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“Thousands Have Lived Without Love,  

Not One Without Water” 

Wystan Hugh Auden 

 

 

 

ADAM: “82% of human blood is water… Have the water wars started yet? 

Or is it still about the oil?”  

EVE: “Yeah, they’re already starting. “ 

ADAM: “They only figure it out when it’s too late, don’t they?” 

Jim Jarmusch – Only Lovers Left Alive 

 
 
 

“Water is patient, Adelaide. Water just waits.  

Wears down the clifftops. The mountains. The whole of the world.  

Water always wins.” 
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Abstract 

Agriculture is not only one of the most ancient economic assets known to man: 

it also has enormous importance as the most valuable human activity which 

ensures global food security. Optimal vegetative growth, and therefore crop 

production, is heavily dependent on the hydro-climatic variables necessary to 

fulfill the evapotranspirative requirement of plants. According to FAO, more than 

1.2 billion people live in regions where water scarcity is a serious threat to 

agriculture. Therefore, assessment of agricultural water requirements is essential 

in order to develop effective water-related policies in a globalized world with 

unprecedented population growth and unevenly distributed water resources. 

Irrigated areas have almost doubled in the last 50 years and account for 20% of 

global croplands; they currently consume 70% of freshwater withdrawn for 

human purposes. Furthermore, rainfed agriculture provides 60% of total food 

production and is highly dependent on meteorological factors. The assessment of 

climate-driven changes of crop water requirements and water stress periods is 

very important in order to highlight future weaknesses of food security. The 

impact of climate change on food production has become an extremely important 

issue and is dealt with an increasing number of studies; a cross-sectoral approach 

must therefore be adopted to effectively address its effect on agriculture, adopting 

appropriate adaptation strategies across local, regional and global scales.  

In recent years, the spread of Earth Observation (EO) data has radically changed 

the range of technologies currently available to manage agriculture. The possibility 

to retrieve near real-time information of crop health status and localized 

criticalities has improved the quality of intensive farming, especially in terms of 

resource use. Satellites are widely used for the acquisition of large-scale data and 

modern sensors can reach very high spatial, temporal and spectral resolutions. 

Nowadays, reanalysis climate datasets offer new possibilities for hydrological 

modelling, working at relatively high spatio-temporal resolutions.  

This thesis aims to exploit the potential of the EO-based data to strengthen the 

scientific knowledge of how climate variability impacts the water requirements of 

global agriculture, by (i) developing a model to assess the comprehensive daily 

crop irrigation requirement (i.e. the ideal input of water needed to avoid water 

stress); (ii) to assess the climate-driven crop water requirements from 1970 to 2019, 

highlighting significant trends of irrigation requirements and water stress periods 

on rainfed croplands; (iii) to combine several satellite measurements to retrieve 

high-resolution information on actual sowing periods and crop growth, to limit 

some of the main uncertainties related to crop modelling. In order to achieve this, 

a hydrological soil-water balance model was developed to model the climate-



 

 

 
 

driven evapotranspirative requirements using the daily hydro-climatic data from 

ERA5, the reanalysis dataset provided by the European Centre for Medium-Range 

Weather Forecasts. The model was tested for year 2000 at the global scale, 

comparing the modeled irrigation requirements to the national volumes of water 

withdrawn for irrigation. The analysis was then extended over a 50-year period, 

highlighting critical issues peculiar to rainfed and irrigated scenarios. In order to 

improve the quality of crop growth modelling, a synergistic use of optical and 

radar data from the Sentinel constellation was tested to retrieve information on 

maize sowing periods and growing phases. The analysis was performed over a 

densely cultivated pilot area in South Piedmont (Italy).  

Results show a good agreement between the estimated irrigation requirements 

for year 2000 (962 km3 globally) and national withdrawals for irrigation. A focus 

on three areas of the world (California, Northern Italy and India) highlights the 

wealth of information provided by the model in different climatic conditions. 

Increases of irrigation requirement rates were found on more than 60% of irrigated 

lands, especially in South Europe, North-East China, West US, Brazil and 

Australia, where the mean rate increased more than 100 mm/year from 1970s to 

2010s. The analysis of rainfed crops highlights statistically significant trends of 

water stress duration for more than 38% of rainfed croplands, while only 6% were 

affected by negative trends and shorter stress duration. The satellite-based analysis 

described in the third part of the thesis highlights the potential of combined optical 

and radar data to retrieve information of maize growing phases. The actual sowing 

periods were retrieved for 1154 test fields and results show that most of the maize 

were sown in late April or in the second half of May in 2019. 

This thesis contributes to advancing our knowledge on the impact of climate 

spatio-temporal variability on agricultural water requirements. The EO-based data 

is proven to be a valuable instrument (i) for large-scale hydrological modelling, (ii) 

to describe the global variability of climate-driven impacts on crop water 

requirements and (iii) to retrieve high-resolution information to improve the 

accuracy of crop growth monitoring, in order to perform future analyses of actual 

irrigation practices.   
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Acronyms 

A Area   

AEI Area equipped for irrigation 

AgMIP Agricultural Model Intercomparison and Improvement Project 

API Application Programming Interface 

AW Applied Water 

AWC Available Water Capacity 

C Radar band (4 – 8 GHz) 

C3S Copernicus Climate Change Service 

CDO Climate Data Operators 

CDWR California Department of Water Resources  

CI Cropping intensity 

CLS Copernicus Land Service 

CRU Climatic Research Unit (East Anglia University) 

CV Central Valley, California 

DEM Digital Elevation Model 

DTM Digital Terrain Model 

E Irrigation Efficiency 

ECMWF European Centre for Medium-Range Weather Forecasts 

EEA European Environmental Agency 

EO Earth Observation 

EP Emerging period 

ERA5 ECMWF Reanalysis 5 climate dataset 

ET0 Reference Evapotranspiration 

ETa Crop Actual Evapotranspiration 

ETc Crop maximum evapotranspiration 

ETp  Potential Evapotranspiration 

FAO Food and Agriculture Organization 

GDU Growing Degree Units 

GEE Google Earth Engine platform 

GIS Geographic information system 

GS Growing season 

HH Horizontal-Horizontal radar polarization 

HS Hargreaves-Samani method for the estimation of ET0 
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HV Horizontal-Vertical radar polarization 

I  Irrigation requirement 

ICDWR Irrigation requirement estimated by the CDWR  

ID Days requiring irrigation (literally, Irrigation Days) 

IEEE Institute of Electrical and Electronics Engineering 

Igrid  Mean irrigation requirement considering the entire area of a grid pixel 

IPR Polarimetric Ratio Index 

IPRf Filtered Polarimetric Ratio Index 

IrD Irrigation Districts 

ISPRA Istituto superiore per la protezione e la ricerca ambientale 

ISTAT Istituto Nazionale di Statistica 

kc Crop coefficient, defining the ETc rate 

kHS Hargreaves-Samani empirical coefficient 

ks Stress coefficient, defining ETa 

L Radar band (1 - 2 GHz) 

lbp length of the period before plant emergence 

LGP Length of Growing Periods 

LSM Land surface model 

NASA National Aeronautics and Space Administration 

NDVI Normalized Difference Vegetation Index 

NIR Near Infrared 

OECD Organization for Economic Co-operation and Development 

P  Precipitation 

PD Precipitation Days 

PIE Potential Irrigation Events 

PM Penman-Monteith  

PML Penman–Monteith–Leuning 

PS Precipitation Surplus 

PSgrid Mean precipitation surplus considering the entire area of a grid pixel 

PT Priestley–Taylor 

PU Punjab, India 

PV Po Valley, Italy 

R Pearson correlation coefficient 

RED Red reflectance (visible) 

RS-SEB Remotely sensed surface energy balance 

S2MP Sentinel-1/Sentinel-2-derived Soil Moisture Product 

SAR Synthetic Aperture Radar  

SC Surface conductance 

SD  Water stressed days 

SDGs Sustainable Development Goals 
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SEBM Surface Energy Balance Model 

SM Soil moisture (satellite product) 

SP Sowing period 

SSF Soil stress factor 

SWB Soil water balance 

Tmax Maximum Temperature 

Tmean Mean temperature 

Tmin Minimum Temperature 

USGS United States Geological Survey 

V Volumetric irrigation requirement 

VH Vertical-Horizontal radar polarization 

VIR Visual and Infrared imaging 

VV Vertical-Vertical radar polarization 

W Withdrawals for irrigation 

wSD Number of water stressed days normalized by the number of growing 

days 

θ Soil moisture 

θ* Soil moisture at incipient water stress 

θfc Soil moisture at field capacity 

θsow Soil moisture at the sowing day 

θw Soil moisture at wilting point 

ρ Depletion fraction (or depletion factor) 
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Name list of satellite sensors 

Visible and Near Infrared 

BGIS-2000 Ball Global Imaging System 2000 

ETM+ Enhanced Thematic Mapper + 

GIS GeoEye Imaging System 

HRG Haute Résolution Géométrique 

HRV Haute Résolution dans le Visible 

HRVIR Haute Résolution dans le Visible et l’Infra-Rouge 

MODIS Moderate-resolution Imaging Spectro-radiometer 

MS Multispectral imager 

MSC Multi-Spectral Camera 

MSI Multi-Spectral Imager for Sentinel-2 

NAOMI New AstroSat Optical Modular Instrument 

OLI Operational Land Imager 

OSA Optical Sensor Assembly 

PAN Panchromatic Imager 

PMS Panchromatic and Multi-spectral CCD Camera 

SV-110 SpaceView-110 Imaging System 

TIRS Thermal Infra-Red Sensor 

VIIRS Visible/Infrared Imager Radiometer Suite 

WV110 World View 110 camera 

WV60 World View 60 camera 

Radar 

AMI-SAR Active Microwave Instrument - Synthetic Aperture 

Antenna AMI-SCAT Active Microwave Instrument - Scatterometer 

ASAR Advanced Synthetic Aperture Radar 

ASCAT Advanced Scatterometer 

AVHRR Advanced Very High-Resolution Radiometer 

MIRAS Microwave Imaging Radiometer using Aperture Synthesis 

MWR Micro-Wave Radiometer 

PALSAR Phased-Array L-band Synthetic Aperture Radar 

RA-2 Radar Altimeter - 2 

SAR  Synthetic Aperture Radar 

SAR-2000 Synthetic Aperture Radar 2000 (X-band) 

SMAP Soil Moisture Active-Passive (intended as payload) 
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Chapter 1 

Introduction 

1.1 Background 

The management of water resources is strongly linked to food security and 

sustainable agricultural production. Intensification of scientific studies focusing on 

the link between water and agriculture proves the importance and the urgency of 

new ways of conceiving water uses for crop production. A proper understanding 

of how climate variability impacts the agricultural water consumption is a main 

challenge in a globalized world. Food production is pushed to meet the needs of a 

growing population and the international trade network will probably require 

future large-scale policies and planning.  

Agriculture requires more freshwater than any other human activity, 

consuming about 70% of the resource at the global scale [1]. The management of 

irrigated croplands is very important for the global food chain, since these areas 

provide 40% of agricultural products, accounting for only 20% of total cultivated 

areas [2]. Moreover, the rainfed agriculture ensures 60% of agricultural 

productions despite being strongly dependent on rainfall water. Ensuring the 

availability of irrigation water is a primary concern for the future of humanity, as 

a part of the comprehensive set of adaptation strategies to climate change. The 

difficulty of finding a balance between the increasing needs for food production, 

threats due to water availability and other human needs is one of the most 

important challenges of this century [3].  

The Sustainable Development Goals (SDGs) from the Agenda 2030, adopted by 

the United Nations, recognize the achievement of food security through a 

sustainable agriculture as a primary target [4]. The 6th SDG highlights the need for 

a sustainable management of water resources for the global economic growth and 

productivity [5]. Given the importance of irrigation in the comprehensive use of 

withdrawn water, agriculture requires specific studies for the improvement of the 

knowledge and the techniques for the optimization of water uses. 

The crop water requirement (or crop water need) is defined in this thesis as the 

amount of water (in terms of water depth per unit of area) needed by crops to meet 

the water loss through evapotranspiration, i.e. the amount of water needed by the 
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plants to grow optimally [6].  More specifically, evapotranspiration is a process 

whereby a vegetated surface (e.g., a crop field) converts liquid water from soil to 

water vapour, combining the evaporation and the transpiration processes [7]. The 

evaporation process is mainly driven by the solar radiative forcing and air 

parameters like temperature, air humidity and wind speed. Transpiration is the 

biological process through which plants vaporize liquid water contained through 

stomata, and release vapour from their leaves into the air. The combined effect of 

evaporation and transpiration reduces the amount of water in the soil and is an 

important output in the hydrological soil water balance. Evapotranspiration is also 

an important variable for the food production chain since optimal agricultural 

productions depend on the crops ability to withstand water stresses. In fact, after 

reaching specific moisture deficits, plants start to suffer the lack of available water 

for their biological processes. This stress condition entails a reduction in the crop 

yield, causing lower agricultural productions. Irrigation is the most widely used 

tool in the history of man to fill these water shortages and increase food 

production.  

Several crop models were developed in the last decades to describe the crop 

yield and the food production as function of climate variability and technological 

improvements. The AgMIP (Agricultural Model Intercomparison and 

Improvement Project), founded in 2010, defined protocols to analyze the 

agricultural systems and the food production by collecting and comparing the best 

available crop models [8]. The spatio-temporal variability of hydro-climatic 

variables (e.g. evapotranspirative rate, precipitation depth, wet days per year) has 

a high impact on agricultural requirements, with serious implications in terms of 

food security.  

Earth Observation (EO) offers new possibilities to apply hydrological models at 

large spatial scales. According to the definition from the European Joint Research 

Centre, EO is the gathering of information about planet Earth’s physical, chemical and 

biological systems via remote sensing technologies, usually involving satellites carrying 

imaging devices [9]. It is widely used to monitor and assess the status of the natural 

and manmade environment, also monitoring significant temporal changes. 

Technologies based on remote sensing allow to obtain reliable and repeat-coverage 

datasets, measuring radiance all over the Earth’s surface. Combining EO 

measurements with appropriate methods, it is possible to gather comprehensive 

hydrological information for large-scale modelling.  

The research of how climate change influences the global hydrological cycle is 

very important to quantify the impact on agriculture, also considering that world 

population is expected to reach 10 billion between 2050 and 2060 [10]. In order to 

improve the reliability of large-scale estimations, a cross-sectoral approach is 

essential. 
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1.2 Research motivations and objectives 

Climate change is expected to produce several impacts on agriculture. Proper 

adaptation strategies must match up the needs for global food supply and for 

sustainable production chains. The optimal crop growth is highly related to 

climate conditions, whose variability can lead to water stress and production 

losses [11]: in fact, the spatio-temporal variability of precipitation and 

evapotranspiration has significant consequences on crop requirements and needs 

for irrigation [12]. Therefore, the study of how climate variability impacts the crop 

irrigation requirements is important to manage agricultural and water resources 

across local, regional and global scales.  

Since remote sensing data were introduced in large-scale studies, most of the 

global crop models were updated by introducing satellite information or satellite-

derived products. Yet, there is still a lack of scientific literature exploiting the 

potential of the most up-to date EO products to improve the accuracy of 

multiannual global evapotranspiration assessments at the daily temporal scale.  

The present thesis aims at filling this gap, assessing the impact of climate 

variability on multi-decade crop water requirements, analyzing spatio-temporal 

changes of irrigated and rainfed crop needs and stress periods. For this reason, a 

hydrological model for the assessment of crop evapotranspirative demand was 

developed and tested for year 2000. The model was also used for a multi-decade 

assessment, highlighting significant climate-driven impacts on global agriculture 

over the last 50 years.  

The main questions this thesis aims to answer are: (i) can EO-based products be 

used to set up a soil-water balance model for the assessment of climate-driven 

agricultural water requirements, highlighting the global spatial variability? (ii) can 

we describe the spatio-temporal changes of global crop water requirements and 

highlight significant climate-driven trends using EO-based data? (iii) Can satellite 

data be used to reduce the uncertainty related to crop growth modelling, in order 

to improve the accuracy of agricultural assessments? For this purposes, a list of 26 

main crops was considered within a comprehensive assessment, from 1970 to 2019. 

On irrigated croplands, the model was used to identify significant changes of 

irrigation requirement rates and days requiring irrigation; on rainfed areas, the 

analysis of significant trends of water stress was performed. Lastly, the satellite 

data from the Sentinel constellation were used to retrieve actual sowing periods 

and growing phases of maize, over a pilot area in Northern Italy. Technologies 

based on Earth Observation allow new possibilities for the study of climate impact 

on crop water requirements. Since the assessment was based on daily 

hydroclimatic data, this thesis aims to analyze the spatio-temporal variability of 
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days requiring irrigation (on croplands equipped for irrigation) and days 

experiencing water stress (on rainfed croplands).  

One of the main uncertainties which this thesis aims to deepen is related to the 

lack of information about actual length of crop developing phases. For those crops 

which are sowed and harvested within the same year, a proper knowledge of 

actual sowing dates can significantly improve the reliability of the requirement 

estimation at the local scale. Satellite data can be used to retrieve information about 

crop growth and the health of plants during the agricultural season, especially 

combining information from different types of sensors. In this thesis, a synergic 

use of optical and radar information was used to retrieve the spatial distribution 

of actual sowing periods at the field scale. When the estimation of water needs is 

performed on a local scale, a detailed information of crop planting periods can be 

used to set the models considering needs referred to actual growing periods.   

In Chapter 2, the methodology used to develop the soil-water balance model 

for the assessment of crop-specific water needs is presented. The EO-based hydro-

climatic data and the crop growth modelling are described, and the assumptions 

for computing the daily estimation of actual evapotranspiration, water stress and 

irrigation requirement are discussed in detail. The model was used for a global 

assessment of irrigation requirements, using the daily hydro-climatic data from 

the Climate Change Service of the Copernicus European Programme as model 

forcings. The assessment was performed for year 2000 because of the availability 

of crop data and national irrigation withdrawals for this year, allowing a 

comparison between our estimations and actual irrigation data. 

In Chapter 3, the model was used to calculate the global crop water 

requirements on rainfed and irrigated croplands, over a 50-year period (1970-

2019). Results were analyzed in terms of daily statistics of irrigation requirements 

(on areas equipped for irrigation) and stressed periods for rainfed crops. A 

statistical analysis was performed to detail the spatial variability of significant 

trends of irrigation requirements and crop water stress, focusing on the areas 

where the impact of climate variability induced a high variation of these 

parameters from 1970 to 2019. 

In Chapter 4, the optical and radar data from the Sentinel constellation were 

used to retrieve maize actual sowing periods and growing phases, over a pilot area 

in North-West Italy. Since one of the most important uncertainties in modelling 

the large-scale crop water requirements is related to the lack of information about 

actual sowing periods and length of growing seasons, this analysis aims to develop 

possible satellite-based solutions. The method was tested at the local scale, 

detecting the emerging periods of plants (e.g., the periods when plants break 

through the soil and start to grow) and retrieving the number of days occurred 

between emerging and sowing according to the air temperature and soil moisture 

conditions.  
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1.3 Earth Observation for hydrology and agriculture 

In recent years, Earth Observation-based products have become a reliable and 

affordable source of information for several research fields. The study of the Earth 

System requires as many global information as possible, with continuous 

monitoring of environmental variables. Hydrological and agricultural models can 

benefit from the EO-based study of the Earth in several respects.  

The assessment of crop water needs, the study of available water sources, the 

classification of irrigated croplands are just some of the research fields for which 

EO is gaining in significance.  For example, the systematic review by Massari et al. 

[13] analyze many EO datasets, models and algorithms to highlight the potential 

of remote sensing data in the quantitative assessment of irrigation events and 

volumes. Several studies point out the reliability of combined optical and radar 

signals retrieved from satellites in the classification of irrigated croplands, in 

different climatic scenarios and parts of the world (e.g., the application by Dari et 

al. [14] in central Italy or the analysis by Brazzi et al. [15] over the Spanish region 

of Catalonia). Remote sensing is also a reliable instrument to describe the crop 

growing phases at the field scale by detecting high resolution imagery, as 

described by Gao et al. [16]. Most of the sector studies exploit the potential of 

remote sensing for retrieving crop parameters in arid and semi-arid regions, 

especially when combined with in situ information (e.g., the work by Ayari et al. 

[17] in Tunisia). 

The combined use of remote sensing data, crop developing models and 

hydrological models allows to improve quantitative assessment, in the study of 

irrigation at the field scale: for example, Le Page et al. [18] combined SAR and 

optical information with in-situ data to build a soil water balance model, with the 

objective of detecting irrigation events in different pilot sites. The potential of 

remote sensing in the agricultural field is also related to the fast improvement of 

satellite sensors, especially those supposed to retrieve multi-bands and multi-

frequency radar backscattering, as pointed out by Ayari et al. [19]. EO-based 

agricultural monitoring has, therefore, a high potential to reduce uncertainties in 

the crop models, mainly related to local policies, undeclared crop switches, crop 

rotation and availability of water for irrigation. 

Remote sensing is the technological base of precision agriculture, defined as a 

management strategy that gathers, processes and analyzes temporal, spatial and individual 

data and combines it with other information to support management decisions according 

to estimated variability for improved resource use efficiency, productivity, quality, 

profitability and sustainability of agricultural production (definition adopted by the 

International Society of Precision Agriculture [20]).  
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The use of remote sensing for agricultural applications has grown exponentially 

during the last decades. The possibility of managing and monitoring crops 

acquiring information from remote sensors has paved the way for many 

innovations in agriculture. Technologies for the measurement of electromagnetic 

energy reflected and emitted from ground surfaces are now widely used to 

measure vegetation parameters and hydrological variables, using drones, aircrafts 

and satellites.  

Precision agriculture is based on sensors installed on vehicles like satellites, 

aircrafts, airplanes and drones. Each type of vehicle is suitable for a specific range 

of operations and, of course, is designed to carry sensors for specific purposes. This 

thesis focuses on large scale applications, for which remote sensing provides some 

of the best solutions and the easiest tools for agricultural analyses. Products 

retrieved from EO technologies different from satellites were not exploited in this 

thesis. In this Chapter, an overview of the most used satellites and related sensors 

for agriculture and hydrological modelling is presented. 

