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Summary

The main objective of this work is to propose novel finite-time algorithms to either
invert a time-varying map or to estimate the state of a time-varying nonlinear plant.
The former goal is pursued by using a sliding mode version of the Newton algorithm,
whereas the latter objective is achieved by resorting to the inverse of the Jacobian
matrix of the observability map to implement a sliding mode differentiator in the
original coordinates. Finally, it is shown how these two techniques can be efficiently
used to solve some relevant space applications, such as the estimation of the angular
velocity of an axial symmetric satellite, the estimation of the inertia parameters of
an orbiting object from measurements of its angular velocities, and the estimation of
a Keplerian orbital element given measurements of the other five ones.
KEYWORDS:
Nonlinear models and systems, sliding mode control, identification, control applications

1 INTRODUCTION

The problem of estimating the state of a system is of paramount importance in several practical applications either to design a
controller or to gather information about the current working conditions of the observed plant1. When dealing with linear plants,
the problem of estimating its state can be dealt with using well-established tools such as the Luenberger observer2 and the Kalman
filter3. On the other hand, the problem of designing state observers for nonlinear systems is significantly more challenging.
Several design methods have been proposed in the technical literature to deal with this problem, such as the extended Kalman
filter (EKF)4, particle filters5, Lyapunov based observers6, Luenberger-like approaches7, linearization via output injection8,
and high-gain observers9. One of the mostly employed techniques to design state observers for nonlinear plants consists in
determining a change of coordinates that allows to rewrite the dynamics of the system as a chain of integrators (usually referred
to as canonical observability form10), estimating the state of the system in these transformed coordinates using a system capable
of estimating the time derivatives of the measured output (such as sliding mode differentiators11, high-gain observers12, or
super twisting algorithms13), and using an inverse of the change of coordinates to estimate the current state of the system in the
original coordinates.

If a closed-form for the inverse change of coordinates is not available, a possible approach to tackle the observer design
problem is to resort to dynamical inversion algorithms14,15,9. Several techniques have been proposed in the literature to invert
time-invariant maps, such as Newton15,16, gradient17, and sliding mode18 algorithms. However, in the case that the system to be
observed is time-varying, the change of coordinates that transforms the system in canonical observability form is time-varying
as well, and hence the above mentioned techniques cannot be directly used to design a state observer for the system.

The main goal of this work is twofold. On one hand, a sliding mode inversion algorithm is proposed to invert time-varying
maps without any knowledge about the dynamics of the input signal. On the other hand, an alternative observer design technique
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is proposed, which, working directly in the original coordinates, allows one to design a local state observer, whose state converges
in finite-time to the state of the observed plant. The sliding mode inversion algorithm uses a modified version of the Newton
algorithm18,16 to dynamically determine, in finite-time, the signal that is generating the measured output. The observer design
strategy is similar to the one employed in the literature19 to design Luenberger-like observers for nonlinear systems: the dynamics
of an observer working for a system in canonical observability form are implemented in the original coordinates by resorting
to the inverse of the Jacobian of the observability map. However, while in the literature the design usually relies on high-gain
observers20, hence guaranteeing just asymptotic convergence of the estimation error to zero, in this paper it relies on sliding mode
differentiators21, thus ensuring finite-time convergence of the estimation error to zero. It is worth pointing out that finite-time
convergence of the estimation error to zero can be achieved also using other methods available in the literature22,23. However,
global homogeneous in the bi-limit observers22 require that the system is already in observability canonical form, whereas the
observer proposed in this work can be implemented directly in the original coordinates. Further, differently from other observers
available in the literature23, the one proposed in this paper does not require that the system is linearizable by output injection.

Finally, the proposed observer design methods are applied to solve space applications such as the estimation of the angular
velocity of an axial symmetric satellite, the estimation of the inertia parameters of an orbiting object from measurements of its
angular velocities, and the estimation of a Keplerian orbital element given measurements of the other five ones.

2 SLIDING MODE INVERSION OF TIME-VARYING MAPS

Given a time-varying map ℎ(𝑡, 𝑥), ℎ ∶ ℝ≥0 ×ℝ𝑛 → ℝ𝑛, and a 1 signal 𝑥(𝑡) ∈  ,  ⊂ ℝ𝑛, consider the output signal
𝑦(𝑡) = ℎ(𝑡, 𝑥(𝑡)).

The main objective of this section is to design a sliding mode algorithm that, on the basis of measurements of the signal 𝑦(𝑡)
and the knowledge of the function ℎ(𝑡, 𝑥), is capable of reconstructing the signal 𝑥(𝑡). Toward this goal, for any 𝜀 ∈ ℝ>0, define
the open ball 𝜀 of radius 𝜀, 𝜀 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖2 < 𝜀}, and the set 𝜀 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥 − 𝑥̂ ∈  , ∀𝑥̂ ∈ 𝜀}. The following
three assumptions are made all throughout this section.
Assumption 1. The set  is bounded and there exists 𝜀 > 0 such that 𝑥(𝑡) ∈ 𝜀 for all 𝑡 ≥ 0.
Assumption 2. The function 𝑥 → ℎ(𝑡, 𝑥) is 1 and bijective over  for all 𝑡 ≥ 0, its inverse 𝑦 → ℎ−1(𝑡, 𝑦) is 1 for all 𝑡 ≥ 0,
and there exist constants 𝜍1, 𝜍2 ∈ ℝ>0 such that, for all 𝑥, 𝑥̂ ∈  and all 𝑡 ≥ 0,

𝜍1 ‖ℎ(𝑡, 𝑥) − ℎ(𝑡, 𝑥̂)‖2 ≤ ‖𝑥 − 𝑥̂‖2 ≤ 𝜍2 ‖ℎ(𝑡, 𝑥) − ℎ(𝑡, 𝑥̂)‖2. (1)
Note that if both ℎ and its inverse ℎ−1 are locally Lipschitz in  , then the bounds in (1) are satisfied.

Assumption 3. The signal 𝑦̇(𝑡) is bounded.
By noticing that 𝑦̇(𝑡) = 𝜕ℎ(𝑡,𝑥(𝑡))

𝜕𝑡
+ 𝜕ℎ(𝑡,𝑥(𝑡))

𝜕𝑥
𝑥̇(𝑡), Assumption 3 is satisfied if (𝑡, 𝑥) → ‖

𝜕ℎ(𝑡,𝑥(𝑡))
𝜕𝑡

‖ and (𝑡, 𝑥) → ‖

𝜕ℎ(𝑡,𝑥(𝑡))
𝜕𝑥

‖ are both
bounded for all (𝑡, 𝑥) ∈ 𝜀 and ‖𝑥̇(𝑡)‖ is bounded, provided that Assumption 1 holds.

