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Automating Optical Network Fault Management
with Machine Learning

Xiaoliang Chen, Che-Yu Liu, Roberto Proietti, Zhaohui Li, S. J. Ben Yoo

Abstract—Effective fault management is essential for quality-
of-service assurance in optical networks. Conventional fault man-
agement designs for optical networks mainly rely on threshold-
based rules which can hardly characterize the complex fault
patterns therein. This article discusses the application of ma-
chine learning (ML) in actuating an automated optical net-
work fault management architecture. The architecture is built
upon advanced optical performance monitoring (OPM) tech-
niques and software-defined-networking-enabled programmable
network control and management. With the viability of abundant
OPM data, the architecture employs various ML models to
automatically learn fault patterns and thereby to realize data-
driven cognitive fault management. We review the state of the art
on fault detection, identification and localization based on such an
architecture, focusing specifically on soft failures. To overcome
the applicability and scalability issues encountered by existing
soft failure detection designs, we present a hybrid learning
solution that combines the merits of supervised, unsupervised
and cooperative ML. In particular, we present a self-taught
mechanism that self-learns fault patterns with unsupervised
learning and then trains supervised learning classifiers with the
learned patterns for online detection. We further introduce a
broker-plane-aided federated learning framework to enable col-
laborative training of classifiers from multiple network domains
while complying with domain privacy constraints. Performance
evaluations show that the hybrid learning design can achieve
high fault detection rates with negligible false alarms using less
than ten abnormal data samples (∼ 0.1% of the scale of normal
samples) for training.

I. INTRODUCTION

THE proliferation of emerging applications and network-
ing paradigms (e.g., 5G, edge computing) is posing

greater challenges to the underlying optical infrastructures,
demanding not only larger capacities but also more strin-
gent quality-of-service guarantees. In this context, it becomes
imperative to advance optical network fault management for
assuring consistent service performance while sustaining the
latest yet more sophisticated data plane technologies.

One of the most critical fault management tasks is tack-
ling soft failures. Unlike hard failures (e.g, fiber cuts) that
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will disrupt connections immediately, soft failures refer to
faults that can gradually deteriorate service performance with
mild to moderate intensities, for instance, equipment age-
ing/malfunctioning [1], misconfiguration, and physical-layer
attacks [2]. Agile detection and restoration of soft failures can
prevent the occurrence of the consequent hard failures and
promote higher resource efficiency by allowing provisioning
with reduced margins reserved for the potential faults. Never-
theless, because soft failures often exhibit heterogeneous and
complex patterns, their effective management is a non-trivial
task.

Traditional fault management designs targeting soft failures
mostly make use of threshold-based rules for fault detection
and manual inspections by network experts for fault identifica-
tion and localization. While it can be hard to characterize soft
failures with simple threshold-based rules, especially when
network conditions keep evolving, the heavy involvement
of human efforts leads to poor operational efficiency and
scalability issues. Recently, machine learning (ML) has been
receiving significant attention as a key enabler for build-
ing next-generation intelligent optical networks. ML models
can potentially learn complex network rules (e.g., quality-
of-transmission models, traffic trends) or operation policies
(e.g., routing and wavelength assignment policies) from high-
dimensional network state data/traces without explicit pro-
gramming. With the late advances in optical performance mon-
itoring (OPM) techniques and the maturity of programmable
network control and management enabled by software-defined
networking (SDN) [3], it is possible to deploy ML models to
automatically extract fault patterns from real-time OPM data
and thereby to realize data-driven cognitive fault management
[1], [4]–[15].

In this article, we present an ML-aided automated fault
management architecture for optical networks. We first briefly
describe the related system layout, including several key
functionalities and their workflows for enabling automated
fault management. Then, we review the state-of-the-art pro-
posals for soft failure detection (SFD), identification (SFI) and
localization (SFL) based on such an architecture. To overcome
the applicability and scalability issues from the existing soft
failure detection designs, we present a hybrid learning solution
that combines the merits of supervised, unsupervised and
cooperative ML. Performance evaluations show that the hybrid
learning design can achieve high fault detection rates with
negligible false alarms when only less than ten abnormal
samples are used for training. Finally, we provide concluding
remarks and discuss remaining challenges toward automating
optical network fault management.