1.3.1 Satellite sensors  

The spread of satellites for EO is one of the most innovative and high-potential 

technologies for large scale applications. Each satellite is equipped with sensors 

which are suitable for a set of specific measurements, depending on the aim of each 

space mission. Satellites are sent to fly over the globe, describing orbits and 

“photographing” electromagnetic signals from the surface. Each frame (i.e. the 

sensor’s swath) is acquired with fixed dimensions, depending on the technical 

specifications of the sensor. Moreover, the satellite sensors are sensitive to a wide 

range of bands, from visible to microwaves, and they can measure the radiation 

emitted or reflected by the ground surface but also capture the backscattering 

signal emitted by an active source (which, in most of the cases, is located on the 

satellite itself).  

The measurement of electromagnetic signals from the Earth surface can have 

multiple applications. They can be used to retrieve daily estimations of 

meteorological variables, like rainfall or snow; agricultural applications include 

crop classifications, monitoring of plant health status, monitoring of growing 

phases and dry conditions, yield estimations; satellite data can also be used to 

manage emergency scenarios, like flooding or fire. These data are furthermore 

important for the climate and meteorological models, both for the prediction of 

weather conditions on short term and the implementation of long-term climate 

datasets.  Satellite data are often combined with ground measurements, for the 

calibration and validation processes. Each agricultural use requires specific 
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frequency bands and having a range of bands as wide as possible is important to 

increase the range and the quality of potential application. 

Sensors can be classified according to their resolution, which indicates the 

potential detail provided by the imagery. There are three types of resolution: 

 Spatial resolution: indicates the number of pixels (i.e., the smallest discrete 

element of a digital image) per image. It is usually provided as a technical 

feature of the sensor, indicating the size of a square pixel composing the 

image. For example, if the nominal spatial resolution of a sensor is 4 m, each 

pixel will represent a 4 m x 4 m square of land.  

 Spectral resolution: the ability to acquire and measure specific ranges of 

electromagnetic wavelengths. As resolution increases, the acquisition bands 

capture narrower ranges of wavelengths. 

 Temporal resolution: indicates the frequency of acquisition of the satellite over 

a certain point. This concept is related to the “revisit period” (or “revisit 

time”), i.e. the time required to the sensor to pass over the same orbit and 

acquire data over a reference frame. However, the temporal resolution can be 

higher than the revisit time, since it accounts the non-nadir acquisitions 

acquired over a certain point which can be observed by partially-overlapping 

orbits. 

In this work, the term “resolution” will usually indicate the spatial resolution, 

except where otherwise indicated. 

The first use of satellite EO for agricultural purposes was performed in 1972, 

after the launch of the first Landsat satellite. The Landsat-1 (NASA) was the first 

step of the American EO Programme based on satellite imagery, and the mission 

was equipped with a MSS (Multispectral Scanner System) acquiring visible and 

near-infrared data at the spatial resolution of 80 meters, with a revisit period of 16 

days. Since then, the number of operative satellite sensors which are suitable for 

agricultural applications has increased significantly, as well as the number of 

studies based on this technology. In fact, the number of papers focusing on 

agricultural remote sensing which was published in 2020 was about ten times 

higher than those published in year 2000 [21]; this is due to the progressive 

improvement of the computer possibilities and new satellite platforms like cube-

sats, allowing researchers easy access and use of this data, and the new global food 

security challenges that humanity is called to face. Moreover, new computing 

platforms are now available to deal with the high requirements of satellite data, in 

terms of storage volumes and processing capabilities. This is the case of Google 

Earth Engine (GEE), where a huge volume of historical data is available, including 

images acquired by a wide range of satellites; in addition, GEE provides a python-

based command window to process the data directly in the cloud, and to define 

the spatio-temporal borders of the analysis.  
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In Table 1 are listed the most used optical sensors for agricultural applications, 

detailing the main technical characteristics [22]. The optical data measure the 

electromagnetic signal from Earth surface in the spectrum of visible and infrared. 

The sensors are usually designed to retrieve information in two modes: 

“panchromatic” and “multispectral”. The panchromatic mode is used to maximize 

the spatial resolution, to the detriment of the spectral resolution; the multispectral 

mode is able to retrieve information for different spectral bands, providing multi-

level rasters (e.g., the blue, green and red bands for the Visible): this result is 

achieved losing some spatial resolution. The multispectral mode is the most 

widely used for scientific analysis in agriculture [21], especially because the 

availability of “very high resolution” sensors has increased in the last years. 

Optical bands are often combined to retrieve indices which are sensitive to 

specific variables or elements. For example, the normalized difference between the 

Red and Near-Infrared bands is commonly called NDVI (Normalized Difference 

Vegetation Index), which is a widely used index for agricultural applications, 

including crop classifications, growing monitoring and to derive information 

about plant health status. 

In Table 2 some of the most used satellite indices derived from optical 

information are listed: this type of measurements is very popular in the scientific 

research concerning agricultural analysis. 

Microwave sensors provide another important group of EO data. The remote 

sensing systems which just measure the microwaves emitted by the surface are 

called “passive”, while the “active” sensors measure the backscattering of a signal 

which is emitted by an antenna installed on board the satellite itself. 

In Table 3 are listed the most important radar satellites for agricultural 

applications [23]. Radar data can be used for several purposes by choosing 

appropriately the technical specifics of the sensor: in particular, the choice of a 

radar product shall take into account the acquisition band of the antenna and the 

polarization of the signal.  

The radar polarization depends on the coupled system of emitting and 

receiving antennas. It refers to the orientation (horizontal or vertical) of the 

microwave signals which are emitted and received by the sensor. Most of the 

active radars are designed to transmit microwaves in vertical and horizontal 

modes, and also the received signal can be measured in the two components. There 

are four possible configurations defining the polarization of radar data: VV 

(Vertical-Vertical), HH (Horizontal-Horizontal), VH (Vertical-Horizontal), HV 

(Horizontal-Vertical). The first letter indicates the polarization of the emitted 

signal; the second letter refers to the component of the backscattering signal which 

is measured by the sensor. For example, VH indicates that the microwaves are 

emitted with vertical polarization and the horizontal component of the 

backscattering signal is measured.   
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Table 1. List of the most used sensors for agricultural applications, operating in the visible 

and infrared spectrum. The sensors are classified according to the pixel size (ps): Low 

Resolution (ps > 100 m), High Resolution (10 m < ps ≤ 100 m), Very High Resolution (ps ≤ 

10 m). (*) p: to present. The swath is the size of the photograms acquired by the sensors. 

Acronyms used for the spectral ranges. VIS: visible; NIR: near-infrared; SWIR: shortwave 

infrared; MWIR: midwave infrared; LWIR: longwave infrared; TIR: thermal infrared. 

Visible and Infrared sensors 

Mission (sensors) Nation Bands 

Resolution 

Swath 

(km) 
Life time Panchromatic 

Mode 

Multispectral Mode 

(Number of Bands) 

Low Resolution (LR) 

NOAA 6-20 (VIIRS) U.S. 
VIS/NIR/SWIR/ 

MWIR/ LWIR 
- 

370 m/740 m/1.1 

km/8 km (22) 2400 1979 – p* 

SPOT 4-5 (Végétation) France VIS/NIR/SWIR - 1.15 km (4) 2000 1998 – 2015  

Terra (MODIS) U.S. 
VIS/NIR/SWIR/ 

MWIR/ LWIR/TIR 
- 

250 m/500 m/1 km 

(36) 2330 1999 – p*  

High Resolution (HR) 

SPOT 1–3 (HRV) France VIS/NIR 10 m 20 m (4) 60 1986 – 2013  

SPOT 4 (HRVIR) France VIS/NIR/SWIR 10 m 20 m (4) 60 1998 – 2017  

Landsat 7 (ETM+) U.S. VIS/NIR/SWIR/TIR 15 m 30 m (8) 185 1999 – p*  

SPOT 5 (HRG) France VIS/NIR/SWIR 2.5 m/5 m 10 m/20 m (4) 20 2002 – 2015  

THEOS-1 (MS, PAN) Thailand VNIR 2 m 15 m (4) 22 2008 – p*  

Landsat 8-9 (OLI, TIRS) U.S. VIS/NIR/SWIR/TIR 15 m 30 m (8) 185 2013 – p*  

Sentinel-2 A/B (MSI) Europe VIS/NIR/SWIR - 
10 m/20 m/60 m 

(13) 290 2015 – p*  

Very High Resolution (VHR) 

Kompsat-2 (MSC) 
South 

Korea 
VIS/VNIR 4 m 1 m (4) 15 1999 – p*  

Ikonos (OSA) U.S. VIS/NIR 0.82 m 3.20 m (4) 11 2000 – 2015  

Quick Bird (BGIS-2000) U.S. VIS/NIR 0.65 m 2.62 m (4) 16 2001 – 2015  

Geo Eye (GIS) U.S. VIS/NIR 0.41 m 1.64 m (4) 15 2008 – p*  

World View 1 (WV60) U.S. VIS/NIR 0.5 m - 17.6 2008 – p*  

World View 2-3 (WV110) U.S. VIS/NIR 0.46 m 1.84 m (8) 16.4 2009 – p*  

Pleiades/PleiadesNeo France VNIR 0.50 m/0.30 m 2 m/1.2 m (4/6) 20/14 2013 – p*  

SPOT 6–7 (NAOMI) France VIS/NIR 2 m 8 m (4) 60 2013 – p*  

Gao Fen 1–6 (PMS) China VIS/NIR 2 m 8 m (4) 90 2014 – p*  

World View 4 (SV-110) U.S. VIS/NIR 0.31 m 1.24 m (8) 13.1 2016 – p*  

Super View 1-4 (PMS-3) China VIS/NIR 0.50 m 2 m (4) 12 2016 – p*  

THEOS-2 (MS, PAN) Thailand VIS/VNIR 0.5 m 2 m (4) 10.3 2022 – p*  
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Table 2. List of the most common satellite-based indices for agricultural applications. R: 

radiation band (in some cases the nominal name is specified, e.g. R430: numbers refer to 

the wavelength in nanometers [nm]). 

Index Equation Application 

EVI Enhanced vegetation index 
2.5(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)

(𝑅𝑁𝐼𝑅 + 6𝑅𝑅𝐸𝐷 − 7.5𝑅𝐵𝐿𝑈𝐸 + 1)
 Disease, biomass 

MSI Moisture Stress Index 
𝑅𝑆𝑊𝐼𝑅2

𝑅𝑁𝐼𝑅
 Vegetation water content 

NDII 
Normalized Difference Infrared 

Index 

𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅2

𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊𝐼𝑅2

 
Vegetation water content, leaf stress 

detection 

NDMI 
Normalized Difference Moisture 

Index 

𝑅𝑁𝐼𝑅 − (𝑅𝑆𝑊𝐼𝑅1 − 𝑅𝑆𝑊𝐼𝑅3)

𝑅𝑁𝐼𝑅 + (𝑅𝑆𝑊𝐼𝑅1 − 𝑅𝑆𝑊𝐼𝑅3)
 Forest analysis and detection 

NDSI Normalized Difference Soil Index 
𝑅𝑆𝑊𝐼𝑅 − 𝑅𝑁𝐼𝑅
𝑅𝑆𝑊𝐼𝑅 + 𝑅𝑁𝐼𝑅

 Soil classification 

NDVI 
Normalized Difference 

Vegetation Index 

𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷
𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷

 
Biomass, breeding, phenotyping, yield, 

disease, n-management, soil moisture, 

water stress 

NDWI 
Normalized Difference Water 

Index 

𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑁𝐼𝑅
𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑁𝐼𝑅

 Vegetation water content 

NPCI 
Normalized Pigment Chlorophyll 

Ratio Index 

𝑅680 − 𝑅430
𝑅680 + 𝑅430

 Water stress 

SIWSI 
Shortwave Infrared Water Stress 

Index 

𝑅858.5 − 𝑅1640
𝑅858.5 + 𝑅1640

 Leaf water content, water stress 

WABI Water Balance Index 

𝑅1500 − 𝑅531
𝑅1500 + 𝑅531

 Irrigation sceduling 

Each polarization is used to retrieve specific information, since the emitted 

microwaves are backscattered according to the characteristics of the reflecting 

surface, like the soil water content and the geometric structure of the ground. 

The most used classification of radar bands was proposed by the Institute of 

Electrical and Electronics Engineering (IEEE), assigning letters to defined ranges 

of signal frequencies: L (1 - 2 GHz); S (2 – 4 GHz); C (4 – 8 GHz); X (8 – 12 GHz); 

Ku (12 – 18 GHz); K (18 – 27 GHz); Ka (27 – 40 GHz); V (40 – 75 GHz); W (75 – 110 

GHz). The most used bands for agricultural applications are the C and L bands, 

which have important capabilities for the crop classification, monitoring of crop 

growth, detecting biomass and estimating soil moisture. Each band has specific 

advantages and limitations (e.g. the L band is characterized by a higher 

penetration depth in presence of high-vegetation [24]). In Chapter 4, will be 

discussed the potential of the C band from Sentinel-1, for the monitoring of maize 

growing phases and estimation of sowing dates. However, a detailed analysis of 

the potential applications of radar bands is not the aim of this thesis. 
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Table 3. List of the most used sensors for agricultural applications, operating in the 

microwave spectrum. (*) p: to present. Wavelength and frequency range of radar bands. L: 

15-30 cm (1-2 GHz); S: 8-15 cm (2-4 GHz); C: 4-8 cm (4-8 GHz); X: 2.5-4 cm (8-12 GHz). The 

swath is the size of the photograms acquired by the sensors. Polarization acronyms: the 

first letter indicates the polarization of the transmitted signal; the second letter refers to the 

polarization of the receipt signal. VV: Vertical-Vertical; HH: Horizontal-Horizontal; VH: 

Vertical-Horizontal; HV: Horizontal-Vertical; Quad.: combining all four polarizations; 

Dual.: combining two polarization modes, usually VV and VH (i.e. the case of Sentinel-1). 

Radar sensors 

Mission (sensor) Nation 
Frequency 

band 

Active/ 

Passive 
Resolution Polarization 

Swath 

(km) 
Life time 

ERS 1-2 (AMI-SAR, 

AMI-SCAT) 
Europe C A 30 m VV 5/500 1991 - 2011 

JERS-1 (SAR) Japan L A 18 m HH 75 1992 - 1998 

RADARSAT-1 (SAR) Canada C A 8 m/100 m HH 50/500 1995 - 2013 

ENVISAT (ASAR, RA-2, 

MWR) 
Europe C A/P 1 km/30 km Quad. 56/40 2002 - 2012 

Coriolis (WindSAT) U.S. C P 7 km/80 km Dual. 1000 2003 - p* 

COSMO-SkyMed (SAR-

2000) 
Italy X A 1 m/100 m Quad. 10/200 2007 - p* 

Metop A/B/C (ASCAT, 

AVHRR) 
Europe L/S/X A/P 25 km/50 km VV 500/550 2007 - p* 

RADARSAT-2 (SAR) Canada C A 3 m/100 m Quad. 18/500 2007 - p* 

TerraSAR-X (SAR-X) Germany X A 1 m/16 m Quad. 5/150 2007 - p* 

SMOS (MIRAS) Europe L P 35 km Dual. 1000 2009 - p* 

ALOS-2 (PALSAR-2) Japan L A 1 m/100 m Quad. 25/350 2014 - p* 

Sentinel-1 A/B (SAR-C) Europe C A 10 m/84 m Dual. 20/400 2014 - p* 

SMAP (SMAP) U.S. L A/P 
3 km/10 

km/40 km 
VV, HH, HV 1000 2015 - p* 

ALOS-4 (PALSAR-4) Japan L A 1 m/25 m Quad. 35/700 2021 - p*   
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1.3.2 EO-derived products for large-scale agricultural 

applications 

Applications of satellite data and products derived from remote sensing in the 

field of hydrological and agricultural modelling are the basis of this dissertation. 

As previously introduced, EO can be used directly to compose raster images, 

perhaps after a pre-processing of raw acquisitions, or the different bands can be 

combined to retrieve satellites indices.  

A third possibility consists in the use of remote sensing data into systems and 

models retrieving information with uniform large-scale spatial details; for 

example, global climate gridded datasets, maps of land use, elevation models and 

soil properties. Since remote sensing provides information with relatively high 

frequencies, this EO source is now widely used within climate and weather 

models, as well as for a wide range of systems classification and monitoring of the 

Earth’s surface.  

In the next sections, three main classes of variables derived from remote sensing 

were introduced, which were used to the aim of this thesis. A more detailed list of 

the most important EO-based products is provided in Appendix A. 

Climate variables 

The use of remote sensing to retrieve large-scale climate data is nowadays a 

well-established technique used by the researchers all around the world. Despite 

gauged measurements still provide most accurate data of rainfall, soil moisture, 

temperatures, winds, hail and other meteorological variables, the study of global 

climate requires systems able to describe all the Earth surface, including oceans 

and places unfit for human life. The most used gauge-based climate datasets are 

obtained by interpolating the network of ground measurements. However, the 

accuracy of the distributed result is strictly dependent on the density and the 

uniformity of the measurement network. 

Remote sensing measurements cover all the globe surface, acquiring 

information at intervals of few days. This information is now used by research 

centers and spatial agencies to retrieve large-scale gridded data of climate 

variables or assimilated by the re-analysis gridded models. In the latter case, 

climate variables are not directly derived from satellite observations, but remote 

sensing and ground observations are combined into global estimates using 

advanced modelling and data assimilation systems. In this work, precipitation and 

temperature from a re-analysis dataset were used as driving input for a 

multiannual modelling at the global scale: it is therefore useful to better detail the 

difference between satellite-based climate data and reanalysis products. 
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The methods used to derive climate data from satellite information can be 

classified according to the spectral range of measured signals. For example, the 

satellite-based estimation of precipitation can be retrieved using VIR and NIR, 

according to the principle that cold and bright clouds are associated to convections 

[25]. An important instrument to derive precipitation data from satellite sensors is 

the microwave measurement: rainfall can be estimated through algorithms which 

measure the soil moisture variability through radar sensors, e.g. the SM2RAIN 

global dataset derived from ASCAT measures [26]. 

Reanalysis products are another important source of large-scale climate data, 

which are based on observations from several sources (including satellite sensors) 

and the assimilation of the observed information in background forecast models. 

This kind of datasets are widely used in climate research, for the monitoring of 

current climate and the comparison with past conditions. The available historical 

observations are used to define a wide variety of climate gridded maps, by running 

modern short-range weather forecasts models. The global coverage of the 

reanalysis products, the uniform consistency of the grids (sometimes called “maps 

without gaps”) and the high temporal resolution of the obtained information make 

this kind of data very useful for climate-based analysis. 

Soil properties  

EO techniques are widely used to retrieve soil properties for spatial datasets. 

The combined use of multiple types of sensors is a valuable instrument to describe 

the physical and chemical properties of soils, like bulk density, cation exchange 

capacity, organic carbon, pH, soil texture fractions and coarse fragments. Modern 

machine learning methods can combine the EO information, ground data and soil 

regional profiles to retrieve a wide variety of large-scale maps to describe soil 

properties at different depths. 

The measurement of soil water content and its temporal variability is at the 

basis of most of the models describing the agricultural water uses: soil moisture is 

a very important parameter for the assessment of crop water use at any spatial 

scale, and is strictly dependent on soil properties. The soil texture defines the 

capacity of soils to retain water, which is a key factor for the assessment of crop 

water stress and the study of irrigation requirements.  

Remote sensing is now widely used to produce large-scale gridded data of soil 

parameters. 

Most of the studies focused on large-scale agricultural water assessments 

adopted different assumptions to assign a soil moisture initial level at the 

beginning of growing seasons, taking into account the soil’s ability to retain and 

store water. In Chapter 3 will be discussed the sensitivity of global crop water 

requirement assessments to the soil water content at the sowing date, and the 
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method based on soil parameters and climate variables to initialize the growing 

season will be described.  

Land classification 

The classification of the land surface is one of the first uses for which EO was 

used for. The descriptive study of land uses, temporal changes of vegetation 

extensions, dynamics of hydrographic networks, digital elevation models (DEM) 

are just some of the possible applications of satellites for the Earth monitoring. 

Agriculture is one of the sectors that benefits most from the remote sensing 

technologies, in terms of increasing of crop yields, monitoring of plant health and 

dynamic mapping of crop types and irrigation practices. 

The digital image classification is a process assigning features to a pixel (or 

groups of pixels) composing rasters. The agricultural classifications derived from 

remote sensing measurements are firstly used to identify croplands. Services like 

the Copernicus Land Service (CLS) provides global rasters of croplands at high 

spatial resolution (e.g., CLS global map of croplands at 100x100 m resolution [27]). 

The classification methods work on the basis of training processes (supervised and 

unsupervised) or on the basis of theoretical models (parametric and non-

parametric). 

Large-scale agricultural assessments are often based on spatial data of extents 

of crop-specific areas, which may contain further information on irrigation 

practices and sowing schedules. The definition of a dynamic agricultural 

classification combining these information is one of the most ambitious challenges 

remote sensing could help to address. 

In this dissertation, will be particularly exploited the global crop classification 

from the MIRCA 2000 dataset, which will be detailed in Chapter 2. A more detailed 

review of the available global crop datasets is presented in Appendix A. 
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Chapter 2 

Global assessment of crop irrigation 

requirements 

The work described in this Chapter has been partially derived from paper [28]. 

As already briefly mentioned in Chapter 1, irrigated croplands provide 40% of 

global agricultural production, despite these areas only represent about 20% of 

total croplands. Therefore, assessing irrigation requirements is essential for the 

development of effective water-related policies for an efficient management of 

water resources. Moreover, global-scale analyses are becoming increasingly 

relevant, motivated by globalized production and international trade of food as 

well as by the need of common strategies to address climate change. 