Thus, define the Jacobian matrix
𝐽 (𝑡, 𝑥) =

𝜕ℎ(𝑡, 𝑥)
𝜕𝑥

,

which, under Assumptions 1 and 2, has full rank for all 𝑥 ∈  and all 𝑡 ≥ 0 (see24 Section 1.2). Thus, consider the following
sliding mode inversion algorithm

̇̂𝑥(𝑡) = 𝜇 𝐽−1(𝑡, 𝑥̂(𝑡))
(

sign(𝑦(𝑡) − ℎ(𝑡, 𝑥̂(𝑡))) −
𝜕ℎ(𝑡, 𝑥̂(𝑡))

𝜕𝑡

)

, (2)
where 𝜇 ∈ ℝ>0 is a tuning constant and sign(⋅) denotes the entry-wise sign function (see21 Equations (1.13) and (1.14)),

sign(𝜎𝑖) =

⎧

⎪

⎨

⎪

⎩

1, if 𝜎𝑖 > 0,
[−1, 1], if 𝜎𝑖 = 0,
−1, if 𝜎𝑖 < 0,

𝑖 = 1,… , 𝑛.
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Since the right-hand side of system (2) is discontinuous, its solutions have to be understood in the Filippov sense (see25 §4,
Chapter 4). The following theorem shows that, under Assumptions 1, 2, and 3, the sliding mode inversion algorithm (2) is
capable of reconstructing locally and in finite-time the signal 𝑥(𝑡).
Theorem 1
Let Assumptions 1, 2, and 3 hold, and let 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡). There exist 𝜇⋆ ∈ ℝ>0 and 𝛿⋆ ∈ ℝ>0 such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆ and
𝜇 ≥ 𝜇⋆, then there exists a finite time Υ ∈ ℝ≥0 such that 𝑥̂(𝑡) = 𝑥(𝑡) for all 𝑡 ≥ Υ.
Proof. Let 𝑦̂(𝑡) = ℎ(𝑡, 𝑥̂(𝑡)), and, using the convention inf 𝑡∈∅ 𝑡 = +∞, let

𝑇 ∶= inf{𝑡 ∈ ℝ≥0 ∶ 𝑥̃(𝑡) ∉ 𝜀}.

In particular, if there exist times 𝜏 ∈ ℝ≥0 such that 𝑥̃(𝜏) ∉ 𝜀, then 𝑇 is the infimum of such times, otherwise it equals +∞.
Hence, since 𝑥̂(𝑡) = 𝑥(𝑡) − 𝑥̃(𝑡) and 𝑥(𝑡) ∈ 𝜀, under Assumption 1, one has that 𝑥̂(𝑡) ∈  for all 𝑡 ∈ [0, 𝑇 ) and there is no finite
escape time for all 𝑡 ∈ [0, 𝑇 ) even in the case that 𝑇 = +∞. Thus, letting 𝑦̃(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡), consider the Lyapunov function
𝑉 (𝑡) = ‖𝑦̃(𝑡)‖22. For all 𝑡 ∈ [0, 𝑇 ), the time-derivative of 𝑉 (𝑡) satisfies

𝑉̇ (𝑡) = 𝑦̃⊤(𝑡)
(

𝑦̇(𝑡) − 𝐽 (𝑡, 𝑥̂(𝑡)) ̇̂𝑥(𝑡) +
𝜕ℎ(𝑡, 𝑥̂(𝑡))

𝜕𝑡

)

= 𝑦̃⊤(𝑡)𝑦̇(𝑡) − 𝜇 ‖𝑦̃(𝑡)‖1
≤ −

(

𝜇 − ‖𝑦̇(𝑡)‖2
)
√

𝑉 (𝑡).

This implies that26, for all 𝑡 ∈ [0, 𝑇 ), one has that

𝑉 (𝑡) ≤ max

⎧

⎪

⎨

⎪

⎩

1
4

⎛

⎜

⎜

⎝

2‖𝑦̃(0)‖2 +

𝑡

∫
0

‖𝑦̇(𝜏)‖2d𝜏 − 𝜇 𝑡
⎞

⎟

⎟

⎠

2

, 0

⎫

⎪

⎬

⎪

⎭

,

i.e., by the definition of 𝑉 and (1), for all 𝑡 ∈ [0, 𝑇 ), one has that

‖𝑦̃(𝑡)‖2 ≤ max

⎧

⎪

⎨

⎪

⎩

‖𝑦̃(0)‖2 +
1
2

𝑡

∫
0

‖𝑦̇(𝜏)‖2d𝜏 −
1
2
𝜇 𝑡, 0

⎫

⎪

⎬

⎪

⎭

, (3a)

‖𝑥̃(𝑡)‖2 ≤ max

⎧

⎪

⎨

⎪

⎩

𝜍2 ‖𝑦̃(0)‖2 +
𝜍2
2

𝑡

∫
0

‖𝑦̇(𝜏)‖2d𝜏 −
𝜍2
2
𝜇 𝑡, 0

⎫

⎪

⎬

⎪

⎭

≤ max

⎧

⎪

⎨

⎪

⎩

𝜍2
𝜍1

‖𝑥̃(0)‖2 +
𝜍2
2

𝑡

∫
0

‖𝑦̇(𝜏)‖2d𝜏 −
𝜍2
2
𝜇 𝑡, 0

⎫

⎪

⎬

⎪

⎭

. (3b)

Therefore, under Assumption 3, there exist 𝜇⋆ ∈ ℝ>0 and 𝛿⋆ ∈ ℝ>0 such that, if ‖𝑥̃(0)‖2 ≤ 𝛿⋆ and 𝜇 ≥ 𝜇⋆, then 𝑇 = +∞, i.e.,
there does not exist a time 𝑡 ∈ ℝ≥0 such that 𝑥̃(𝑡) ∉ 𝜀, and 𝑥̃(𝑡) converges in finite-time to 0.
Remark 1. The proof of Theorem 1 allows one to estimate the settling time of the proposed finite-time inversion algorithm.
Namely, if ‖𝑥̃(0)‖2 ≤ 𝛿⋆ and ‖𝑦̇(𝑡)‖2 ≤ 𝑌 for all 𝑡 ≥ 0, one has that Υ ≤ 2𝛿⋆

𝜍1(𝜇−𝑌 )
. This further shows that the settling time of the

sliding mode inversion algorithm (2) can be made arbitrarily small by increasing the design parameter 𝜇.
The following remark shows that the dynamics of the sliding mode inversion algorithm (2) can be simplified in the case that

𝜕ℎ(𝑡,𝑥)
𝜕𝑥

is bounded for all (𝑡, 𝑥) ∈ ℝ≥0 ×ℝ𝑛.
Remark 2. In view of the proof of Theorem 1, if 𝜕ℎ(𝑡,𝑥)

𝜕𝑥
is bounded for all (𝑡, 𝑥) ∈ ℝ≥0 × ℝ𝑛, then the dynamics of the sliding

mode inversion algorithm (2) can be simplified as
̇̂𝑥(𝑡) = 𝜇 𝐽−1(𝑡, 𝑥̂(𝑡)) sign(𝑦(𝑡) − ℎ(𝑡, 𝑥̂(𝑡))). (4)

In fact, in such a case, the time-derivative of the Lyapunov function 𝑉 defined in the proof of Theorem 1 satisfies
𝑉̇ (𝑡) ≤ −

(

𝜇 − ‖𝑦̇(𝑡)‖2 −
‖

‖

‖

‖

𝜕ℎ(𝑡, 𝑥̂)
𝜕𝑡

‖

‖

‖

‖2

)

√

𝑉 (𝑡),

for all 𝑡 ∈ [0, 𝑇 ). Therefore, following the same reasoning given in the proof of Theorem 1, if in addition to the hypotheses
of such a theorem one has also that 𝜕ℎ(𝑡,𝑥)

𝜕𝑥
is bounded for all (𝑡, 𝑥) ∈ ℝ≥0 × ℝ𝑛, then the sliding mode inversion algorithm (4)
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converges in finite-time to the signal 𝑥(𝑡). Note that this is particularly useful when the values attained by 𝜕ℎ(𝑡,𝑥)
𝜕𝑥

cannot be directly
measured such as when they are generated by an external process.