Page 1 of 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

Metro Core

PON

Data 
Center

Telemetry Configuration

5G

Lightpath

DSP

DAC

IQM

…

RX

…

WSS

Frequency 
Drift

Jamming 
Attack

EDFA 
Malfunctioning

NC&M Plane

SDN 
Controller

OPM 
Database

localization

Restoration

ML-based Fault Management ModulesFeatured 
Data

Detection

Identification
Cognitive
Decision 
Making

NC&M Plane

NC&M Plane

NC&M Plane

Fig. 1. Illustrative optical network architecture with automated fault man-
agement. NC&M: network control and management; OPM: optical perfor-
mance monitoring; SDN: software-defined networking; PON: passive optical
network; DSP: digital signal processing; DAC: digital-to-analog converter;
IQM: in-phase/quadrature modulator; EDFA: erbium-doped fiber amplifier;
WSS: wavelength selective switch; RX: receiver.

II. ARCHITECTURE

Soft failures in optical networks can originate from devices
at arbitrary network locations with diverse intensities and root
causes. Fig. 1 depicts a representative optical network architec-
ture spanning access, metro, and core segments, with multiple
autonomous network domains. We sketch out at the bottom
of the figure the system structure with respect to an end-
to-end lightpath with three instances of soft failures that can
degrade the overall system performance. Specifically, a faulty
source laser can emit signals with central frequency drifting
from the initial configuration, resulting in misalignment of
signal and filter bandwidth and consequently increased bit
error rate (BER) at the receiver side. The intensity of the
signal power is barely affected in this case [1]. Whereas the
malfunctioning of an amplifier placed in the middle of the
lightpath can directly cause the deterioration of the optical
signal-to-noise ratio (OSNR). Aside from factors stemming
from the network itself, a malicious user can invade into a
node and launch a physical-layer attack by jamming a high-
power signal at an adjacent channel and causing interference
through the nonlinear effects introduced [2].

The heterogeneity of soft failures makes the traditional
threshold-based policies hard to be effective and scalable, and
therefore, motivates the development of more powerful fault
management architectures with self-learning and cognitive
decision-making capabilities. Fig. 1 illustrates an abstracted
layout of such an architecture, where each network manager
(NM) employs SDN-based network control and management
owing to its high programmability. The architecture realizes

automated fault management through an observe-analyze-act-
based operation cycle. In particular, by leveraging the com-
munication protocols and interfaces offered by SDN (e.g., P4,
NETCONF/YANG [3]), NMs are able to implement telemetry
services for collecting OPM data related to a customized
set of parameters (e.g., signal power, chromatic dispersion)
on demand (observe). The viability of rich OPM data then
enables the deployment of various ML models aiming at
different fault management tasks, such as fault detection,
identification, localization, and restoration. These models can
learn sophisticated (spatial and temporal) fault patterns or rules
from OPM traces (analyze) and in turn assist in cognitive
decision making by the SDN controllers (act). In the case of
inter-domain networking, NMs can transfer learned knowledge
mutually or even perform cooperative learning under the
coordination of a broker plane (a trusted third-party entity
engaged in multi-domain service provisioning) for pursuing
enhanced performance of the ML models.

III. STATE OF THE ART

Based on the architecture discussed above, recent studies
have demonstrated a number of novel ML-based fault manage-
ment designs, mostly targeting SFD, SFI, and SFL, as briefly
summarized in Table I.

SFD: accurate detection of soft failures is the premise of
effective fault management. In [1], the authors developed a
finite-state-machine-based algorithm for detecting significant
BER degradation due to signal overlap, filter bandwidth
tightening, and shift of laser or filter central frequency. A
set of states related to the evolution of BER are defined in
reference to several adaptive boundaries. In [4], the authors
proposed to detect abnormal variations of signal power with a
two-stage approach, which makes use of extreme studentized
deviate test to perform preliminary detection and an artificial
neural network (ANN) classifier for ultimate diagnoses. The
former enables a quick screening that can largely reduce the
computation-intensive processing by the ANN. Experimental
results show a higher accuracy from the cognitive approach
compared with threshold-based methods. Later, the work in
[5] compared different ML techniques from the angles of
accuracy, complexity and sensitivity when applied to detection
of abnormal BER variations. The authors concluded that,
for the specific scenario under test, random forest achieves
a good trade-off between the different performance metrics.
Similar to the idea presented in [4], Shu et al. proposed a
two-stage design for SFD [6]. The first stage utilizes a low-
complexity Gaussian distribution model to detect faults from
monitoring of BER and power. To reduce false alarms due to
the limited accuracy of the Gaussian distribution model, the
second stage calls for extract digital spectrum features (e.g.,
spectrum area) and applies one-class support vector machine
(SVM) to further scrutinize the alarms raised by the first stage.
More recently, Lun et al. leveraged the generative adversarial
network technique to learn a mapping from electrical spectra to
a latent space where the distributions of normal and abnormal
samples are evidently distinguishable [7]. The advantage of
the approach is that only normal samples are needed for
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TABLE I
A BRIEF SUMMARY OF RECENT PROGRESSES IN ML-BASED FAULT MANAGEMENT DESIGN. N.S.: NOT SPECIFIED; ANN: ARTIFICIAL NEURAL NETWORK;

