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Nonlinear system identification in Sobolev spaces

Abstract
We consider the problem of approximating an unknown function from experimental
data, while approximating at the same time its derivatives. Solving this problem
is useful, for instance, in the context of nonlinear system identification, for obtain-
ing models that are more accurate and reliable than the traditional ones based on
plain function approximation. Indeed, models identified by accounting for the deriva-
tives can provide improved performance in several endeavours, such as in multi-step
prediction, simulation, Nonlinear Model Predictive Control, and control design in
general. In this paper, we propose a novel approach based on convex optimization,
allowing us to solve the aforementioned identification problem. We develop an op-
timality analysis, showing that models derived using this approach enjoy suitable
optimality properties in Sobolev spaces. The optimality analysis also leads to the
derivation of tight uncertainty bounds on the unknown function and its derivatives.
We demonstrate the effectiveness of the approach with three numerical examples,
concerned with univariate function identification, multi-step prediction of the Chua
chaotic circuit, and control of the inverted pendulum.

KEYWORDS
Nonlinear system identification, Set Membership, Sobolev norm approximation.

1. Introduction

Consider a nonlinear discrete-time system, represented in the following input-
output regression form:

yk+1 = fo (xk) + ⇠k+1 (1)
xk = (yk, . . . , yk�mo+1, uk, . . . , uk�mo+1)

where uk 2 U ⇢ Rnu is the input, yk 2 Rny is the output, ⇠k 2 ⌅ ⇢ Rn⇠ is a
disturbance and k 2 Z is the discrete time index. The sets U and ⌅ are compact
with non-empty interior. The regression function fo is supposed to be unknown:
the objective of this paper is to obtain from a batch of experimental data an
estimate f̂ of fo such that (i) f̂ approximates fo, and (ii) the first derivatives of f̂
approximate the first derivatives of fo. Some relevant motivations for considering
this problem are given next.
Multi-step prediction and simulation. A standard approach to the identification
of system (1) is to adopt a parametrized NARX (Nonlinear Auto Regressive with
eXogenous inputs) model structure and to estimate the involved parameters by
minimizing the model prediction error; see, e.g., (Ljung, 1999; Sjöberg et al.,
1995). A relevant issue is that a model identified using this approach may be
accurate when used for one-step ahead prediction but poor when used for multi-
step prediction or simulation. This may happen, for example, when the model
sampling time is too short; (Goodwin, Yuz, Aguero, & Cea, 2010). In this case,
the identified model tends to become a so-called persistent model, where the
prediction is close to the current value: ŷk+1

⇠= yk. Clearly, a nearly persistent
model cannot provide a decent performance when used for multi-step prediction
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or simulation. In general, the main reason behind these kind of issues is that
the model just aims to minimize the one-step prediction error, without really
trying to capture the relation between the output and the individual components
of xk and yk+1. An approach that may help overcoming these issues consists
in adopting a NOE (Nonlinear Output Error) model structure, in which the
involved parameters are estimated by minimizing the model simulation error,
see, e.g., (Ljung, 1999; Sjöberg et al., 1995). NOE models are often more accurate
than NARX models in multi-step prediction and simulation but require a higher
computational burden, since minimization of the simulation error is in general
a hard nonlinear and non-convex problem. In any case, also for NOE models
there are no guarantees that the relation between the components of xk and
yk+1 is correctly captured. The function derivatives express these relations, up
to first order. Hence approximating them, together with the system function fo,
is crucial in determining an accurate model for control purposes.
Nonlinear Model Predictive Control (NMPC). NMPC is a widely used technique
for controlling complex nonlinear plants, see, e.g., (Findeisen, Allgower, & Biegel,
2007; Grune & Pannek, 2011; Magni, Raimondo, & Allgower, 2009). Data-driven
versions of this technique can be found in, e.g., (Manzano, Limon, de la Peñ,
& Calliess, 2018; Novara, Formentin, Savaresi, & Milanese, 2016; Novara & Mi-
lanese, 2019; Piga, Forgione, Formentin, & Bemporad, 2019; Salvador, de la
Peña, Alamo, & Bemporad, 2018). NMPC is based on two main operations: (i)
multi-step prediction of the plant behavior, and (ii) synthesis of a control law
via on-line optimization, based on the predicted behavior. Clearly, the availabil-
ity of an accurate multi-step prediction model is of paramount importance in
NMPC. In particular, at every time k, given the input and output regressors
(uk�1, . . . , uk�mo+1) and (yk, . . . , yk�mo+1), the model should correctly describe
the variations of the predicted output ŷk+⌧ , ⌧ � 1, due to variations of the com-
mand input sequence (uk, . . . , uk+⌧�1). The function derivatives describe these
variations to first order, and this, again, motivates the need in a control context
of approximating the system function fo together with its derivatives.
Control sensitivity. The above considerations are not limited to NMPC. In gen-
eral, when estimating a regression model that is to be used for control, e.g., of
the type ŷk+1 = f̂(yk, . . . , yk�mu+1, uk, . . . , uk�mu+1), it is important to capture
the sensitivities of the output with respect to the commands uk, . . . , uk�mu+1,
and these are given, to first order approximation, by the derivatives of f̂ w.r.t.
these variables. Failing to get these sensitivities with sufficient precision may
result in a model that responds to commands in a poor way.

Remark 1. Although the following one is an elementary fact, it is perhaps
important to remark that a good uniform error bound on a function’s values
needs not imply a good error bound on the sensitivities (derivatives). Indeed,
suppose that we have f̂(x) = f(x) + e(x), where f is the true function, f̂ is
the identified approximation, and e is an error term. If f̂ is approximated in a
standard way, we may have that, over a given domain X , |e(x)|  ✏, 8x 2 X ,
that is a uniform bound ✏ on the absolute approximation error |f̂(x) � f(x)|.
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The point, however, is that even if ✏ is small, the error on the sensitivity can be
arbitrarily large. We have that df̂

dx = df
dx+

de
dx , whence

���df̂dx � df
dx

��� =
�� de
dx

�� , and indeed
it suffices to consider an example with e(x) = ✏ sin(!x), to see that |e(x)|  ✏ for
all x, but

�� de
dx

�� = ✏!| cos(!x)|, thus the error on the sensitivity can be arbitrarily
large, for arbitrarily large !. ?

Related literature. The literature appears to be scarce on the topic of approx-
imating from data a function and its derivatives. To the best of the Authors’
knowledge, no methods are available in the system identification literature, con-
sidering the idea of approximating the system regression function and its deriva-
tives. Regularization and kernel-based methods can be mentioned in this context,
see the survey (Pillonetto, Dinuzzo, Chen, De Nicolao, & Ljung, 2014) and the
references therein. In these methods, the regression function derivatives are in-
directly taken into account by introducing regularization terms in the objective
criterion to minimize and/or by using kernel functions characterized by suitable
smoothness properties. The few existing methods that directly aim at identifying
the regression function and its derivatives are available in the machine learning
literature. These methods are based on different classes of approximators, such
as radial basis functions (Mai-Duy & Tran-Cong, 2003), neural networks (Avrut-
skiy, 2018; Pukrittayakamee, Hagan, Raff, Bukkapatnam, & Komanduri, 2011;
Xie & Cao, 2011), and deep neural networks (Czarnecki, Osindero, Jaderberg,
Swirszcz, & Pascanu, 2017). The numerical results presented in these papers
clearly show that using the information about the function derivatives leads
to significant improvements of the model accuracy and the generalization ca-
pabilities. This literature is interesting and effective in showing the potential
of techniques relying on derivative identification. However, several issues have
still to be addressed in this context: (i) Only a limited number of works carry
out a theoretical analysis on the approximation properties of these techniques
(Czarnecki et al., 2017; Hornik, Stinchcombe, & White, 1990; Xie & Cao, 2011),
and the provided results are often non-constructive, in the sense that they just
prove existence of the required approximating function. (ii) The existing meth-
ods assume the availability of the function derivative measurements but this
may not be true in practical applications. (iii) The existing methods allow for
the identification of a model, but they usually do not provide a description of the
uncertainty associated with this model and its predictions. (iv) The model learn-
ing process is typically based on nonlinear optimization. The identified models
may thus be not really optimal since they may correspond to a local minimum
of the underlying objective function.
Main Novel Contributions. In this paper, we propose a novel identification ap-
proach addressing all the aforementioned issues. The approach provides models
approximating not only the system regression function, as done in standard iden-
tification methods, but also its derivatives. This allows the identified models to
better capture the sensitivity of the output with respect to the input, which
in turn leads to improved accuracy and reliability with respect to the standard
methods based on plain function approximation (i.e., identified without con-
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sidering the derivatives). In summary, the main novelties of the method are as
follows:

• To the best of the Authors’ knowledge, the approach is the first available
in the system identification literature, based on the approximation of the
regression function and its derivatives.

