extract the meaningful data for further usage; at the top

Fig. 6. Screenshot of the proposed GUI, composed of a graph for each armband
channel (A), a control panel (B), and the gain selectors (C).

layer, the application layer, the GUI features multiple widgets
(e.g., buttons, spinners), to ease the interface with the user, and
plots the requested acquisition data, i.e., the ATC values and the
recognized gesture.

All the direct top-down functions are triggered by method
callbacks of the objects, while the internal bottom-up data com-
munication are based on queues. Indeed, each layer features one
or multiple queues, depending on type of data to be transmitted
(e.g., ATC or ML values, board errors), in order to obtain a
stratified and organized data flow control.

Considering a laptop as the standard machine running the
software (although the Python multi-platform nature extends
its compatibility to multiple devices), the BLE connectivity is
provided using an external USB-dongle (i.e., nRF52840 [51]) to
guarantee the performance of the application by standardizing
its wireless protocol stack.

A screenshot of the proposed GUI is reported in Fig. 6. The
operational flow for running the application, once the device is
worn and turned on, can be summarized as follows:

1) Connection: the USB-dongle is initialized as the central
device, and the scan operation (with a white-list to filter
undesired devices) is launched to search for the armband’s
advertising packet. If found, the connection is established,
the armband’s status notifications are enabled, and the IDs
request (i.e., req_ID) is performed to check the correct
hardware connectivity and to log the boards information.
Lastly, seven ATC graphs are instantiated, one for each
board belonging to the armband.

2) Setup: it consists of the ATC thresholds calibration pro-
cess, which performs this task one board at a time along the
armband loop (15 s ca. total); the user needs to maintain
the forearm relaxed during this step.

3) Operation mode selection: if the ATC mode is chosen, the
armband will stream the ATC values; vice versa, the ML
mode only requests for the predicted gesture class. As pre-
viously introduced, the two modes can work concurrently.

4) Gain selection: the multiplier factor of each board’s AFE
can be adjusted proportionally to the captured signal’s
amplitude; default value is ×2 (i.e., 500 V/V).
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5) Data acquisition: the data stream is started by enabling the
notifications for the proper server characteristic (i.e., ATC
and/or ML depending on the selected working mode(s)).
Every time a packet arrives, if it contains ATC values, they
are plotted on the graphs; otherwise, a picture showing the
recognized gesture is displayed.

6) Data saving: the acquired data can be saved on files if the
Save Session checkbox is active. The files are organized
into sessions folders; within each one, every document
reports the ATC values and/or the recognized class along
with their timestamps.

7) Disconnection: the existing BLE link is terminated and
the GUI can be closed.

H. Acquisition Protocol and Dataset Creation

Once the hardware and software components described in pre-
vious sections were finalized and fully tested, a data acquisition
campaign was launched. Considering the hardware extraction
of our event-driven feature, we focused on in-vivo tests to
assess the actual performance of our system in real scenarios. In
particular, 20 able-bodied people, 7 females and 13 males, aged
between 23 and 29 years old, were involved. The experimental
campaign accurately followed the ethical procedures specified
in the Application n. 445136 approved by the Comitato Bioetico
di Ateneo of the University of Turin [52]. Each participant was
informed about the physical safety of the armband itself and
about how their data would be anonymized and encrypted for
the purposes allowed by the experimentation.

For each attending person, the armband is positioned on
the right forearm, at one third of the line between the elbow
and the wrist, with CH 1 (i.e., the master board) above the
Extensor Digitorum. This position was previously determined,
both according to literature reference positions [53], [54], [55]
and by consulting with some fellow physicians about how deep
and superficial muscles interact in this area. In particular, the
forearm muscles have a very small body section along all their
limb segment, resulting in a lot of cross actions between adjacent
ones. However, while in the section near the wrist the muscles
are mainly tendinous, resulting in weak sEMG signals almost
comparable with the environmental noise [56], in the third
proximal to the elbow the superficial ones have their principal
body, from which the muscular activation can be sensed with an
appreciable amplitude [54].