In this Chapter, a comprehensive model to estimate crop growth and irrigation 

requirements of 26 main crops at global scale is presented. The model computes a 

soil water balance using daily precipitation and reference evapotranspiration 

based on the ERA5 reanalysis dataset, prided by the European Copernicus 

Program. The irrigation requirement, defined as the minimum water volume to 

avoid water stress, is computed for year 2000 at the resolution of 5 arc-min (or 

0.0833°) and aggregated at different spatial and temporal scales for relevant 

analyses. The analysis was performed for year 2000 because of the availability of 

crop data and national withdrawal for this specific year, testing the model before 

the computation of crop requirements over a multi decade period (as described in 

Chapter 3). 

The estimated global irrigation requirements of 962 km3 is described in detail, 

also in relation to the spatial variability and to the monthly variation of the 

requirements. Three different areas of the world (California, Northern Italy and 

India) were analyzed in detail, to highlight the wealth of information provided by 

the model in different climatic conditions. National data of irrigation withdrawals 

have been used for an extensive comparison with model results. A crop-specific 

validation has also been made for the State of California, comparing model results 

with local data of irrigation volume and independent estimates of crop water use. 

In both cases, a good agreement was found between model results and real data. 
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2.1 Numerical models for the assessment of crop water 

requirements 

As previously introduced, the irrigation requirement is intended as the amount 

of water provided to crops when precipitation does not entirely satisfy the 

evapotranspiration demand. A number of high-resolution assessments of global 

irrigation requirements exist. The first ones were based on WaterGAP [29], 

WATERSIM [30], LPJmL [31] and H07 [32] models, which mostly did not consider 

multi-cropping practices (i.e. the sequence of multiple growing seasons on the 

same area, e.g. “winter” and “spring” wheat) and provided little crop-specific 

results. The comparison in Table 4 shows that latest assessments are generally 

referred to year 2000, because of the availability of crop-specific information of 

irrigated areas for that year. This is the case for the GCWM [33], GEPIC [34], the 

assessment based on the CROPWAT model proposed by FAO [35], and the 

WATNEEDS model [36]. 

Table 4 shows that the spatial resolution of global models has increased over 

the years, mainly because of the release of crop-specific datasets of irrigated areas. 

In this work, the model used for the computation of crop irrigation requirements 

is the one presented by Rolle et al. [28]. 

With the exception of Chiarelli et al. [36], who uses high-resolution daily 

precipitation, the previous models are rarely based on daily data, or they provide 

results on lower spatial resolutions (e.g. 1° in Hanasaki et al. [32]). The present 

thesis is based on daily global data for both precipitation and reference 

evapotranspiration, working on a relatively high spatial resolution grid to best 

reproduce detail within the global scale. The reference evapotranspiration was 

calculated with temperature data, according to the Hargreaves-Samani method 

[37], and calibrated through global comparison with a widely used monthly 

dataset. The estimate of irrigation requirements from this study has been 

compared both to results of other models and to actual data from irrigation 

volumes on different spatial scales. 

The model presented in this Chapter aims to assess global irrigation 

requirements exploiting the potential of EO-based climate products, in the 

computation of a soil-water balance approach based on the FAO methodology [7]. 

For year 2000, spatial coverage resulting from 26 main crops is provided by the 

MIRCA2000 database. This dataset provides gridded data of croplands over the 

world at 5 arcmin resolution (0.0833°, about 9 km at the Equator), considering the 

specific area of each crop. The presence of irrigation infrastructures is also taken 

into account, since for every crop are provided separated grids describing areas 

equipped for irrigation and rainfed areas.  
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Table 4. Summary of models that estimate global irrigation requirement. Acronyms and 

notes used in the table. MCP: Multi-Cropping Practices. Reference Evapotranspiration 

methods: PM (Penman-Monteith), PT (Priestley-Taylor), HS (Hargreaves-Samani), SEB 

(Surface Energy Balance). Temporal resolution of data: (d) daily, (m) monthly, (m-LTA) 

monthly Long-Time Average (1961-1990). (*) 0.05° in the region between 50°N – 50°S, 0.5° 

in the rest of the world. (**) effective resolution of 0.166°, matching the two datasets. (a) 

Average result for the period 1998-2002. (b) Average result for the period 1996-2005. (c) 

The assessment provided an average result, using input data for the period 1986-1995. (d) 

The map of irrigated crops refers to year 2000. The assessment provides an average 

estimation using monthly climate data for the period 1971-2000. 

Global Models 
Spatial 

resolution 

Base 

year 
MCP Precipitation 

Reference 

evapotranspiration 

2021 [28] Rolle et al. 2021 0.0833° 2000 yes 0.25° (d) 0.25° (d) HS 

2020 [36] WATNEEDS 0.0833° 
2000(a), 

2016 
yes 0.05° (d), 0.5° (d)* 0.5° (m) PM 

2011 [35] 
CROPWAT 

(FAO) 
0.0833° 2000(b) no 0.5° (m) 0.166° (m-LTA) PM 

2010 [34] GEPIC 0.5° 2000 yes 0.5° (m) 0.5° (m) HS 

2010 [33] GCWM 0.0833° 2000(a) yes 0.5° (m), 0.166° (m-LTA) ** 
0.5° (m), 0.166° (m-

LTA)** 

PT, 

PM 

2008 [32] H07 1° 1991(c) no 1° (d) 1° (d) SEB 

2008 [31] LPJmL 0.5° 1985(d) no 0.5° (m) 0.5° (m) PM 

2007 [30] 
WATERSIM 

(IWM) 
0.1° 2000 no 0.5° (m) 0.5° (m) PM 

2002 [29] WaterGAP 0.5° 1995 no 0.166° (m-LTA) 0.166° (m-LTA) PT 

Growing periods are defined for temporary crops (i.e. those that are both sown 

and harvested during the same year) on a monthly basis. In order to use this 

information within a daily assessment, in this thesis is assumed that sowing and 

harvest occur on the 16th and the 15th day, respectively, of the given months, 

similarly to other studies (e.g. [38]). The length of a growing season is then 

considered as the number of days between the sowing and harvest dates. Growing 

periods for perennial crops (i.e. those that don’t need to be replanted every year, 

like fruit trees) are defined by the green-up dates instead. Such dates are taken 

from Chapagain & Hoekstra (2004) [39] and refer to the FAO agro-climatic zones 

system (GAEZ) [40]. 
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2.2 The MIRCA2000 crop dataset 

The MIRCA2000 dataset is a global gridded crop dataset, providing cropland 

distribution for 26 main crops and monthly physical areas data circa 2000 [41]. All 

major food crops are included, some as specific products (e.g., maize, wheat, rice) 

and others as aggregated groups of agricultural products (e.g., perennial crops, 

pulses, fodder grasses). The advantage of this dataset, compared to other similar 

products, is that information is provided coupling crop-specific areas, presence of 

irrigation infrastructures and sowing and harvesting monthly calendars.  

The spatial distribution of the global agricultural areas is represented in Figure 

1, as ratio between cropland hectares and total land hectares: Figure 1a provides 

the spatial distribution of areas equipped for irrigation, while Figure 1b describes 

the spatial distribution of rainfed areas, according to MIRCA2000. 

Figure 1. Spatial distribution of global croplands, according to the MIRCA2000 dataset 

(circa year 2000); (a) density of irrigated croplands, as percentage of agricultural area 

equipped for irrigation with respect to the total land area; (b) density of rainfed areas, as 

percentage of agricultural rainfed area with respect to the total land area. 
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Another important feature of this dataset is the information of multi-seasonal 

practices. Whether in rainfed and irrigated conditions, crops can be cultivated 

more than once per year: for example, wheat is cultivated both in winter and 

summer in many parts of the world. MIRCA2000 includes information of multi-

seasonal crops and provides areas and calendars for every growing season. 

Irrigated rice, for example, accounts for three growing seasons per year in some 

regions of India. This information is particularly important for a multi-decade 

assessment of water requirements, allowing not only a comparison between the 

annual crop-specific results but also the analysis of temporal variability of seasonal 

requirements. 

In Table 5, the crop-specific areas provided by the MIRCA2000 dataset are 

summarized, grouping separately the rainfed hectares and those equipped for 

irrigation.  

Table 5. Crop-specific classes provided by the MIRCA2000 dataset (circa year 2000), as 

rainfed croplands and areas equipped for irrigation (AEI). The dataset provides spatial 

distribution, sowing and harvesting periods for 26 crops (21 primary products, like wheat 

and maize, and 5 aggregated classes). 

Primary crops Aggregated crop classes 

Crop Rainfed [ha] AEI [ha] Crop Rainfed [ha] AEI [ha] 

Wheat 1'479'284 666'322 Other annual 886'517 201'387 

Rice 626'018 1'031'197 Fodder grasses 929'885 116'840 

Maize 1'216'220 299'007 Other perennial 602'872 128'530 

Soybeans 687'782 60'327 Pulses 616'644 54'558 

Barley 504'810 46'458 Citrus 39'194 35'627 

Sorghum 367'154 34'366    

Millet 318'949 17'437    

Cotton 168'994 162'522    

Rapeseed 212'321 34'038    

Groundnuts 190'449 36'758    

Sugarcane 107'570 101'890    

Sunflower 194'891 12'687    

Potatoes 159'631 37'455    

Cassava 154'424 112    

Rye 99'576 4'423    

Coffee 99'883 1'739    

Oil palm 96'404 110    

Grapes 54'150 17'267    

Cocoa 67'413 125    

Sugar beet 46'192 15'740    

Date palm 1'950 7'234    
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2.3 ERA5: the ECMWF Re-Analysis 5 climate dataset 

The introduction of hydroclimatic data from remote sensing has brought an 

important improvement to global models. Satellites are increasingly designed and 

used for agricultural applications [42], helping to identify irrigated lands [43] and 

indirectly to estimate irrigation volume [44]. The European Copernicus Program, 

started in 2014 as a continuation of GMES (Global Monitoring for Environment 

and Security), developed a system of satellites known as Sentinel Constellation to 

continuously monitor the Earth environment [45].  

Reanalysis products provide complete pictures of past weather and climate, at 

high temporal resolution. They are a blend of observations with past short-range 

weather forecasts rerun with modern weather forecasting models. The reanalysis 

datasets are comprehensive and consistent in time, and are sometimes referred to 

as “maps without gaps” [46]. The reanalysis process of “data assimilation” 

combines past short-range weather forecasts and observations. This process 

imitates the calculation of day-to-day weather forecasts, which are based on the 

analysis of the current state of the Earth system to set a starting point.  

In this study, the hydroclimatic data from the global re-analysis dataset ERA5 

were used, i.e. the global reanalysis dataset produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) as an improvement over the 

previous ERA-Interim product. This dataset was released by Copernicus in 2018 

[47], providing hourly climate data that combines satellite information and ground 

measurements for 1950-present at the spatial resolution of 0.25° (i.e. about 31km at 

the Equator, a remarkable improvement compared to the 45 arc min, 6-hour spatio-

temporal resolution of ERA-Interim).  

As shown in Figure 2, ERA5 is based on assimilation of remote sensing and 

ground measurements and provides several hydro-climatic variables that can be 

useful in coupled hydrological-agricultural applications [48]. ERA5 is based on the 

re-analysis of tens of data acquisitions, both from remote sensing and conventional 

techniques. The number of observations assimilated in ERA5 has increased from 

about 0.75 million per day in 1979 to 24 million per day by the end of 2018. This re-

analysis is produced through the Integrated Forecast System (IFS) of ECMWF 

(version Cy41r2, operative since 2016), and it’s based on a 31 km resolution 

component (HRES) with 137 levels in the vertical spanning, from the surface to the 

0.01 hPa quote [49]. 

InTable 6, ERA5 is compared to the most relevant re-analysis datasets which 

are currently available, including some products from ECMWF. The higher 

resolution, the large temporal period, the high temporal frequency of outputs and 

the global coverage make ERA5 one of the best products currently available for 

comprehensive modelling.  
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Figure 2. Conceptual scheme of the reanalysis process used by ECMWF to produce ERA5. 

Annual temperature anomalies on Earth (base period: 1981-2010). Credits by ECMWF. 

Table 6. Summary of the most relevant large-scale re-analysis datasets. (*) ERA-Interim 

has been replaced by ERA5, but many studies still provide estimates and performance 

analyses based on this dataset; p: present. 

Re-analysis 

dataset 
Institution Coverage Period Output 

Grid 

spacing 
Levels 

Assimilation 

scheme 

ERA5 ECMWF Global 1950-p 1 h 0.25° 137 4D-Var 

ERA5 Land ECMWF Global 1950-p 1 h 0.1° 60 4D-Var 

ERA-Interim* ECMWF Global 1979-2019 6 h 0.75° 60 4D-Var 

MERRA-2 NASA Global 1980-p 1 h 0.5° x 0.625° 72 3D-Var-FGAT 

JRA-55 JMA Global 1978-p 6 h 0.625° 60 4D-Var 

COSMO-REA6 DWD Europe 1995-2019 1 h 0.055° 40 Nudging 

UERRA ECMWF Europe 1961-2019 6 h 0.1° 60 3D-Var 

NARR NCEP 
North-

America 
1979-2019 3 h 0.25° 60 3D-Var 
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The reliability of ERA5 for agricultural applications finds confirmation in the 

recent release of new products derived from ERA5 and available through the 

Copernicus Climate Change Service. In particular, the AgERA5 dataset provides 

daily surface meteorological data for the period from 1979 to present as input for 

agriculture and agro-ecological studies [50]. The climate data from AgERA5 are 

aggregated at the daily scale and include the most useful information for the 

estimation of actual evapotranspiration (however, this dataset had not been yet 

released at the time the analyses described in the present thesis were carried out). 

In this Chapter, the methods and results related to the assessment of global 

irrigation requirements for year 2000 are described. In this case, the hourly data of 

precipitation and temperatures for year 2000 were downloaded and aggregated at 

the daily scale as described in the next Chapter. In Chapter 3, the extension of the 

analysis to the 1970-2019 period will be described, detailing the method used for 

the processing of ERA5 data over these years. 

2.4 Estimation and calibration of Reference 

Evapotranspiration 

The reference evapotranspiration (ET0), defined as the evapotranspiration rate 

[mm/day] from a hypothetical well-watered grass surface with fixed 

characteristics [7], was calculated using the Hargreaves-Samani (HS) method [37]. 

The expression for daily ET0 [mm/day] reads: 

𝐸𝑇0,𝑖 = 𝑘𝐻𝑆 × 𝑅𝑎,𝑖 × (𝑇𝑚𝑒𝑎𝑛,𝑖 + 17.8)√𝑇𝑚𝑎𝑥, 𝑖 − 𝑇𝑚𝑖𝑛, 𝑖 , (1) 

where 𝑘𝐻𝑆 is an empirical coefficient (fixed to 0.0023 in the original formula 

[37]), 𝑇𝑚𝑎𝑥, 𝑖, 𝑇𝑚𝑖𝑛, 𝑖 and 𝑇𝑚𝑒𝑎𝑛,𝑖 are respectively the maximum, minimum and mean 

temperatures for the i-th day (in °C) and 𝑅𝑎,𝑖 is the equivalent evaporation (in mm), 

calculated as ratio between the top-of-atmosphere radiation and the latent heat of 

vaporization of water (1/ = 0.408). Temperature and radiation are daily-averaged 

ERA5 data. The value 17.8 in Equation (1) imposes a null 𝐸𝑇0 when 𝑇𝑚𝑒𝑎𝑛 =

−17.8°𝐶 ≈ 0°𝐹. 

All the variables required for the application of (1) were taken from ERA5 and 

were aggregated on a daily scale. The top-of-atmosphere radiation could be 

calculated using a geometric approach, but the ERA5 product was chosen to be 

consistent with the spatial grid of temperature data. In order to obtain daily 

rainfall, the available hourly precipitation data from ERA5 were aggregated 

summing values from 1:00h to 0:00h in each day. Climate data were downloaded 

through the Application Programming Interface (API) of ECMWF and 

subsequently processed to match the MIRCA2000 spatial grid. 
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Since the HS approach requires only temperature and top-of-atmosphere 

radiation data, this method was chosen to reduce the uncertainty related to using 

many other daily variables (e.g. relative humidity, wind) which are required by 

the Penman-Monteith (PM) method. Although the HS method is a valid alternative 

to the PM method [7], the HS estimations were calibrated by comparing the annual 

ET0 with annual gridded values of PM-based ET0. In this way, the daily ET0 were 

easily estimated using only temperature data, being consistent with a method 

recommended by FAO.  

The calibration was performed by introducing the spatial variability of the kHS 

coefficient, in order to provide consistency with the annual estimates from PM 

available in the CRU Time-Series global dataset [51]. This procedure was 

developed according to the monthly calibration described by Heydari et al. [52]. 

The yearly HS evapotranspiration has been upscaled on a 0.5° resolution to match 

the spatial grid of CRU. The kHS coefficient were obtained by multiplying 0.0023 by 

the ratios between annual PM and HS reference evapotranspiration values. 

Finally, the kHS values were downscaled to match the MIRCA2000 grid, 

proportionally to the uncalibrated ET0 values in each pixel. The calibrated 

empirical coefficients were used to calculate the daily ET0, according to (1).  

The daily ET0 from Equation (1) has been computed on the global grid of 0.0833° 

for the whole year 2000. The mean value of the calibrated kHS coefficients in 

Equation (1) was 0.0024 over the irrigated cells, with a standard deviation of 

0.0004. The calibration produced higher coefficients along coastal and arid regions, 

which is consistent with the tendency of HS to underestimate ET0 in these scenarios 

[53]. 

Results obtained have been compared with the PM reference 

evapotranspiration from CRU Time-Series [51] for the months of January and July, 

as shown in Figure 4. The scatterplots compare, on a global scale, the monthly ET0 

from the PM and HS methods, in primarily cultivated areas, i.e. in cells where the 

cultivated portion is greater than 90% of the pixel’s area.  

The Pearson correlation coefficient (R) between the two datasets is 0.987 for 

January (Figure 4a) and 0.978 for July (Figure 4b). Similar results were obtained 

considering all the pixels with at least 1% of cultivated area. This ensures that no 

substantial bias emerges from the monthly comparison. 

The two ET0 from HS and PM have also been compared in every cell, grouping 

the results by climate conditions. Figure 3 shows the boxplots over agro-climatic 

zones for the months of January (a) and July (b), according to the GAEZ thermal 

agro-classification [40]. Zones are obtained on the basis of climate data from CRU-

TS [51] according to the indications given by Van Velthuizen et al. [54], and are 

shown in Figure 3d. 
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Figure 4. Comparison between the CRU-TS v.4 ET0 (Penman-Monteith, monthly data) and 

the monthly average ERA5-based Hargreaves-Samani ET0. The comparison was made 

considering all the irrigated cells around the world where the cultivated area is at least 90% 

of the pixel, for the months of January (a) and July (b). 

(a) (b) 

Figure 3. (a-b) Boxplots and area-weighted means of percentage differences between 

monthly ET0 (Computed HS and PM from CRU-TS). Boxplots show values corresponding 

to 25%, 50% and 75% of cultivated lands for six climate zones: Tropics (orange), Sub-

tropics summer rainfall (yellow), Sub-tropics winter rainfall (green), Temperate sub-

continental (blue). The grey boxplot describes the ET0 alignment over the least irrigated 

zones: Oceanic Temperate, Continental Temperate, Oceanic Boreal, Sub-Continental 

Boreal, Continental Boreal, Arctic. The horizontal dimension of the boxplot is 

proportional to the percentages of irrigated areas per climatic region, reported in the pie 

chart (c). Asterisks: area-weighted means of annual percentage differences. (d) GAEZ 

global agro-climatic classification of surface lands. 
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The three levels in each boxplot show the percentage differences corresponding 

to 25%, 50% and 75% of cultivated areas in each climatic zone. The asterisks 

indicate the area-weighted mean percentage difference. The pie chart in Figure 3c 

shows the percentage of irrigated areas per climate region: tropics (24.5%), sub-

tropics summer rainfall (27.9%), sub-tropics winter rainfall (14.4%), temperate sub-

continental (28.6%); the sum of areas equipped for irrigation in the oceanic-

temperate, continental temperate, boreal and arctic zones are less than 5%. Since 

85.5% of total cultivated areas are in the northern hemisphere, in temperate regions 

January is mostly a winter month: this explains the substantial negative differences 

found where the HS method is less effective due to low temperatures. On the other 

hand, HS and PM methods are more aligned on tropical (orange) and sub-tropical 

regions (beige and yellow). Also the temperate sub-continental region (green), that 

accounts the largest fraction of temperate areas, shows a good alignment during 

summer and winter. In summary, except for a few isolated cases on tropical and 

temperate-continental regions, monthly correlation indices between HS and PM 

were typically found higher than 0.8. This is consistent with results from previous 

studies, where HS was found a reliable method on a global scale [55] and also with 

studies in arid and semi-arid regions where R reaches 0.97 [56]. 

Although ERA5 provides data of potential evapotranspiration, ETp (defined as 

the maximum amount of evaporation, under existing atmospheric conditions, 

from a surface of pure water), this variable is the result of an energy-balance 

approach [57] which is conceptually different from ET0. 

Results were compared with this dataset, finding marked local differences, with 

annual rate of ET0 computed with HS being up to 25% lower than ETp, with winter 

ETp being too large in central Asia and North America and with unclear low values 

in some intensively cultivated regions (central France, the Amazon, the Great 

Lakes region of the U.S., Myanmar, Laos, New Guinea). For these reasons, ETp is 

not recommended to be used in the assessment of crop water requirements.  

2.5 Method for the estimation of crop water 

requirements 

For assessing irrigation requirements on a global scale, a water balance model 

has been developed, improving the methodology proposed by Tuninetti et al. [38]. 

The model calculates the irrigation requirement using a soil-water balance on land 

equipped for irrigation, taking as input the climatic data and the agricultural 

information described in the previous paragraphs. The actual evapotranspiration 

(ETa) was evaluated for each day, according to the FAO’s approach [7], i.e. 