• The approach is presented together with a theoretical analysis, showing
that the identified models enjoy suitable optimality properties in Sobolev
spaces. Roughly speaking, we show that the accuracy of the identified mod-
els is close to the best accuracy achievable from the available prior and
experimental information.

• The optimality analysis leads to the derivation of tight uncertainty bounds
on the unknown function and its derivatives, quantifying the modeling error
and the prediction uncertainty.

• The approach uses samples of the regressor xk, of the function output yk
and of the function derivative outputs. As already mentioned, these latter
samples may be not available in a real-world application. Thus, a technique
is proposed for estimating the derivative samples from the function input-
output data. It is shown that, under standard conditions, the estimate
converge to the real values when the number of data becomes large.

Another interesting feature of the approach is that it is completely based on
convex optimization. This allows us to avoid the issue of local minima and to
propose two identification algorithms that are relatively easy to use in practice.
Three numerical examples are finally presented, concerned with identification
of a univariate function, multi-step prediction of the Chua chaotic circuit and
control of the inverted pendulum, showing that the approach may provide sig-
nificantly more accurate and reliable models than the traditional ones based on
plain function approximation.
Paper orgnization. In Section 2, the notation used in the paper and some ba-
sic notions about functional norms and spaces are introduced. In Section 3, the
identification problem of interest is formalized. In Section 4, two methods are
discussed for the joint function and derivatives identification problem. The op-
timality properties of these methods are analyzed in Section 5. Based on this
analysis, tight uncertainty bounds are provided in Section 6. In Section 7, an algo-
rithm is proposed for estimating the derivative values, starting from the function
input-output values. In Section 8, the main steps of the complete identification
procedure are summarized, together with the guidelines about the choice of the
involved parameters. Section 9 presents the numerical examples. Conclusions are
given in Section 10. All the theorem proofs can be found in the Appendix.

2. Notation and preliminaries

A column vector x 2 Rnx⇥1 is denoted by x = (x1, . . . , xnx). A row vector
x 2 R1⇥nx is denoted by x = [x1, . . . , xnx ] = (x1, . . . , xnx)

>, where > indi-
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cates the transpose. The `p norm of a vector x = (x1, . . . , xnx) is defined as
usual and denoted with kxkp. The 2-norm (maximum singular value norm)
of a matrix � 2 Rm⇥n is denoted by k�k2, and the 1-norm is denoted by
k�k1

.
= maxi=1,...,m

Pn
j=1 |�ij|.

The Lp norm of a function with domain X ✓ Rnx and codomain in R, is defined
as kfkp

.
=
⇥R

X |f (x) |pdx
⇤ 1

p , for p 2 (1,1), and as kfk1
.
= ess supx2X |f (x) | for

p = 1. These norms give rise to the well-known `p and Lp ⌘ Lp(X) Banach
spaces.
The S1p Sobolev norm of a differentiable function with domain X ✓ Rnx and
codomain in R, is defined as kfkSp

.
=

Pnx

i=0 kf (i)kp, where f (i) .
= f for i = 0,

and f (i) .
= @f

@xi
for i > 0. Note that the superscript (i), with i > 0, here denotes

the partial derivative of a function with respect to the i-th variable, and not the
i-th order derivative. The Sobolev norm gives rise to the S1p ⌘ S1p(X) Sobolev
space, also denoted in the literature by W1p or W1,p.

Definition 1. The Sobolev space S1p(X) is the set of all functions f 2 Lp(X)
such that, for every i > 0, the derivative f (i)

exists and f (i) 2 Lp(X). That is,

S1p(X)
.
=
�
f 2 Lp(X) : f (i) 2 Lp(X), i = 0, . . . , nx

 
.

Sobolev norms (and related spaces) involving higher order derivatives can also be
found in the literature. The concept of weak derivative, which is a generalization
of the standard derivative, is often used. In this paper, the interest is for the
case of first order standard derivatives, which is more relevant from a practical
point of view. The generalization to the case of weak derivatives is in any case
straightforward.

3. Problem formulation

Consider a function fo 2 S1p(X), taking values z = fo(x), where x 2 X ⇢ Rnx ,
X is a compact set, and z 2 R. Suppose that fo is not known, but a set of
noise-corrupted input-output data from the unknown function is available:

D = {x̃k, {z̃i,k} nx
i=0}

L
k=1 (2)

where x̃k 2 X are the measurements of fo argument, z̃0,k ⌘ z̃k are the mea-
surements of fo output, and z̃i,k, i > 0, are the measurements of f (i)

o
.
= @fo/@xi

output. If multiple datasets D[j] = {x̃[j]
k , {z̃[j],ik }nx

i=0}L
[j]

k=1, j = 1, . . . , NE are avail-
able, collected in different experiments, then the overall dataset D is given by
their union: D = [NE

j=1D
[j].

The data (2) can be described by

z̃i,k = f (i)
o (x̃k) + di,k, i = 0, . . . , nx, k = 1, . . . , L, (3)

where di,k are noises accounting for input/output disturbances, and d0,k ⌘ dk.
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If the data are generated by the system (1), we have that z̃0,k ⌘ z̃k = ỹk+1,
where ỹk indicates the measured value of yk, and the noise terms account for the
disturbance ⇠k and possible measurement errors.
We remark that in real-world applications, only the output of the function is
usually measured, while the outputs of the derivatives may not be available. In
Section 7, an algorithm will be presented for estimating the derivative output
samples z̃i,k, i > 0, from the input-output function samples x̃k and z̃k. In the
reminder of this paper, we will thus assume that these samples are available,
because they have been either measured or estimated. All the results that will
be presented will hold true for both these cases.
Now, assume that the noise sequences di = (di,1, . . . , di,L) are unknown but
bounded:

kdikq  µi (4)

where k · kq is a vector `q norm and 0  µi < 1. In the case q = 2, it can be
convenient to write µi as µi =

p
Lµ̆i, with 0  µ̆i < 1. In some situations,

the noise bounds µi are known from the physical knowledge about the system
of interest and the involved sensors. In other situations, these bounds are not
known and have to be estimated from the available data. An algorithm will be
provided in Section 6 for performing this estimation.
In this paper, we consider the problem of identifying from the data (2) an “accu-
rate” approximation f̂ of the unknown function fo, such that also the derivatives
f̂ (i), i > 0, of f̂ are “accurate” approximations of the derivatives f (i)

o , i > 0, of fo.
The accuracy is measured by means of the following Sobolel identification error:

e(f̂)
.
= kfo � f̂kSp

where k · kSp is a Sobolev norm. In other words, we are looking for an approxi-
mation of the unknown function fo in the S1p Sobolev space. Besides the goal of
obtaining such an approximation, we also aim at evaluating guaranteed estimate
bounds for fo.
A parametrized structure is adopted for the approximating function:

f̂ (x) =
NX

j=1

aj�j (x) (5)

where �j 2 S1p(X) are given basis functions and aj 2 R are coefficients to be
identified. The choice of the basis functions is clearly an important step of the
identification process, see, e.g., (Novara, Vincent, Hsu, Milanese, & Poolla, 2011;
Sjöberg et al., 1995). In several cases, the basis functions are known from the
physical knowledge of the system of interest. In other cases, the basis functions
are known a priori to belong to some “large” set of functions, see, e.g., the
examples presented in Section 9.2 and in (Novara, 2011). In yet other cases,
the basis functions are not known a priori and their choice can be carried out
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by considering the numerous options available in the literature (e.g., Gaussian,
sigmoidal, wavelet, polynomial, trigonometric, etc.); see (Sjöberg et al., 1995) for
a discussion on the main features of the most used basis functions and guidelines
for their choice.
The problem considered in this paper is stated as follows.

Problem 1. From the data set D in (2), identify an estimate f̂ of the form (5),

such that:

(i) the Sobolev identification error e(f̂) is small;

(ii) the estimate is equipped with guaranteed uncertainty bounds on the unknown

function fo and its derivatives.

In the reminder of the paper, for numerical conditioning reasons, we assume
that the components of x in z = fo(x) have similar ranges of variation. This
assumption can always be met through a suitable rescaling of the components.

4. Identification methods

In this section, we propose two methods for solving Problem 1, both based on
convex optimization. In Section 5 it will be shown that functions identified by
means of these methods enjoy suitable optimality properties. We suppose that
the derivative output samples z̃i,k, i > 0 are available. In Section 7, we will show
how these derivative samples can be estimated from the input-output function
samples x̃k and z̃k.
A simple yet fundamental observation is that the approximating function (5)
and its derivatives are given by

f̂ (i) (x) =
NX

j=1

aj�
(i)
j (x) , i = 0, . . . , nx. (6)

On the basis of this observation we can present the first identification method.