The final standardized position, starting from CH 1, involves
the following muscles:

1) Extensor digitorum
2) Extensor carpi ulnaris
3) Flexor digitorum profundus
4) Flexor carpi ulnaris
5) Flexor carpi radialis
6) Brachioradialis
7) Extensor carpi radialis
After the armband is tighten up with the elastic band, the GUI

is run in ATC mode to check if the acquisition channels are
behaving correctly and if the obtained TC values are consistent

Fig. 7. Hand gestures analyzed in this study, ordered (from left to right and
from top to bottom) as performed in the acquisition campaign.

with the position of each channel around the limb. In case one
or more channels do not represent a physiological response
from the underlying muscles (e.g., timings and amplitudes of
muscular activation [57], [58]), the armband can be rotated
slightly to fix an incorrect positioning. Furthermore, the gain of
the misbehaving channels can be modified in order to enhance
the sensitivity of the acquired information, most of the time
going to balance particularly under- or over-developed forearms.
This procedure is repeated until the acquired ATC profiles,
as plotted in the GUI, are responsive to gestures change and
their combination as a whole is coherent with the executed trial
gestures.

Once the initial calibration is completed, the subject is asked
to not lean the forearm on any surface and to keep it in the
neutral position (i.e., with the fingers vertically overlapping).
Then, each volunteer is instructed with the gestures s/he has to
perform during the session, as depicted in Fig. 7, in this particular
order:

1) Wrist extension (WE): the hand has to be moved right,
with its back going toward the distal section of the forearm;

2) Wrist flexion (WF): the hand moves left, with the fingers
moderately closing toward the inner part of the forearm;

3) Radial deviation (RD): the hand is moved up, keeping
the fingers adjacent to each other and the thumb as much
relaxed as possible;

4) Ulnar deviation (UD): the fingers point down toward the
floor, maintaining themselves straight and aligned with the
forearm;

5) Hand grasp (HG): the fingers are bent towards the hand
palm, resulting in a fist;

6) Pinch 1-2 (P2): the thumb (i.e., finger 1) is internally
rotated and the index finger (i.e., finger 2) is flexed to
make their distal phalanges touch;

7) Pinch 1-3 (P3): same intent of gesture 6, but involving the
middle finger (i.e., finger 3) instead of the index finger;

8) Open hand (OH): the fingers are stretched and opened
out, trying to make the hand as tense as possible.
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Fig. 8. ATC profiles during dataset acquisition.

This sequence of gestures has to be performed respecting a
specific timing in order to keep each gesture clearly distinct from
the previous and following ones, making the post-processing
phase more efficient. The subject is helped in following the time
schedule by a custom application, which simply displays on the
laptop monitor a countdown and a graphical indication of the
gesture to be performed. In particular, after the supervisor starts
the ATC mode to begin the signals acquisition, the following
routine commence:

1) 15 s of rest are observed, in order to avoid glitches in the
first part of the acquisition;

2) the gesture displayed by the application is performed and
maintained for 10 s;

3) the hand is relaxed for 10 s to avoid muscular fatigue;
4) the previously executed gesture is repeated, again main-

taining it for 10 s;
5) a 15 s rest period is observed, also being instructed about

the following gesture;
6) step 2 to 5 are repeated until the last gesture is performed

and the graphical help displays the end signal;
7) a 60 s rest period allows the subject to fully relax and

stretch her/his hand;
8) step 2 to 7 are repeated for three times, in order to acquire

a consistent amount of data.

Fig. 9. Acquired dataset with idle norm set to 5. Each color represents a
different gesture and the light-colored areas take into account from the 40th to
the 60th percentile.

In Fig. 8, the signals acquired during a typical acquisition
session are plotted. Each subplot represents the ATC values
obtained from one of the acquisition boards, ordered as in the
physical position they occupy in the armband. Each gesture
has a particular combination of the seven force indicators, with
antagonist movements galvanizing the electrodes of opposite
boards, as expected. As an example, WE presents muscular
activation on CHs 1, 2, and 7, which are placed on the lateral
section of the forearm, while WF activity is mainly sensed by
CHs 3, 4, 5, and 6, which are positioned on the forearm’s medial
section.

At the end of the 20 acquisitions, performed in different days
and with non-controlled ambient conditions, the anonymized
data were processed to obtain a labeled dataset suitable for
machine learning training. In particular, the signals from each
subject have been segmented according to the timings detailed
above, obtaining many 40 s slices, each one consisting of the
two consequent repetitions of a single gesture, the rest period
between them, and 5 s of rest for both the begin and end of
each slice. Then, before labeling each slice, a threshold was
established on the norm of each set of ATC values, as reported
in (1), where fx is the TC value of the xth channel.