 

 
𝐸𝑇𝑎,𝑖 = 𝐸𝑇0,𝑖 ⋅ 𝑘𝑐,𝑖 ⋅ 𝑘𝑠,𝑖 , (2) 
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where ET0 and ETa are expressed in mm/day, i is the specific day, kc is a 

dimensionless coefficient specific for each crop and growing phase (or crop 

coefficient), and ks is the water stress coefficient, that takes values from 0 to 1. 

When ks=1, the evapotranspiration is not affected by water stress and reaches 

the maximum rate, named crop evapotranspiration (ETc). If ks=0, the crop reaches 

the wilting point because of the dry soil condition, and there is no 

evapotranspiration.  

The study of Chapagain & Hoekstra [39] provides the crop-specific information 

to divide the growing period into four phases (initial, crop development, mid-

season, late season) and assigning daily crop coefficients. As described by Allen et 

al. [7], the crop coefficient remains constant during the initial stage (kc =kc,ini). In the 

development stage, kc grows linearly from kc,ini to kc,mid, i.e. the constant value of the 

coefficient in the mid-season stage, and finally, in the late season stage, it decreases 

linearly from kc,mid to kc,end. This information is available for the ten different climatic 

zones summarized in Figure 3 (based on the GAEZ thermal agro-classification 

[40]). 

The water stress coefficient ks is calculated according to the FAO methodology 

[7], i.e. 

𝑘𝑠,𝑖 = {

1
𝜃𝑖 − 𝜃𝑤

(1 − 𝜌𝑖)(𝜃𝑓𝑐 − 𝜃𝑤)

0

 

if 𝜃𝑖 ≥ (1 − 𝜌𝑖)𝜃𝑓𝑐 

if 𝜃𝑤 < 𝜃𝑖 < (1 − 𝜌𝑖)(𝜃𝑓𝑐 − 𝜃𝑤) 

if 𝜃𝑖 ≤ 𝜃𝑤 

(3) 

In Equation (3), θi is the soil moisture [mm] in day i, calculated multiplying the 

water content [%] and depth of the root zone [mm]. In the same equation, θfc and 

θw are the levels of soil moisture [mm] corresponding to field capacity (i.e. the 

maximum amount of water that can be stored in soil after drainage by gravity 

action) and wilting point (i.e. the dry soil condition, when crops do not have 

available water), respectively. The depletion fraction, ρi, is the percentage of total 

available water that can be used by a crop without reaching water stress. The term 

(1 − 𝜌𝑖)𝜃𝑓𝑐, also known as θi*, is the soil moisture at incipient water stress or 

stomata closure [mm]. According to the FAO methodology [7], the depletion 

fraction ρ of day i can be calculated as 

 

 
𝜌𝑖 = 𝜌𝑠𝑡 + 0.04(5 − 𝐸𝑇𝑐,𝑖) , 

(4) 

where ETc,i is the crop evapotranspiration in the absence of water stress [mm] 

and ρst is a crop-specific standard value of the depletion fraction at 𝐸𝑇𝑐 = 5 

mm/day. This expression is related to the sensitivity of crops to weather 

conditions, as higher temperatures imply faster stomata closure, in equal soil 
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moisture conditions. The depletion fraction is found to vary in a range between 0.1 

and 0.8.  

To apply Equation (3), the 30-arc-sec global dataset of available water capacity 

was used, i.e. the difference between field capacity and wilting point, from the 

Harmonized World Soil Database by JRC [58].  

We used the data from Allen et al. [7] to set the maximum rooting depths for 

irrigated lands: roots of temporary crops are supposed to increase linearly in the 

first two phases of the growing period, from a sowing depth of 0.2 m, and then 

remain equal to the maximum value for the rest of the season. Roots of perennial 

crops are supposed equal to the maximum length for the entire year. In this way, 

the model calculates the actual available water for each day of the growing period.  

The daily soil-water balance expresses the variation of soil moisture in the root 

zone, calculated as a function of inputs and outputs: 

 𝜃𝑖+1 − 𝜃𝑖 = 𝑃𝑖 + 𝐼𝑖 − 𝐸𝑇𝑎,𝑖 − 𝑃𝑆𝑖 , (5) 

In Equation (5), all variables are expressed in mm. θi is the soil moisture on day 

i and ranges between field capacity and wilting point conditions (𝜃𝑤 ≤ 𝜃𝑖 ≤ 𝜃𝑓𝑐);  

Si+1 is the soil moisture resulting from the daily water balance, used as the initial 

condition on the following day; Pi is precipitation; and ETa,i is the actual 

evapotranspiration, calculated according to Equation (2). During dry periods, low 

rainfall may be insufficient to compensate for evapotranspiration and soil moisture 

reaches the water stress level (θ*), the condition in which plants start to close their 

stomata. The daily irrigation requirement, Ii, is defined as the water needed to 

avoid water stress, the additional depth that guarantees 𝜃𝑖 ≥ (1 − 𝜌𝑖)𝜃𝑓𝑐 according 

to equation (3). In the event that daily precipitation brings soil moisture to field 

capacity, any further input of rainfall that cannot be stored in the soil is called 

precipitation surplus, PSi. In Equation (5), this variable represents the sum of 

runoff and ground percolation. Since irrigated fields are usually almost horizontal, 

surface runoff and groundwater lateral movements in the root zone were 

considered negligible: PSi is assumed equivalent to deep percolation.  

On the sowing date of temporary crops, the initial soil moisture is assumed 

equal to field capacity. For crops grown on paddy fields a specific hypothesis is 

required: an additional depth of 200 mm is considered to saturate the soil before 

each sowing date, as suggested by the FAO methodology [59]. This water is not 

included in the estimation of rice irrigation requirement, because it is not directly 

used by the plants, and is explicitly reported in the results. 

 Considering that precipitation may occur in different hours of the day, even 

during the night when evapotranspiration is negligible, a random assignment of 

input rainfall was introduced. In fact, the assumption that the stress coefficient (ks) 
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is systematically calculated before or after the precipitation occurred may lead to 

some uncertainties in the assessment of daily ETa, since the actual daily 

precipitation rate can be distributed throughout the day. The random assignment 

can partially this uncertainty, assuming that precipitation may occur in different 

moments of the day. 

The model evaluates the irrigation requirement for each growing season in a 

cell. If a crop is repeatedly cultivated on the same field, the final amount of I is the 

sum made for all seasons. Instead, if the same crop is cultivated on different fields 

within the same cell, the final I for that crop is the area-weighted average between 

the two requirements. The total volume of irrigation requirement is calculated on 

a monthly or annual scale, considering the contribution of the 26 crops, as 

 𝑉 = 10∑ (𝐼𝑐 ⋅ 𝐴𝐸𝐼𝑐)
26
𝑐=1 , (6) 

where V, Ic and AEIc are, the total irrigation requirement volume [m3], the 

irrigation requirement [mm] (calculated according to Equation 5) and the irrigated 

area [ha] for a specific crop c, respectively.  

The averaged requirement considering the entire area of a cell is 𝐼𝑔𝑟𝑖𝑑 =
𝑉

(10𝐴𝑔𝑟𝑖𝑑)
, 

computed as the ratio between the total volume [m3] of irrigation requirement and 

the area Agrid [ha] of the 0.0833° grid cell: this is used here to compare irrigation 

requirements from different regions in the world. The spatial variability of Igrid 

values is consistent with the actual distribution of irrigated areas and cropping 

intensities within cells. 

 

2.6 Crop irrigation requirements for year 2000 

2.6.1 Global spatial variability 

The model described above was applied using the climatic and agricultural data 

of year 2000, and the global volume of irrigation requirement was estimated in 962 

km3. Figure 5a shows the spatial distribution of annual cell-averaged requirements 

(Igrid) and Figure 5b also shows the spatial distribution of cell-averaged 

precipitation surplus (PS). Factors influencing the Igrid are the ratio between annual 

precipitation and the reference evapotranspiration (i.e. the Budyko index), the 

temporal variability of these forcings (even in wet regions a significant amount of 

irrigation may be required if the precipitation is strictly seasonal), and the 

extension of AEI in each pixel of the grid. 
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Figure 5. Spatial distribution of irrigation requirement and precipitation surplus. Cell-

average water depths [mm], as a ratio between the total volume cumulated over the year 

within the cell and the cell area. 

For example, in Bangladesh the Budyko index is 1.5 but the high rainfall rate is 

concentrated in the monsoon season, and the tropical high evapotranspiration 

quickly leads crops to water stress during dry periods: so, high Igrid values were 

found. In the central and northern parts of Australia, the irrigation requirement is 

typically higher than 900 mm/year, but the very low density of cultivated areas 

keeps the cell average Igrid below 1 mm/year (in this region, less than 0.1% of the 

territory is usually equipped for irrigation).  

In arid and semi-arid regions, high Igrid values were found (e.g., over 750 

mm/year in the Indo basin, over 800 mm/year in the Nile delta and over 720 

mm/year in California) and negligible precipitation surplus due to the lack of 

precipitation. In many European and American temperate regions, high Igrid 

levels usually depend more on AEI density and crop types than on climate 
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conditions. For instance, Italy’s northern Po Valley requires much more irrigation 

than southern territories: despite south of Italy is typically drier, northern high 

rates depend on the density of cultivated areas (especially rice paddies).   

The global precipitation surplus (PS) over irrigated lands was found as 672 km3 

and the spatial distribution of PSgrid is shown in Figure 5b. Although PS is a “water 

loss” for the water balance of the root zone, it has an important role in the 

hydrological cycle and ecosystem functioning. This rainfall water is not used by 

the crops, but it is an important source of recharge for aquifers. Moreover, PS may 

be an important water resource in those areas where rainfed agriculture is still the 

most common practice, especially where the seasonal regime of rainfall 

concentrate the precipitation in limited periods of the year. For example, Castejón-

Porcel et al. [60] highlighted the importance of the runoff from agricultural fields 

in the semi-arid region of Campo de Cartagena (Region of Murcia, Spain), 

especially considering future changes in the seasonal availability of precipitation. 

The precipitation surplus is not just a potential source of water resource, but its 

potential negative impact for the local agriculture must be taken into account. In 

fact, in those regions with “critical” runoff periods (for example, the south Asia 

during the Monsoon period), the precipitation surplus may lead to a loss of 

sediments, nutrients and other agro-chemicals from croplands: this process has the 

double negative effect of reducing the fertility of crop fields and deteriorate the 

water quality [61].  

The comparison of national estimates (i.e. the sum of I and PS volumes from 

equation (5) over national areas) shows that 171 countries in the world require 

irrigation, and in 106 of them the PS volume is higher than I. If part of this 

precipitation surplus could be stored and used during the growing season, this 

would lead to a significant decrease in water withdrawals. For example, the 

irrigation required by China was estimated to the second highest in the world (130 

km3/year) and even a higher precipitation surplus (193 km3/year); in theory, it 

could be possible to satisfy all the Chinese irrigation requirements by using annual 

precipitation on AEI.  

Despite the apparent similarity between Figure 5a and Figure 5b, a low annual 

correlation between irrigation requirement and precipitation surplus was found: 

the Pearson correlation coefficient (R) between Igrid and PSgrid is 0.38 (as shown in 

Figure 6b). An even lower correlation was found comparing the annual 

distribution of I and PS (water depths over AEI) for which 𝑅 = −0.16 (Figure 6a): 

the higher correlation between Igrid and PSgrid is due to their common dependence 

on irrigated areas and cropping intensities. On a monthly scale, where the 

variability of P and ET0 is more important, higher correlations between I and PS 

were found (e.g. RJuly = -0.29 and RDecember = -0.20).   
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Figure 6. Correlation between annual irrigation requirements and precipitation surplus 

[mm/year]. (a) Pearson correlation coefficient between I and PS (irrigation requirement and 

precipitation surplus annual rates over irrigated croplands); (b) Pearson correlation 

coefficient between annual Igrid and PSgrid (average irrigation requirement and precipitation 

surplus, considering the total area of the MIRCA2000 grid pixels). 

2.6.2 Crop-specific requirements and monthly variability 

In considering individual crops, it is significant that, according to FAOSTAT, 

more than 48% of total agricultural production in tonnes in year 2000 included 

only four crops: sugar cane, rice, wheat and maize. The irrigation required by these 

four was 58% of the global estimation. Rice’s requirement is the largest, nearly 30% 

of total. This is mainly because of the huge extension of paddies, the high cropping 

intensity, i.e. the fraction of the arable area that is cultivated [7] which may exceed 

1 on those croplands where more than one growing season occurs each year, and 

the high sensitivity of rice to soil moisture depletion (e.g., in Uttar Pradesh, 

Haryana and Punjab in northern India, there are three consecutive growing 

seasons of rice per year). Paddies are artificially maintained at a high moisture 

level, and field capacity is frequently reached even with weak precipitation, with 

a consequent major loss of PS during rainfall events in the growing period. Table 

7 summarizes our findings on the crop-specific results, classifying them by the 

extent of irrigated areas from MIRCA2000. 

Figure 7 shows the temporal distribution of crop-specific volumes of irrigation 

requirements for year 2000, calculated according to Equation (6) and cumulated at 

monthly scale. The largest volume is required from June to September, mainly 

because most of the summer crops are cultivated in the northern hemisphere (e.g. 

90% of maize I is required during these four months). 
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Table 7. Crop-related summary of estimations and irrigated areas. I: Irrigation 

requirement; PS: Precipitation surplus; AEI: Areas equipped for irrigation; CI: cropping 

intensity, i.e., the fraction of the arable area that is cultivated (CI>1 for crops cultivated 

more than once per year on the same fields, like rice in northern India). Rice’s requirement 

does not include additional amounts of water to saturate the fields before sowing (globally 

206.2 km3). 

CROP I [km3] PS [km3] AEI [103 ha] CI 

Rice 271.4 360.1 1’031 1.6 

Wheat 153.1 44.3 666 1.1 

Maize 66 48.7 299 1 

Others annual 51.8 19.8 201 1.2 

Cotton 73.3 21.2 162 1 

Others perennial 80 48.5 129 1 

Fodder grasses 71.8 14.5 116 1 

Sugar cane 71.7 50.9 101 1 

Soybean 16.6 15.3 60 1 

Pulses 18 2.8 55 1 

Barley 7.3 4.1 46 1 

Potato 12.4 5.8 37 1 

Groundnuts 7.5 9.6 36 1 

Citrus 15.1 12.2 35 1 

Rape seed 6.7 0.5 34 1 

Sorghum 8 3.4 34 1 

Millet 3.5 1.9 17 1 

Grapes 7.4 4 17 1 

Sugar beets 6.1 0.89 16 1 

Sunflower 3.6 1.8 13 1 

Date palm 8.4 0.14 7.2 1 

Rye 0.74 0.68 4.4 1 

Coffee 0.67 0.83 1.7 1 

Cocoa 0.01 0.06 0.13 1 

Cassava 0.02 0.03 0.11 1 

Oil palm 0.04 0.11 0.11 1 

In contrast with other seasonal crops, wheat is massively cultivated during 

winter and spring, and requires more irrigation from December to May. For 

example, more than 46% of wheat AEI are in India and Pakistan, where this crop 

is mainly cultivated from November to May and most of the rainfall occurs in the 

summer. Winter wheat is also largely cultivated in Europe, U.S. and China, and is 

usually planted between October and December. In contrast, in the northern part 

of India (e.g., Punjab) wheat is mainly cultivated from June to November as well 

as in southern Europe and in the US Northwest. The monthly volumes of irrigation 

required by rice, wheat and cotton are well aligned with results from the GCWM 

model, described by Siebert & Döll [33], even if lower values of total irrigation 

requirement in spring months were found.  
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Figure 7. Monthly volumes of crop-specific irrigation requirement [km3/month]. Rice 

volumes refer only to the evapotranspiration requirement. 

2.6.3 Regional focuses on three intensive areas 

To better explore the spatial variability of results and to verify the ability of the 

model to provide estimates for various climate scenarios, the monthly water 

balance on three intensively cultivated regions has been analyzed in more detail. 

These are: Central Valley (CV, California), Po Valley (PV, Italy) and Punjab (PU, 

India), belonging respectively to sub-tropic winter rainfall, temperate sub-

continental and sub-tropic winter rainfall climatic zones. The three areas have 

similar geographical extents (about 52000 km2, 47000 km2 and 50000 km2 

respectively), but heterogeneous portions of areas equipped for irrigation (42%, 

32% and 72% respectively). Figure 8 shows the monthly variability of the main 

water-balance terms, i.e. the climate variables (P and ET0), the area-weighted 

values of irrigation requirements, and precipitation surplus.  

The cumulative volumes of I and PS are also shown (on the right axes). In the 

lower part of each panel, the bar graphs show the monthly distribution of AEI by 

actual cultivated crops. 
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Figure 8. Monthly variability of climate forcings and model results, over three intensively 

cultivated areas. The selected regions belong to different agro-climatic zones: Central 

Valley (California, sub-tropic winter rainfall), Po Valley (Italy, temperate sub-continental) 

and Punjab (India, sub-tropic summer rainfall). The variables on both the axes have been 

quantified considering the monthly cultivated AEI, as shown in the lowest part of the plots. 

CV is mainly cultivated with perennial crops (23% of total AEI), fodder grasses 

(18%), grapes (9%) and cotton (12%); PV has maize (43%) and rice (10%) in the 

warm season and perennial crops over the entire year (9%); PU is mainly cultivated 

with wheat (45%), rice (23%) and cotton (19%).  

Irrigation requirements of CV and PU are comparable (19.0 km3 and 20.6 km3 

respectively) but monthly values are very different, mainly because of the 

difference in precipitation and evapotranspiration rates. In California, the 

maximum irrigation requirement is close to 190 mm for the month of July due to 

the combination of high ET0 and very low precipitation. In this region, all the water 

surplus is concentrated in the winter months, with a maximum of 105 mm in 

February, while the high evapotranspiration rates of warm months (e.g. over 150 

mm/month in all the summer period) maximize the irrigation requirement. The Po 

Valley average reference evapotranspiration is lower and precipitation is higher 

than in CV and PU, due to the temperate climate. I reaches 50 mm only in July: a 
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short period if compared with five months in California and six in Punjab. Almost 

no irrigation is required in Po Valley from October to April, due to the combined 

effect of high rainfall and low ET0. In this area, the irrigation requirement is mainly 

concentrated in the summer period, but it only reaches 2.2 km3 (a small volume, 

compared with CV and PU). Annual water surplus over PV is 3.8 km3, a huge 

volume if compared with the two other regions, but this surplus is mainly 

concentrated in the October-November period. In fact, in year 2000 Po Valley was 

afflicted by an intense flood event in November, so the high water surplus can be 

assumed as strongly related to that specific event. 

2.6.4 Classification over water-stressed areas 

Additional insights from the results can be gained by grouping the volumes of 

irrigation requirement according to the classes of agricultural water risk described 

in the Water Risk Framework, published by the Water Resources Institute [62]. 

This framework includes a global dataset of water risk indices (referring to the 

1960-2014 period), combining indicators of physical risk, water quality and 

regulatory aspects for several human activities. The “Agricultural Water Risks” 

was used to classify the irrigation requirements assessed by our model. 

Figure 9 shows the distribution of irrigation requirement volumes by classes of 

agricultural water risk: a high risk means that the requirement volume may be 

hard to satisfy. Irrigation water could be unavailable (quantitative risk) or polluted 

(qualitative risk), and this may be critical for crops.  

Only 1.2% of global I volume falls within the low-risk class, mainly required in 

North America and Oceania. Unfortunately, 44.5% of irrigation requirement is 

exposed to a medium-high risk, and 28.4% to a high or extremely high risk.  

Southern Asia is the most exposed area to agricultural water risk: most of the 

irrigation required in this region (about 25% of global I) falls into the medium-

high, high and extremely high-risk classes. This is due to the fact that India and 

Pakistan are two of the most productive countries, with two of the most water 

requiring agricultural systems.  

About 87% of North American I is affected by low and medium risk, with 

western states (e.g. California) being more exposed to quantity and quality 

limitations than are the central and eastern regions. In North Africa, agricultural 

areas along big rivers are less exposed by risk (e.g. the Nile delta) while the small 

fraction of croplands in the arid and semi-arid territory is exposed to medium or 

high risk. The largest part of European irrigation requirement is exposed to 

medium risk, but the nature of the risk is different depending on the climate region 

(e.g. Po Valley is more exposed to quality-related risk, while Spain and southern 

Italy to quantity-related risk).  
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Figure 9. Distribution of irrigation requirement volumes by classes of Agricultural Water 

Risk. Classification of the World Resources Institute: Low risk (0-1), Low-Medium risk (1-

2), Medium-High risk (2-3), High risk (3-4), Extremely High risk (4-5). 

2.7 Comparison with previous estimations and 

national data 

In comparing the results of this study with previous assessments, one must take 

into account that all global assessments are affected by some uncertainty. The 

quality of input data, spatial and temporal resolution, modelling assumptions such 

as the length and number of growing seasons or the classification of some crops in 

macro-categories (e.g. “others annual”) play an important role in the assessment 

of irrigation requirements. In this study, a part of the uncertainty is reduced using 

a model based on actual daily data of precipitation and temperature. 

Table 8 shows a comparison of irrigation requirement results from the global 

models introduced in Table 4. The comparison points out the alignment of our 

estimation to the literature and how much the improvement of the input detail 

affects the final result.  
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Table 8. Comparison of global estimations of irrigation requirements. (i) Estimates based 

on Penman-Monteith reference evapotranspiration. (ii) and (iii) Estimates from two 

approaches based on Priestley-Taylor reference evapotranspiration. 

Assessment I [km3/year] 
[28] Rolle et al. (2021) 962 

[36] Chiarelli et al. (2020) 1068 

[35] Mekonnen & Hoekstra (2011) 899 

[34] Liu & Yang (2010) 927 

[33] Siebert & Döll (2010) 1180 (i), 1448(ii), 1145(iii) 

[32] Hanasaki et al. (2008) 1320 

[31] Rost et al. (2008) 1364 

[30] De Fraiture (2007) 1450 

[29] Döll et al. (2002) 1091.5 

The estimate from this study is well aligned with most of the previous works, 

especially with assessments based on the MIRCA2000 dataset. The differences 

between the latest models may have several causes: the use of different climate 

datasets, the modelling approach for the crop growth (e.g. Siebert & Döll [33] use 

average global values of crop coefficients, neglecting climate-related differences) 

and the initial soil moisture conditions (e.g. Chiarelli et al. [36] performed a 

sensitivity analysis assuming three different scenarios to simulate the initial 

moisture condition on the sowing date). The GCWM model [33] from Siebert & 

Döll provides three results, obtained using different methods to estimate the 

reference evapotranspiration: 1180 km3/year using Penman-Monteith and two 

results using different alternatives of the Priestley-Taylor method (1448 km3/year 

and 1145 km3/year). The estimate from the H07 [32] model (1320 km3/year) was 

reported by Siebert & Döll [33], and refers to the 1986-1995 period.  