Method 1. -

(1) Define

z̃i
.
=

2

4
z̃i,1
...

z̃i,L

3

5 , �i
.
=

2

64
�(i)
1 (x̃1) · · · �(i)

N (x̃1)
...

. . .
...

�(i)
1 (x̃L) · · · �(i)

N (x̃L)

3

75 . (7)

(2) Estimate the vector a = (a1, . . . , aN) of model coefficients in (6) by solving
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the following convex optimization problem:

a = arg min
↵2RN

k↵kr (8)

s.t. kz̃i � �i↵kq  µi, i = 0, . . . , nx, (9)

where the integers r, q indicate suitable vector norms.

The rationale behind this method can be explained as follows: the constraints (9)
ensure that the resulting model (6) is consistent with the available information
on the noises corrupting the data. If the optimization problem is not feasible,
it means that either the chosen basis function set is not sufficiently rich or the
noise bounds kdikq  µi are too small. The minimization of the coefficient vector
`r norm in (8) is carried out for regularization reasons, allowing also to limit the
issue of overfitting. Typical norms that can be used are the `2 and `1 norms. In
particular, the `1 norm allows one to obtain a sparse coefficient vector a (see, e.g.,
(Donoho, Elad, & Temlyakov, 2006; Fuchs, 2005; Tibshirani, 1996; Tropp, 2006)),
resulting in a low-complexity model. This is an important property, especially
in view of the model implementation on real-time processors.

We now present the second identification method.

Method 2. -

(1) Define z̃i and �i as in (7).

(2) Estimate the vector a = (a1, . . . , aN) of model coefficients in (6) by solving

the following convex optimization problem:

a = arg min
↵2RN

nxX

i=0

�ikz̃i � �i↵k2q + ⇤k↵kr (10)

where the integers r, q indicate suitable vector norms, and �i � 0,⇤ � 0
are user-defined weights.

Problem (10) is aimed at minimizing a tradeoff between the model fitting error
on the identification data and a regularization term. For r = 1 and �i = 0, i > 0,
(10) is a Lasso problem, see, e.g., (Tibshirani, 1996); for r = 2 and �i = 0, i > 0,
it becomes a classical Ridge regression problem, see, e.g., (Gruber, 1998). Note
that, for suitable values of the parameters µi, �i and ⇤, the optimization problems
(8) and (10) are equivalent.

Remark 2. It is worth to stress the fact that Method 1 and Method 2 are here
considered in terms of the guarantees they provide for the ensuing models, and
that this paper’s contribution lies in the specific models that lead to Sobolev
space identification through Method 1 and Method 2, and in their analysis, and
not in the actual numerical solution of problems in (8) or (10). These prob-
lems indeed have a well-known regularized regression structure, and a pletora of
efficient numerical methods already exist for their solution. ?
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5. Optimality analysis

In Section 4, two identification methods have been presented, allowing us to de-
rive parameterized approximations of the unknown function fo. In this section,
following a Set Membership approach (Milanese & Vicino, 1991), (Milanese,
Norton, Lahanier, & Walter, 1996), (Schweppe, 1973), (Chen & Gu, 2000), (Mi-
lanese & Novara, 2011), (Sznaier, Wenjing, Camps, & Hwasup, 2009), we show
that such approximations enjoy certain optimality properties in Sobolev spaces.
Two cases are covered: in the first one, we suppose that the true function fo
belongs to a Sobolev space S1p; in the second one, we make an additional as-
sumption, regarding the Lipschitz continuity of the derivatives of the function
fo� f̂ , which allows us to prove stronger optimality properties of the approxima-
tions w.r.t. the first case. The analysis and results developed here are extensions
to Sobolev spaces of those regarding approximation in Lp spaces presented in
(Milanese & Novara, 2004, 2011).
Before proceeding with the optimality analysis, it is important to observe that
any system identification method is based on some prior assumptions. For exam-
ple, the well-known Prediction Error method (Ljung, 1999) assumes given statis-
tical properties of the noise (e.g., mean, variance, covariance, uncorrelation, type
of distribution, etc.) and a parametric structure of the model to identify. If these
assumptions are true, then it is possible to obtain valid theoretical guarantees
about the identified model, otherwise these guarantees are not reliable. In our
approach, we do not assume statistical properties of the noise and parametric
structures of the true system. Following a Set Membership setting, we suppose
that the noise is unknown but bounded and that the true system regression
function is characterized by suitable regularity properties, i.e., that this function
belongs to the Sobolev space S1p(X).
Prior Assumptions on the noise: kdikq  µi, i = 0, . . . , nx.
Prior Assumptions on the regression function: fo 2 S1p(X).
Under these assumptions, we are going to derive optimality guarantees about
the accuracy of the identified models and tight bounds on the unknown function
fo and its derivatives.
It must be remarked that it is not possible to be guaranteed that the consid-
ered prior assumptions are true. What can be actually done is to validate the
assumptions using the available experimental data (Popper, 1969). In the follow-
ing, we will provide conditions for prior assumption validation and procedures
for estimating the involved parameters.

5.1. Optimality analysis in Sobolev spaces

Consider that the function fo and its derivatives are unknown, while instead
we have the experimental information given by (2) and (3), and the prior as-
sumptions given by the inclusion fo 2 S1p(X) and the noise bounds kdikq  µi.
It follows that fo 2 FFSS , where FFSS is the so-called Feasible Function Set,
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defined below.

Definition 2. The Feasible Function Set FFSS is defined as

FFSS
.
= {f 2 S1p(X) : ||z̃i � f (i) (x̃) ||q  µi, i = 0, . . . , nx}

where f (i) (x̃)
.
= (f (i) (x̃1) , . . . , f (i) (x̃L)).

In words, the Feasible Function Set is the set of all functions consistent with the
prior assumptions and with the available data. The Feasible Function Set thus
summarizes all the experimental and a-priori information that can be used for
identification. If at least a function exists that is consistent with the assumptions
and the data (i.e., if FFSS 6= ;), we say that the assumptions are validated.
Otherwise (i.e., if FFSS = ;), we say that the assumptions are falsified; see
(Chen & Gu, 2000; Milanese et al., 1996).

Definition 3. The prior assumptions are considered validated if FFSS 6= ;. 2

As discussed above, assumption validation is an important step of the model
identification process since, without validation, all the theoretical properties that
can be derived are not reliable. However, checking the non-emptiness of the
Feasible Function Set is in general not trivial. The following theorem gives a
sufficient condition for FFSS to be non-empty. It can be noted that the condition
is easily verifiable in practice.

Theorem 1. FFSS 6= ; if the optimization problem (8)-(9) is feasible.

Proof. See the Appendix. 2
If the optimization problem (8)-(9) is not feasible, it means that either the chosen
basis function set is not sufficiently rich or the noise bounds kdikq  µi are too
small. In the case where reliable noise bounds are available, a sufficiently rich
basis function set has to be found, considering the numerous options available
in the literature (e.g., Gaussian, sigmoidal, wavelet, polynomial, trigonometric).
If no basis functions are found for which the optimization problem is feasible, a
relaxation of the noise bounds is needed.
In the reminder of the paper, it is assumed that the prior assumptions are true
and, consequently, fo 2 FFSS . Under this assumption, for a given approximation
ĝ of fo, a tight bound on the identification error e(ĝ) is given by the following
worst-case error.

Definition 4. We define the worst-case identification error as WE(ĝ,FFSS)
.
=

supf2FFSS kf � ĝkSp, where k · kSp is the Sobolev norm.

An optimal approximation is defined as a function fop which minimizes the
worst-case approximation error.

Definition 5. An approximation fop is FFSS-optimal if WE(fop,FFSS) =
inf ĝ WE(ĝ,FFSS)

.
= R(FFSS), where R(FFSS) is called the radius of informa-
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tion and is the minimum worst-case error that can be achieved on the basis of

the available prior and experimental information. 2

In other words, an optimal approximation is the best approximation that can
be found on the basis of the available prior and experimental information (this
information is summarized by the Feasible Function Set). Finding optimal ap-
proximations is in general hard and sub-optimal solutions can be looked for.
In particular, approximations called almost-optimal are often considered in the
literature, see, e.g., (Traub, Wasilkowski, & Woźniakowski, 1988), (Milanese et
al., 1996).

Definition 6. An approximation fao is FFSS-almost-optimal if

WE(fao,FFSS)  2 inf ĝ WE(ĝ,FFSS) = 2R(FFSS).