By Theorem 1, the solution 𝑥̂(𝑡) to the sliding mode inversion algorithm (2) locally converges in finite-time to the signal 𝑥(𝑡).
The following corollary shows that the convergence is in fact global in the case that Assumption 2 is strengthened.
Corollary 1
Let Assumption 2 hold with  = ℝ𝑛 and let Assumption 3 hold. There exists 𝜇⋆ ∈ ℝ>0 such that, if 𝜇 ≥ 𝜇⋆, then the solution
𝑥̂(𝑡) of system (2) converges in finite-time to 𝑥(𝑡).
Proof. If Assumption 2 holds with  = ℝ𝑛, then 𝐽 (𝑡, 𝑥) has full rank for all 𝑥 ∈ ℝ𝑛 and all 𝑡 ≥ 0. Thus, using the same
construction employed in the proof of Theorem 1, there exists 𝜇⋆ ∈ ℝ>0 such that if 𝜇 ≥ 𝜇⋆, then 𝑇 = +∞ and the estimation
error 𝑥̃(𝑡) converges in finite-time to 0.

It is worth noticing that although Corollary 1 guarantees that 𝑥̂(𝑡) converges in finite-time to 𝑥(𝑡), by (3b), the convergence
time depends on the norm of the initial error 𝑥̃(0). In particular, larger initial errors lead to larger convergence time of the sliding
mode algorithm (2).

The main goal of the remainder of this section is to characterize the robustness of the sliding mode inversion scheme (2) with
respect to measurement noise. Hence, consider the following theorem.
Theorem 2
Let Assumptions 1, 2, and 3 hold, and let 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡).

Suppose that an additive noise 𝑑(𝑡) is added to the signal 𝑦(𝑡) and that ‖𝑑̇(𝑡)‖2 is bounded. There exist 𝜇⋆ ∈ ℝ>0, 𝛿⋆ ∈ ℝ>0,
and Δ⋆ ∈ ℝ>0 such that, if ‖𝑥̃(0)‖2 ≤ 𝛿⋆, 𝜇 ≥ 𝜇⋆, and ‖𝑑(𝑡)‖2 ≤ Δ⋆, then there exists a finite time Υ ∈ ℝ≥0 such that
‖𝑥̂(𝑡) − 𝑥(𝑡)‖ ≤ 𝜍2 Δ⋆ for all 𝑡 ≥ Υ.
Proof. Let 𝑇 be defined as in the proof of Theorem 1. Using the same reasoning employed in such a proof, letting 𝑦̌(𝑡) = 𝑦(𝑡)+𝑑(𝑡)
and 𝑦̆(𝑡) = 𝑦̌(𝑡) − 𝑦̂(𝑡), one has that, for all 𝑡 ∈ [0, 𝑇 ),

‖𝑦̌(𝑡)‖2 ≤ max

⎧

⎪

⎨

⎪

⎩

‖𝑦̌(0)‖2 +
1
2

𝑡

∫
0

‖𝑦̇(𝜏) + 𝑑̇(𝜏)‖2d𝜏 −
1
2
𝜇 𝑡, 0

⎫

⎪

⎬

⎪

⎭

,

‖𝑥̃(𝑡)‖2 ≤ 𝜍2 ‖𝑑(𝑡)‖2 + max

⎧

⎪

⎨

⎪

⎩

𝜍2 ‖𝑑(0)‖ +
𝜍2
𝜍1
‖𝑥̃(0)‖2 +

𝜍2
2

𝑡

∫
0

‖𝑦̇(𝜏) + 𝑑̇(𝜏)‖2d𝜏 −
𝜍2
2
𝜇 𝑡, 0

⎫

⎪

⎬

⎪

⎭

.

Thus, the proof of the theorem follows from the same reasoning used to prove Theorem 1.

3 SLIDING MODE STATE OBSERVER FOR TIME-VARYING DYNAMICAL SYSTEMS

In Section 2, a sliding mode dynamical algorithm has been proposed to dynamically invert time-varying maps. The main objec-
tive of this section is to show how similar techniques can be applied to estimate the state of time-varying dynamical systems.
Namely, consider the time varying system

𝑥̇(𝑡) = 𝑓 (𝑡, 𝑥(𝑡)), (5a)
𝑦(𝑡) = ℎ(𝑡, 𝑥(𝑡)), (5b)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state of the system, 𝑓 ∶ ℝ≥0 × ℝ𝑛 → ℝ𝑛 is a smooth map, 𝑦(𝑡) ∈ ℝ is the output of the plant, and
ℎ ∶ ℝ≥0 ×ℝ𝑛 → ℝ is a smooth map. Thus, define the functions

𝐷0
𝑓ℎ(𝑡, 𝑥) = ℎ(𝑡, 𝑥),

𝐷𝑖+1
𝑓 ℎ(𝑡, 𝑥) =

𝜕𝐷𝑖
𝑓ℎ(𝑡, 𝑥)

𝜕𝑥
𝑓 (𝑡, 𝑥) +

𝜕𝐷𝑖
𝑓ℎ(𝑡, 𝑥)

𝜕𝑡
, 𝑖 = 1,… , 𝑛 − 2.
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The main role of these functions is to relate the current state of system (5) with the time derivatives of the output 𝑦(𝑡). In
particular, it can be easily derived that, for all times 𝑡 ≥ 0, one has that

d𝑖𝑦(𝑡)
d𝑡𝑖

= 𝐷𝑖
𝑓ℎ(𝑡, 𝑥(𝑡)), 𝑖 = 0,… , 𝑛 − 1. (6)

Thus, define the observability map of system (5),

𝑂(𝑡, 𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐷0
𝑓ℎ(𝑡, 𝑥)

𝐷1
𝑓ℎ(𝑡, 𝑥)
⋮

𝐷𝑛−1
𝑓 ℎ(𝑡, 𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

.

By (6), letting 𝑧(𝑡) = [ 𝑧1(𝑡) ⋯ 𝑧𝑛(𝑡) ]⊤,

𝑧(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(𝑡)
d𝑦(𝑡)
d𝑡
⋮

d𝑛−1𝑦(𝑡)
d𝑡𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

,

one has that 𝑧(𝑡) = 𝑂(𝑡, 𝑥(𝑡)) for all 𝑡 ≥ 0.
In view of Theorem 1, if the following three assumptions hold
• the state 𝑥(𝑡) of system (5) lies in the compact set 𝜀,
• the observability map 𝑂(𝑡, 𝑥) satisfies Assumption 2,
• the time-derivative 𝑧̇(𝑡) of 𝑧(𝑡) is bounded,

then the sliding mode algorithm (2) can be used to reconstruct the state of system (5) by measurements of the output 𝑦(𝑡).
Namely, letting ζ = [ ζ1 ⋯ ζ𝑛 ]⊤, define the following map

Φ(𝑦, ζ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ζ2 − 𝜆𝑛−1 𝐿
1
𝑛
|ζ1 − 𝑦|

𝑛−1
𝑛 sign(ζ1 − 𝑦)