Compared to later studies, the older models seem to overestimate the irrigation 

requirement. This is probably due to the fact that most of these models were not 

based on crop-specific data of irrigated areas and growing calendars, so the 

assessments were performed with a larger number of assumptions, using average 

values to model the crop development. For example, Döll et al. (2002) performed 

the assessment classifying rice paddies separately and aggregating all the other 

crops [29]. 

2.7.1 Comparison with national withdrawals for agriculture 

Model results, in terms of irrigation requirement volumes, have been 

cumulated at the national scale and compared with data of agricultural 

withdrawal (W) for the year 2000, provided by AQUASTAT [59] and by the 

Organization for Economic Co-operation and Development (OECD) [63]. The 

national withdrawals for irrigation are the volumes of water taken from surface 
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water bodies or groundwater to be used in agriculture, in fields equipped for 

irrigation. Withdrawals include the volumes required by crops and the water 

losses due to inefficiencies in the distribution and irrigation systems. 

The ratio between I and W can be reasonably associated with a national mean 

irrigation efficiency (E), defined as the ratio between the amount of water 

withdrawn for agricultural purposes and the theoretical volume required by crops. 

The irrigation requirements are equal to withdrawals in the ideal condition of 

maximum efficiency (no water losses in the irrigation system) and absence of water 

stress during the growing season. In the real systems withdrawals are generally 

higher than requirements. The comparison between these two volumes is 

important to validate our estimations: the difference between I and W may depend 

on the technological level of the country, on the cultivated crops (e.g. the irrigation 

efficiency of rice paddies is generally very low) and on the availability of 

freshwater.  

Figure 10 shows the logarithmic scatter plot of the 81 national withdrawals and 

requirement volumes. Nations are grouped by classes of efficiency, delimited by 

dotted, dashed and continuous lines: 45 nations lie between 0.1 and 0.5 and 18 

nations between 0.5 and 1. More than 80% of required volumes belong to nations 

within these ranges (54% belongs to nations with efficiency between 0.1 and 0.5). 

India, China and the U.S. are the countries with higher irrigation requirement: 

25.4%, 13.5% and 12.0% of global irrigation volumes, I, respectively. Spain is the 

European country with the highest irrigation requirement (15.7 km3/year, near 

1.6% of global I).  

For 12 countries, the irrigation efficiencies were estimated to be lower than 0.1: 

in most of these countries the irrigation water volumes are very small, due to the 

lack of irrigated lands. Japan appears to have a surprisingly low efficiency (0.06), 

considering its economic and technological levels, but this may be a consequence 

of a massive presence of rice paddies (about 54% of total cultivated areas, 

according to FAOSTAT) which have a very low irrigation efficiency: Döll et al. [29]  

assume an irrigation efficiency for rice lower than 0.1. 

For 6 nations the mean efficiency is higher than 1 (irrigation requirement higher 

than agricultural withdrawals), e.g. United Kingdom (1.4), United Arab Emirates 

(1.5), Czech Republic (4.5). Withdrawals lower than requirements in nations with 

high water-demand states like United Arab Emirates may be due to deficit 

irrigation practices, in which a provision of lower water volumes than actual 

requirements are due to lack of water availability [64]. Results are consistent with 

the efficiencies estimated by Siebert & Döll [65], with similarities in some critical 

nations (e.g. they obtain E = 2.55 in Czech Rep. and E = 1.79 in UK). In some of 

these nations, high efficiency values may be due to the low magnitude of irrigation 

requirement and withdrawals. 
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Figure 10. Comparison of national irrigation requirements and withdrawals and 

aggregation by classes of national efficiency. Blue circles, red crosses and green squares are 

countries where the irrigation requirement was estimated to be lower than the actual 

withdrawals for irrigation (I<W), grouped by classes of mean national irrigation efficiencies 

(E). Purple triangles are countries for which the model estimates I higher than actual W. 

The bold continuous line indicated the condition of I=W; classes of efficiencies lower than 

1 are limited by dashed lines, while the two dotted lines delimit classes of efficiencies 

higher than 1. For E<1, the labeled countries have at least 106 ha of areas equipped for 

irrigation. 
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2.7.2 Comparison with U.S. sub-national estimations 

A more detailed validation of the model has been done using data from the 

United States of America (U.S.), for which the Geological Survey (USGS) provides 

local information about withdrawals for irrigation in year 2000 [66]. Irrigated lands 

are more concentrated in the western U.S., especially in the Central Valley of 

California, in Idaho and other northwestern states, but also in Nebraska and 

Arkansas (concentrated in the Mississippi region). According to this dataset, the 

U.S. withdrawal for irrigation was 196.4 km3 in year 2000. Building a weighted 

linear regression between the observed withdrawals and the irrigation 

requirements in each U.S. state (using AEI, i.e. Areas Equipped for Irrigation, as 

weight), an angular coefficient was estimated (i.e. the expression of the overall 

irrigation efficiency) of 0.58 (as shown in Figure 11). This result is comparable with 

the value of 0.6 provided by Döll et al. with the same procedure [29].  

 
Figure 11. Comparison of withdrawals for irrigation and irrigation requirements 

[Bm3/year] for the U.S. states. The weighted linear regression (built using the AEI of each 

state as weight) shows an angular coefficient of 0.58, which can be assumed as average U.S. 

irrigation efficiency. 

California is the U.S. state with the largest extension of AEI, and presents an 

irrigation efficiency of 0.64 (higher than the average value of United States). Figure 

12 shows the comparison between our crop-specific estimates of irrigation 

requirement (I) and the data of applied irrigation water (AW), which is the volume 

of withdrawn water that is actually delivered to the crop fields. This information 

is available for seven crops, provided by the California Department of Water 

Resources (CDWR) for year 2000 [67]. Rice is the crop with the largest difference 

between I and AW, and this is consistent with the low efficiency associated to 
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paddies. The same dataset also provides estimates of the crop-specific irrigation 

requirements in California. The model was validated by comparing our results 

with the estimates from the CDWR (ICDWR), as shown in Figure 12. 

 

 
Figure 12. State of California: comparison between crop-specific irrigation requirement 

estimations (I), the irrigation requirements estimated by the California Department of 

Water Resources (ICDWR) and the data of applied water also provided by the CDWR 

(AWCDWR). The AWCDWR and ICDWR data refer to year 2000. 

The irrigation requirements obtained in this thesis are well aligned with the 

ICDWR: for example, were found results for maize, rice and grapes corresponding to 

98.0%, 94.5% and 93.7% of ICDWR estimations respectively.  Large differences 

between I and ICDWR volumes for cotton and sugar beets are consistent with the 

differences of cropland extent between CDWR and MIRCA2000. The ratio between 

AEI from MIRCA2000 and CDWR is 0.27 for sugar beets and 0.73 for cotton, and 

the ratios between I and ICDWR are 0.29 and 0.85 respectively. 

Unfortunately, the other crop-specific information available in California are 

grouped into categories (e.g. fruits or vegetables) that do not match the 

MIRCA2000 dataset, thus further comparisons cannot be performed. 

2.8 Concluding remarks 

In this Chapter, a model for the assessment of global irrigation requirement is 

presented. The analysis is based on the high-resolution dataset ERA5 from the 

Copernicus Climate Data Store. The model assesses the minimum irrigation 

required to avoid water stress, working on a daily soil water balance and 

modelling the crop development according to the FAO methodology, limiting 
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uncertainties related to climate-forcing data by using satellite information. The 

reference evapotranspiration is calculated following the Hargreaves-Samani 

method, which requires only information about surface temperature and solar 

radiation, fitting very well when compared to more complex and data-intensive 

methods like Penman-Monteith. 

The model was used to assess the irrigation requirements for 26 crops in the 

world, working on crop-specific agricultural areas equipped for irrigation, while 

the focus on year 2000 is motivated by agricultural data availability permitting 

comparison of results with previous studies, many of which were focused on that 

year. Due to the difficulties in simulating crop development on a global scale in 

many different climatic, technological and cultural scenarios, the main uncertainty 

remains the correct modelling of the length of growing periods. 

The global volume of irrigation requirement for year 2000 was found to be 

about 962 km3, which is an amount comparable both with results from models 

driven by long-term climate data and from models working with monthly time 

series. The spatial distribution of irrigation requirements (0.0833°) points out their 

dependency on the extension of local areas equipped for irrigation, the crop 

intensity and the kind of crop cultivated, as well as the lack of precipitation during 

growing periods. The model also estimates that an important amount of rainfall 

occurring along the growing seasons is lost as surplus over irrigated lands (672 

km3, about 68% of irrigation requirement), mainly motivated by the seasonal 

variability of precipitation. 

The comparison between irrigation requirements and national data of 

agricultural water withdrawals shows a good agreement between the two 

variables, with reasonable values of irrigation efficiencies. The model has been 

validated through a comparison between crop-specific estimations of irrigation 

requirements and data provided by the California Department of Water Resources, 

which highlights a very good fitting. 

The classification of irrigation requirements by classes of agricultural water risk 

shows that most of the requirement in South and East Asia is exposed to high and 

very high risk of not being satisfied, due to possible unavailability of irrigation 

water in terms of quantity and quality. The global estimation described in this 

thesis is a first step of a wider project of irrigation assessment, in which the 

temporal variability and the use of additional data from remote sensing are 

foreseen. 
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Chapter 3 

Temporal trends in global 

agriculture requirements 

The work described in this Chapter has been partially derived from paper [68]. 

The temporal variability of crop water requirement is a key topic in the study 

of climate effects and adaptation strategies. The Agricultural Model 

Intercomparison and Improvement Project (AgMIP) [69], for example, tested 

different available models in the production of future climate scenarios for 

agriculture at the global scale with 0.5° grid resolution. Other few works analyzed 

the climate-driven changes of crop evapotranspiration in the recent past. Ruane et 

al. [70] examined the performance of different climate datasets in agricultural 

large-scale models within the AgMIP project, considering four crop types and 

different combinations of climate forcings/crop gridded datasets. Recently, 

Chiarelli et al. [36] estimated the global water requirements for years 2000 and 

2016, providing monthly crop-specific results. Other studies focused on national 

or subnational scales, e.g. the assessment by Yin et al. [71] applied to China from 

1982 to 2015. In this work, the model described in Chapter 2 was used to perform 

a global assessment of agricultural water needs, in order to reduce the lack of 

studies based on EO-information retrieving daily estimates of crop requirements. 

In this Chapter, the coupled soil water balance and crop growth model 

described in Chapter 2 has been used to estimate the daily actual 

evapotranspiration of 26 main crops for five decades, in order to highlight 

significant trends of water needs. The daily scale enables the quantification of the 

effects of hydro-climatic fluctuations on the timing and duration of water-stressed 

periods. In this thesis, the information on rainfed and irrigated cropland areas is 

fixed in time, allowing to focus on the temporal variability of hydro-climatic 

drivers alone. Consequently, the variables analyzed are, as much as possible, not 

dependent on the extent of the cultivated areas per pixel, e.g., water depths are 

considered rather than volumes. The estimation of the temporal evolution of water 

volumes, which requires the knowledge of cultivated and irrigated areas per crop 

in time, is beyond the scopes of this thesis.  
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3.1 Estimation of multi-decade agricultural water 

requirements 

The assessment of crop water requirements from 1970 to 2019 is based on the 

methodology described in Chapter 2. However, in this Chapter are described the 

improvements that were introduced to calibrate the reference evapotranspiration 

over a multi decade period, and the method used to set the initial condition at the 

sowing day based on EO data.  

The methods used to model the crop growth and to calculate the daily water 

requirements were presented and discussed in Chapter 2.5. 

3.1.1 Daily climate data 

The model runs at a daily time step using precipitation (P) and reference 

evapotranspiration (ET0), defined as the evapotranspiration from an ideal well-

watered grass surface [7], to compute the soil water balance and to assess the crop 

actual evapotranspiration. The simulation covers the period 1970-2019 and is 

based on the climate data from ERA5, i.e. the global reanalysis dataset produced 

by the European Centre for Medium-Range Weather Forecast (ECMWF) within 

the Copernicus Climate Change Service (C3S) [72] [73]. The reanalysis uses the 

information from ground measurements and the global satellite network, 

exploiting the growing availability of remote sensors over the last two decades 

[74].  

Although ERA5 includes results since 1950, the present analysis starts in 1970 

in order to avoid uncertainties related to previous periods [75]. The climate data 

were downloaded at the original resolution of 0.25° (about 30 km at the Equator) 

and processed with the Climate Data Operators (CDO) [76] to match the 

MIRCA2000 grid. The CDO tool offers specific methods of interpolation to 

redefine the resolution of each climate variable. 

As previously described in Chapter 2, daily precipitation was calculated by 

summing hourly rainfall from 1:00 am to 0:00 am in each day, from 1970 to 2019. 

In Figure 13, the mean annual precipitation rates from ERA5 [mm/day] for the 

2010-2019 decade are shown, as well as the percentage variations with respect to 

the 1970-1979 average annual rates.  



Temporal trends in global agriculture requirements 

 

61 
 

 

 
Figure 13. (a) Global map of mean precipitation rates [mm/day] over croplands, calculated 

as average values for the 2010-2019 decade. (b) Percentage variations of the mean daily 

precipitation rates, comparing the 2010-2019 and 1970-1979 decades; blue-green areas: P2010s 

> P1970s; yellow-red areas: P2010s < P1970s; grey areas: very low variations between the two 

decades (<0.5%). 

According to the procedure described in Chapter 2, the daily reference 

evapotranspiration, 𝐸𝑇0,𝑖 (in mm/day), was calculated using the Hargreaves-

Samani method, according to Equation (1). Although Hargreaves-Samani is one of 

the methods suggested by FAO to calculate ET0 [7], the empirical coefficient kHS in 

Equation (1) was calibrated for each pixel, in order to reproduce annual values of 

ET0,i available from a reference application of the Penman-Monteith method.  

Considering that the procedure from Chapter 2 was used to calculate ET0 only 

for year 2000, a methodological improvement was introduced in order to calibrate 

the empirical coefficient of HS from Equation 1 (kHS) taking into account the climate 

variability over 50-years period.  The CRU Time-Series global data [51], previously 

introduced in Chapter 2, was used to calculate the annual deviations between the 

ET0 from Hargreaves-Samani and Penman-Monteith, as ratio between ET0,PM and 

ET0,HS [mm/year] in each pixel. The final grid of kHS was obtained as multiplying 

(b) 

(a) 
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the original value (0.0023) by the 1970-2019 mean deviations. The calibration was 

performed considering all the fifty years, in order to include the decades of 

maximum density of ground sensors used by CRU (1961-1990) [77], and the recent 

years with most active satellite sensors on which ERA5 is based [74]. This 

simplified method for the assessment of ET0 limits the uncertainty related to using 

many input variables, while remaining consistent with ground-based annual data 

of Penman-Monteith ET0. 

In Figure 14 is represented the spatial distribution of the calibrated kHS 

coefficients on agricultural areas. In most of the coastal zones, the HS method 

seems to underestimate the rate of daily evapotranspiration, since the calibrated 

kHS are significantly higher than the mean value of 0.0023. This is probably a 

consequence of the fact that Penman-Monteith takes into account the effect of wind 

speed, which is often high in the coastal zones, resulting in higher ET0 compared 

to Hargreaves-Samani. The HS methods appears also less effective at higher 

elevations above the sea (e.g., on the Himalayas), but in these areas the density of 

agricultural areas is usually very low. 

 
Figure 14. Spatial distribution of calibrated Hargreaves-Samani coefficients (kHS). The 

calibration was performed on all the pixels containing croplands, according to the 

MIRCA2000 dataset. 

In Figure 15a, the mean annual rates of ET0 [mm/day], calculated with ERA5 

data and calibrated according to the method previously described, is shown as 

average rates for the 2010-2019 decade. In Figure 15b, the percentage variations of 

mean ET0 is shown, with respect to the 1970-1979 average annual rates.  
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Figure 15. (a) Global map of mean rates of Reference Evapotranspiration [mm/day] over 

croplands, calculated as average values for the 2010-2019 decade. (b) Percentage variations 

of the mean daily ET0 rates, comparing the 2010-2019 and 1970-1979 decades; blue-green 

areas: ET0, 2010s < ET0, 1970s; yellow-red areas: ET0, 2010s > ET0, 1970s; grey areas: very low variations 

between the two decades (<0.5%). 

3.1.2 Initial soil moisture at sowing date 

As previously introduced in Chapter 2, the amount of water a crop can draw 

for its needs is related to the soil properties of water-holding capacity [7]. The 

available water capacity (AWC) of a soil is calculated as difference between the two 

limits of soil moisture: the upper limit of field capacity (θfc) [m3water/ m3soil] and the 

lower limit represented by the wilting point (θw) [m3water/ m3soil], i.e. the dry 

condition at which the crop stops evapotranspiration.  

In this Chapter, the global SoilGrids dataset (250 m x 250 m resolution) [78] was 

used to set the global AWC over croplands, as an improvement to the dataset 

previously introduced in Chapter 2 for the assessment on year 2000: this high-

resolution dataset allowed to obtain an estimation of the specific AWC for 

croplands, as detailed below. 

(a) 

(b) 
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The original grid was upscaled to obtain a 0.0833° grid, matching the 

MIRCA2000 resolution. Pixel values were computed averaging the SoilGrids 

pixels containing croplands according to the global soil classification from the 

Copernicus Land Service [27]. Since SoilGrids provides data for different soil 

depths, the final AWC was further calculated as a mean between the upscaled grids 

up to 1 m depth, to set a representative value of available water capacity per unit 

of soil volume in the rooting zone. 

Each crop has a specific tolerance threshold to water stress: the soil moisture 

threshold of incipient water stress (θ*) [m3water/ m3soil] depends on the crop-specific 

sensitivity to soil water deficit, i.e. the difference between the field capacity upper 

limit and the actual water content in the soil, as described by Allen et al. [7]. The 

crops that are more sensitive to soil water deficit reach water stress in wetter soils, 

while the same deficit still represents a sufficiently wet condition for the less 

sensitive crops. 

For temporary crops, the initial soil moisture at the sowing date (θsow) needs to 

be defined. Considering the lack of information about the cropland use before the 

sowing date, the corresponding moisture cannot be obtained from the soil water 

balance. Previous studies used different solutions to address this problem: 

Chiarelli et al. [36] used an initial soil moisture equal to 50% of AWC; Siebert et al. 

[33] proposed a simplified water balance on fallow lands with kc=0.5; Rolle et al. 

[28] assumed that each growing season starts with soil moisture at field capacity. 

In this Chapter, a sensitivity analysis was performed to quantify the impact of 

initial soil moisture on the final estimations of ETa and I for temporary crops, in 

order to set the soil moisture at the sowing date consistently with actual climate 

conditions (improving the assumption of sowing at field capacity adopted in 

Chapter 2). Two simulations were performed assuming the two limit values of 

initial soil moisture, θsow=θfc and θsow=θw in the starting day of each temporary 

growing season. The global area-weighted average of ETa and I rates [mm/year] 

were calculated for the 1996-2005 period, on rainfed and irrigated areas 

respectively, in order to perform the analysis on a decade centered on year 2000 

(for which the agricultural data are available).  

Results show that the global actual evapotranspiration of temporary crops is 

12% lower when the growing seasons start at wilting point, compared to the “field 

capacity” hypothesis. Moreover, irrigation requirement (excluding rice) is about 

3% higher when all temporary seasons start at wilting point.  

Soil moisture data from ERA5 [72] [73] were used in this work for different soil 

layers, to be consistent with the actual weather conditions over the 50-years period: 

according to this improvement, the uncertainty related to setting soil moisture at 

field capacity on the sowing date, as described in Chapter 2 for year 2000, was 

reduced.  
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 Assuming 0.2 m as the standard effective rooting depth for the water balance 

calculation at the sowing date [79], the monthly soil moisture grids were calculated 

as the average between the first two layers (0-7 cm and 7-28 cm respectively). For 

each sowing day, the soil moisture was calculated as the fraction of the “soil 

saturation upper limit” dataset from SoilGrids, equal to the ratio between the 

monthly soil moisture and the saturated moisture from ERA5. Since ERA5 does 

not provide any information about maximum soil water capacity, the saturated 

limit was set using the maximum values for the 1970-2019 period in each pixel. 

When the initial soil moisture turned out to be higher than field capacity, the θfc 

value was used. 

3.1.3 A statistical index for daily analysis of rainfed water 

stress 

The use of daily hydro-climatic data over a 50-years period enabled long-term 

simulations at the daily time scale, which in turn allowed to perform analysis of 

daily results. For each crop, the number of precipitation events (PD, i.e. 

precipitation days) with rainfall greater than 2 mm/day was computed for the 

growing season of every year from ERA5 data. PD was compared to the number 

of days in which the crop requires irrigation (ID, i.e. irrigation days), considering a 

minimum modelled requirement of 2 mm/day. For perennial crops, PD and ID 

were computed throughout the whole year, while for temporary crops they 

referred to the growing periods. 

The PD and ID values were also aggregated at different spatial scales: to this 

aim, the aggregated results were averaged over the area of interest, using the 

extension of area equipped for irrigation as weight. 

In rainfed areas, where no irrigation occurs to avoid the daily water stress, the 

number of water stressed days (days in which ks<1) for each crop was computed 

and indicated with SD. In order to compare pixels with different cropland 

extensions and compositions, a proper index was defined considering all crops 

grown in the pixel, i.e.  