The following result gives sufficient conditions under which an approximation
(possibly obtained by the methods of Section 4) is almost-optimal.

Theorem 2. Assume that:

i) the optimization problem (8)-(9) is feasible.

ii) the approximation f̂ given in (5)-(6) has coefficients aj satisfying inequalities

(9).

Then, the approximation f̂ is FFSS-almost-optimal.

Proof. See the Appendix. 2
This theorem shows that an approximation obtained by Method 1 is always
almost-optimal. Instead, an approximation obtained by Method 2 is almost-
optimal if its coefficients satisfy inequalities (9).

5.2. Optimality analysis with Lipschitz information

As discussed in Section 5.1, the function fo and its derivatives are unknown, while
instead we have available the experimental information given by (2) and (3), and
the prior assumptions given by the inclusion fo 2 S1p(X) and the noise bounds.
In this section, we make an additional assumption on the Lipschitz continuity of
the derivatives of the so-called residue function fo � f̂ . This allows us to prove
stronger optimality properties with respect to those discussed in Section 5.1.
The residue function is defined as �(x)

.
= fo(x) � f̂(x). We assume that this

function and its derivatives are Lipschitz continuous. That is, for given Lipschitz
constants �i < 1, i = 0, . . . , nx, �(i) 2 L(�i, X), where

L(⌘, X)
.
= {f 2 S1p(X) : |f(x)� f(w)|  ⌘kx� wk1, 8x, w 2 X}.

This assumption is reasonable, since we already know that � 2 S1p(X), which
implies that � is Lipschitz continuous and its derivatives are continuous (a
slightly weaker condition with respect to Lipschitz continuity). The constants �i
can be estimated from the available data by means of the procedure presented
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at the end of this section.
Under the Lipschitz condition, we have that fo 2 FFSL, where FFSL is the
following Feasible Function Set.

Definition 7. We let

FFSL
.
= {f 2 S1p(X) : f (i) � f̂ (i) 2 L(�i, X), ||z̃i � f (i) (x̃) ||q  µi, i = 0, . . . , nx}

where f (i) (x̃)
.
= (f (i) (x̃1) , . . . , f (i) (x̃L)).

FFSL is the set of all functions consistent with the prior assumptions and the
available data. As discussed above, assumption validation is an important step
of the model identification process since, without validation, all the theoretical
properties that can be derived are not reliable. Recalling Definition 3, a result
is now presented, giving sufficient conditions for assumption validation.

Theorem 3. FFSL 6= ; if the optimization problem (8)-(9) is feasible.

Proof. See the Appendix. 2
To see how the assumption about the Lipschitz continuity of the function deriva-
tives helps to obtain stronger optimality properties, consider Definitions 2 and
7. These definitions imply that FFSL ✓ FFSS and, consequently, R(FFSL) 
R(FFSS). This inequality shows that the Lipschitz continuity assumption yields
a reduction of the worts-case identification error.
The following result gives sufficient conditions, under which an approximation
is almost-optimal, when the Feasible System Set is FFSL.

Theorem 4. Let the assumptions of Theorem 2 hold and the functions �(i), i =
1, . . . , nx, be Lipschitz continuous. Then, the approximation f̂ is FFSL-almost-

optimal.

Proof. See the Appendix. 2
This section is concluded with a procedure for estimating the constants �i from
the available data. The procedure is the following:

(1) Let �z̃i,k
.
= z̃i,k � f̂ (i)(x̃k). The values z̃i,k, k = 1, . . . , L, are either

known/measured or estimated from the data {x̃k, z̃k}Lk=1, using Algorithm
1 presented next in Section 7.

(2) Let �z̃ij,k be the samples of the derivative with respect to the jth variable of
�(i). The values �z̃ij,k, k = 1, . . . , L, i, j = 1, . . . , nx, are estimated from the

data
n
x̃k, z̃i,k � f̂ (i)(x̃k)

oL

k=1
, using Algorithm 1. Note that the estimation

of the �z̃ij,k’s requires the function fo to be locally twice differentiable at
the points x̃k, k = 1, . . . , L.

13



(3) Estimate the Lipschitz constants �i, i = 0, . . . , nx, as

�0 = ⌫ max
k=1,...,L

k(�z̃1,k, . . . ,�z̃nx,k)k1

�i = ⌫ max
k=1,...,L

k(�z̃i1,k, . . . ,�z̃inx,k)k1
(11)

where ⌫ ? 1 is a coefficient introduced to guarantee a desired safety level.

This procedure is based on the observation that the Lipschitz constant of a
differentiable function is an upper bound of the function’s gradient norm, which
gives the motivation for (11).

6. Uncertainty bounds

In this section, we derive tight uncertainty bounds for the unknown function
fo and its derivatives f (i)

o , i = 1, . . . , nx. These bounds allow us to quantify
the modeling error and the prediction uncertainty. They can be useful in real-
world applications for several purposes, such as robust control design (Freeman &
Kokotovic, 1996), (Qu, 1998), prediction interval evaluation (Milanese & Novara,
2005), and fault detection (Novara, 2016). Based on the uncertainty bounds, we
present an algorithm allowing us to estimate the noise bounds µi. The result
presented here regarding the uncertainty bound derivation is an extension of the
one in (Milanese & Novara, 2004, 2011; Novara, 2016) to the case where the
bounds are derived not only for a function but also for its first-order derivatives.
Under the Lipschitz assumption �(i) 2 L(�i, X), we can define the following
functions:

�i(x)
.
= min

k=1,...,L

�
hi,k + �ikx� x̃kk1

�

�i(x)
.
= max

k=1,...,L

�
hi,k � �ikx� x̃kk1

� (12)

where hi,k = z̃i,k � f̂ (i)(x̃k) + µi, hi,k = z̃i,k � f̂ (i)(x̃k)� µi and i = 0, . . . , nx.
A result is now presented, providing tight uncertainty bounds in closed form for
the unknown function fo and its derivatives f (i)

o . The result holds in the case
where the noise is bounded in `1 norm. The case where the noise is bounded in
`2 norm is discussed afterwards.

Theorem 5. Let the assumptions of Theorem 2 hold and q = 1 in the noise

bounds kdikq  µi. Then, f
i
(x)  f (i)

o (x)  f i(x), where

f i(x) = f̂ (i)(x) + min
�
�̄,�i(x)

�

f
i
(x) = f̂ (i)(x) + max (��̄,+�i(x))

(13)
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and �̄
.
= 1 if i = 0 or �̄

.
= �0 otherwise. Moreover,

f i(x)
.
= sup

f2Fi

f(x)

f
i
(x)

.
= inf

f2Fi

f(x)
(14)

where Fi
.
= {f : f � f̂ (i) 2 L(�i, X), ||z̃i � f (x̃) ||1  µi}.

Proof. See the Appendix. 2
This theorem shows that, for a given i 2 {0, . . . , nx}, f i and f

i
are the tightest

upper and lower bounds of f (i)
o that can be defined on the basis of the information

available about f (i)
o , summarized by the function set Fi. This result is important

since it shows that the bounds f i and f
i

are tight. Examples of these bounds
are reported in Figure 3 below. Note that improved bounds on f (i)

o could be
formally defined under the assumption f 2 FFSL instead of f 2 Fi. However,
the evaluation of such bounds would be hard from a computational point of view.
On the contrary, the bounds (13) are written in closed form and are simple to
evaluate.

Remark 3. It can be proven that the function fc defined as fc(x)
.
=

1
2

⇣
f 0(x) + f

0
(x)

⌘
is an optimal approximation of fo in any Lp space (Milanese

& Novara, 2004). However, fc is not an optimal approximation of fo in a Sobolev
space. Indeed, the derivatives of fc are discontinuous and thus are not completely
appropriate for approximating the derivatives of fo, which instead are continu-
ous. ?

In the case where the noise is bounded in `2 norm (i.e., q = 2 in the noise bounds
kdikq  µi, Theorem 5 cannot be applied as it is, since the `2 norm bound on the
sequence gives no information on how the individual elements di,k are bounded.
In order to overcome this issue, some additional assumption has to be made
on the element-wise boundedness of the noise sequence di. Suppose that the
estimates f̂ (i) obtained from some of the two identification methods in Section 4
are sufficiently accurate approximations of the functions f (i)

o : f̂ (i) (x̃k) ⇠= f (i)
o (x̃k).