N =
√
f2
1 + f2

2 + f2
3 + f2

4 + f2
5 + f2

6 + f2
7 (1)

The values whose norm was greater than or equal to the
threshold were labeled according to the class performed at that
particular timing, while the values whose norm was lower were
identified as Idle state (IS) (i.e., the ninth class), as summarized
in (2), where Th is the chosen threshold value.

Class =

{
Actual class, N ≥ Th

Idle, N < Th
(2)
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After this process we obtained a completely labeled dataset,
which includes also the information on the rest periods of the
acquisition sessions. In order to perform an exhaustive analysis
on the effects of the chosen threshold on the final implementation
of the ANN for the testing phase, we decided to extract one
labeled dataset from the ATC raw data for each value of Th
included in the range 1–30. Thus, after a proper selection of
the idle threshold, the classifier for the final application would
have the possibility to discern among a voluntary movement
and little contractions due to body posture or to interactions
with external objects. In Fig. 9, a representation of the dataset,
obtained by setting the norm threshold to 5, is displayed by
exploiting the parallel coordinates paradigm [59] wrapped in a
heptagonal shape, thus recalling the spatial distribution of the
activations of the forearm muscles.

I. Offline Training

The machine learning training phase, based on the multiple
obtained datasets, was performed on the MATLAB environment.
The ANN was primarily selected for its simple internal struc-
ture and the small size of its final MCU implementation w.r.t.
other supervised algorithms (e.g., SVM, K-Nearest Neighbours
(KNN) or Naive Bayes). Indeed, the complexity of an ANN is
not dependent on the dimension of the dataset, but only on the
information we need to extract from the inputs to obtain the out-
puts. Furthermore, the ANN has the intrinsic capability to extract
latent information from the input features [60], thus allowing us
to provide only the hardware-extracted ATC parameter, without
any significant loss of accuracy in the prediction.

The ANN optimization routine was structured by taking ad-
vantage of the Deep Learning Toolbox

TM
, which allows the

user to precisely customize the overall network structure and
the training parameters. In particular, we chose to perform a
5-fold cross-validation exploiting the capability of the Adam
method [61] as gradient optimizer, with a variable learning rate
starting from 0.03 and automatically decreasing every 10 epochs
in order to improve training accuracy. Furthermore, a learning
patience of 5 was selected, to stop the procedure when the
validation error does not decrease over 5 consecutive samples,
thus increasing the timing efficiency of the whole routine.

Once the main parameters of the learner were defined, we
started an extensive analysis of the best implementation available
varying the ANN physical structure and involving all the 30
processed dataset, while only fixing the Rectified Linear Unit
(ReLU) as activation function. In particular, we made the opti-
mizer try all the possible permutations going from 2 to 4 hidden
layers and from 10 nodes for each layer up to 200, with steps of
10 nodes. Furthermore, each of the 60 different configurations
was given as input all the 30 datasets with increasing idle norms,
thus resulting in an overall analysis covering 1800 possibilities.

The aim of this hyper-parameter training phase was to identify
the best solutions to maximize the prediction accuracy, while
maintaining an acceptable user comfort. In fact, the increasing
of the idle norm could bring to a final implementation which
would require much more effort from the subjects to activate the
desired gesture, or could even implicate the disappearance of

one of the less powerful gestures from the dataset, thus making
it impossible to be predicted during the online phase.

Furthermore, while the theoretical fluctuation in the ANN
performance by varying the ANN structure or the idle norm
threshold one at a time is known, the influence of one variable
on the other is not trivial to be determined. Therefore, being
the number of combinations small enough to be covered on
a desktop computer in a reasonable time (e.g., 2–3 days), we
decided to exhaustively perform this extensive analysis in order
to avoid the risk of the final solution to be stuck in a local
minimum of the loss function.

J. Testing Phase

After the proper definition of the ANN models which can be
suitable for a real time usage, we proceeded to the final tests of
our prototype. In particular, we performed another acquisition
campaign, with the aim to evaluate the accuracy and the latency
of the classifier, and the overall power consumption of the
armband.