ζ3 − 𝜆𝑛−2 𝐿
2
𝑛
|ζ1 − 𝑦|

𝑛−2
𝑛 sign(ζ1 − 𝑦)

⋮

ζ𝑛 − 𝜆1 𝐿
𝑛−1
𝑛
|ζ1 − 𝑦|

1
𝑛 sign(ζ1 − 𝑦)

−𝜆0 𝐿 sign(ζ1 − 𝑦)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

where 𝜆0, 𝜆1,… , 𝜆𝑛−1 ∈ ℝ>0 are properly chosen constants21,27 (see21 Remark 6.1) and 𝐿 ∈ ℝ>0 is a tuning constant. By
classical results about sliding mode differentiation28,11, if the signal d𝑛𝑦(𝑡)

d𝑡𝑛
is 𝐿-Lipschitz as a function of 𝑡, then the state 𝑧̂(𝑡) of

the sliding mode differentiator
̇̂𝑧(𝑡) = Φ(𝑦(𝑡), 𝑧̂(𝑡)), (8)

converges in finite-time to the signal 𝑧(𝑡). Thus, under the above assumptions, by Theorem 1, letting
𝐾(𝑡, 𝑥) =

𝜕𝑂(𝑡, 𝑥)
𝜕𝑥

,

one has that the state 𝜉(𝑡) of the observer given by (8) and
̇̂𝜉(𝑡) = 𝜇𝐾−1(𝑡, 𝜉(𝑡))

(

sign(𝑧̂(𝑡) − 𝑂(𝑡, 𝜉(𝑡))) −
𝜕𝑂(𝑡, 𝜉(𝑡))

𝜕𝑡

)

, (9)
locally converges in finite-time29 to the state of system (5).

The main objective of the remainder of this section is to propose an alternative sliding mode observer that still achieves
local, finite-time convergence to the state of system (5) but with simpler dynamics. Toward this objective, the following three
assumptions, which adapt Assumptions 1, 2, and 3 to the setting of this section, are made.
Assumption 4. There exist a bounded set  and 𝜀 > 0 such that 𝑥(𝑡) ∈ 𝜀 for all 𝑡 ≥ 0.
Assumption 5. The function 𝑥 → 𝑂(𝑡, 𝑥) is 1 and bijective over  for all 𝑡 ≥ 0, its inverse 𝑧 → 𝑂−1(𝑡, 𝑧) is 1 for all 𝑡 ≥ 0,
and there exist constants 𝜍1, 𝜍2 ∈ ℝ>0 such that, for all 𝑥, 𝑥̂ ∈  and all 𝑡 ≥ 0,

𝜍1 ‖𝑂(𝑡, 𝑥) − 𝑂(𝑡, 𝑥̂)‖2 ≤ ‖𝑥 − 𝑥̂‖2 ≤ 𝜍2 ‖𝑂(𝑡, 𝑥) − 𝑂(𝑡, 𝑥̂)‖2. (10)
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Assumption 6. The signal d𝑛𝑦(𝑡)
d𝑡𝑛

is 𝐿-Lipschitz as a function of 𝑡,
Under Assumptions 4, 5, and 6, one has that 𝐾(𝑡, 𝑥) has full rank for all 𝑥 ∈  and all 𝑡 ≥ 0. Hence, consider the system

̇̂𝑥(𝑡) = 𝐾−1(𝑡, 𝑥̂(𝑡))
(

Φ(𝑦(𝑡), 𝑂(𝑡, 𝑥̂(𝑡))) −
𝜕𝑂(𝑡, 𝑥̂(𝑡))

𝜕𝑡

)

, (11)
where the function Φ is defined as in (7). The following theorem states that system (11) is a local, finite-time observer for
system (5).
Theorem 3
Let Assumptions 4, 5, and 6 hold, and let 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡). There exists 𝛿⋆ ∈ ℝ>0 such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆, then the state 𝑥̂(𝑡)
of system (11) converges in finite-time to the state 𝑥(𝑡) of system (5).
Proof. Let 𝑧̂(𝑡) = 𝑂(𝑡, 𝑥̂(𝑡)), and using the convention inf 𝑡∈∅ 𝑡 = +∞, let

𝑇 ∶= inf{𝑡 ∈ ℝ≥0 ∶ 𝑥̃(𝑡) ∉ 𝜀}.

Hence, since 𝑥̂(𝑡) = 𝑥(𝑡) + 𝑥̃(𝑡) and 𝑥(𝑡) ∈ 𝜀, under Assumption 4, one has that 𝑥̂(𝑡) ∈  for all 𝑡 ∈ [0, 𝑇 ) and there is no finite
escape time for all 𝑡 ∈ [0, 𝑇 ) even in the case that 𝑇 = +∞. Thus, for all 𝑡 ∈ [0, 𝑇 ), one has that

̇̂𝑧(𝑡) = 𝐾(𝑡, 𝑥̂(𝑡)) ̇̂𝑥(𝑡) +
𝜕𝑂(𝑡, 𝑥̂(𝑡))

𝜕𝑡
= Φ(𝑦(𝑡), 𝑧̂(𝑡)).

By defining 𝑧̃(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡), under Assumption 6, if the constants 𝜆0,… , 𝜆𝑛−1 in (7) are suitably chosen27, then there exists a
function 𝑉 (𝑧̃) satisfying, for all 𝑡 ∈ [0, 𝑇 ),

𝛽1(‖𝑧̃‖2) ≤ 𝑉 (𝑧̃) ≤ 𝛽2(‖𝑧̃‖2),
d
d𝑡
𝑉 (𝑧̃(𝑡)) ≤ −𝛾 𝑉

2 𝑛−2
2 𝑛−1 (𝑧̃(𝑡)),

for some 𝛾 ∈ ℝ≥0 and some functions 𝛽1, 𝛽2 ∈ ∞. Under Assumption 5, this implies that, for all 𝑡 ∈ [0, 𝑇 ),
𝑉 (𝑧̃(𝑡)) ≤ max

{

1
(2 𝑛 − 1)2 𝑛−1

(

(2 𝑛 − 1)𝑉 (𝑧̃(0))
1

2 𝑛−1 − 𝛾 𝑡
)2 𝑛−1

, 0
}

≤ max

{

1
(2 𝑛 − 1)2 𝑛−1

(

(2 𝑛 − 1) 𝛽
1

2 𝑛−1
2 (‖𝑧̃(0)‖2) − 𝛾 𝑡

)2 𝑛−1

, 0

}

≤ max

{

1
(2 𝑛 − 1)2 𝑛−1

(

(2 𝑛 − 1) 𝛽
1

2 𝑛−1
2

(

1
𝜍1

‖𝑥̃(0)‖2

)

− 𝛾 𝑡
)2 𝑛−1

, 0

}

.

Therefore, by considering that 𝑉 (𝑧̃(𝑡)) ≥ 𝛽1(‖𝑧̃(𝑡)‖2) ≥ 𝛽1
(

1
𝜍2
‖𝑥̃(𝑡)‖2

)

, it results that, for all 𝑡 ∈ [0, 𝑇 ),

‖𝑥̃(𝑡)‖2 ≤ max

{

𝜍2 𝛽
−1
1

(

1
(2 𝑛 − 1)2 𝑛−1

(

(2 𝑛 − 1) 𝛽
1

2 𝑛−1
2

(

1
𝜍1

‖𝑥̃(0)‖2

)

− 𝛾 𝑡
)2 𝑛−1

)

, 0

}

.