It follows that di,k = z̃i,k � f (i)
o (x̃k) ⇠= z̃i,k � f̂ (i) (x̃k)

.
= �i,k. It is then natural to

consider the following relative-plus-absolute error bound:

|di,k|  ⇣i,k
.
= ⇣R,i |�i,k|+ ⇣A,i, k = 1, . . . , L (15)

where the term ⇣R,i |�i,k| accounts for the fact that di,k ⇠= �i,k and ⇣A,i accounts
for the fact that di,k and �i,k are not exactly equal. The parameters ⇣R,i, ⇣A,i � 0
have to be taken such that ⇣R,iµi + ⇣A,i

p
L  µi. Indeed, if this inequality is

satisfied, (15) is consistent with kdikq  µi, since kdik2  ⇣R,iµi + ⇣A,i

p
L  µi.

Following this indication, ⇣R,i and ⇣A,i can be chosen by means of the procedure
presented at the end of this section.
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Assuming the bound (15), Theorem 5 holds, where the functions �i and �i in
(13) are defined as in (12), with µi ! ⇣i,k.
Now, a procedure for estimating the noise bounds µi in (4) is proposed, based
on the optimal function bounds given in Theorem 5. For a given i, consider the
case where f̂ (i)(x) = 0, 8x 2 X. Suppose that the Lipschitz constant �i of the
function �(i) .

= f (i)
o � f̂ (i) = f (i)

o has been estimated by means of Algorithm 1 in
Section 7. According to Theorem 5, for some suitable µi � 0, the functions f i

and f
i
in (13) are upper and lower bounds of the unknown function f (i)

o . Clearly,
it must hold that f i(x) > f

i
(x), 8x 2 X. The following procedure provides an

estimate of µi such that this inequality is met on the measured data.

(1) Let f̂ (i)(x) = 0, 8x 2 X.

(2) Solve the following optimization problem:

µ
i
= min

µi�0
µi

s.t. f i(x̃k)� f
i
(x̃k) > 0, k = 1, . . . , L.

(16)

(3) Estimate the noise bound as µ̂i = ⌫µ
i
, where ⌫ ? 1 is a coefficient intro-

duced to guarantee a desired safety level.

The optimization problem (16) can be easily solved since the decision variable
µi is scalar and the number of constraints is finite. Notice that the difference
f i(x̃k)�f

i
(x̃k) does not depend on f̂ (i). It follows that the above procedure uses

only data to estimate the noise bounds, and no approximations of the unknown
function are required.
As discussed at the beginning of Section 5, any system identification method
is based on suitable prior assumptions. In this paper, following a Set Member-
ship philosophy, we assume that the noise is unknown but bounded, and that
the regression function of the true system belongs to a suitable Sobolev space.
Considering also the Lipschitz property of the function and its derivatives, these
assumptions are summarized by the parameters µi and �i. Procedures for esti-
mating the values of these parameters have been provided above. It must be re-
marked that it is not possible to obtain theoretical guarantees about the obtained
values without other additional assumptions. According to (Popper, 1969), what
can be actually done is to validate these values using the available data. This
validation can be carried out according to the following procedure.

(1) Estimate the parameters �i using the procedure of Section 5.2.
(2) Based on the obtained �i values, estimate the parameters µi using the

procedure of this section.
(3) Apply Theorem 3.
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7. Estimation of the derivative values

In practical situations, only the output of the function that describes the system
of interest is usually measured, while the outputs of its derivatives are not. In this
section, we propose an algorithm for estimating the derivative output samples
z̃i,k, i > 0, from the input-output function samples x̃k and z̃k.

Suppose that the dataset D0 = {x̃k, z̃k}Lk=1 is available. The algorithm for esti-
mating the derivative output samples z̃i,k, i > 0, is the following.

Algorithm 1. For k = 1, . . . , L:

(1) Define the set of indexes

⌥⇢k
.
= {j 2 {1, . . . , L} : kx̃j � x̃kk2  ⇢}

where ⇢ > 0 is a user-defined radius.

(2) Define the following quantities:

z̃⇢k
.
=

2

4
z̃j1 � z̃k

...

z̃jM � z̃k

3

5 , �⇢k
.
=

2

64
x̃>
j1 � x̃>

k
...

x̃>
jM

� x̃>
k

3

75

where {j1, . . . , jM} = ⌥⇢k, M = card⌥⇢k and card denotes the set cardi-

nality.

(3) Compute

gk = arg min
g2Rnx

1

M
kz̃⇢k � �⇢kgk22. (17)

(4) Estimate the derivative output samples as z̃i,k = gki, k = 1, . . . , L, i =
1, . . . , nx, where gki are the components of gk.

(5) In the case where the data are affected by a relevant noise and/or the data

set is not sufficiently large, the estimated gradient sequence {gk}Lk=1 can be

smoothed by means of a suitable anti-causal discrete-time filter. 2

The idea behind the algorithm is to identify a local linear model at each point
x̃k (steps 1-3). The gradient of fo is then estimated by taking the gradient of
this local model, whose coefficients are indeed the gradient components (step 4).
Letting the symbol � stand for “positive-definite”, the following result provides
a bound on the gradient estimation error.

Theorem 6. Assume that:

(i) The derivatives f (i)
o , i = 1, . . . , nx, are Lipschitz continuous on X.

(ii) For any ⇢ > 0, a M0 > 0 exists such that
1
M�>

⇢k�⇢k � 0, 8M � M0.
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Then, for any ✏ > 0, some M0 > 0 and ⇢ > 0 exist such that the gradient

estimation error is bounded as

krfo(x̃k)� gkkq  2k�†
⇢kkqµ0 + ✏, 8M � M0 (18)

where �†
⇢k

.
= (�>

⇢k�⇢k)�1�>
⇢k is the pseudo-inverse matrix of �⇢k and q 2 {2,1}.

Proof. See the Appendix. 2
This theorem can be interpreted as follows. Two main conditions are sufficient for
obtaining a bound on the gradient estimation error. The first one (assumption (i)
in the theorem) is Lipschitz continuity of the derivatives f (i)

o , i = 1, . . . , nx. This
assumption is reasonable, since we already know that fo 2 S1p(X), which implies
that f (i)

o , i = 1, . . . , nx, are continuous (a slightly weaker condition with respect
to Lipschitz continuity). The second one (assumption (ii)) is a standard persis-
tence of excitation condition (Ljung, 1999; Novara et al., 2011). The next result
shows that, under these two assumptions and some further technical conditions,
the gradient estimate converges to its true value as ⇢ ! 0 and M ! 1.

Theorem 7. Let the assumptions of Theorem 6 be true. Let also the following

limits hold:

lim
⇢!0

lim
M!1

1

M
D>

k Dk = �2
D (19)

lim
⇢!0

lim
M!1

1

M
D>

k �⇢k = 0 (20)

where Dk
.
= (dj1 � dk, . . . , djM � dk) and 0  �2

D < 1. Then,

lim
⇢!0

lim
M!1

krfo(x̃k)� gkkq = 0.

Proof. See the Appendix. 2
This theorem shows that, in order to ensure convergence of the estimate to the
true gradient, the limits (19) and (20) must hold (besides the basic assumptions
of Theorem 6). The limit (19) means convergence of the sample noise variance.
The limit (20) implies sample uncorrelation between the noise and the regressor.
Both these limits (in their statistical version) represent standard assumptions in
the literature on system identification, see, e.g., (Ljung, 1999).

8. Summary of the identification procedure

In this section, the main steps of the complete identification procedure are sum-
marized. Guidelines about the choice of the involved parameters are also given.
Suppose that the dataset (2) is available. The samples of the regression function
derivatives are either measured or estimated using Algorithm 1. In this algorithm,
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the radius ⇢ can be chosen by means a simple trial and error procedure. The
main steps of the identification procedure for Methods 1 and 2 are as follows.

(1) Estimate the parameters �i using the procedure of Section 5.2. Based on
the obtained �i values, estimate the parameters µi using the procedure of
Section 6. Apply Theorem 3 to validate these estimates.

(2) Choose the basis functions �j according to the indications given in Section
3.

(3) Choose the integer r on the basis of the desired regularization properties,
and the integer q on the basis of the adopted assumptions on the noise.

(4) Only for Method 2. Choose the weights �i and ⇤ according to the desired
trade-off between model fitting accuracy and regularity.

(5) Apply Method 1 or 2.

The result of this procedure is the coefficient vector a = (a1, . . . , aN). Given
this vector, the model output is evaluated according to equation (5). The model
derivative outputs are obtained using (6). The uncertainty bounds are evaluated
by means of (13).

Remark 4. In real applications, the regressor order mo in (1) is often not known
and needs to be chosen. The problem of regressor order choice is common to all
identification methods. This problem is certainly relevant, but it is a theoreti-
cally unsolved problem in almost all methods for nonlinear systems. Hence, its
solution is out of the scope of the present paper. We observe, however, that in
our identification method, the regressor order can be estimated via a standard
validation approach, by running multiple experiments with different orders and
verifying the ensuing results on validation data. ?