1) Online Testing Protocol: The testing campaign involved 6
healthy volunteers (none of whom were included in the training
phase), 1 female and 5 males aged between 24 and 28 years
old, who were informed about the purpose and conduct of our
research.

Armband positioning was performed as reported in Sec-
tion II-H, supervising the quality of acquired muscle activity
and adjusting the armband placement accordingly. Since the
armband performances are dependent on the ability of the user
to perform the desired movement correctly, each subject was
instructed prior to the testing phase in the proper movements
execution, in accordance to what is described in Section II-H.
Once the subject was ready, both ATC and gesture notifications
were requested from the GUI in order to activate concurrent
functional operations (as described in Section II-E). By doing
so, the data received on the laptop, thanks to the packet number
placed before both ATC and gesture payloads, were collected
into ordered pairs; these doublets, after the end of each session,
were used to evaluate if the predictions were correct.

The fulfillment of the testing phase required the subject to
comply with the indications provided by an application display-
ing on a monitor the movements to be performed. The routine
was the same as in Section II-H, except for step 8, where the
number of repetitions was decreased to two instead of three.
During this phase, the predicted output class was not displayed
to the subject in order to avoid any conscious adjustments of the
hand movements.

The entire process was repeated three times, updating the
firmware of the predictor board (see Section II-B) with the ANN
parameters obtained from the training procedures with an idle
norm equal to 5, 10, and 15, respectively (see Section III-A).
In particular, the network weights were saved in one dedicated
array for each layer interface (e.g., with 2 hidden layers, we
would create 3 arrays), and the prediction routine was resized
and trimmed to the exact number of mathematical operations
needed for the online propagation (i.e., 1 matrix multiplication
and 1 ReLU activation function for each layer interface).
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2) Setup for Timing Evaluation: The prediction latency was
evaluated directly on the MCU of the predictor board, by in-
volving one of the timer peripherals. In particular, during the
setup phase of the armband, the TIMER2 of the predictor is
configured, taking in input a 6 MHz clock, in order to obtain the
most precision possible. Then, during active operations, if the
selected mode is ML, the timer is started just before the execution
of the prediction and its value is read immediately after the
predicted class is returned. The obtained timer value is converted
in ms and transmitted via UART communication to a computer,
which saves the delays and performs the average at the end of
the test. In order to obtain a statistically significant database, this
time analysis was performed continuously for about 5 min, thus
acquiring more than 2000 samples.

3) Setup for Power Consumption Analysis: The last analysis
we performed was the measure of the current absorbed by our
developed armband. In order to maintain the size of the device
as small as possible, we did not place a current sense resistor
on the PCB during the design phase, so an external setup was
to be prepared for the measurement. We chose to perform the
analysis with the INA240 current sense amplifier by Texas
Instruments [62], which, thanks to its enhanced switching noise
rejection, better reacts to MCU state change w.r.t. a current
probe or a multi-meter, which is even worse due to the RMS
characteristic of its measurements. A 10 Ω sense resistor was
placed at the amplifiers inputs and the INA240A1 version (i.e.,
20 V/V gain) was selected. Last, the output of the amplifier was
captured with a standard probe of the Rigol MSO5104 DSO [63],
which allowed us to digitally save the current measurements for
further processing.

In particular, we acquired 2 s of data for each one of the
armband active states we considered more significant:
� Advertising: few seconds after being switched on, the

master board starts advertising its presence to potential
listening devices. The slave nodes are at this time inactive,
with the MCU already in its deep sleep state;

� Connected: once a BLE client initializes a link with the
armband, the master board enters the stable connection
status. Both client and server nodes wait for the other to
send some data and periodically check if the other peer
is still active. The armband slave boards are still in deep
sleep;

� ATC mode: when the BLE client requests for ATC notifica-
tions, the master module has to inform the slave boards of
the requested task and all the seven boards start counting
the TC events. Every 130 ms the master board sends a
notification command to the lower levels of the BLE stack,
which will effectively send the packet over the air at the
next available connection interval;

� ML mode: as for the ATC mode, all the boards are active
and counting. Furthermore, the predictor performs the
ANN forward propagation every times it receives valid
ATC values in the I2C packet;

� ATC and ML mode combined: the boards effort is the
same of the two previous modes, with the master send-
ing both notifications, almost concurrently, to the BLE
client.