𝑤𝑆𝐷𝑦,𝑗 =
∑ 𝑆𝐷𝑦,𝑐,𝑗
26
𝑐=1

∑ 𝐿𝐺𝑃𝑐,𝑗
26
𝑐=1

 . (7) 

wSD [-] quantifies the annual number of water stress days of year y on the j-

pixel, calculated as the ratio between the sum of SD on rainfed areas for the 26 

crops, and the sum of the corresponding lengths of growing periods (LGP in days) 

in the same pixel. The wSD index has been introduced to normalize the total 

number of water stress days per pixel. The rainfed scenario ensures that no other 
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water inputs occur but rain, allowing to test the effect of dry periods on 

cultivations.  

3.2 The global variability of irrigation requirements 

over the period 1970-2019 

The irrigation requirement (I) is strongly related to the precipitation 

availability. In this Chapter, the temporal changes of global irrigation 

requirements are discussed, both in terms of global annual rates, number of days 

requiring irrigation and crop-specific variability. 

3.2.1 Temporal variability of annual days requiring irrigation 

More than on the total rainfall rate, I depends on how rainfall is distributed 

across the growing season: more irrigation is required during long dry periods, 

while frequent small rainfall events may keep soil moisture far from stress levels. 

The number of days requiring irrigation per growing season (ID) depends on the 

crop type, on the geographical position and on the harvesting calendars. This 

variable and the seasonal number of precipitation days (PD) referred to the maize 

growing seasons, were computed and aggregated in different areas of the world 

(Figure 16). A t-Student test was performed to highlight significant temporal 

trends for ID, with a level of significance of 5%. Positive trends of ID were found 

to be statistically significant in Europe, East-Asia, South-East Asia, West Asia, 

South America, Sub-Saharan and North Africa. In the Southern and Eastern zones 

of Europe, trends of ID are marked because of the combination of ET0 increments 

and strong decreases of PD (in some cases, -35% from 1970s to 2010s), as confirmed 

by Seneviratne et al. [80]. In Northern Africa, precipitation is very low (both 

considering annual rates and number of events): therefore, the ID increment 

through the years is mainly driven by the ET0 trend. Significant ID trends were 

found in Sub-Saharan Africa, West and East Asia and Oceania, with different 

slopes.  

The slightly negative ID slope in North America results from the combination 

of two opposite scenarios: in the East part of Canada and U.S. a precipitation 

increment caused a considerable reduction of irrigation requirement, while on the 

Western regions the opposite occurs (not strong enough to be detected on a sub-

continental scale).  
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Changes of PD from ERA5 are reflected in other studies about trends of wet 

days, like the global analysis by Rajah et al. [81]. Global projections from the last 

IPCC report [82] shows high confidence that future changes of wet days will 

confirm the trends of the last decades. 

An increase in time of the number of days requiring irrigation (ID) leads to two 

main consequences. First, higher ID often implies increment of irrigation 

requirement volumes over the growing season, because the final estimation results 

from a larger number of stress events. Second, the crop requirement in many areas 

of the world may not be entirely satisfied with the current irrigation calendars, 

especially for those crops requiring frequent irrigation (e.g., vegetables or pulses).  

3.2.2 Spatio-temporal variability of annual irrigation 

requirements 

The temporal variation of irrigation requirement rates (I) was analyzed for the 

26 crops under study, calculating daily series from 1970 to 2019. The analysis 

reveals that I increased in 62% of areas equipped for irrigation, comparing the 

mean annual rates of 1970s and 2010s decades (Figure 17).  

 
Figure 17. Changes of mean annual irrigation requirements (I) [mm/year], comparing 

1970s and 2010s. The map colors describe how much (red) or less (green) irrigation is 

required over the AEI between the two decades, comparing the 10-years AEI-weighted 

average requirement of 26 crops. 
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The increment is higher than 10 mm/year on more than 53% of global irrigated 

areas. The highest increments of mean annual I (>100 mm/year from 1970s to 2010s) 

were found in South Europe (especially in Spain, Italy, South France, Balkan 

peninsula and Ukraine), North-East China, the eastern part of Australia, Brazil, 

and the western part of U.S. 

In 29% of irrigated areas, the irrigation requirement decreased from 1970s to 

2010s for more than -10 mm/year. Most of these areas are concentrated in South 

Asia and in the central part of U.S., from North Dakota to Mississippi. In the first 

case, less irrigation is required because of the combined effect of mean ET0 decrease 

and precipitation increments (especially in the Indo Valley and Northern India), 

while the result in U.S. depends mostly on the greater precipitation availability 

(+100 mm/year from 1970s to 2010s), that compensated the increment of ET0 (+10 

mm/year).  

3.2.3 Crop-specific variability of irrigation requirements 

The comparison of crop-specific rate of irrigation requirement between 1970s 

and 2010s shows a heterogeneous pattern. The variability of climate forcings has 

different impacts on I depending on the latitude, because of the heterogeneous 

changes of P and ET0. The crop-specific comparison shows that in most of the 

northern AEI, above 30°N, more irrigation is required in 2010s than in 1970s. As 

shown in Figure 18, going from North to South, all the croplands require more 

irrigation except the fodder grasses (which are mainly cultivated in the Eastern 

part of Canada and U.S., where the I rate have decreased).  

The crop-specific analysis in the northern hemisphere shows higher increments 

of I from 1970s to 2010s for multi-seasonal temporary crops (e.g., wheat, which is 

cultivated both in winter and spring-summer), especially in North-West America, 

Europe and North-Central Asia. Soybean requires quite the same amount of 

irrigation if comparing the two decades at these latitudes, as a result of the 

opposite effects of higher I in Eastern China and lower I in Eastern U.S. Most of 

the irrigated areas from 30°N to Equator are in South-East Asia, except for some 

regions in Central America. 
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Figure 18. Variations of crop-specific irrigation requirements [mm] by latitude, between 

2010s and 1970s. The box below shows the geographic distribution of crop areas equipped 

for irrigation (AEI): more than 90% of AEI are in the Northern hemisphere, most of which 

located between 20°N and 40°N. 

Most of the AEI in India and Pakistan requires less irrigation in 2010s than in 

1970s: the irrigated croplands in these nations are favored by the changes of 

climate forcings, which lead to an advantageous scenario from the point of view 

of agricultural water needs. Considering the global scale, a hypothetical crop 

switch from North to South in Asia could be a beneficial solution, with a significant 

reduction of I. For example, larger increments of irrigation requirements were 

found in the Northern part of China, where most of the irrigated areas are 

concentrated and water is partly transferred from southern regions, through the 

South–North Water Transfer Project [83].  

Less than 10% of irrigated lands are in the Southern hemisphere. The analysis 

of water requirement variability indicates very high increments of irrigation 

requirement for all the crops cultivated in these regions. The combined effects of 

climate forcings on Oceania, Southern Africa and Southern America, lead to 

significant disadvantages in the irrigation practices in this hemisphere. The 

Amazon region appears to be quite unsuitable for irrigated agriculture from a 

climatic point of view [84] and results show high increments in the irrigation 

required by crops in this area. Contrary to the Northern hemisphere, irrigation 

requirement has increased more on the coolest regions going from North to South, 

mainly because of the strong reduction of mean annual precipitation (up to -300 

mm/year in Brazil, due to the combined effect of climate variability and 

deforestation [85]). The irrigation requirement of soybean appears to be less 

sensitive to climatic variability, as previously found in the Northern hemisphere. 
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A more detailed analysis of the I variations was performed considering some 

relevant crops. In Figure 19, the temporal variability of mean daily irrigation 

requirements of citrus is shown, comparing the Aragon-Catalonia region (Spain), 

Israel and Cuba.  

 
Figure 19. Daily irrigation requirement of citrus (perennial crop) over decades. The three 

plots show the variability of daily citrus irrigation requirements over Spain (Aragon-

Catalonia region), Israel and Cuba. Every line represents the mean irrigation requirement 

over a decade, plotted as a 15-days moving average [mm/day]. The increment of irrigation 

required by citrus is evident, especially during summer months in Spain and spring 

months in Cuba. 

The mean daily I has generally increased comparing 1970s and 2010s (e.g., +50% 

in Spain during summer, from about 2 mm/day to more than 3 mm/day). The 

period of irrigation has also increased through the years in the three countries. In 

the last decades, citrus required irrigation in the early-spring period (which wasn’t 

necessary in the 1970s) and higher irrigation rates during the spring and autumn 

periods.  

3.3 Water stress trends on rainfed croplands 

A trend analysis of crop water stress, induced by climate change, was 

performed on rainfed croplands. On these areas, precipitation is the only water 

input, and it is possible to quantify and compare the length and the severity of 

water-stress periods. Considering this, it is possible to relate the water stress to 

potential yield losses of rainfed crops. 

The annual water stress days (wSD) were calculated for each pixel containing 

rainfed crops, from 1970 to 2010, as described in Chapter 2.4. A t-Student test was 

performed to highlight significant trends, with a level of significance of 5%. On a 

global scale, 38.1% of rainfed areas show statistically significant positive trends of 
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annual water stress days, while significant decreases were found only for 6.7% of 

the rainfed areas.  

As shown in Figure 20a, large part of East Europe and East China shows high 

trends of wSD, more than double in 2010s than in 1970s. In the Central Africa, high 

wSD increment depends on the fact that in 1970 rainfed areas were affected by very 

small stress: despite the water stress in 2010s still counts a few days per year, it 

should be noted that most of the croplands in Central Africa are rainfed, and these 

increments may lead to reduction of crop yield with significant consequences. 

South and East Europe are affected by significant increments of annual stress days. 

Some of these regions are densely cultivated (e.g., Northern Italy, Spain and 

Ukraine), and high positive stress trends may limit the rainfed crop yield, affecting 

national crop productions. Western China shows a similar scenario, while in the 

central part of the nation the heterogeneous changes of precipitation availability 

led to a more complex scenario: increments of precipitation in Eastern Qinghai 

have diminished the water stress on rainfed areas. 

All the South America shows high positive trends of wSD, especially in the 

Amazon region. Despite the mean annual precipitation rate has slightly increased 

over the decades, the annual number of precipitation days has decreased (as 

shown in Figure 16 for the maize season). Because of this situation, the low number 

of stressed days has more than doubled in many parts of Brazil and Colombia. 

India is one of the nations with the highest extension of rainfed areas. A large part 

of this region is affected by significant negative trends of annual ET0, resulting 

from the combined effect of factors: the falling of the difference between maximum 

and minimum temperatures, decrease of wind speed and increasing of cloudiness 

on the region [86]. The further general increase of annual precipitation rates, 

according to the ERA5 data, leads to significant decrease in the number of stressed 

days per year, particularly in the Southern part of the nation.  

A similar analysis was performed to find significant trends of severe water 

stress, considering annual days close to wilting point (ks<0.1). In this case, 16% of 

rainfed croplands show a significant positive trend (as shown in Figure 20b). In 

North America, most of the rainfed areas are affected by low trends of annual 

stress days, both positive (in the Western region) and negative (Minnesota, North 

Dakota and Missouri). However, the number of severe-stress days has increased 

in most of the Western rainfed croplands. 

This means that, even if the annual duration of water stress didn’t significantly 

change (Figure 20a), water stress has become much more severe. High trends of 

severe stress were found in Spain, Ukraine, North-East China, South Africa and 

the Amazon region. The analysis of water stress on rainfed croplands is 

particularly interesting for those countries with poor irrigation infrastructures. In 

these nations, water stress increments may have a huge impact on the local 

economy, with limited possibility of adaptation because of the technology gap. 
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Figure 20. (a) Ratio between 2010s and 1970s mean annual stress days on rainfed areas. 

Warm colors indicate that the mean number of annual stressed days has increased during 

the last 50 years, while the cold colors describe the opposite scenario. Over grey areas, there 

is no significant trend of water stress days, according to the t-Student (level of significance 

of 5%). (b) Ratio between 2010s and 1970s mean annual severe stress days (ks<0.1) on 

rainfed areas. Warm colors indicate that the mean number of annual severe stressed days 

has increased during the last 50 years, while the cold colors describe the opposite scenario. 

Over grey areas, there is no significant trend of severe water stress days, according to the 

t-Student (level of significance of 5%). 

In contrast, important rainfed stress and consequent yield losses may induce 

developed countries to improve the irrigation efficiencies of their irrigation 

systems [87], equipping part of the rainfed fields for irrigation. As an alternative, 

nations may shift to alternative crops and varieties and/or shift planting dates in 

areas most affected by climate impacts, using crop migration as an adaptation 

strategy [88]. 

(a) 

(b) 
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3.4 Comparison with previous analyses 

Despite several previous works have dealt with the impact of climate variability 

on the agriculture water requirements, a few studies focused on large spatial 

scales. Despite any previous long-term assessment of multi-crop daily water 

requirements is actually available at the global scale (to the best of the author’s 

knowledge), some previous studies were used to compare the results in terms of 

crop-specific trends or sub-continental assessments. 

The global assessment by Chiarelli et al. highlights that the actual 

evapotranspiration from irrigated croplands increased by 4.07% from year 2000 to 

year 2016 (N.B. the analysis was based on the agricultural data from MIRCA2000 

and on the FAO guidelines, as for this thesis); yet, the global volume of irrigation 

requirements (named Blue Water by Chiarelli et al.) decreased by 5.9% between 

2000 and 2016: this result can be explained considering the decrease of needs for 

irrigation in South Asia (i.e. the region with the highest density of irrigated 

croplands), as also pointed out in this dissertation.  

Therefore, a comparison with previous results can be done by comparing 

estimations over specific nations or regions. For example, the analysis of temporal 

water demand for some major crops in the Hebei province (China), which was 

carried out by Li et al. [89], confirmed some of the results from the present thesis; 

in fact, the region in the north-east of China is one of the most exposed to temporal 

increments of irrigation demand, and this climate-induced condition has been 

highlighted both by the present analysis over the 1970-2019 period and by the 

2007-2017 analysis performed by Li et al. 

The global assessment conducted by Oumarou Abdoulaye et al. [90] quantifies 

the variation of maize irrigation requirement between 1960 and 1999, at the global 

scale. Results from this study pointed out temporal increments of maize needs for 

irrigation all over the world, comparing 1999 to 1960: +1.63% in Latin America and 

Caribbean, +1.36% in South Asia, +2.05% in Sub-Saharan Africa, +4.78% in Europe 

and Central Asia, +3.11% in Middle East and North Africa, +2.64 in East Asia and 

+2.66% in North America. The comparison with results in Figure 16 highlights a 

good alignment for the case of maize, even if the result from this thesis quantifies 

the trends of irrigation days per year (N.B. even if the irrigation days and the rate 

of irrigation requirement are two different variables, their increments are strongly 

correlated). In particular, the comparison between two years, 1960 and 1999, may 

not be enough representative of an actual temporal change, since the results are 

driven by the weather conditions of a specific year and not averaged on a decade. 

However, the crop-specific analysis by Oumarou Abdoulaye et al. fit well the 

results from this thesis, comparing the changes in different sub-continental 

regions. 
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Results were compared to the assessment by the European Environmental 

Agency (EEA), describing the changes of the crop water demand and crop water 

deficit (i.e. the difference between annual rates of ETc and ETa, assuming no 

irrigation) of grain maize during in the European Union (E.U.) [91]. The EEA 

highlights that most of the European irrigation requirement comes from the 

Mediterranean countries (in terms of annual rates [mm/year]), especially in Spain. 

Moreover, the study of how water deficit changed for grain maize between 1995 

and 2015 pointed out increasing gaps between water requirements and available 

precipitation in most of the Mediterranean regions: in these two decades, the maize 

water deficit increased more than 5 mm/year in many regions of Italy, Northern 

Spain, Southern France and Greece. The water deficit also increased significantly 

in most of the Eastern nations of the E.U. (especially Poland and Romania). In UK, 

the maize water deficit decreased between 1995 and 2015 (between -3 mm/year 

and -1 mm/year, on average). These results are consistent with the map of water 

stress trends in Figure 20, where however are described the trends of stress days 

per year (instead of water deficit rates) considering all the crops and not just maize. 

The most evident difference in the comparison was founded in France, where the 

number of agricultural stress days per year appears to be significantly increased 

from 1970 to 2019, while the EEA calculated a decrease of maize water deficit 

between 1995 and 2015. This difference can be explained considering that the 

reference periods of the two analyses is very different, both as number of decades 

and starting year; moreover, the increment of stress days in France can be 

explained considering the increasing of winter drought conditions, which do not 

affect summer crops like maize. 

3.5 Concluding remarks 

In this Chapter, the impact of climate change on rainfed and irrigated 

agriculture has been examined through trend analyses of water requirements and 

water stress. Results show heterogeneous changes in the irrigation requirements 

of crops over the 1970–2019 period, both in terms of annual rates and in the number 

of days in which irrigation is required. On more than 53% of irrigated croplands, 

the irrigation requirement has increased more than 10 mm/year comparing the 

1970s and 2010s decades. Moreover, there is a statistically significant increase in 

the annual number of days requiring irrigation in most irrigated areas of Europe, 

East and West Asia, Africa and Oceania, mainly due to a decrease of precipitation 

events during the growing seasons. 

The global analysis of temporal changes also highlights a decrease of annual 

irrigation requirements in some world areas, such as the intensively cultivated 

areas in South Asia and North-East America, comparing the mean annual rates of 
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2010s and 1970s. Focusing on rainfed croplands, the temporal analysis highlights 

that 38.1% of areas are affected by statistically significant positive trends of annual 

water-stressed days, while significant negative trends were found on 6.7% of 

rainfed areas. On 6% of rainfed areas, the number of annual water-stressed days 

has more than doubled over the considered period (1970–2019) and 16% of rainfed 

areas show a statistically significant increment of severe water stressed days per 

year. 

Most of the cereals which are cultivated in North America and Europe required 

more irrigation in 2010s than in 1970s, especially rice and wheat. The increase of 

irrigation requirements is progressively higher moving from North to South for 

most of the crops, particularly for cereals. In India and Pakistan, however, the 

irrigation requirements generally decreased through the decades, especially for 

rice, wheat and sugar cane. Most of the irrigation requirements in the Southern 

hemisphere has highly increased, disadvantaging the irrigated agriculture respect 

to the Northern regions. In most of Europe, South-East Asia, Oceania and Sub-

Saharan Africa, the number of days per growing season requiring irrigation has 

significantly increased, especially because of decreases in seasonal frequency of 

rainfall days. 

The global analysis of changes in the agricultural water requirements confirms 

that hydroclimatic forcings have already affected crop evapotranspiration in the 

past decades, causing yield losses. As regards the fixed in time distribution of 

croplands, a more detailed analysis of water volumes will be enabled when new 

crop-specific data quantifying the temporal evolution of rainfed and irrigated 

areas will be available. However, the results here obtained are already relevant to 

understand the climate-driven trends in water requirement. Results presented 

here are useful in the choice of adaptation strategies to climate change in 

agriculture at large spatial scales and may support the decisional process leading 

to policies of water and agriculture management and food production. These 

actions are, in fact, particularly complex in an increasingly globalized world, 

where nations are dependent on each other for food production and tightly 

interconnected by international trade. 



Satellite-based estimation of sowing dates and growing phases 

 

77 
 

Chapter 4 

Satellite-based estimation of 

sowing dates and growing phases 

The work described in this Chapter has been partially derived from paper [92] 

The reliability of crop-growth modelling is related to the accuracy of the 

information used to describe the agricultural growing phases. A proper 

knowledge of sowing dates has a significant impact on the effectiveness of any 

analysis based on modeled crop seasonal developing.  Since one of the highest 

uncertainties in the modelling of crop water requirements is due to the lack of 

actual large-scale sowing calendars, it is essential to exploit the potential of remote 

sensing to limit this uncertainty. 

In this Chapter, a remote sensing-based estimation of maize sowing periods for 

year 2019 is presented. The analysis is based on the optical and radar information 

from Sentinel-1 and Sentinel-2, used in combination to identify the actual 

emerging periods of maize in a temperate area equipped for irrigation, in the 

northern part of Italy. The choice of testing this method on a local scale is due to 

the need of validate results with local sowing information. Moreover, the aim of 

this method is providing a solution for large-scale analyses, since the satellite data 

could easily be used in different parts of the world.  

The crop classification was carried out according to the information provided 

by local public authorities over an area of 30 x 30 km, and 1154 maize fields were 

considered within the analysis. The satellite data were used to check the potential 

presence of rainfed maize, depending on the position of the fields in relation to the 

irrigation channels and the administrative areas belonging to the irrigation 

districts.  

The combined use of NDVI and radar time series allowed a high-resolution 

assessment of sowing periods and the description of maize growing phases, by 

detecting changes in the ground surface geometry. A radar-based index was 

introduced to detect the periods when plants emerge through the soil, and the 

sowing periods were retrieved considering the heath needed by seeds to germinate 

and the daily temperatures before the emergence.  
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Results show that the pilot area can be considered uniformly equipped for 

irrigation. The comparison between NDVI and SAR time series shows the higher 

sensitivity of radar for the monitoring of maize during the final growing phase. 

Sentinel-1 appears more suitable to describe the late growing phase of maize, since 

the radar backscattering is sensitive to the dry biomass of plants while the NDVI 

decreases because of the chromatic change of leaves.  

More than 60% of maize is sowed in April, 52% during the last 6 days of the 

month, also highlighting the presence of another important sowing period in May. 

Orography can partially explain the delay of sowing, since the optimal climate 

conditions for agriculture occur later at higher elevations. Even if a moderate 

correlation (R=0.41) was found between sowing periods and elevation above the 

sea level, also the presence of winter crops in the most densely cultivated areas can 

contribute to delay the sowing of spring maize at lower elevations. The results 

obtained highlight the potential of synergy between remote sensing sources for 

agricultural management policies and to improve the accuracy of crop-related 

modelling. 