SVM: SUPPORT VECTOR MACHINE; FEC: FORWARD ERROR CORRECTION; TL: TRANSFER LEARNING.

Literature Type of Fault
Task

OPM/State Data Approach
SFD SFI SFL

Vela signal overlap; filter shift;
✓ ✓

received power; finite state machine;

et al. [1] filter tightening BER analytical model

Rafique
N.S. ✓ received power

extreme studentized

et al. [4] deviate test; ANN

Shahkarami EDFA malfunctioning;
✓ ✓ BER

SVM; ANN;

et al. [5] filter tightening random forest

Shu EDFA ageing; filter shift
✓ ✓

received power; digital SVM; Gaussian

et al. [6] filter tightening; laser drift spectrum features; BER distribution

Lun
filter tightening; filter shift ✓ ✓ electrical spectra

generative

et al. [7] adversarial network

Furdek in-band/out-of-band jamming;
✓

BER; block errors; density-based

et al. [8] polarization modulation attack chromatic dispersion etc. clustering; SVM

Abdelli
fiber reflective faults ✓ ✓

optical time-domain long short-term

et al. [9] reflectometry power memory network

Du
loss of signal ✓

number of FECs; power; random forest;

et al. [10] signal quality; delay etc. XGBoost; TL etc.

Lun EDFA malfunctioning; filter shift;
✓

power spectrum convolutional

et al. [11] filter tightening; Kerr nonlinear effect density neural network

Panayiotou
N.S. ✓

fault alarms; Gaussian process

et al. [12] routing paths classifier; heuristic

Li
N.S. ✓

fault alarms; correlation graph neural

et al. [13] between alarms network

Mayer transponder/EDFA/fiber
✓

transponder/EDFA
ANN

et al. [14] malfunctioning power, OSNR

training (also true for one-class SVM), but there is a lack of
established theory supporting the distinguishability assumption
in more generic settings. Unlike the aforementioned studies
that mainly address common faults of lasers, amplifiers and
filters, the works in [8], [9] focused on detecting optical-
layer attacks or fiber reflective faults. In particular, Furdek
et al. analyzed the performance of clustering and SVM in
detecting in-band/out-of-band jamming and polarization mod-
ulation attacks, assuming the availability of diverse OPM data
[8]. In [9], the authors devised a long short-term memory-
based neural network model that can fulfill fiber reflective
fault detection, quantification and localization simultaneously
by exploiting power traces measured by optical time-domain
reflectometry. They showed that the multi-task learning design
outperforms the independent ones. Lately, Du et al. demon-
strated the potential of forecasting loss of signal events using
time-series and heterogeneous performance metrics reported
by layer-1/2 modules [10]. Different classification algorithms,
i.e., random forest, XGBoost and BRITS, were investigated.
The authors also presented a transfer learning approach to

enable knowledge sharing between networks.
To sum up, existing cognitive solutions for SFD mostly

apply supervised [4], [5], [9], [10], semi-supervised [5]–[8],
or unsupervised [8] ML approaches. While the supervised
ML approaches (e.g., ANN classifier) entail laborious labeling
of OPM data and are only applicable for detecting fault
patterns already in repository, the unsupervised approaches
(e.g., clustering) can potentially detect unseen incidents as they
directly mine the patterns of data. The defects of the latter
relate to their limited scalability or accuracy performance.
The semi-supervised ML approaches (e.g., one-class SVM)
seek trade-offs between applicability and scalability by learn-
ing the boundaries of normal OPM data distributions. Such
approaches eliminate the need for prior knowledge about fault
patterns and meanwhile do not bring scalability concerns, but
effective modeling of boundaries can be intractable in some
cases.