Fig. 10. ANN validation accuracy of the 1800 configurations trained. Each
line represents a single network structure, which is trained with input dataset
ranging from idle norm 1 up to 30.

III. RESULTS AND DISCUSSION

In this section, the results of the test phase are reported
and discussed, starting with the offline parameters definition
for the ANN structure, through the accuracies obtained from
the online acquisition campaign, and ending with the hardware
performances of the armband, i.e., latency of the prediction and
current absorption of the device.

A. Network Architecture Analysis

The hyper-parameters tuning, performed exploiting the Adam
optimizer on MATLAB, brought to very homogeneous results
across all the possible combinations of idle norm and hidden
layers structures. In Fig. 10 all the 1800 accuracies obtained
as output of the performed 5-fold cross-validation are plotted as
function of the idle norm. It is possible to observe how the results
of the different configurations overlap on the same trend, starting
from about 77% with an idle norm of 1 up to more than 99%
with a norm value of 30. The few exceptions to this trend are the
configurations with 10 and 20 nodes, which are the ones slightly
below the main curve, having the lowest validation accuracy
of 74%.

Going into details of this uniform behavior, it is also possible
to observe how the derivatives of the curves vary with the
increasing of the norm. In particular:
� in the region between 1 and 5 the growing is almost

logarithmic, with a fast increase from 1 to 2 and then an
asymptotic slowdown;

� from 5 to 15 the accuracies follow an almost perfect linear
trend (i.e., with an RMSE of 0.0056), as highlighted by
the black line interpolation in Fig. 10, with an angular
coefficient of 0.0077;

� from 15 to the end of our analysis the derivatives of the
accuracies begin a further decline, with their values exiting
the linear trend and going asymptotically to 100%.

All the above considered, we chose to take into account, for
the final implementation, the configurations involving as inputs
the dataset with idle norm of 5, 10, and 15. In fact, these three
values are all in the linear region, having passed the first fast
growing phase and being before the final slackening. Thus, they
are selected as the more suitable options to analyze how the
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Fig. 11. ANN validation accuracy for a defined idle norm (i.e., 5). The
performance behavior is highlighted at varying the network configuration.

differences in the norm affect the users effort during the online
testing.

Then, the physical internal structure of the ANN was still
to be selected. In Fig. 11, the validation accuracies of all the
trained networks, with in input the dataset built on an idle norm
of 5, are shown. The results obtained increasing the number
of hidden layers are practically the same. In fact, all the three
solutions present a high increase in accuracy through the first
5 configurations (i.e., moving from 10 to 50 hidden nodes) and
then continue flat till the end of the analysis sweep. Furthermore,
this trend of the validation accuracy for layers with more than
50 nodes is a clear representation of how those configurations
contain redundant information, which would bring to a final
implementation with similar accuracy but unnecessary resources
usage.

Therefore, the configuration composed by 2 hidden layers
with 50 nodes each has been chosen, being the best trade-
off among complexity and performance, with an accuracy of
88.71%. The weights obtained from the training in this config-
uration were saved and successively used for the online testing
phase on the MCU. Furthermore, thanks to the reduced size
of the selected configuration (i.e., about 15 kB, considering
each weight mapped on a 32-bit floating-point number), it was
possible to maintain the RAM active size of the predictor down
to 96 kB, thus avoiding power squandering.

B. Online Testing Performance

The data collected from the testing campaign (see Section II-
J1) are summarized as reported in Fig. 12, and divided according
to the three different tested idle norms. In particular, confusion
matrices (Fig. 12, left), accuracy, precision, recall, and f1-score
metrics [64] (Fig. 12, right) are disclosed.

To this end, the classes predicted by the armband were com-
pared with the true classes obtained by segmenting the acquired
signals. The segmentation of the movements and the subsequent
true labeling are based on what was indicated by the support
application used during the testing phase. The true IS class was
labeled as described in Section II-H, by setting the same idle
norm applied to the training dataset of the tested ANN. The
reported confusion matrices were computed by summing those
obtained from the six involved volunteers.