9. Numerical examples

Three numerical examples are presented in this section. The first one is con-
cerned with identification of a univariate function. Although simple, this exam-
ple is useful to illustrate the proposed methodology and highlight the importance
of identifying the derivative of the unknown function. The second one is about
multi-step prediction of the Chua chaotic circuit. The third one shows an applica-
tion of the proposed method in the context of nonlinear model predictive control
of a pendulum. In the examples, model identification and parameter choice have
been carried out according to the procedure described in Section 8.

9.1. Example: univariate function approximation

The following univariate function is considered in this example:

fo(x) = sin(1.1x)
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Table 1. RMSE errors on the valida-

tion set.

Estimations RMSE RMSE
(1)

Model 1 2.54e-02 5.86e-02

Model 2 1.19e-02 2.57e-02

where x 2 R and fo : R ! R.
The function and its derivative were evaluated in L = 100 linearly equally
spaced points in the domain X = [�2, 3]. A normally distributed noise with
zero mean and standard deviation (std) equal to 0.05 was added to the function
samples and its derivative samples (the noise was truncated at 3-std). Hence, a
noise-corrupted identification dataset of the form (2) was obtained. A validation
dataset of length L = 1000 was similarly obtained in the same domain X. This
set consists of noise-free data, in order to compare the output of the models that
will be identified with the true function.
A model of the form (5) was considered, with a basis function set composed
of univariate monomials up to degree 5. Two models were identified from the
identification dataset:

• Model 1. Function values used for model identification, function derivative
values not used. The coefficients aj in (5) were identified by Method 2, with
q = 2, r = 1, �0 = 1, �1 = 0, and ⇤ = 1.

• Model 2. Both function and derivative values used for model identification.
The derivative values were computed analytically. The coefficients aj in (5)
were identified by Method 2, with q = 2, r = 1, �0 = 1, �1 = 2, and ⇤ = 1.

The results obtained by the two models on the validation dataset are summarized
in Table 1, where the obtained Root Mean Square Errors are reported. In the
Table, RMSE is the error between the true function fo and the model f̂ ; RMSE(1)

is the error between the true function derivative f (1)
o and the model derivative

f̂ (1). The upper plot in Figure 1 shows the comparison between the true function
values and the outputs of the identified models. The lower plot in Figure 1 shows
the comparison between the true derivative values and the outputs of the model
derivatives. In Figure 2, the Model 2 uncertainty bounds, computed according
to (13), are reported.
From these results, we can conclude that the model identified using the derivative
values (Model 2) provides a more accurate approximation of the true function
derivative with respect to the model identified not using the derivative values
(Model 1). What is quite interesting is that Model 2 provides also a better
approximation of the true function itself.

9.2. Example: multi-step prediction for the Chua chaotic circuit

The Chua system is a simple electronic circuit showing a chaotic behavior, see
(Chua, Komuro, & Matsumoto, 1986). It is composed of two capacitors, an in-
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Figure 1. Validation set. Upper plot: comparison between true function and model outputs. Lower plot:

comparison between true derivative and model derivatives.

Figure 2. Validation set. True function, Model 2 output, derivative and related uncertainty bounds.
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ductor, a locally active resistor and a nonlinear resistor. The continuous-time
state equations of the Chua circuit considered here are the following:

ẋ1 = ↵(x2 � x1 � ⇢(x1))

ẋ2 = x1 � x2 + x3 + u+ ⇠c

ẋ3 = ��x2 �Rx3

y = x1

(21)

where the states x1 2 R and x2 2 R represent the voltages across the capacitors,
x3 2 R the current through the inductor, u 2 R is an external input, y 2 R is the
system output, ⇠c 2 R is a disturbance, and ↵, �, R 2 R are parameters. In this
example, the following nonlinear resistor characteristic and parameter values are
assumed: ⇢(x1) = �1.16x1 + 0.041x3

1, R = 0.1, ↵ = 10.4, � = 16.5. With this
parameter values and nonlinearity, the system exhibits a chaotic behavior and
thus prediction is an extremely hard task.
The system (21), discretized via the forward Euler method, can be written in
the following input-output regression form:

yk = b1yk�1 + b2yk�2 + b3yk�3

+ b4⇢(yk�1) + b5⇢(yk�2) + b6⇢(yk�3)

+ b7uk�2 + b8uk�3 + ⇠k

(22)

where ⇠k is a noise accounting for the disturbance ⇠c in (1) and bi are suit-
able parameters. Equivalently, it can be written in the form (1), with xk =
(yk, yk�1, yk�2, uk�1, uk�2).
The system (21) has been implemented in Simulink. The input u was simulated
as a normally distributed random signal with zero mean and standard deviation
(std) 1. The disturbance ⇠c was simulated as a normally distributed random
signal with zero mean and std 0.05, truncated at 3-std. Two simulations of dura-
tion 60 s were carried out and, correspondingly, two sets of data of the form (2)
were collected with a sampling time Ts = 0.01 s, corresponding to an experiment
length L = 6000 for every dataset. The first dataset was used for model iden-
tification, the second one for model validation. Then, the following prediction
models were identified from the identification dataset.

• One-step predictor identified not using any derivative information

(P1_NOD). The predictor P1_NOD is given by

yk+1 = f̂ (xk)

xk = (yk, yk�1, yk�2, uk�1, uk�2)
(23)

where f̂ is of the form (5). A basis function set composed of multivariate
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monomials has been used, defined as

{�j}Nj=1 = {
nxY

l=1

x↵l
l,k : ↵l = 0, 1; l = 1, . . . , nx} (24)

where xl,k is the lth component of xk and nx = 5. This set consists of
N = 2nx = 32 basis functions. The coefficients aj in (5) were identified by
Method 2, with q = 2, r = 1, �0 = 1, �i = 0, i > 0, and ⇤ = 50. Note that,
with these parameter values, Method 2 corresponds to the classical Lasso
algorithm.

• One-step predictor identified using the true derivative values (P1_D). The
predictor P1_D is of the form (23). The basis functions are the same as
those used in (23). The true derivative values computed from (22) were
used to construct the vector z̃i, i > 0, in (7). The coefficients aj in (5) were
identified by Method 2, with q = 2, r = 1, �0 = 1, �i = 200, i > 0, and
⇤ = 50.

• One-step predictor identified using the estimated derivative values

(P1_ED). The predictor P1_ED is of the form (23). The basis functions
are the same as those used in (23). The derivative values estimated by
Algorithm 1 were used to construct the vector z̃i, i > 0, in (7). The coef-
ficients aj in (5) were identified by Method 2, with q = 2, r = 1, �0 = 1,
�i = 200, i > 0, ⇤ = 50, and ⇢ = 0.4.

• Direct multi-step predictor identified not using any derivative information

(PK_NOD). The predictor PK_NOD is given by

yk+⌧ = f̂ (xk)

xk = (yk, yk�1, yk�2, uk+⌧�2, uk+⌧�3, . . . , uk�2)
(25)

where f̂ is of the form (5) and ⌧ 2 {3, 5, 7}. The basis function set is defined
as in (24), with nx = 4 + ⌧ . This set consists of N = 2nx basis functions.
The coefficients aj in (5) were identified by Method 2, with q = 2, r = 1,
�0 = 1, �i = 0, i > 0, and ⇤ = 50. Note that, with these parameter values,
Method 2 corresponds to the classical Lasso algorithm.

• Direct multi-step predictor identified using the estimated derivative values

(PK_ED). The predictor PK_ED is of the form (25). The basis functions
are the same as those used in (25). The derivative values estimated by
Algorithm 1 were used to construct the vector z̃i, i > 0, in (7). The coef-
ficients aj in (5) were identified by Method 2, with q = 2, r = 1, �0 = 1,
�i = 200, i > 0, ⇤ = 50, and ⇢ = 0.4.

The identified models were tested on the validation set in the task of ⌧ -step
ahead prediction, with ⌧ 2 {3, 5, 7}. The ⌧ -step prediction of models P1_NOD,
P1_D and P1_ED was computed by iterating ⌧ times equation (23). The ⌧ -
step prediction of models PK_NOD and PK_ED was computed directly using
equation (25).
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Table 2. Chua circuit. Validation set; ⌧ 2 {3, 5, 7}.
RRMSE prediction errors.