SFI: upon detection of soft failures, SFI is usually invoked
to facilitate subsequent localization and restoration of equip-
ment where faults yield. Apart from the work in [1] which uses
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Fig. 2. Schematic of hybrid-learning-based SFD design.

an analytical model, the references listed in Table I for SFI all
employ supervised ML models, i.e., SVM or neural network-
based classifiers. For instance, the authors of [11] trained one-
dimensional convolutional neural networks for classifying four
types of faults taking as input signal power spectrum densities.

SFL: conventional solutions for fault localization typically
adopt mathematical models to correlate alarms from different
network locations or (probing) lightpaths. With the goal of
reducing probes in localizing single-link failures, Panayiotou
et al. proposed a joint heuristic and ML approach, where a
graph-based correlation algorithm first finds a set of potential
failed links and a Gaussian process classifier built on historical
failure statistics further isolates the failures [12]. The proposed
approach makes use of only the state (normal or abnormal)
and routing information of each lightpath. In [13], the au-
thors modeled the dependency between alarms as knowledge
graphs and performed SFL with a graph neural network that
explores correlations in the graphs. Besides, recent literature
has reported neural-network-based designs that try to learn
mappings from OPM data to fault locations without explicitly
investigating the inherent correlations [9], [14].

IV. SOFT FAILURE DETECTION WITH HYBRID LEARNING

In this section, we present a hybrid learning design that
combines the merits of supervised, unsupervised, and cooper-
ative ML for SFD. Fig. 2 shows the schematic of the design.
Given a large amount of OPM data, the feature engineering
block first extracts and formats relevant features readily to be
processed by the ML blocks. Then, the unsupervised clustering
block performs pattern analysis on the data by identifying a
set of clusters and outliers. Each of the clusters is formed
by samples sharing high similarities (quantified by certain
distance metrics, e.g., Euclidean distance). We apply a density-
based clustering algorithm called DBSCAN, for its advantage
of detecting clusters of arbitrary shapes and sizes. DBSCAN
initiates clusters with high-density samples (samples that
have large numbers of neighboring samples) and repeatedly
expands the clusters by adding the neighboring samples of
those selected. Here, neighboring samples refer to samples
that are within a predefined distance to a given sample,
for instance, random fluctuations related to a normal state.
Samples that cannot form clusters are left as outliers. Since

soft failures lead to network states deviating from the normal
ones (beyond their neighborhoods) and occur infrequently
(i.e., correspond to just a few samples out of a large data
set), it is natural that we label the outliers as indications of
probable faults. Note that, to account for normal but rare or
emerging network conditions, such as the deployment of a
novel modulation format, a traditional SFD scheme can be
employed for further inspection of the outliers. This way, the
clustering block actualizes data-driven and generalized SFD,
not relying on prior knowledge characterizing particular fault
patterns. Nevertheless, the clustering block may suffer from
scalability issues when applied to online detection because
it needs to revisit the whole data set every time SFD is
called, whose runtime complexity scales up with the size of
the data set. Inspired by self-supervised learning methods that
boost training of ML models utilizing knowledge learned for
pretext tasks by unsupervised learning, we adopt a self-taught
mechanism [15] to facilitate computationally efficient online
SFD. Specifically, we train a neural-network-based binary
classifier using the learned patterns (labeled data) and make it
predict whether each newly collected sample is abnormal or
not. In other words, we transfer knowledge from the clustering
block to the neural network classifier. After being trained, the
complexity of the classifier is only determined by the scale
of the neural network (number of weight coefficients), often
in the magnitude ranging from hundreds to a few thousand
considering the moderate difficulty of SFD tasks.