TABLE III
EVALUATION METRICS FOR MERGED PINCHES CLASS

In order to balance the testing dataset, only 40 s of IS were
considered since this is the time spent for each movement
during the testing phase. Clearly, the dataset does not contain
the same number of total elements for all the classes because
of the physiological reaction times of the subjects, who do not
respond instantaneously to the changes of the displayed gestures.
Moreover, since the labeling process comes after the idle norm
operation, the total number of labeled movements could differ
for low and high idle norm because the associated muscles
activities could be too weak to be labeled differently from idle
(e.g., for the two pinches).

Looking at Fig. 12, and considering the evaluation metrics
overall, the movement with the best outcomes is WF. It resulted
in accuracies of 97.26%, 97.84%, and 98.83% for the three idle
norms analyzed, respectively.

On the other hand, P2 and P3 show the worst results. Al-
though the accuracies of the two pinches are higher than that of
OH, the obtained values of precision, recall, and consequently
f1-score are lower, especially in the case of idle norm equal
to 15. Considering the similarity of the two gestures, which
often leads to interchange the predicted class between them (as
evidenced by the confusion matrices), we also report in Table III
the evaluation metrics obtained by merging these two gestures
into the same class. Despite a worsening of accuracy for the
merged pinches class (the number of true negatives decreased
more than the increase of true positives), which, however, is still
above 80%, precision and recall improved considerably. Indeed,
in correspondence of idle norm equal to 15, we obtained a recall
value of 26.01% w.r.t. the lower 9.1% resulted by predicting P2
as distinct gesture.

As mentioned before, OH is among the gestures that, together
with the two pinches, provides not totally satisfactory outcomes.
However, while for the two pinches the difficulty lies in their
poor amount of predictions, the reasons for the low performance
of OH are caused by the quite high presence of misclassifications
of other gestures with it (as can be seen from the confusion
matrices). As an explanation for this behavior, it was observed
that the volunteers who took part in the testing phase tended
to extend their fingers during the execution of other gestures,
obtaining values of muscular activation such as to involve the
misclassification of those movements with OH.

Although using the idle norm equal to 5 results in the low-
est values among the reported evaluation metrics, the overall
outcomes of this test scenarios (including volunteers’ feedback
and considering the data distribution) makes us consider it the
most efficient in an application context (e.g., to control an HMI).
Indeed, using higher idle norms has the consequence of losing
many movements samples, such as reported for the case of the
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Fig. 12. Confusion matrices and evaluation metrics concerning the entire testing dataset. Obtained results are divided according the three idle norms used, i.e.,
5, 10, and 15, respectively.

two pinches. Moreover, using lower values for idle norm allows
the armband user to achieve the classification of the gesture being
performed with less muscular effort. Furthermore, considering
the IS row of the confusion matrix related to idle norm equal to
5, the number of idles misclassified as an active movement is
already practically equal to zero. Therefore, there is no stringent
need to use high idle norms, even to cope with the noise of
acquired muscle activity.

C. Online Timing Analysis

The timing latencies measured using the timer on the predictor
board, involving the idle norm equal to 5, are analyzed in details.
The obtained values are practically constant, with an average of
1.342 ms. The stable outcome of this measure is mainly due
to two factors: the intrinsic nature of the ANN structure and
the uninterrupted sequential operations of the CPU performing
the requested matrix multiplications. In particular, regarding the

first point, the ANN forward propagation is more deterministic
w.r.t. other classifiers’ implementation, since it always requests
the same amount of multiplications/activations, independently
from the input values (on the other hand, e.g., a RF prediction
can provide the output class at any available leaf, depending on
the magnitude of the input features, thus causing a more signifi-
cant deviation in latency). Furthermore, considering the second
aspect, the removal of the interrupt on the TC signal brought
the CPU back to a completely deterministic behavior, allowing
the execution of any piece of code without the possibility of
unexpected interruptions.

The application latency of a possible HMI which would
involve our armband as human control sensor would be of
131.3 ms, considering in that case the ATC window contribution
would be added to the predictor latency alone. Even considering
this overall delay, our armband will still react a lot faster than
the 300 ms threshold, commonly considered for the real-time
control of robots and prostheses [65].
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D. Online Power Performance

The last evaluated performance metric is the current absorp-
tion of the armband, considered in its completeness. The overall
results, obtained with the setup detailed in Section II-J3, are
shown in Table IV. The recorded current absorption values have
a quite low variance, with the lowest value during advertising
(i.e., 2.712 mA) and the highest during the active mode involv-
ing both notifications sending (i.e., 3.029 mA), as supposed.
Furthermore, the reported values are coherent w.r.t. the ones
obtained in [43], when measured on a single board. However,
the current drained in this application is lower to the expected
value of 3.36 mA (i.e., 7 × 0.48 mA), thanks to the differ-
entiation among the firmware of the master and slave boards,
which allows the latters to enter the deep sleep state and save
power.