Predictor RRMSE3 RRMSE5 RRMSE7

P1_NOD 0.035 0.058 0.082

P1_D 3.2e-3 7.3e-3 0.013

P1_ED 2.0e-3 5.7e-3 0.012

PK_NOD 0.034 0.056 0.079

PK_ED 3.5e-4 6.1e-4 1.2e-3

Figure 3. Chua circuit. Validation set (a portion); std = 0.05. 3-step prediction of model PK_ED and related

uncertainty bounds.

The results of these tests are summarized in Table 2, where the relative root mean
square prediction error RRMSE⌧ is reported, for ⌧ 2 {3, 5, 7}. This performance
index is defined as the root mean square (RMS) of the prediction error divided
by the RMS of the signal. Figure 3 shows the true system output, the 3-step
prediction of the model PK_ED (in the case where std = 0.05) and the related
uncertainty bounds, for a portion of the validation set. Note that these results
were obtained using Method 2. Similar results can be obtained using Method 1
(they are not reported here for the sake of brevity).
The main observation arising from these results is that the models identified by
the proposed method, using the information about the derivatives, are signifi-
cantly more accurate than those identified not using this information. A second
observation is that the models identified using the estimated derivative values
show a performance similar to those identified using the true derivative values.
The fact that P1_ED shows a slightly better performance than P1_D appears
to be fortuitous. Indeed, we repeated several times the identification/validation
procedure, using different noise realizations and the performance of P1_ED and
P1_D resulted to be very similar in average. A third observation (important in
general but less important than the other two in the context considered in this
paper) is that the direct ⌧ -step predictors are in general more accurate than the
iterated 1-step predictors.
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9.3. Example: control of the inverted pendulum

A pendulum described by the following state equations is considered:

ẋ1 = x2

ẋ2 = �K

J
sin(x1)�

�

J
x2 +

1

J
u

y = x1 + ⇠c

(26)

where the states x1 and x2 are the angular position and velocity, respectively, u
is the applied torque input, y is the system output, and ⇠c is a disturbance. J
is the pendulum’s moment of inertia, � is a friction coefficient, and K = gml,
where g is the gravity acceleration, m is the pendulum’s mass and l is its length.
The system (26), discretized via the forward Euler method, can be written in
the input-output regression form

yk = a1yk�1 + a2yk�2 + a3 sin(yk�2) + b2uk�2 + ⇠k (27)

where ⇠k is a noise accounting for the disturbance ⇠c in (26) and bi, ai are suitable
coefficients, defined from the physical parameters. Equivalently, this equation can
be written in the form (1), with xk = (yk, yk�1, uk�1).
The pendulum equations (26) have been implemented in Simulink, adopting the
following parameter values: J = 0.64 kg·m2, K = 7.848 kg·m2

s2 , � = 0.2 N·m s
rad .

A command input signal was built in order to make the pendulum work in
an “inverted condition”, with large movements performed around its unstable
equilibrium point. The disturbance ⇠c was simulated as a normally distributed
random signal truncated at 3-std, with zero mean and a noise-to-signal standard
deviation ratio of 0.05. A simulation of duration 600 s was performed and a
set of data of the form (2) was collected, with sampling time Ts = 0.02 s,
corresponding to an experiment length L = 30000. A dataset representative of
the system dynamics in the range 180� ± 70�, called the identification dataset,
was obtained. The corresponding input and output signals are shown in Figure
4.
The following models were identified from the identification dataset.

• Model identified not using any derivative information (P_NOD). The
model P_NOD is given by

yk+1 = f̂ (xk)

xk = (yk, yk�1, uk�1)
(28)

where f̂ is of the form (5). The basis function set is composed of monomials
of degree 3 in the variables yk, yk�1, uk�1. This set consists of N = 20 basis
functions. The coefficients aj in (5) were identified by Method 2, with q = 2,
r = 1, �0 = 1, �i = 0, i > 0, and ⇤ = 0. Note that, with these parameter
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Figure 4. Pendulum. Identification dataset: input and output signals.

values, Method 2 corresponds to the classical Lasso algorithm.
• Model identified using the true derivative values (P_D). The model P_D

is of the form (28). The basis functions are the same as those used in (28).
The true derivative values computed from (27) were used to construct the
vector z̃i, i > 0, in (7). The coefficients aj in (5) were identified by Method
2, with q = 2, r = 1, �0 = 1, �i = 2, i > 0, and ⇤ = 0.

• Model identified using the estimated derivative values (P_ED). The model
P_ED is of the form (28). The basis functions are the same as those used in
(28). The derivative values estimated by Algorithm 1 were used to construct
the vector z̃i, i > 0, in (7). The coefficients aj in (5) were identified by
Method 2, with q = 2, r = 1, �0 = 1, �i = 10, i > 0, ⇤ = 0, and ⇢ = 0.5.

The choice ⇤ = 0 for all models was made on purpose, in order to not confuse
the regularization effect given by minimizing the coefficient vector norm with
the effect coming from the use of the derivative information. The choice of the
parameters �i was carried out by means of preliminary tests on a validation set
different from the identification set, in the task of ⌧ -step ahead prediction with
⌧ = 5.
From the identified models, three NMPC controllers were designed, named
C_NOD, C_D and C_ED, respectively. C_NOD is the controller based on
the prediction model P_NOD, C_D is the controller based on P_D and C_ED
is the controller based on P_ED.
Then, each controller was applied to the true plant (26), and tuned through
closed-loop simulations, using a filtered staircase reference signal, with random
values in the range 180� ± 70�. On the basis of the simulations, the following
parameters where chosen for all the controllers: sampling time Ts = 0.02 s,
prediction horizon Tp = 5Ts s, control horizon Tc = Ts s, and weights Q = 1
and R = 10�6. Note that the controllers were tuned independently from each
other, in order to obtain the best possible performance for each controller. Such
an “independent” tuning led to the choice of the same parameters for all the
controllers.
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Figure 5. Pendulum. C_ED controller. Reference versus actual closed-loop output.

The controllers were tested on the true plant (26), through closed-loop simula-
tions. The following tests were carried out:

• Staircase 1: filtered staircase reference signal, with random values in the
range 180� ± 60�, starting from the initial angle 180� with null speed.

• Staircase 2: filtered staircase reference signal, with random values in the
range 180� ± 70�, starting from the initial angle 180� with null speed.

• Steps: non-filtered step reference signals, with random values in the range
180� ± 40�, starting from the initial angle 180� with null speed.

Note that all the reference signals used for these tests are different from those
used for model identification and controller tuning. These signals have been cho-
sen to make the pendulum work in an “inverted modality”, with large movements
around its unstable equilibrium point. These kinds of maneuvers are indeed more
challenging than maneuvers operated near the stable equilibrium point. Figure 5
shows the comparison between the reference signal and the output of the closed-
loop system with the C_ED controller in the Staircase 1 test. In the Staircase
2 test and in step tests with reference values around 180� ± 40� or larger, the
C_NOD controller yielded a divergent behavior, while the other two controllers
worked correctly. Table 3 shows the results obtained in the staircase tests and
in some step tests where the C_NOD controller did not lead to a divergent
behavior.
From these results, it can be observed that the C_D controller, which is based on
the exact information about the system function derivatives, gives the best per-
formance, both in steady-state and transient conditions. The C_NOD controller,
not using any information about the derivatives, shows the worst performance,
with divergent behaviors in the case of large and/or non-smooth reference sig-
nals. The C_ED controller, based on an approximated information about the
derivatives, provides an intermediate performance, in any case significantly bet-
ter than the one given by the C_NOD controller.
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Table 3. Pendulum. Control performance indices.