This implies that there exists 𝛿⋆ such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆, then 𝑇 = +∞ and 𝑥̃ converges in finite-time to 0.
In the following remark, the properties of the observers (8), (9) and (11) are compared.

Remark 3. All the observers (8), (9) and (11) are capable of locally estimating in finite-time the state of system (5) under
similar assumptions. However, while the dimension of the state of the observer (8), (9) is 2 𝑛, the dimension of the state of the
observer (11) is 𝑛. Hence, the latter observer is simpler to be implemented. This is due to the fact that the observer (8), (9)
disjointly estimates the time-derivatives of the output and of the state of system (5) via the sliding mode differentiator (8) and
the sliding mode inversion algorithm (9), whereas such two tasks are carried out jointly by the observer (11). Furthermore,
while the dynamical inversion algorithm (9) requires 𝑛 measurements in order to reconstruct the state of system (5), which are
provided by the sliding mode differentiator (8) when it is used as a state observer, the estimator (11) reconstructs the state of
system (5) just by using measurements of its output 𝑦(𝑡) ∈ ℝ.

As for system (2), the convergence properties of the observer (11) are global in the case that Assumption 5 hold with  = ℝ𝑛,
as formally stated in the following corollary.
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Corollary 2
Let Assumption 5 hold with  = ℝ𝑛 and let Assumption 6 hold. Then the solution 𝑥̂(𝑡) of system (11) converges in finite-time
to the state 𝑥(𝑡) of system (5).
Proof. If Assumption 5 holds with  = ℝ𝑛, then 𝐾(𝑡, 𝑥) has full rank for all 𝑥 ∈ ℝ𝑛 and all 𝑡 ≥ 0. Thus, using the same
construction employed in the proof of Theorem 3, the estimation error 𝑥̃(𝑡) converges in finite-time to 0.

The following remark shows how to apply the sliding observer (11) to estimate the state of linear, time-variant systems.
Remark 4. If system (5) is linear, i.e., its dynamics read as

𝑥̇(𝑡) = 𝐴(𝑡) 𝑥(𝑡), (12a)
𝑦(𝑡) = 𝐶(𝑡) 𝑥(𝑡), (12b)

with 𝐴(𝑡) ∈ ℝ𝑛×𝑛 and 𝐶(𝑡) ∈ ℝ1×𝑛 for all 𝑡 ≥ 0, the dynamics of the observer (11) can be given in a more explicit form. In
particular, by defining the time-varying observability matrix30 (see also31 Sec. 6.8)

Θ(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶0(𝑡)
𝐶1(𝑡)
⋮

𝐶𝑛−1(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

,

where
𝐶0(𝑡) = 𝐶(𝑡),

𝐶𝑖(𝑡) = 𝐶𝑖−1(𝑡)𝐴(𝑡) +
𝜕
𝜕𝑡
𝐶𝑖−1(𝑡), 𝑖 = 1,… , 𝑛 − 1,

one has that the dynamics of the observer (11) read as
̇̂𝑥(𝑡) = Θ−1(𝑡)

(

Φ(𝑦(𝑡),Θ(𝑡) 𝑥̂(𝑡))) −
dΘ(𝑡)
d𝑡

𝑥̂(𝑡)
)

. (13)
By Corollary 2, if rank(Θ(𝑡)) = 𝑛 for all 𝑡 ≥ 0, i.e., system (5) is uniformly observable with respect to time 𝑡, then the state of
the sliding mode observer (13) globally converges in finite-time to the state 𝑥(𝑡) of system (12).

This section is concluded by characterizing the properties of the observer (11) in the presence of measurement noise. Namely,
consider the following theorem.
Theorem 4
Let Assumptions 4, 5, and 6 hold, suppose that an additive noise 𝑑(𝑡) is added to the output 𝑦(𝑡), and define 𝜁 (𝑡) =
[ 𝑑(𝑡) d𝑑(𝑡)

d𝑡
⋯ d𝑛𝑑(𝑡)

d𝑡𝑛
]⊤. There exists 𝛿⋆ ∈ ℝ>0 and 𝑍⋆ ∈ ℝ>0 such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆ and ‖𝜁 (𝑡)‖2 ≤ 𝑍⋆ for all 𝑡 ≥ 0, then

the estimation error 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) satisfies, for all 𝑡 ≥ 0,
‖𝑥̃(𝑡)‖2 ≤ 𝜗

(

‖𝑥̃(0)‖2, 𝑡
)

+ 𝜚
(

sup
𝜏≥0

‖𝜁(𝜏)‖2

)

, (14)
for some 𝜗 ∈  and some 𝜚 ∈ .
Proof. Letting 𝑥̃, 𝑇 , and 𝑧̃ be defined as in the proof of Theorem 3, one has that32,33 there exist a function 𝜃 ∈  and a function
𝜌 ∈  such that, for all 𝑡 ∈ [0, 𝑇 ),

‖𝑧̃(𝑡)‖2 ≤ 𝜃
(

‖𝑧̃(0)‖2, 𝑡
)

+ 𝜌
(

sup
𝜏≥0

‖𝜁 (𝜏)‖2

)

≤ 𝜃
(

1
𝜍1

‖𝑥̃(0)‖2, 𝑡
)

+ 𝜌
(

sup
𝜏≥0

‖𝜁 (𝜏)‖2

)

.

Therefore, since under Assumption 5 one has that ‖𝑧̃(𝑡)‖2 ≥ 1
𝜍2
‖𝑥̃(𝑡)‖2, one has that, for all 𝑡 ∈ [0, 𝑇 ),

‖𝑥̃(𝑡)‖2 ≤ 𝜍2 𝜃
(

1
𝜍1

‖𝑥̃(0)‖2, 𝑡
)

+ 𝜍2 𝜌
(

sup
𝜏≥0

‖𝜁 (𝜏)‖2

)

.

Therefore, there exists 𝛿⋆ ∈ ℝ>0 and 𝑍⋆ ∈ ℝ>0 such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆ and ‖𝜁 (𝑡)‖2 ≤ 𝑍⋆ for all 𝑡 ≥ 0, then 𝑇 = +∞, thus
implying that (14) holds for all 𝑡 ≥ 0.
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Remark 5. In order to implement (9), (11), and (13), the dependence of the observability map𝑂(𝑡, 𝑥) on 𝑡 has to be known a prior.
However, following the same reasoning used to prove Theorem 4 and considering that the omission of the term 𝜕𝑂(𝑡,𝑥)

𝜕𝑡
in these

dynamics acts as a disturbance on the dynamics of the error 𝑧̃, there exists δ⋆ ∈ ℝ>0 and 𝑂⋆ ∈ ℝ>0 such that if ‖𝑥̃(0)‖2 ≤ 𝛿⋆

and ‖

𝜕𝑂(𝑡,𝑥)
𝜕𝑡

‖2 ≤ 𝑂⋆ for all 𝑡 ≥ 0 and all 𝑥 ∈ 𝜀, then the estimation error 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) satisfies, for all 𝑡 ≥ 0,
‖𝑥̃(𝑡)‖2 ≤ ϑ

(

‖𝑥̃(0)‖2, 𝑡
)

+ ρ,

for some ϑ ∈  and some ρ > 0.
Remark 6. By32 Theorem 4, results wholly similar to the ones given in Theorem 4 can be stated in the case of discrete sam-
pling. In particular, by34, if the sliding mode differentiator (8) is implemented with discrete samples with sampling time 𝜏,
then, in the absence of measurement noise, there exist constants θ0,… , θ𝑛−1 such that |𝑦(𝑡) − 𝑧̂1(𝑡)| ≤ θ0𝜏𝑛, |𝑦̇(𝑡) − 𝑧̂2(𝑡)| ≤
θ1𝜏𝑛−1,… , | d

𝑛−1𝑦(𝑡)
d𝑡𝑛−1

− 𝑧̂𝑛| ≤ θ𝑛−1𝜏, for all sufficiently large times 𝑡.