A major challenge of training a successful classifier for
SFD is the scarcity of abnormal samples, which can result in
model overfitting to normal classes and thereby poor detection
accuracy. To meet this challenge, we introduce evaluations of
model uncertainty by applying the Bayesian neural network
(BNN) technique. Different from regular neural networks
that generate deterministic predictions, BNNs are probabilistic
models aiming at learning the distributions of targets charac-
terized by, for instance, means and standard deviations. Thus,
BNNs allow us not only to make predictions but also to
evaluate the uncertainties about predictions. When the BNN
classifier is trained with mostly normal samples, it is less
confident about its predictions (higher uncertainty) for data
falling out of normal distributions (i.e., abnormal data). Based
on this principle, we enhance the classifier by a threshold-
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Fig. 3. System setup for data set generation. WDM: wavelength division multiplexing; Co-Tx: coherent transceiver; Co-Rx: coherent receiver; MUX:
multiplexer.

based discriminator which claims a sample as abnormal if the
prediction uncertainty is higher than a threshold, regardless
of the actual prediction by the classifier. We automate the
choice of the threshold for a given data set by counting the
frequency of occurrence of prediction uncertainty and finding
a point beyond which the uncertainty distribution becomes
evidently sparse. Such a point can represent an approximate
boundary of the uncertainty distribution of normal samples.
In addition, since the choice of the threshold involves in a
trade-off between fault detection and false alarm rates, that is,
a lower threshold can improve fault detection rate but leads to
larger numbers of false alarms, the maximum tolerable false
alarm rate can serve as an auxiliary reference for determining
the threshold. For instance, we can restrict the threshold to be
higher than the 99th percentile of the prediction uncertainty
to bound false alarm rate by 1%.

To further mitigate the problem incurred by shortage of
abnormal samples, the hybrid learning design encapsulates
a federated learning framework by which NMs can train
classifiers cooperatively while securing the confidentiality of
each network domain. As illustrated by Fig. 2, the federated
learning framework involves a hierarchical architecture where
a global classifier model maintained by the broker plane lying
in the higher control and management hierarchy coordinates
the training of distributed models (owned by NMs) in multiple
rounds. All the models employ an identical neural network
structure. Note that, the framework does not necessarily re-
quire every NM to apply the self-taught mechanism, i.e., an
NM can purely rely on a classifier for SFD. In each round of
training after initialization, the distributed models are first syn-
chronized to the global model (i.e., by downloading the model
weights) and then execute independent training of multiple
epochs using local data sets and standard training algorithms
like Adam. Here, a training epoch refers to that a model is
updated by traversing the whole data set once. Afterward, the
distributed models upload the derived gradients to the global
model, which concludes the round by aggregating the received
gradients (e.g., averaging) and updating the model accordingly.
Federated learning essentially facilitates knowledge sharing
among NMs while protecting the data integrity of domains
because only model weights and gradients are exchanged. This
can be especially beneficial in the case where NMs possess
data that are nonidentically distributed (i.e., complementary to
each other).

V. PERFORMANCE ASSESSMENT

We assessed the performance of the hybrid learning design
with data sets collected using the VPItransmissionMaker™
Optical Systems simulator. Fig. 3 shows the five-node system
setup. Each adjacent node pair is connected by a 100-kilometer
standard single-mode fiber, with the fiber loss compensated
by a gain-controlled amplifier that has a noise figure of 4 dB.
The three coherent transceivers attached to nodes A, D and
E were used to inject signals on eight wavelength channels
at 224 Gbauds. We set up lightpaths from node A to E on
λ2 (the signals of interest) with various modulation formats
(4QAM, QPSK, or 8PSK), symbol rates ([9, 28] Gbauds), and
launch power ([0.22, 3.6] milliwatt). By varying the number of
signals injected by each transceiver and adding perturbations
(0.3 or 0.6 dB) to the gain of the amplifier in node C,
we emulated the dynamic network condition each lightpath
undergoes. We introduced one of the following soft failures at
certain simulation time points: i) 10 dB reduced gain by the
amplifier in node D (amplifier malfunctioning); ii) injection
of a 3 milliwatt signal on λ3 by transceiver 2 (jamming
attack); iii) injection of a signal on λ2 by transceiver 2 (signal
overlapping due to misconfiguration); iv) drift of laser central
frequency by half of channel spacing; and v) narrowing of
lowpass filter bandwidth at the receiver side by 20% (tight
filtering). The optical spectrum analyzers and the coherent
receiver constantly monitor the signal power and BER values,
respectively. We recorded the BER evolution (five consecutive
BER values) and the power variation along the routing path
with respect to every lightpath to represent both the temporal
and spatial characteristics of the system. In total, 15, 654
normal samples and 30 abnormal samples were collected.