In order to confirm the correct behavior of the setup and of the
armband itself, we analyzed in details the digitized waveforms.
In Fig. 13, a representative window of 300 ms, captured during
ML mode, is reported. As it is possible to observe, the variations
of the current requested by the armband are coherent with
the specifications of the BLE protocol and with the expected
behavior of the armband itself. In particular, few regular events
alter the baseline:
� The double bump waveforms starting at about 1.51 s, 1.64 s

and 1.77 s are to be attributed to the master board handling
the end of each ATC window (i.e., every 130 ms) and to the
consequent I2C activity. Indeed, during that arc of time, the
six slave boards have to wake up and communicate with the
following one, and the predictor has also to perform the ML
computations. The width of the waveform during this type
of activity is related to the low speed of the MCU clock (i.e.,
24 MHz) and of the I2C module, which exchanges data at
400 kHz. However, the amplitude is limited to 2 mA, thus
having a modest impact on the average consumption;

� The highest peaks, which reach 11 mA, are related to the
sending of the BLE notifications, which requires the RF
module to be powered on, even if for a very small amount
of time. These peaks are always at steps of 50 ms due to the
selected connection interval, and, thanks to a slave latency
of 4, they appear only after a master action occurs within
the previous connection interval (e.g., no transmission is
visible at 1.75 ms);

� Peaks similar to the previous ones but slightly lower in
amplitude, reaching almost 10 mA, are to be attributed to
a BLE check for further packets, acknowledging to have
received the previous notification packet. Most probably
they have the same amplitude of the notifications ones, but
their very short duration makes them too fast to be entirely
captured by the DSO sampling. Also these peaks follow the
timing of the BLE connection, being aligned to the 50 ms
ticks too.

All above considered, the calculated mean current absorption
of 2.92 mA is practically represented by the baseline of the
graph, since the three main activities of the armband have a
current request either small in amplitude or short in duration,
thus not affecting the average value very much. In conclusion, the

TABLE IV
CURRENT ABSORPTION IN DIFFERENT OPERATING CONDITIONS

Fig. 13. Profile of the current absorbed by the armband, whose average mea-
sured value is 2.92 mA. Both the consumption concerning ATC data management
(red, at 1.51 s) and the peaks related to the BLE communication (light blue, at
1.55 s) are distinguishable.

armband can continuously operate in ML mode for about 60 h,
without needing a battery recharge, thus allowing its inclusion
in outdoor activities, even if spread on more than one day.

IV. COMPARISON WITH SOA WORKS

Having analyzed in details the performance and the overall
behavior of our armband prototype in Section III, here we
conclude the discussion by inserting our work into the per-
spective of other literature studies. Since the state of the art
regarding sEMG-based hand gesture recognition is very broad,
as we already discussed in the introduction of this manuscript,
we selected the works we believe the more relevant for the
sake of our comparison. In Table V, we reported two of the
predecessors [38], [40] of this study and seven works of other
research groups, all published in the last four years. The variety
of applications and, sometimes, the ambiguous phrasing of some
results make the performances indicators (i.e., column 9–14) not
totally populated. However, despite the lack of data for some
indexes, we did our best in analyzing each metric in detail,
critically discussing its relevance w.r.t. the target application.

All the reported works developed their wearable device, but
only [7], [16], [29], [40] managed to fit their learner into an
embedded prototype. The armband developed in [9], for ex-
ample, is reported to be designed to support the embedding of
ML algorithms, but all the predictions are still evaluated on a
computer. Similarly, [3], [23] use the Myo armband as acqui-
sition device, sending data via wireless communication to an
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TABLE V
COMPARISON WITH STATE OF THE ART SEMG-BASED HAND GESTURE CLASSIFIERS

elaboration unit, and [33] still involves electrodes matrices wired
to a data collection unit, which sends the processed information
to a computer for the further prediction. Also in our introductory
work [38] we did not perform ML computations on-board, since
we were still employing standalone modules.