4 SPACE APPLICATIONS

The main objective of this section is to demonstrate the practical usefulness of the design techniques proposed in Sections 2
and 3 to solve relevant space problems. In particular, in Section 4.1, it is shown how the observer (11) can be used to estimate
unmeasured angular velocities of an axial symmetric spacecraft. In Section 4.2, it is shown how the sliding mode inversion
algorithm (2) can be used to estimate the inertia parameters of a spacecraft. Finally, in Section 4.3, the observer (11) is used to
estimate a Keplerian orbital element given measurements of the other five ones.

4.1 Estimation of unmeasured angular velocity
An important operation in several aerospace missions is estimation of the spacecraft (or plane) angular velocity. Indeed, this
variable is often used for attitude control and other relevant tasks. Clearly, the angular velocity of a body can be measured
by means of a gyroscope but the availability of an effective angular velocity estimator is in any case advantageous for several
reasons: accuracy improvement, cost reduction, redundancy, fault tolerance and simpler system design.

The rotation dynamics of a satellite can be described by writing Euler’s equations in a set of principal axes (see35
Equation (4.5.1’))

𝐼1 𝜔̇1(𝑡) + (𝐼3 − 𝐼2)𝜔2(𝑡)𝜔3(𝑡) = 𝑀1, (15a)
𝐼2 𝜔̇2(𝑡) + (𝐼1 − 𝐼3)𝜔3(𝑡)𝜔1(𝑡) = 𝑀2, (15b)
𝐼3 𝜔̇3(𝑡) + (𝐼2 − 𝐼1)𝜔1(𝑡)𝜔2(𝑡) = 𝑀3. (15c)

Assuming that the satellite is axial symmetric, that no transversal torques are applied, and that one of the two transverse and the
spin angular velocities are measured, such dynamics can be rewritten as

𝜔̇1(𝑡) = −Ω(𝑡)𝜔2(𝑡), (16a)
𝜔̇2(𝑡) = Ω(𝑡)𝜔1(𝑡), (16b)
𝑦(𝑡) = 𝜔1(𝑡), (16c)

where Ω(𝑡) is the spin velocity and 𝜔1(𝑡), 𝜔2(𝑡) are the two transverse velocities. The main objective of this section is to estimate
the angular velocity 𝜔2 from measurements of 𝜔1 and Ω(𝑡).

In this tutorial example, if Ω(𝑡) ≠ 0 for all 𝑡 ≥ 0, then an estimate 𝜔̂2 of the state 𝜔2 of system (16) can be obtained by
estimating the time derivative 𝑦1(𝑡) = 𝑦̇(𝑡) of the measured output 𝑦(𝑡), e.g., by using the sliding mode differentiator

̇̂𝑦0(𝑡) = 𝑦̂1 − 𝜆1 𝐿
1
2
|𝑦̂0 − 𝑦|

1
2 sign(𝑦̂0 − 𝑦), (17a)

̇̂𝑦1(𝑡) = −𝜆0 𝐿 sign(𝑦̂0 − 𝑦), (17b)
and letting

𝜔̂2(𝑡) = − 1
Ω(𝑡)

𝑦̂1(𝑡). (17c)
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On the other hand, the observer (11) for system (16) reads as
̇̂𝜔1(𝑡) = −Ω(𝑡) 𝜔̂2(𝑡) − 𝜆1 𝐿

1
2
|𝜔̂1(𝑡) − 𝑦(𝑡)|

1
2 sign(𝜔̂1(𝑡) − 𝑦(𝑡)), (18a)

̇̂𝜔2(𝑡) = − 1
Ω(𝑡)

(

−𝜆0 𝐿 sign(𝜔̂1(𝑡) − 𝑦(𝑡)) − 𝜔̂2(𝑡) Ω̇(𝑡)
)

. (18b)

It is worth pointing out that the observer (18) exactly implements the observer (17) in the original coordinates. In fact, it can
be easily observed that system (17) is diffeomorphic to system (18) via the diffeomorphism

[

𝜔̂1
𝜔̂2

]

=

[

𝑦̂0
− 1

Ω(𝑡)
𝑦̂1

]

,

that is well defined if Ω(𝑡) ≠ 0 for all 𝑡 ≥ 0.
A numerical simulation has been carried out to test the effectiveness of the observer (18) letting 𝜆0 = 1.1, 𝜆1 = 1.5, 𝐿 = 20,

Ω = 2 + sin(𝑡), 𝜔1(0) = 1, 𝜔2(0) = −1, 𝜔̂1(0) = 0, and 𝜔̂2(0) = 0. The results of such a numerical simulation are shown in
Figure 1.

FIGURE 1 Results of the numerical simulation for the observer (18) in absence of measurement noise.

As shown by Figure 1 the observer (18) is capable of reconstructing the state of system (16) in finite-time if measurement
noise is absent.

Another simulation has been carried out to test the effectiveness of the observer (18) in the presence of a small band-limited
white noise (power 10−12 and sampling time 10−4). Figure 2 depicts the results of this simulation. As shown by Figure 2, the

FIGURE 2 Results of the numerical simulation for the observer (18) in the presence of measurement noise.

observer (18) presents good performance even in the presence of measurement noise.



10 CORRADO POSSIERI ET AL

Finally, in order to compare the proposed sliding mode observer with other techniques taken from the literature, another
numerical simulation has been carried out using the Kalman-Bucy filter36,37,38

̇̂𝜔(𝑡) =
[

0 −Ω(𝑡)
Ω(𝑡) 0

]

𝜔̂(𝑡) + 𝑃 (𝑡)
[

𝑦(𝑡) − 𝜔̂1(𝑡)
0

]

, (19a)

𝑃̇ (𝑡) =
[

𝛼 −Ω(𝑡)
Ω(𝑡) 𝛼

]

𝑃 (𝑡) + 𝑃 (𝑡)
[

𝛼 Ω(𝑡)
−Ω(𝑡) 𝛼

]

+ 𝐼 − 𝑃 (𝑡)
[

1 0
0 0

]

𝑃 (𝑡), (19b)

with 𝛼 = 10, initialized at 𝜔̂(0) = [ 0 0 ]⊤ and 𝑃 (0) = 𝐼 , where 𝐼 denotes the identity matrix, to estimate the state of system (16).
The results of such a simulation (without measurement noise) are shown in Figure 3.

FIGURE 3 Results of the numerical simulation for the Kalman-Bucy filter.