OS: overshoot [%]; RT: rise time [s]; ST: settling time

2% [s]; SSE: steady-state tracking error [deg]; RMSE:

root mean square tracking error [deg].

index C_NOD C_D C_ED

Staircase 1 RMSE 1.82 0.59 1.33

Staircase 2 RMSE 1 0.68 1.46

Step 1

OS 17 5.8 8.3

SSE 0.362 0.002 0.22

RT 0.061 0.064 0.065

ST 0.748 0.31 0.407

Step 2

OS 36.8 3.9 12.6

SSE 0.593 0.031 0.369

RT 0.053 0.067 0.061

ST 0.74 0.205 0.386

Step 3

OS 23 14.6 19.1

SSE 0.272 0.076 0.184

RT 0.1 0.104 0.104

ST 0.621 0.319 0.448

10. Conclusions

An approach for the identification of a function together with its derivatives has
been proposed in this paper. Within this approach, an optimality analysis has
been developed, guaranteed uncertainty bounds have been derived, and a tech-
nique for estimating the derivative values from the input-output data has been
presented. The approach has been tested on simulated examples concerned with
identification of a univariate function, multi-step prediction of the Chua chaotic
circuit and nonlinear model predictive control of a pendulum. In these examples,
the models identified using the proposed methods resulted to be significantly
more accurate than models obtained using a standard identification technique,
thus demonstrating the potential of the proposed identification approach. The
application of the proposed identification method in the context of nonlinear
predictive control appears to be particularly promising. Besides NMPC, future
research activities will be dedicated to a deeper investigation on the use of direct
multi-step predictors and to the study/developement of alternative algorithms
for the estimation of the derivative samples.
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Appendix: Theorem proofs

Proof of Theorems 1 and 2. If the optimization problem (8)-(9) is feasible,
then an approximation f̂ of the form (5) exists, such that inequalities (9) are
satisfied. These inequalities are equivalent to the following ones: ||z̃i�f̂ (i) (x̃) ||q 
µi, i = 0, . . . , nx. Moreover, f̂ 2 S1p(X) by definition. It follows that f̂ 2 FFSS ,
which implies FFSS 6= ;. This proves Theorem 1.
As shown in (Milanese & Vicino, 1993), equation (11), if f̂ 2 FFSS , then f̂ is
FFSS-almost-optimal. This proves Theorem 2. 2
Proof of Theorems 3 and 4. The proof of Theorem 1 shows that, if the
optimization problem (8)-(9) is feasible, then an approximation f̂ of the form
(5) exists, and f̂ 2 FFSS . Consider now the function f = f̂ + �, with � = 0.
Obviously, f = f̂ 2 FFSS and f (i) � f̂ (i) = � = 0 2 L(�i, X), for any �i � 0.
From Definitions 2 and 7, it follows that f = f̂ 2 FFSL, which implies FFSL 6= ;.
This proves Theorem 3.
As shown in (Milanese & Vicino, 1993), equation (11), if f̂ 2 FFSL, then f̂ is
FFSL-almost-optimal. This proves Theorem 4. 2
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Proof of Theorem 5. The proof for the case i = 0 comes from Theorem 3 in
(Novara, 2016). This theorem shows that the following bounds hold for every
x 2 X:

fo(x)  f 0(x) ⌘ f̂(x) +�0(x)

fo(x) � f
0
(x) ⌘ f̂(x) +�0(x).

In the case i > 0, under the assumption (5.2), we can follow the same argumen-
tations of the proof of Theorem 3 in (Novara, 2016). In this way, we obtain that
the following bounds hold for every x 2 X:

f (i)
o (x)  f̂ (i)(x) +�i(x)

f (i)
o (x) � f̂ (i)(x) +�i(x).

(29)

Moreover, we know that �(0) is Lipschitz continuous with constant �0. This
implies that

���f (i)
o � f̂ (i)(x)

���  �0 ⌘ �̄, i = 1, . . . , nx. (30)

The bounds (13) for i > 0 are obtained from (29) and (30). Equations (14) follow
from Theorem 2 in (Milanese & Novara, 2004).- 2
Proof of Theorem 6. Let us consider the Taylor expansion of fo around a
point x̃k:

fo(x) = fo(x̃k) + (x� x̃k)
>rfo(x̃k) +R(x� x̃k)

where rfo = (f (1)
o , . . . , f (nx)

o ) is the gradient of fo and R(·) is a reminder. This
expression, evaluated at a point x̃j, with j 2 ⌥⇢k, becomes

fo(x̃j) = fo(x̃k) + (x̃j � x̃k)
>rfo(x̃k) +R(x̃j � x̃k).

From (3), this can be written as

z̃j � z̃k = (x̃j � x̃k)
>rfo(x̃k) +R(x̃j � x̃k) + dj � dk.

For j = j1, . . . , jM , we obtain the following equation in matrix form:

z̃⇢k = �⇢krfo(x̃k) + ⌅k +Dk

where ⌅k
.
= (R(x̃j1 � x̃k), . . . , R(x̃jM � x̃k)) and Dk

.
= (dj1 � dk, . . . , djM � dk). It

follows that

rfo(x̃k) = �†
⇢kz̃⇢k � �†

⇢k(⌅k +Dk)

where �†
⇢k

.
= (�>

⇢k�⇢k)�1�>
⇢k. The inverse (�>

⇢k�⇢k)�1 exists and is finite since
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1
M�>

⇢k�⇢k � 0, 8M � M0, by assumption. This matrix inequality also implies
that the solution of the optimization problem (17) is given by gk = �†

⇢kz̃⇢k. The
vector gk is an estimate of the gradient rfo(x̃k). The resulting estimation error
rfo(x̃k)� gk is bounded as

krfo(x̃k)� gkkq = k�†
⇢k(⌅k +Dk)kq

 k�†
⇢kkqk⌅k +Dkkq  k�†

⇢kkq (k⌅kkq + 2µ0) .

Being f (i)
o Lipschitz continuous by assumption, each element of ⌅k is bounded

as

|R(x̃j � x̃k)|  �Rkx̃j � x̃kkq  ⇢�R, 8x̃j 2 X

for some �R � 0, �R < 1. It follows that, for 8M � M0,

k⌅kkq 
⇢

⇢
p
M�R, q = 2

⇢�R, q = 1.
(31)

Hence,

krfo(x̃k)� gkkq  k�†
⇢kkqk⌅kkq + k�†

⇢kkq + 2µ0

 k�†
⇢kkq⇢

p
M�R + k�†

⇢kkq + 2µ0 (q = 2)

or  k�†
⇢kkq⇢�R + k�†

⇢kkq + 2µ0 (q = 1).

The statement is proven choosing ⇢ = ✏/(k�†
⇢kkq

p
M�R) (q = 2) or ⇢ =

✏/(k�†
⇢kkq�R) (q = 1). 2

Proof of Theorem 7. Let us denote the function gradient as go
.
= rfo(x̃k)

and, for a certain gradient estimate g, the estimation error as �g
.
= go � g. The

objective function of the optimization problem (17) is

J(g)
.
=

1

M
kz̃⇢k � �⇢kgk22.

This function can be written as

J(g) =
1

M
(z̃⇢k � �⇢kg)

>(z̃⇢k � �⇢kg)

=
1

M
(z̃⇢k � �⇢kgo + �⇢k�g)

> (z̃⇢k � �⇢kgo + �⇢k�g)

=
1

M
(⌅k +Dk + �⇢k�g)

> (⌅k +Dk + �⇢k�g)

=
1

M
⌅>
k ⌅k +

1

M
D>

k Dk +
1

M
�g>�>

⇢k�⇢k�g

+
2

M
D>

k ⌅k +
2

M
⌅>
k �⇢k�g +

2

M
D>

k �⇢k�g.
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From (31) and the noise bounds kdikq  µi, a sufficiently large M0 exists such
that

1
M⌅>

k ⌅k  �2
R⇢

2, 8M � M0
1
M

��D>
k ⌅k

��  2µ̆0,i�R⇢, 8M � M0.

From (19) and (20), for every ✏ > 0, a sufficiently large M0 exists such that
����
1

M
D>

k Dk � �2
D

����  ✏, 8M � M0
����
1

M
D>

k �⇢k�g

����  k�gk2✏, 8M � M0.

Moreover,

1

M

��⌅>
k �⇢k�g

��  1p
M

k�⇢kk2k�gk2�R⇢.

The quantity k�⇢kk2/
p
M is bounded as

1p
M
k�⇢kk2  1p

M

⇣PM
j=1

Pnx

i=1(�⇢k)2ji

⌘1/2

 1p
M

�
nxM maxi,j(�⇢k)2ji

�1/2
=

p
nx maxi,j |(�⇢k)ji|

where the first inequality is a standard result in the literature and (�⇢k)ji are
the entries of �⇢k. Note that maxi,j |(�⇢k)ji| is bounded, since the measurements
x̃j are assumed to be in a compact set. The quantity k�gk2 is bounded on any
compact set G containing go: for all g 2 G, k�gk2  Ḡ, for some Ḡ > 0, Ḡ < 1.
From all the above inequalities, we have that

|J(g)� Jo(g)|  �2
R⇢

2 + 4µ̆0,i�R⇢+ ✏+ 2Ḡ✏

+ 2
p
nx max

i,j
|(�⇢k)ji| Ḡ�R⇢

where

Jo(g)
.
=

1

M
�g>�>

⇢k�⇢k�g + �2
D.

It follows that, as ⇢ ! 0 and M ! 1, J(g) converges to Jo(g).
This convergence is uniform on any compact set G containing go. It follows that
the minimizers of J(g) converge to the minimizers of Jo(g), see (Ljung, 1999).
The condition 1

M�>
⇢k�⇢k � 0 ensures that Jo(g) has a unique minimizer, given

by go
.
= rfo(x̃k). The claim follows. 2
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