4.1 Potential of EO for high-resolution crop monitoring 

The analysis of crop growing phases is essential to gather information about the 

factors affecting agricultural production and to adopt proper management 

strategies. Given the importance of agriculture in the global food system, the 

sensitivity of crop yields to several factors is increasingly studied through 

multidisciplinary approaches. Many studies are based on crop models, requiring 

input information at proper resolutions and spatial scales [93]. The improvement 

of crop modelling at different spatial scales, from local to global, is a key factor in 

raising awareness of drivers affecting crop yield and crop-related variables. The 

importance of climate variables for agricultural production is widely analyzed, 

particularly in terms of climate-driven impacts through the past decades [68] and 

of future vulnerability due to projected climate scenarios [69]. Besides to climate 

variables, agricultural production is very sensitive to human practices, 

technological improvements, and local policies [10]. 

Sowing periods have an important impact on the crop yield of many of the most 

common crops, like maize, wheat and rice [94]. Several authors analyzed the 

impact of late sowing on yield losses; for example, studies have shown that late 

sowing causes maize yield losses in the U.S. Midwest, because of increasing water 

stress during the vegetation and reproductive phases [95]. Similar analyses have 

been performed for different crops: for example, Ortiz-Monasterio et al. [96] 

quantified that wheat yield decreases by about 1% for every day of late sowing in 

Northern India, because of non-optimal climate conditions in the final growing 
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phase. Frequently, the temporal shift of sowing and harvesting dates has been 

adopted as local adaptation strategy to climate change, e.g., the sorghum 

production in Italy [97], rice in Sri Lanka [98], soybean in Austria [99], oilseed crops 

in the U.S. South-West [100]; however, many limitations still constrain the 

adjustment of growing periods as a reliable strategy to prevent local climate-

driven yield losses [101]. 

Earth Observation (EO) has shown a high potential to retrieve land surface 

parameters [102] [103]. Remote sensing is increasingly used for agricultural 

applications because it provides data suitable for many purposes, from large-scale 

numerical modelling to precision farming. Techniques combining optical and 

radar data from satellites offer a wide range of solutions for high-resolution 

agricultural applications [104]. The optical data are highly sensitive to the color of 

the soil, to the dynamics of the vegetation cover as well as to the process of 

photosynthesis, while microwave instruments can detect geometric and dielectric 

properties of ground surfaces [105] [106]. In fact, the measured signal is dependent 

on the radar configurations (frequency, incidence angle, and polarization) and the 

dielectric and geometric properties of the surface. 

The study of EO as an instrument to retrieve sowing information is receiving 

an increasing attention. Although some sowing calendars are provided for global 

crop models (e.g., the MIRCA2000 gridded monthly calendars [41] or the FAO 

national information for irrigated crops [107]) there is still a lack of information at 

regional and local scale, where the spatial variability of sowing days and multi-

seasonal practices is more evident. Several studies addressed the use of satellite 

data for the assessment of crop sowing periods in different regions of the world, 

combining sensors and frequency bands to describe initial phenological phases. 

For example, Zhang et al. [108] developed a scalable method based on MODIS data 

to estimate sowing periods of soybean in Mato Grosso (Brazil). EO-based methods 

were tested for several crops in many other regions, such as maize in South Africa 

[109], maize and soybean in the U.S. states of Iowa, Illinois, and Indiana [94], and 

wheat in India [110]. Several combinations of EO sensors have been exploited, 

mostly based on visible, infrared and microwave data. Recently, much attention 

has been given to active radar as a reliable instrument to retrieve sowing periods 

[111]. The analysis performed over the Bekaa Valley (Lebanon) by Nasrallah et al. 

[105] showed the reliability of multi-polarization active radar for the assessment 

of crop sowing periods. 

This Chapter aims also to exploit the potential of combined optical and active 

radar information to describe the vegetation cycle of maize, highlighting the 

strengths of each sensor to detect significant properties of growing phases. To 

address the above goals, the high-resolution information from Sentinel-1 and 

Sentinel-2 have been combined with ground information on land use to analyze 

the growth cycle of maize over a densely cultivated temperate region in Piedmont 
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(North-West Italy). Since maize is sowed and harvested within the same year, the 

analysis was carried out for the year 2019: besides the availability of data, 

analyzing year 2019 avoids uncertainties related to the agricultural practices 

during the global pandemic occurring in 2020. 

In Chapter 4.2, the satellite data used for the study and the ground information 

which was used to derive the land classification are presented. In the same Chapter 

the procedure adopted to identify the pilot fields, to describe the phenological 

cycle of maize and to derive sowing dates is detailed. In Chapter 4.3, the results of 

the applications are presented and discussed; first, the checking for rainfed areas 

in the largely irrigated region are addressed; the spatio-temporal variability of 

emerging and sowing periods is then discussed, comparing the results with 

available large-scale calendars and with the information provided by local 

farmers. 

4.2 A satellite-based method for the monitoring of 

maize sowing and growth 

4.2.1 Characterization of the pilot area  

This study aims to exploiting the potential of remote sensing information to 

analyze the maize growth over a densely cultivated pilot area within the province 

of Cuneo, in the North-West of Italy. The pilot area extends approximately from 

7.47°E to 7.85°E, and from 44.34°N to 44.6°N (about 30 × 30 km), including the 

municipalities shown in Figure 21. Most of the croplands are distributed in the 

plain region in north-central part of the site, typically below 600 m of elevation, 

according to information from the Corine Land Cover classification [112] and the 

Digital Terrain Model provided by Regione Piemonte [113]. According to the 

Köppen–Geiger classification, the local climate is warm temperate, with humid 

summers and mean temperatures below 22 °C. 

The monthly hydro-climatic information provided by ISPRA [114] shows that 

the mean precipitation and the mean reference evapotranspiration range between 

2–3.5 mm/day and 2.5–3 mm/day respectively (average values for croplands from 

April to October), as shown in Figure 21c and Figure 21d. 

The pilot area is characterized by a complex pattern of crops and an extensive 

network of irrigation channels. Maize is the most cultivated cereal, accounting for 

65.7% of cereal areas and 17.0% of total agricultural hectares (including pastures 

and fallow lands), according to the Italian National Institute of Statistics (ISTAT 

[115]). 
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Figure 21. Characterization of the pilot area: location, elevation, climate, croplands, 

irrigation districts. (a) Location and limits of the pilot area (7.47°E to 7.85°E, 44.34°N to 

44.6°N): 15 municipalities in the province of Cuneo (North-West Italy).  (b) Spatial 

elevation above the sea level [m], 10x10 m resolution.  (c) Mean daily precipitation 

[mm/day] from April to October (average 1970-2019).  (d) Mean daily reference 

evapotranspiration [mm/day] from April to October (average 1970-2019). (e) Land 

classification of the pilot area, according to the Corine Land Cover (2018) information.  (f) 

Fractions of irrigated croplands [%] with respect to the overall municipal areas: Rocca de’ 

Baldi (1), Fossano (2), Boves (3), Morozzo (4), Peveragno (5), Margarita (6), Cuneo (7), 

Montanera (8), Pianfei (9), Mondovì (10), Castelletto Stura (11), Beinette (12), Centallo (13), 

Sant’Albano Stura (14), Chiusa di Pesio (15). (g) Irrigation districts and infrastructures, 

including rain gauges. 
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As shown in Figure 21f, irrigated croplands account for large parts of municipal 

territories, especially in the north-central part of the site, according to the 

Agricultural Census promoted by ISTAT in 2010 [116] (e.g., irrigated croplands are 

more than 80% of Morozzo and Montanera overall areas). The same Census 

highlights that about 90% of maize fields in the province of Cuneo are irrigated. 

The pilot site is equipped with a dense network of irrigation channels, belonging 

to 7 irrigation districts. The shape files describing the extension and the location of 

irrigation infrastructures and administrative areas were provided by Regione 

Piemonte [117]. More than 98% of irrigation channels are located within the 

borders of the irrigation districts. Besides the network of irrigation channels, the 

area is equipped with a high number of wells [118] (Figure 21g), which may 

provide additional water to the fields. 

4.2.2 Satellite data  

Sentinel-1 

The Sentinel-1 constellation acquires C-band SAR (Synthetic Aperture Radar) 

data, at the spatial resolution of 10 m × 10 m. The synergic acquisitions of Sentinel-

1A (launched on 3 April 2014) and Sentinel-1B (launched on 25 April 2016) provide 

co-polarized (Vertical-Vertical, VV) and cross-polarized (Vertical-Horizontal, VH) 

images with a 6-days frequency and an incident angle of approximately 39° at the 

study site. 

The Sentinel-1 data are available at different processing levels, depending on 

the corrections applied to the raw acquisitions. The Level-1 of Sentinel-1 data 

provides GDR (Ground Range Detected) images, available as gridded 

backscattering coefficients derived from raw signals through a processing 

procedure: thermal noise removal, radiometric calibration, terrain correction and 

speckle filtering [119]. 

The Sentinel-1 data used in this study were downloaded from the Google Earth 

Engine platform [120] as multi-band rasters in decibel units, which were pre-

processed to meet the Level-1 GDR requirements [121]. The mask of maize fields 

shown in Figure 22a (whose characterization is discussed in Chapter 4.2.1) was 

used to select just the maize pixels from the SAR images. The VV and VH 

polarization bands were extracted from the multi-band rasters and converted from 

decibel (dB) to linear (lin) units: 

𝑉𝑉𝑙𝑖𝑛 = 10
(
𝑉𝑉𝑑𝐵

10⁄ )
 (8.a) 

𝑉𝐻𝑙𝑖𝑛 = 10
(
𝑉𝐻𝑑𝐵

10⁄ )
 

(8.b) 
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where VVdB and VHdB are the backscatter signals provided in decibels as Level-1 

SAR product; VVlin and VHlin are the backscatter signals converted into linear 

units, which are consistent with the units of raw acquisitions. 

The SAR instrument from Sentinel-1 is an active microwave sensor, which has 

been shown to be sensitive to several ground variables, such as soil moisture [106] 

[122] [123] and surface geometry [124]. Both VH and VV channels can be used for 

crop growth monitoring, since the phenological cycle impacts the ground 

geometry of the fields, both in terms of roughness and biomass volume. The co-

polarized signal has been shown to be more sensitive to combined surface-volume 

scattering, also having a high signal-to-noise ratio, while the cross-polarized 

channel is more suitable for detecting volumetric changes of vegetation [125]. 

Normalized SAR-derived index 

The potential of the combined use of VH and VV for agricultural monitoring 

has been explored in the scientific literature. The VH/VV ratio (Figure 22b) has 

been shown to be a very suitable vegetation index, being able to limit the double-

bounce effect caused by the vegetation ground interaction [104] [105] [106] [125]. 

The effect of soil moisture and bare soil roughness can be limited by 

normalizing VH/VV, which is able to detect the vegetation-induced backscattering 

setting the minimum signal for a specific type of crop, and then filtering the soil 

moisture-induced noise during the bare-soil period. However, even if Sentinel-1 

enables the detection of high-resolution ground geometric changes, the aim of this 

study is to retrieve information of generalized behaviors of crop-specific sowing, 

to compare the estimations with local available sowing information and general 

crop calendars. For this reason, a large number of fields were considered in this 

case, in order to perform the EO-based analysis within a representative spatial 

sample of the area. 

For each acquisition, the average VH/VV ratio was calculated for every maize 

field through a GIS-based analysis. The VH/VV mean results were then converted 

into decibel units with: 

(
𝑉𝐻

𝑉𝑉
)
𝑑𝐵

= 10 ∙ log10 (
𝑉𝐻

𝑉𝑉
)
𝑙𝑖𝑛

 (9) 

In order to compare the signals from different maize fields, a new index called 

𝐼𝑃𝑅 (Polarimetric Ratio Index) is proposed in this study; it is based on the 

normalized VH/VV ratio considering the maximum and minimum value from 

each field: 
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𝐼𝑃𝑅𝑖 =
(
𝑉𝐻
𝑉𝑉)𝑖

− (
𝑉𝐻
𝑉𝑉)𝑚𝑖𝑛,𝑖

(
𝑉𝐻
𝑉𝑉

)
𝑚𝑎𝑥,𝑖

− (
𝑉𝐻
𝑉𝑉

)
𝑚𝑖𝑛,𝑖

 (10) 

where the 𝑚𝑎𝑥,𝑚𝑖𝑛 pedexes identify the maximum and minimum values of 

VH/VVi [–] during the growing season respectively, calculated for each i-th maize 

field. The 𝐼𝑃𝑅 index allows a direct comparison of the backscattering variability 

during the first part of the season, avoiding misalignments due to different ground 

roughness in different maize fields. The minimum equal to zero corresponds to the 

context of bare soil. The maximum equal to 1 corresponds to the maximum of 

VH/VV ratio and then to the highest vegetation volume scattering. The 𝐼𝑃𝑅 from 

pixels corresponding to each maize field (classified according to the procedure that 

will be described in Chapter 4.2.3) were averaged for each acquisition day, to 

calculate the mean daily 𝐼𝑃𝑅 of every maize field. 

Although the normalized combination of VV and VH has already been used for 

crop phenology monitoring [105], to the best of our knowledge, this is the first time 

that a noise-filtered index based on the normalized VH/VV was directly used to 

retrieve crop-specific emerging periods. 

Sentinel-2 

The Sentinel-2 constellation provides optical data at the 10 m × 10 m spatial 

resolution every 5 days (Figure 22c). Many indices for terrestrial monitoring can 

be derived from the optical information. In this Chapter, the NDVI (Normalized 

Difference Vegetation Index) was used for the monitoring of vegetation changes 

in terms of optical and infrared signals. The NDVI index is defined as [126]:  

𝑁𝐷𝑉𝐼𝑖 =
𝑁𝐼𝑅𝑖 − 𝑅𝐸𝐷𝑖
𝑁𝐼𝑅𝑖 + 𝑅𝐸𝐷𝑖

 (11) 

where NIR and RED are the Near InfraRed and the RED reflectance 

respectively, for each i-th maize field. 

The Theia-Land web service provides 10 × 10 m cloud free NDVI data, 

correcting the atmospheric effect from Sentinel-2 measurements [127]. The NDVI 

time series were calculated by averaging the pixels corresponding to each maize 

field (classified according to the procedure that will be described in Chapter 4.2.3) 

and interpolating the mean values for each Sentinel-2 acquisition [111] [17]: a linear 

interpolation was performed to retrieve NDVI grids for the days between two 

consecutive sets of data, since NDVI changes are mainly driven by the 

phenological growth of plants. 
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Figure 22. (a) Spatial distribution of maize fields over the studied region and frequency 

distribution of field areas. (b) Example of VH/VV 10 × 10 m data over the maize fields. (c) 

Example of NDVI 10 × 10 m data over the maize fields. (d) Example of soil moisture 10 × 

10 m data over the maize fields. (e) NDVI series for 1154 fields classified as “maize” in 

2019. Comparison with NDVI from same fields in 2018 (f) and 2020 (g).  
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Soil Moisture satellite products 

The surface soil moisture (SM) was estimated by El Hajj et al. [128] from a 

synergy between the Sentinel-1 SAR and Sentinel-2 optical data and using neural 

network techniques. The S2MP product (Sentinel-1/Sentinel-2 Moisture Product) 

provides gridded data of soil water content [Volwater/Volsoil] over agricultural areas 

with 6-days frequency and a spatial resolution of 10 m × 10 m (Figure 22d). The 

S2MP data used in this Chapter were downloaded from the open access service of 

Thisme Data Service [129]. The S2MP operational data refer to the upper soil layer 

(3–5 cm) and are derived both from the ascending and descending orbits of 

Sentinel-1, passing at the zenith at around 5:30 pm (ascending) and 5:30 am 

(descending) respectively. The SM information derived from the descending orbit 

was not used, to avoid the effect of morning dew, in agreement with Le Page et al. 

[18]. The backscattering coefficient used for the S2MP estimation was obtained 

combining the contributions from vegetation and soil. The accuracy of the S2MP 

estimation was estimated to be about 6% for dry soils and up to 6.9% for very wet 

soils [128] and the RMSE was 1.5% higher for NDVI increasing from 0 to 0.75. The 

S2MP product can be applied for NDVI lower than 0.75 (for denser vegetation 

covers, the backscattering signal appears to be too attenuated to provide good SM 

estimations). 

4.2.3 Classification of maize fields 

The classification of agricultural fields was based on the geo-referenced 

information from the cadastral geodatabase of Regione Piemonte [130], which 

provides the shape files of all the cadastral parcels for the pilot area. First, the 

parcels representing agricultural areas were identified matching the cadastral 

shape files and the annual attribute tables from the agricultural registry of Regione 

Piemonte [131], which collects the annual farmer’s declarations of land use. 

Combining this information, each agricultural parcel was classified according to 

the declared cultivated crop for year 2019. 

A NDVI-based filtering was performed to improve the accuracy of the maize 

classification: despite the shapefile of cadastral parcels identifying the maize areas, 

the area of many of these parcels also has non-agricultural elements (e.g., gravel 

roads, farms buildings, rows of trees). The NDVI allows consideration of only the 

actual agricultural pixels in each parcel, as well as checking the quality of the 

cadastral classification. The shape files were converted in a 10 × 10 m raster to 

match the resolution of NDVI data from Theia. The pixels within the shape mask 

of maize parcels were analyzed in terms of NDVI response to define the borders 
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of actual maize parcels based on the NDVI signal. The values at 15-day intervals 

have been interpolated to obtain a daily signal from April to October. 

According to El Hajj et al. [24], fully developed maize can reach NDVI values 

higher than 0.7, while the NDVI values for bare soil are typically lower than 0.3. 

The preliminary-classified parcels were filtered by selecting those areas with at 

least 2 weeks of bare soil in the spring period (April–June) and with an increasing 

NDVI signal reaching values higher than 0.7 for at least 3 weeks between July and 

September. As a result of the filtering procedure, 1154 fields were obtained. The 

spatial distribution of maize fields on which the analysis described in this study is 

based is shown in Figure 22a, as well as the frequency distribution of the areas of 

the fields. As shown in Figure 22e, the NDVI series show an initial development 

of maize plants starting in May–June, when the optical index shows increasing 

values from 0.3 to 0.7. The maximum development of maize plants results for the 

period between late July and the first half of August. 

In order to verify the effects of annual crop rotation (a widely adopted practice 

in this region [132]), the NDVI-based classification was performed on the same 

1154 parcels for the years 2018 and 2020. As shown in Figure 22e the NDVI analysis 

highlights that all parcels behave uniformly in 2019, indicating a correct crop 

classification for 2019, which is the reference year for the cadastral classification. 

In contrast, 34.3% of the fields cultivated with maize in 2019 were shown with 

different crops in 2018 (Figure 22f); the percentage was even 36.1% in 2020 (Figure 

22g). 

An EO-based spatial analysis has been carried out to check for the presence of 

rainfed maize. Since the availability of irrigation infrastructures can have a 

significant impact on agricultural practices, it is important to determine if sowing 

calendars should be discussed separately for irrigated and rainfed maize. In this 

Chapter, 159 potential rainfed maize parcels were identified, selecting those 

outside the irrigation districts and at least 100 m from the closest irrigation 

channel. Still, it is possible that irrigation from water wells is operated. The results 

of this analysis are discussed in Chapter 4.3.1. 

The NDVI responses from each maize parcel have been analyzed from April to 

October and matched with the radar backscattering signal during the same period. 

The signals from the parcels within the irrigation districts were compared to the 

signals from other parcels, to highlight the effect of irrigation: during the dry 

periods, the NDVI from rainfed maize is expected to be lower than from the 

irrigated maize, where the stress effect is mitigated by irrigation. Likewise, the 

SAR backscattering can detect differences between rainfed and irrigated parcels, 

being sensitive to the vegetation water content. 

The soil moisture data described in Chapter 4.2.2 were used to check for rainfed 

maize. For each parcel, the mean soil moisture was calculated for the period from 

May to July. The mean NDVI was calculated likewise on each field for the same 
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growing period. According to the assumption that irrigation allows maintenance 

of higher levels of soil moisture during dry periods, as well as higher NDVI 

responses, the mean soil moisture and NDVI were compared for the parcels within 

the irrigation districts and those far from irrigation infrastructures. 

4.2.4 Identification of crop emergence and sowing periods  

The backscattering and NDVI signals were analyzed during the maize growing 

season. The sensitivity of the VH/VV signal was exploited to identify the 

emergence periods of maize (EP), i.e., the time at which the germinating plant 

emerges from the ground and starts to grow. According to the NDVI series, the 

initial growing phase develops during May and June. Even if the NDVI signal 

suggests some fields are already sowed during April, the analysis of backscattering 

signal was performed from May, to avoid the uncertainty related to the fields still 

cultivated with winter crops in April. 

The IPR daily signal was compared to the NDVI for two growing stages: the 

initial and growing phase (May–June–July) and the middle-final phase (August–

September–October). The two phases were defined according to the mean NDVI 

values. From May to July the NDVI increases because of the cover development, 

reaching the maximum between July and August. In the last three months, the 

NDVI gradually decreases because of the chromatic change of maize leaves, up to 

rapid and strong variations indicating net changes corresponding to the harvesting 

times. 

The EP periods were identified through an approach based on the analysis of 

the IPR signal. The bare soil period was identified for each field, according to the 

NDVI data, and the IPR backscattering signal was calculated for this period to 

identify the noise from moisture and roughness variability in bare soil. For each 

field, the noise induced by bare soil was removed from the IPR signal for the 

complete growing season, as described in equation 12: 

𝐼𝑃𝑅𝑓 = 𝐼𝑃𝑅𝐺𝑆 −
∑ 𝐼𝑃𝑅𝑙𝑏𝑝

𝑙𝑏𝑝
 (12) 

where 𝐼𝑃𝑅 is the normalized VH/VV backscattering (non-dimensional), 𝐼𝑃𝑅𝑓 is 

the filtered 𝐼𝑃𝑅 obtained by removing the backscattering from pure bare soil, 

𝐼𝑃𝑅𝐺𝑆 is the IPR backscattering during the growing season (GS), and lbp is the 

length of the period before plant emergence [days]. The filtered normalized 

backscattering, expressed as Polarimetric Ratio Index (IPRf) should have values 

close to zero until the plants start to grow out from the ground.  
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The EP was assigned to each field according to the time in which the 𝐼𝑃𝑅𝑓 signal 

exceeded the 0.1 threshold. This cut-off value was fixed according to the 

uncertainty associated with the radar signal [133].  