Regarding the implemented algorithms, the totality of the
computer-based works involve the NN structure in their pre-
dictions. Many research groups exploit the capability of the
CNN paradigm, even with some enhanced features added, while
only [3] maintains the simpler ANN structure. On the other
hand, all the embedded solutions fell back on more compact
classifiers, like smaller ANNs [40], SVM [7] or even the Linear
Discriminant Analysis (LDA) [29]. The only work that was able
to perform a CNN computation on a microcomputer inside a
prosthesis is [16], which, applying 32 High-Density (HD) sEMG
electrodes on the skin covered by the prosthesis body, was able
to recognize 8 gestures with 98.2% accuracy. Apart from this
study, the numbers of channels used to predict the gestures are
pretty stable across the literature, maintaining a 1 vs 1 chan-
nels/gestures ratio with a value around 8 (probably due to the
big influence the Myo armband has on the field at this moment).
The other few exceptions found are represented by [9], in which
a 10-channel custom armband is developed, recognizing 11
different hand movements with an overall accuracy of 89.5%,
and [33], whose HD electrodes matrices allows the researchers to
predict (on a computer) 30 movements with an average accuracy
of 92.4%. The accuracies of the remaining studies are all around
the 90%, with variations due to more channels involved or to less
complexity of the output space.

On the other hand, the prediction latency presents wider vari-
ations, with a few values missing, going from the lowest delay
of our work (i.e., 1.34 ms) and increasing up to 138 ms for [3].
Nevertheless, these values have to be interpreted according to
the indication of how they are sampled, in order to obtain a
meaningful relation. Indeed, [3], [7] reported both the prediction
time and the length of the acquisition window needed by the

algorithm, but [9], [29], [33] only wrote down their acquisition
window and no indication on the prediction latency can be
found. Furthermore, in [16], [23] it is possible to identify the
prediction latency but there is no information about how much
time is requested for the acquisition of the features. In our case,
both considering the pure prediction latency and adding the ATC
window needed for the TC computation (i.e., a total of 131.3 ms),
we are still well competitive w.r.t. the other works, with a delay
of about the half of the others’.

Last, regarding power consumption and consequent operat-
ing time, we have very poor data from the other works to be
able to perform a significant analysis. Apart from our previous
work, we found data only from three different studies: the CNN
implementations of [9], [16] brought their prototype battery life
down to 6 h or even less, while [7] has the longer operating time
(among embedded solutions), with a battery life of about 129 h.
However, since the duration of their acquisition window is twice
as long as ours, the reported hours of operation are comparable
with the battery duration we obtained, i.e., 60 h.

All the above considered, we fit pretty well into present state
of the art literature, not with only top scores, but with a good
balance of all the considered metrics. So, to the best of our
knowledge, our prototype can fulfill its purpose in the field of
wearable armband for HMI applications, giving to the users a
wider choice when selecting the device needed for rehabilitation
as well as robotic control.

V. CONCLUSION

In this work, we introduced the armband we designed for
HMI applications, aiming to provide a competitive solution for
hand gesture recognition w.r.t. the current state of the art. The
presented armband is based on the bio-inspired technique known
as ATC, which allows our device to be low-power and to reduce
the complexity of the input space for classification tasks. In
particular, this paper describes the modular physical structure
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of the armband, the functioning of its hardware/software com-
ponents, including the communication protocol adopted, and the
properties of its embedded machine learning algorithm, i.e., an
ANN.

We tested the armband with multiple configurations of ANN,
and the one we considered most efficient led to a testing accuracy
equal to 91.9%. The latencies due to the prediction resulted to
be 1.34 ms, which is two orders of magnitude lower than the
maximum implicit delay of ATC (i.e., the 130 ms window),
proving the usability of our approach for real-time applica-
tions. Moreover, thanks to the low current absorption, which
is equal to 2.92 mA, the armband has an operating time of up
to 60 h.

Future perspectives for the designed armband involve the need
and interest to test it with further classification algorithms, such
as SVM, DT or KNN, in order to analyze which is the most
suitable solution. Moreover, we are planning to develop a serious
game to validate the use of our device in an application scenario
besides evaluating its classification performances.
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