As shown by Figure 3, also the Kalman-Bucy filter is capable of estimating the state of system (16). However, while the
state of the observer (18) converges in finite-time to the state of system (16), the convergence of the Kalman-Bucy filter (19)
is exponential. Namely, in the absence of measurement noise, one has that there exists a finite time such that the state of the
observer (18) is exactly equal to the one of system (15), whereas the state of the Kalman-Bucy filter converges exponentially to
the state of system (15). Finally, for fairness of comparison, a numerical simulation has been carried out to evaluate the sentivity
of the Kalman-Bucy filter to measurement noise by adding to the output a small band-limited white noise (power 10−12 and
sampling time 10−4). The results of such a simulation are shown in Figure 4.

FIGURE 4 Results of the numerical simulation for the Kalman-Bucy filter in the presence of measurement noise.

As shown by Figure 4, the Kalman-Bucy filter (19) has improved filtering properties with respect to the observer (18) in the
presence of small band-limited white measurement noise. This is essentially due to the fact that the proposed observer is based
on the time derivatives of the measured output and hence, if such a signal is affected by high-frequency disturbances, then the
gathered estimates are affected by large estimation errors.
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4.2 Inertia matrix estimation
Space debris orbiting around the Earth are becoming a major problem that could impair the future of space missions. Among the
different approaches to this problem proposed in recent years, a possible one consists in an autonomous spacecraft that performs
a rendezvous and docking maneuver, collects a debris and then moves it to a parking orbit. When the spacecraft collects a
debris, several parameters like the mass and inertia matrix may change substantially, seriously affecting the spacecraft control
performance. The availability of an algorithm able to estimate such parameters when the debris is captured is thus of paramount
importance.

The main objective of this section is to show how the sliding mode inversion technique proposed in Section 2 can be used to
estimate the inertia matrix in (15) from measurements of the angular velocities 𝜔1, 𝜔2, and 𝜔3.

Toward this objective, note that sliding mode differentiators of the form28

̇̂𝜔𝑖(𝑡) = 𝛼̂𝑖(𝑡) − 𝜆1 𝐿
1
2
|𝜔̂𝑖(𝑡) − 𝜔𝑖(𝑡)|

1
2 sign(𝜔̂𝑖(𝑡) − 𝜔𝑖), (20a)

̇̂𝛼𝑖(𝑡) = −𝜆0 𝐿 sign(𝜔̂𝑖(𝑡) − 𝜔𝑖(𝑡)). (20b)
where 𝛼̂𝑖 is an estimate of 𝜔̇𝑖, 𝑖 = 1,… , 3, can be used to estimate the time derivatives of the angular velocities 𝜔1, 𝜔2, and 𝜔3
from their measurements in finite-time. Thus, by defining the map

ℎ(𝑡, 𝐼) =

⎡

⎢

⎢

⎢

⎣

𝐼2−𝐼3
𝐼1

𝜔2(𝑡)𝜔3(𝑡) +
𝑀1(𝑡)
𝐼1

𝐼3−𝐼1
𝐼2

𝜔3(𝑡)𝜔1(𝑡) +
𝑀2(𝑡)
𝐼2

𝐼1−𝐼2
𝐼3

𝜔1(𝑡)𝜔2(𝑡) +
𝑀3(𝑡)
𝐼3

⎤

⎥

⎥

⎥

⎦

,

and noticing that
𝜔̇(𝑡) = ℎ(𝑡, 𝐼),

the technique given in Section 2 together with the sliding differentiator given in (20) can be used to estimate the parameters 𝐼1,
𝐼2, and 𝐼3 from measurements of 𝜔1, 𝜔2, and 𝜔3. Namely, letting 𝐽 (𝑡, 𝐼) = 𝜕ℎ(𝑡,𝐼)

𝜕𝐼
,

𝐽 (𝑡, 𝐼) =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑀1(𝑡)
𝐼21

− (𝐼2−𝐼3)𝜔2(𝑡)𝜔3(𝑡)
𝐼21

𝜔2(𝑡)𝜔3(𝑡)
𝐼1

−𝜔2(𝑡)𝜔3(𝑡)
𝐼1

−𝜔1(𝑡)𝜔3(𝑡)
𝐼2

−𝑀2(𝑡)
𝐼22

− (𝐼3−𝐼1)𝜔1(𝑡)𝜔3(𝑡)
𝐼22

𝜔1(𝑡)𝜔3(𝑡)
𝐼2

𝜔1(𝑡)𝜔2(𝑡)
𝐼3

−𝜔1(𝑡)𝜔2(𝑡)
𝐼3

−𝑀3(𝑡)
𝐼23

− (𝐼1−𝐼2)𝜔1(𝑡)𝜔2(𝑡)
𝐼23

⎤

⎥

⎥

⎥

⎥

⎦

,

the parameter vector 𝐼 = [ 𝐼1 𝐼2 𝐼3 ]⊤ can be estimated as
𝐼(𝑡) = 𝜇 𝐽−1(𝑡, 𝐼) sign(𝛼̂(𝑡) − ℎ(𝑡, 𝐼)), (21)

where 𝛼̂ = [ 𝛼1 𝛼̂2 𝛼̂3 ]⊤ is the estimate of 𝜔̇ obtained via (20).
A numerical simulation has been carried out to test the estimation algorithm (20), (21) letting 𝜆0 = 1.1, 𝜆1 = 1.5, 𝐿 = 100,

𝜇 = 10, 𝜔̂𝑖(0) = 0, 𝛼̂𝑖(0) = 0, 𝑖 = 1, 2, 3, and initializing 𝐼(0) at random. The results of such a simulation are shown in Figure 5.
As shown by Figure 5, thanks to the use of the sliding differentiator (20) and of the sliding inversion algorithm (4), the state

of system (20), (21) converges in finite time to the values of the inertia parameters 𝐼1, 𝐼2, and 𝐼3.

4.3 Estimation of unmeasured orbital elements
Consider a spacecraft traveling in a orbit around a planet. The Keplerian orbital elements (OEs) are six quantities that univocally
define the geometric characteristics of the orbit and the position of the spacecraft in the orbit. Clearly, determination of the OEs
is fundamental in many space missions but, in certain situations, only some of the OEs are measured and the others have to be
estimated from the available measurements.

The OEs of an orbit are the following: 𝑥1 is the semi-major axis, 𝑥2 is the eccentricity, 𝑥3 is the inclination, 𝑥4 is the right ascen-
sion of the ascending node, 𝑥5 argument of the periapsis, 𝑥6 is the true anomaly (see39 Section 5.3 for their formal definition).
The spacecraft traveling on the orbit is subject to external forces, which typically include the thruster force and different types of
perturbations. Such forces produce an acceleration 𝑢1 in the direction of the radius vector, positive in the direction of increasing
radial distance, an acceleration 𝑢2 perpendicular to the radius vector in the orbital plane, positive in the direction of increasing
longitude, and an acceleration 𝑢3 perpendicular to the orbital plane, positive towards the north pole.
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FIGURE 5 Results of the numerical simulation for the estimation algorithm (20), (21). The symbols 𝛼̃𝑖 and 𝐼𝑖 denote the
estimation errors 𝛼𝑖 − 𝛼̂𝑖 and 𝐼𝑖 − 𝐼𝑖, respectively.