We implemented the DBSCAN algorithm with the related
parameters tuned according to the method discussed in [15].
The BNN classifier was realized by the Monte-Carlo dropout
method based on a fully-connected neural network architecture
of two hidden layers (each consisting of ten neurons). The
Monte-Carlo dropout method applies a dropout rate (0.1 used
in the evaluations) at which a neuron is deactivated in each
training/inference operation, thereby, produces a probabilistic
classifier model. We evaluated the model uncertainties by
computing the mutual information of 100 feed-forward calcu-
lations during each inference. By referring to the uncertainty
distributions of testing samples, we decided a rough interval
of the uncertainty threshold and tested different configurations
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Fig. 4. Performance comparison between the uncertainty-aided (UA) design with different threshold setups and a baseline without uncertainty awareness.

Nonuniform Data Distribution

Uniform Data Distribution

Fig. 5. Performance comparison between federated learning (FL) and independent learning (IL) for SFD.

to evaluate their impact on fault detection and false alarm
rates. We first compared the proposed design with a baseline
that adopts a regular neural network classifier to evaluate the
benefit of incorporating uncertainty analysis in SFD. Fig. 4
shows the results of precision and recall as functions of the
proportion of abnormal data used for training. Here, precision
and recall are defined as the ratio of true positives (positives
being successfully detected) to the number of claimed positives
and the ratio of true positives to the total number of positives
(i.e., detection rate) [10], respectively. It can be seen that the
proposed design can achieve recall of ∼ 95% with just 20% of
abnormal data used for training, whereas that from the baseline
is only 79% in this case. With 60% of abnormal data used for
training, the detection rate from the proposed design reaches
100% under all the three threshold configurations. Meanwhile,
we can observe that the choice of a lower threshold slightly
improves the detection rate but leads to larger numbers of
false alarms, i.e., lower precision. By switching the threshold
from 0.01 to 0.05, we can increase precision from less than
25% to 83 − 96% (corresponding to false positive rates of
0.01− 0.04%). Overall, the proposed design promotes higher
fault detection rates against the baseline, especially when the
abnormal data for training are rare, at a reasonable cost in the
increase of the number of false alarms.

Next, we assessed the performance of the federated learn-
ing framework (denoted by FL) assuming three NMs, each

possessing a division of the original data set. To verify the
robustness of FL against the distribution of data, we tested
both uniform and nonuniform data division schemes. With
the former, normal and abnormal data were evenly distributed
to the NMs, whereas with the latter, we made NM-1 hold
all the abnormal samples assigned for training (60% of the
abnormal data set in both cases). We compared FL with an
independent learning approach (denoted by IL) where NMs
perform independent model training with local data sets. Fig. 5
presents the precision and recall results from the model of
each NM under different data distributions. In the case where
data are evenly divided, FL achieves recall comparable to that
from IL but with over 40× higher precision. In other words, IL
sustains high detection rates at the cost of raising excessive
false alarms. The performance of the models from different
NMs are close in this case. The advantage of FL becomes
more notable under nonuniform data distributions. Since only
the model of NM-1 got trained with abnormal samples, the
models of the other NMs with IL fail to detect soft failures
to a large extent (with recall of just around 40%). On the
other hand, by enabling knowledge sharing among NMs, the
performance of FL remains stable, achieving > 90% detection
rates for all the NMs while preserving high precision.

VI. CONCLUSION

In this article, we discussed an ML-aided automated fault
management architecture for optical networks. We reviewed
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the state-of-the-art proposals based on this architecture and
introduced a hybrid learning approach for soft failure de-
tection to overcome the applicability and scalability issues
from existing solutions. Performance assessment verified the
effectiveness of the hybrid learning approach.

Open questions include but not limit to: i) how to decide
the most effective set of optical parameters and the frequency
to monitor for realizing desirable trade-off between model
accuracies and costs; ii) how to further enhance the practica-
bility of the unsupervised clustering block by more advanced
algorithm designs and evaluations incorporating more com-
prehensive network conditions or real traces; and iii) how to
achieve robust performance in soft failure identification and
localization tasks when the number of fault types or potential
fault locations is large and the distribution of data over the
target classes is skewed.
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