The dynamics of the OEs is described by a set of six first-order differential equations called Gauss planetary equations, which
can be written as follows (see39 Section 5.3.1):

𝑥̇1 =
2
(

𝑢1𝑥2 sin
(

𝑥6
)

+ 𝑢2𝑥2 cos
(

𝑥6
)

+ 𝑢2
)

√

1 − 𝑥22
√

𝜂
𝑥31

, (22a)

𝑥̇2 =

√

1 − 𝑥22
(

𝑢2
(

𝑥2 + cos
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 2
))

+ 𝑢1 sin
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 1
))

√

𝜂
𝑥31

(

𝑥1 + 𝑥2𝑥1 cos
(

𝑥6
))

, (22b)

𝑥̇3 =
𝑢2

(

√

1 − 𝑥22 + 1
)

sin
(

𝑥6
)

− cos
(

𝑥6
) (

𝑢1𝑥2 cos
(

𝑥6
)

+ 𝑢1 − 𝑢2𝑥2 sin
(

𝑥6
))

− 𝑢3𝑥2 sin
(

𝑥3 + 𝑥6
)

cot
(

𝑥5
)

𝑥1
𝑥2

√

1−𝑥22

√

𝜂
𝑥31

(

𝑥2 cos
(

𝑥6
)

+ 1
)

, (22c)

𝑥̇4 =
𝑢3
√

1 − 𝑥22 sin
(

𝑥3 + 𝑥6
)

csc
(

𝑥5
)

√

𝜂
𝑥31

(

𝑥1 + 𝑥2𝑥1 cos
(

𝑥6
))

, (22d)

𝑥̇5 =
𝑢3
√

1 − 𝑥22 cos
(

𝑥3 + 𝑥6
)

√

𝜂
𝑥31

(

𝑥1 + 𝑥2𝑥1 cos
(

𝑥6
))

, (22e)

𝑥̇6 =

√

1 − 𝑥22
(

𝑢1 cos
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 1
)

− 𝑢2 sin
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 2
))

𝑥1𝑥2
√

𝜂
𝑥31

(

𝑥2 cos
(

𝑥6
)

+ 1
)

, (22f)

and 𝜂 is a constant called the gravitational parameter.
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Assuming that just the variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4 can be measured, the technique outlined in Section 3 has been used to
design an observer for the true anomaly 𝑥6 using the dynamics (22e). Namely, consider the time-varying system

𝑥̇5 =
𝑢3
√

1 − 𝑥22 cos
(

𝑥3 + 𝑥6
)

√

𝜂
𝑥31

(

𝑥1 + 𝑥2𝑥1 cos
(

𝑥6
))

, (23a)

𝑥̇6 =

√

1 − 𝑥22
(

𝑢1 cos
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 1
)

− 𝑢2 sin
(

𝑥6
) (

𝑥2 cos
(

𝑥6
)

+ 2
))

𝑥1𝑥2
√

𝜂
𝑥31

(

𝑥2 cos
(

𝑥6
)

+ 1
)

, (23b)

𝑦 = 𝑥5, (23c)
where the signals 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), and 𝑥4(𝑡) are assumed to be provided by (22) and measurable.

The observability map of system (23) is

𝑂(𝑡, 𝑥5, 𝑥6) =

⎡

⎢

⎢

⎢

⎣

𝑥5
𝑢3(𝑡)

√

1−𝑥22(𝑡) cos(𝑥3(𝑡)+𝑥6)
𝑥1(𝑡)

√

𝜂
𝑥31(𝑡)

(𝑥2(𝑡) cos(𝑥6)+1)

⎤

⎥

⎥

⎥

⎦

.

Therefore, one has that

𝐽 (𝑡, 𝑥5, 𝑥6) =
⎡

⎢

⎢

⎣

1 0

0 −
𝑢3(𝑡)

√

1−𝑥22(𝑡)(sin(𝑥3(𝑡)+𝑥6)+𝑥2(𝑡) sin(𝑥3(𝑡)))
𝑥1(𝑡)

√ 𝜂
𝑥1(𝑡)3

(𝑥2(𝑡) cos(𝑥6)+1)2

⎤

⎥

⎥

⎦

,

𝜕𝑂(𝑡, 𝑥5, 𝑥6)
𝜕𝑡

=
⎡

⎢

⎢

⎣

0 0 0 0
𝑢3(𝑡)

√

1−𝑥22(𝑡) cos(𝑥3(𝑡)+𝑥6)

2𝑥21(𝑡)
√

𝜂
𝑥31(𝑡)

(𝑥2(𝑡) cos(𝑥6)+1)
− 𝑢3(𝑡) cos(𝑥3(𝑡)+𝑥6)(𝑥2(𝑡)+cos(𝑥6))

𝑥1(𝑡)
√

1−𝑥22(𝑡)
√

𝜂
𝑥31(𝑡)

(𝑥2(𝑡) cos(𝑥6)+1)2

√

1−𝑥2(𝑡)2 cos(𝑥3(𝑡)+𝑥6)
𝑥1(𝑡)

√

𝜂
𝑥31(𝑡)

(𝑥2(𝑡) cos(𝑥6)+1)
−

𝑢3(𝑡)
√

1−𝑥22(𝑡) sin(𝑥3(𝑡)+𝑥6)

𝑥1(𝑡)
√

𝜂
𝑥31(𝑡)

(𝑥2(𝑡) cos(𝑥6)+1)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇1(𝑡)
𝑥̇2(𝑡)
𝑢̇3(𝑡)
𝑥̇3(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

.

A numerical simulation has been carried out to test the effectiveness of the observer (11) with the two functions above,
where the values of 𝑥̇1, 𝑥̇2, 𝑢̇3, and 𝑥̇3 have been estimated by using sliding mode differentiators wholly similar to (20). In
such a simulation, the initial conditions have been set to 𝑥1(0) = 6723 km, 𝑥2(0) = 0.15, 𝑥3(0) = 3.04 rad, 𝑥4(0) = 3.28 rad,
𝑥5(0) = 0.9 rad, 𝑥6(0) = 2.44 rad, the value 𝜂 has been set to 3.986 ⋅ 105 km3∕s2 (which corresponds to the Earth gravitational
parameter), the control inputs have been set to 𝑢1 = 0, 𝑢2 = 1, and 𝑢3 = 10, whereas the parameters of the sliding mode
differentiator have been set to 𝜆0 = 1.1, 𝜆1 = 1.5, and 𝐿 = 100. Figure 6 depicts the results of such a simulation.

FIGURE 6 Results of the numerical simulation for the estimator of the true anomaly.

As shown by Figure 6, the proposed sliding mode observer is capable of reconstructing the true anomaly in finite-time.
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5 CONCLUSIONS

In this paper, sliding mode techniques have been proposed either to invert a time-varying map or to estimate the state of a
time-varying nonlinear system. In particular, the inversion algorithm has been designed by exploiting a modified version of the
Newton algorithm that ensures local, finite-time convergence of the estimation error to zero. On the other hand, the proposed
state observer has been designed by using the inverse of the Jacobian of the observability map of the system to implement a
sliding mode differentiator in the original coordinates. Finally, it has been shown how these two techniques can be used to solve
relevant space problems, such as the estimation of the angular velocity of an axial symmetric satellite, the estimation of the
inertia parameters of an orbiting object from measurements of its angular velocities, and the estimation of a Keplerian orbital
element given measurements of the other five ones.
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