The maize sowing periods (SP) were inferred from the EP, considering the daily 

air temperature and the soil moisture conditions in the days before the emergence, 

as previously done by Nasrallah et al. [105]. According to the method described 

by Swan et al. [134], the days needed by the planted seeds to emerge from the 

ground were computed calculating the daily Growing Degree Units (GDU) [°C]. 

This indicator, also named Heat Units, describes the relation between crop 

development and the daily temperature. The heat accumulation, calculated 

considering the daily minimum and maximum temperatures, is used to measure 

the time required by crops to reach specific development phases.  

Several authors provide estimations of the total GDU required by the maize 

plants to emerge through the soil: Darby and Lauer [135] calculated a GDU 

requirement of 69.4 °C while Abendroth et al. [136] suggested a range between 50 

and 66.7 °C. For maize cultivated in the Eastern part of Po Valley (North-East 

Italy), a GDU requirement of 61 °C was proposed by Berti et al. [137]. In the present 

work, a mean GDU requirement of 62.9 °C was assumed as reference value for 

maize to reach the emerging phase, to be consistent with general recommended 

values and specific GDU estimated for Northern Italy. The daily GDU were 

calculated as 

𝐺𝐷𝑈𝑖 =
𝑇𝑚𝑎𝑥,𝑖 + 𝑇𝑚𝑖𝑛,𝑖

2
− 𝑇𝑏𝑎𝑠𝑒 (13) 

where GDUi are the growing degree units for the i-th day [°C], Tmax and Tmin are 

the maximum and minimum air temperatures for the i-th day and Tbase is the low 

threshold temperature required for maize growth. According to the guidelines 

from the University of Wisconsin [138], Tbase was assumed equal to 10 °C and the 

upper and lower limits for daily Tmax and Tmin were fixed to 30 °C and 10 °C 

respectively. Daily temperature data provided by Arpa Piemonte [139] were used 

to determine the daily GDU for each field. The daily GDU were cumulated 

backwards from the emergence days to reach the required amount of Growing 

Degree Units for the crop emergence: for each field, the day on which the 

cumulative Growing Degree Units reached 62.9 °C was chosen as the sowing date. 

According to Schneider and Gupta [140], soil moisture (SM) can affect the total 

GDU required by maize to reach emergence: for moisture values below the 

optimum in the seeding-zone, 16.7 °C should be added to the amount to be 

reached. Even if the impact of soil moisture occurs only in very dry periods, the 

optimum condition of soil water content is an important factor for the choice of 

sowing dates by farmers: for this reason, the impact of soil moisture on the length 
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of emerging periods was considered in this study. The gridded moisture data from 

Theia (described in Chapter 4.2.2) were used to identify moistures below optimum 

conditions. The upper limit of soil moisture was set for each field considering the 

maximum value from January 2018 to October 2021: these values were assumed as 

the field capacity of each field. According to the methodology described by FAO 

[7], each crop reach water stress conditions when soil moisture reaches values 

lower than specific fractions of field capacity: the FAO guidelines suggest that 

maize reaches stress conditions when soil moisture is lower than 45% of field 

capacity. The mean soil moisture during the 20 days before the plant’s emergence 

was calculated over each field: for the fields where the mean SM was found lower 

than 45% of field capacity, the GDU requirement of 62.9 °C was increased by 16.7 

°C. 

4.3 EO-based description of maize growing cycle 

The outcomes of the analysis are described in this Chapter and summarized as 

follows. First, the results of the irrigated/rainfed classification (Chapter 4.3.1) show 

that maize can be uniformly considered irrigated on the pilot area; in fact, the 

analysis performed on the fields in and outside the irrigation districts did not point 

to any relevant difference in the satellite time series. The results from the analysis 

performed throughout the growing season arei discussed in Chapter 4.3.2, 

comparing the potential of optical and SAR data to retrieve information for 

different growing phases. The maize sowing periods (SP) are reported and 

discussed in terms of emergence periods of maize plants detected from SAR 

information, and the derived distribution of actual SP over the pilot area (Chapter 

4.3.3). 

4.3.1 Identification of potential rainfed fields 

The maize parcels within and outside the irrigation districts (respectively called 

“in ID” and “out ID” in this Chapter) were compared in terms of NDVI and 

VH/VV series. This comparison was performed to identify differences between the 

two graphs, in order to potentially calculate separate SP for rainfed and irrigated 

scenarios. As shown in Figure 23, the 0.25, 0.50 and 0.75 quantiles of the signals 

from the maize parcels were computed every 6 days, to be consistent with the SAR 

frequency of acquisition. The quantiles series do not show any significant 

difference between the two groups of parcels. Despite the 0.95 and 0.05 quantiles 

of NDVI showing a different range of values in June and September, this 

misalignment can be explained considering the differences between the two sets 

of parcels: in fact, less than 14% of maize parcels were considered as potentially 
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rainfed. In addition to the numerical difference between the two groups, the 

potentially-rainfed parcels are concentrated in areas at higher elevations and along 

the rivers, while the irrigated parcels are more uniformly distributed over all the 

pilot area. 

Time series of mean NDVI and VH/VV were obtained from daily mean values 

from Figure 23. The NDVI mean signal from parcels within the irrigation districts 

is consistent with the mean signal calculated for the other parcels. The VH/VV 

comparison highlights a slight difference between the two groups from April to 

May: the VH/VV from parcels within the irrigation districts is −0.6 dB lower, 

considering the mean for the two months. However, this misalignment can be 

considered a consequence of the noise induced by the bare soil geometry, since the 

difference gradually reduces when the VH/VV become more sensitive to the 

growth of the plants. 

 

Figure 23. Time series of NDVI values (interpolation of 15–days revisit time) and VH/VV 

backscattering signal (6–days revised time). Each boxplot represents the distribution of 

values of NDVI and VH/VV from all the maize fields. The horizontal blue lines in the 

boxplots represent the 25%, 50%, and 75% quantiles, respectively (from the ground up). 

The black lines above and under each boxplot include the values within 95% and 5% 

quantiles, respectively. The blue dots represent the outlier values. In the two lowest 

subplots the mean daily values of the series are reported. 
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A further comparison was performed between the two groups of fields, 

considering the complete series of NDVI and VH/VV among the growing season. 

Even if the temporal mean signals from the two groups of parcels are well aligned, 

the effect of irrigation could lead to more evident divergences considering the 

long-term effect during the full growing season. The sum of the mean daily NDVI 

from April to October was compared for the fields inside and outside the ID: a 

misalignment of −0.01% was found between the sums of the two mean NDVI 

signals. The same analysis shows a misalignment of −1.7% from April to October 

between the sum of mean VH/VV within and outside the ID, and a misalignment 

of −0.4% considering the period from June to October (when the irrigation season 

is concentrated, and the effect of bare soil is limited). In both cases, the analysis did 

not point out any appreciable differences between the two groups of fields. 

The monthly correlations between NDVI and VH/VV were calculated for the 

two groups of parcels, to identify potential impacts of irrigation limited to the areas 

of the irrigation districts. The analysis was performed for the first part of the maize 

growing cycle, when the VH/VV is still sensitive to the soil moisture anomalies 

induced by irrigation since growing plants still do not cover entirely the ground. 

Table 9 shows the monthly Pearson correlation coefficients (obtained dividing the 

covariance by the product of the two variables’ standard deviations) considering 

all the signals retrieved every 6 days from all the parcels of each group. The mean 

monthly NDVI was also compared with the mean soil moisture retrieved over the 

two groups of parcels. The comparison does not show any appreciable difference 

between the maize parcels cultivated within or outside the irrigation districts. 

Table 9. Columns 1-2: Pearson correlation indexes (R) between NDVI and VH/VV. For each 

month from April to July, the optical and radar responses were compared, considering all 

the maize parcels and a 6-days frequency. R was calculated for the group of parcels within 

and out from the irrigation districts (IrD). Columns 3-4-5-6: comparison between mean 

monthly NDVI and soil moisture for the parcels within and out from the irrigation districts 

(soil moisture as % of water per unit of soil, in the upper 3-5 cm). 

Month 

Correlation between 

NDVI and VH/VV 

Comparison of NDVI and soil moisture 

(SM) 

R  

(in IrD) 

R  

(out IrD) 

NDVI 

(in IrD) 

NDVI 

(out IrD) 

SM 

(in IrD) 

SM 

(out IrD) 

April 0.2 0.2 0.21 0.22 0.24 0.26 

May 0.62 0.6 0.46 0.45 0.22 0.23 

June 0.64 0.66 0.71 0.68 0.2 0.2 

July 0.23 0.21 0.84 0.83 0.17 0.18 
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4.3.2 Growing phases 

The analysis performed throughout the growing season showed some relevant 

results in terms of optical and radar performance in the monitoring of maize 

growth. The comparison between NDVI and VH/VV shows a good alignment in 

the remote sensing responses during the initial growing phases, as shown in 

Figure 23. From May to July the NDVI increases from about 0.2 to the maximum 

values (0.75–0.9) and the VH/VV backscattering also increases from −10 dB to −5 

dB on average. Although the NDVI decreases significantly during the final phase 

(September–October), there is no evidence of an analogue decrease in terms of 

backscattering. Since the NDVI is derived from visible and near infrared 

frequencies, the strong decrease is driven by changes in the chromatic response of 

maize leaves. However, the VH/VV does not appear to be affected by an analogous 

decrease during the same period; in fact, the backscattering signal is sensitive to 

changes in the ground coverage structure and water content. 

Since VH/VV shows a low decrease during September and October, we can 

assume that this response is driven by the reduction of plant water content and the 

progressive drying of maize leaves. Yet, the signal decreases “slowly” because of 

the presence of dry biomass on the ground inducing volume scattering. This 

misalignment between NDVI and radar backscattering in the final part of the 

growing season is particularly meaningful for those algorithms retrieving soil 

moisture values based on NDVI information: since the plants’ height affects the 

reliability of soil moisture results, these models usually suggest specific ranges of 

NDVI for which the soil moisture can be used. However, according to the results 

from Figure 23, any information whose reliability is affected by the plant coverage 

would be more robust taking into account the response of the dry biomass in terms 

of the global radar backscattering. 

The maize growth was also analyzed in terms of the normalized backscattering 

signal (IPR). The scatterplots in Figure 24 show the relation between IPR (i.e., the 

normalized VH/VV backscattering) and NDVI along two main growing phases. In 

the first growing phase (May–June–July), most of the maize fields appear to be 

already sowed and the development of plants corresponds to the NDVI changes 

and the IPR response. NDVI increases are due to the visible and near infrared 

signals of the land cover. 

In the first part of the phase, when the NDVI is still lower than 0.25 (bare soil), 

the variability of IPR is mainly due to changes in the soil moisture and roughness 

due to the incipient growth of maize plants. The first consequence of maize 

emerging, before any response in terms of NDVI, is the change of soil roughness, 

to which the normalized backscattering is very sensitive.  
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Figure 24. Comparison of daily NDVI and daily Polarized Ratio Index (IPR) over maize 

fields, for different growing stages: (a) May, June, July; (b) August, September, October. 

Each point represents the comparison between daily NDVI and IPR for a specific field. 

During the middle and final phase, plants have now reached the maximum stage of 

development (NDVI variability is very low and mainly due to plant health status) and the 

crop response in terms of NDVI is due to the change of plant color and to the final 

harvesting. 

NDVI is more sensitive to chromatic responses of vegetation coverages instead 

of roughness variability, and the seedlings of freshly born maize do not provide 

any significant change in the optical response during the early days of growth. In 

fact, as shown in Figure 24a, the daily comparison between NDVI and IPR 

highlights a range of values where IPR starts to grow quickly but NDVI appears 

to be less sensitive (i.e., May, during the first part of the growing season). The 

results in Figure 24 show the distribution of daily NDVI and IPR month-by-month 

over the pilot area: the distribution of the IPR increments seem to indicate that the 

emerging phase starts in early May and continues up to late June; in fact, even if 

most of the blue crosses reach high values of IPR during May (Figure 24a), there 

are still some fields where the plants break through the soil during June (green 

circles, Figure 24a). 

During the second period, from August to October (Figure 24b), the NDVI 

starts to decrease because of changes in the chromatic response of maize leaves. 

During August plants have reached the maximum height of development and 

there is no significant NDVI variability (blue crosses, Figure 24b). Despite NDVI 

markedly changing in this period (values from 0.9 to 0.2), the daily variability of 

IPR appears to be lower. 

The NDVI decrease from August to October is directly correlated to the 

vegetation’s water content: maize plants become gradually drier during the final 
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phase of the growing season, with a different response in terms of red and infrared 

reflectance. However, the SAR backscattering depends both on the vegetation 

water content and the geometric structure of the ground coverage. 

The misalignment between NDVI and IPR decreases is due to the sensitivity of 

the radar backscattering to dry biomass covering the ground, which limits the IPR 

variation compared to NDVI. Sudden decreases in the VH/VV signal to low values 

may be due to the maize harvesting over some of the fields, during September and 

October (orange triangles and green circles in Figure 24b). 

4.3.3 Emerging of plants and sowing periods 

In order to identify the periods in which maize starts to grow, the SAR data 

were analyzed for the period from May to June. The mean and variance of VH/VV 

over time in each parcel are shown in Figure 25: each point in the scatterplot 

represents the VH/VV statistics from May to June, colored according to the mean 

NDVI calculated for the same period. 

 
Figure 25. Comparison of radar backscattering mean and variance during the initial period 

of maize growth. Each point represents a maize parcel during the period from May to June, 

colored according to the mean NDVI for the same period. 

Fields where maize is sown in the early May (or even in April) show a lower 

variance of VH/VV, because the growth of plants tends to produce a uniform field 

coverage. For the same reason, the early sowed fields show a higher mean 

backscattering and a higher mean NDVI, because the growing phase is at a later 

stage and plants are more developed. The presence of different mean NDVI classes 

over the May–June period may indicate that maize was sowed in distinct phases. 

About 25% of maize fields appear to have a mean NDVI lower than 0.3 in the first 



Chapter 4 

 

96 
 

two months: for these fields, the NDVI series typically assumed values higher than 

0.3 during April, meaning that winter crops planted on the same plots before 

maize were probably still cultivated until this time. 

The high values of VH/VV variance are typical of scenarios where maize plants 

break through the soil. The low height of plants corresponds to low NDVI and 

radar backscattering, but also to high variability of ground coverage due to the 

incipient growing phase. 

The normalized backscattering signal (IPR) was filtered to limit the sensitivity 

of radar data to the moisture variability of bare soil, according to the procedure 

described in Chapter 4.2.4. The variability of the filtered signal (IPRf) is mainly 

related to the geometric changes of the ground surface, which is related mainly 

related to the emerging of maize plants during the first part of the season. 

Therefore, the temporal analysis of IPRf allows identification of the time at which 

plants emerge from the ground. The emergence time was identified according to 

the series of IPRf, checking the time in which the filtered backscattering exceeds 

the threshold of 0.1. The bar plot in Figure 26 shows the distribution of the 

emergence periods (EP).  

 
Figure 26. (a) Temporal distribution of emergence periods (i.e., the periods when the plants 

emerge through the soil). The 6–days revised time refers to the availability of radar data 

that were used for the analysis. For each day, the hectares where the plants have come out 

from the ground have been cumulated according to the class of elevation (meters above 

the sea level). (b) Temporal variation of the IPRf frequency distribution. After the end of 

June, no more fields show values < 0.1, showing that the maize has passed the emergence 

phase. 
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Most of the maize starts to grow out of the soil surface during the second half 

of May, especially in the days before the 18th of May. The distribution of EP 

highlights the presence of a second main emergence period, between the last days 

of May and the beginning of June. 

It is interesting to observe that sowing of maize at low elevations (h < 400 m 

above the sea level) appears to occur earlier than at higher elevations, with highest 

elevations (typically h > 500 m) characterized by plants breaking through the soil 

between the of May and mid-June. This fact is consistent with the lower 

temperature at higher elevations. 

The presence of two different SP is consistent with the typical agricultural 

practices of the area, where winter crops are harvested in late spring. These crops 

may be present on those parcels sowed later at the lower altitudes, while the time 

shift at high elevations may depend by the later warming of weather conditions. 

Despite some areas appears to be sowed in the first week of April, this practice 

is not widespread over the region. The early sowing is mostly related to the grain 

maize, which requires longer periods to grow and reach the optimum water 

content in the final product at the end of the season, and to local insurance policies 

that refund maize farmers in case of late frosts in April. 

According to the methodology described in Chapter 4.2.4, the actual sowing 

dates were estimated by inverting the method for the calculation of the emerging 

period from the sowing date, according to daily temperatures and soil moisture 

conditions. Considering that emergence periods can be calculated on a 6-days 

interval, because of the revisiting time of Sentinel-1 data, the estimation of actual 

sowing dates is affected by the same uncertainty; in Figure 27 results are presented 

with such temporal resolution. 

More than 52% of maize areas are sowed in the last six days of April, especially 

in the northern municipalities where this percentage is higher than 70% (e.g., 78% 

in Fossano, 73% in Sant’Albano Stura). About 9.1% of maize fields are sowed in 

the remaining days of April. About 30% of maize areas were sowed in the second 

half of May and at least 9% during the first half of the month. 

The spatial distribution of maize SP highlights that, on average, the fields at 

lower elevations are sowed earlier (see the DTM map in Figure 21b). A statistical 

analysis was performed to calculate the correlation between the SP and the 

topographic elevation: the 6-days intervals, consistently with the Sentinel-1 

revisiting time, were numbered for year 2019 (e.g., April 13th–18th interval is the 

18th group of 6 days); for each field, the numbered 6-days sowing period was 

compared to the elevation (in terms of meters above the mean sea level). However, 

the Pearson correlation coefficient (R), which quantifies the correlation strength 

between two sets of variables (ranging from 0 to ±1), shows a moderate positive 

correlation of 0.41 between sowing periods and topographic elevation (according 

to the classes of correlation proposed by Evans in 1996 [141]). 
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Figure 27. Spatial distribution of sowing dates at 10x10 m resolution. The sowing periods 

are grouped by 5-days classes. The spatial variability confirms the SAR analysis of 

emergence periods: for lower elevations, maize is sowed earlier on average. 

In fact, despite an evident gradient of sowing periods moving from lower to 

higher altitudes, a significant part of fields at low altitudes appears to be sown 

during May. This can be explained by some declarations from local farmers, 

stating that fields at low elevations have a higher probability to be cultivated with 

winter crops until April: this could be the main reason for the coexistence of fields 

sowed on early April and late May at elevations < 450 m above the sea, where 

medium temperatures are higher. 

This result is consistent with the information provided by local farmers 

(interviewed by the authors in November 2021) who declared that maize is usually 

sowed twice per season, in April and May, according to the plant variety and the 

final use the product. The maize sowed in April is usually a high-quality product 

for the food market, while the plants sowed in May are those to produce mash corn 

for farm animals. The results obtained in this study fit well with the available 

sowing information described by previous studies in Northern Italy. Berti et al. 

[137] collected sowing periods over 6 sites in North-East Italy, from 2005 to 2007: 

local farmers declared that maize was mostly sown during late April in 2005 
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(sowing occurred between 27 April and 1 May in 3 of the 6 sites). Despite a slight 

temporal variability, this study states that most of the maize was sown in April 

also in 2006 and 2007. Even if the data were collected in the eastern part of Po 

Valley, the agricultural practices can be assumed as sufficiently uniform in the 

densely cultivated region of Northern Italy. Moreover, also the regional calendar 

provided by Azar et al. [142] considers April as the sowing month for maize in 

Northern Italy, and the second week of May as the reference beginning of the 

growing phase. 

Although global sowing calendars can only be used as general reference 

information and not as actual data for validation, the results obtained in this study 

fit well with the large-scale SP for irrigated maize provided by the crop calendars 

from FAO [107] and MIRCA2000 [41]. The FAO calendar indicates April as main 

sowing month for irrigated maize, with high probability that a small part of 

irrigated croplands may be sowed later. The U.S. Department of Agriculture 

provides monthly information for crop-specific sowing dates worldwide [143]: this 

calendar suggests April as sowing period for maize in Italy. 

The main limitation of this approach is the lack of information about actual 

sowing dates at the field scale, to perform a high-resolution validation: right now, 

results can only be compared with local declarations from farmers and large-scale 

calendars. As previously mentioned, local farmers were asked to answer a survey 

to get an overview of the maize cultivation practices in the pilot area, in order to 

partially fill this gap. The results of the survey are available in Appendix A, within 

the supplementary material of this study. Although this source is too scattered to 

be used for an actual validation, the information collected from farmers was a 

valuable source in giving confirmation of the results. 

4.4 Concluding remarks 

The sowing period has been proven to have an important impact on the yield 

of many of the most common crops, especially cereals. Moreover, the shifting of 

agricultural sowing periods is increasingly used as an adaptation strategy to 

climate change. 

In this Chapter, the reliability of Earth Observation to retrieve maize sowing 

periods was tested, analyzing a pattern of 1154 fields within a 30 × 30 km area in 

Piedmont (North-West Italy) for year 2019. Radar and optical acquisitions from 

Sentinel-1 and Sentinel-2, respectively, were used to classify maize fields and to 

detect crop emergence through the soil, building up the spatial distribution of 

sowing periods at the field scale. For this reason, a SAR-based normalized index 

(named Polarimetric Ratio Index, IPR) was proposed in this study, in order to 

detect the geometric changes on ground surface induced by maize emergence. 
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Results show that in 2019 maize was sown within April and May: about 52% of 

maize hectares were sown between April 25th and 30th, and 31% from May 13th to 

the end of May. The late sowings are more frequent at higher elevations: a 

moderate correlation was found between emergence delay and elevation above 

the sea level (Pearson correlation coefficient, R = 0.41). The maize sowed in May at 

lower elevations is likely cultivated on those parcels where winter crops are 

harvested in late spring, according to a widespread agricultural practice in this 

area. 

The comparison with actual data of local sowing practices highlights a good 

alignment with sowing periods occurring in the Po Valley in previous years 

(period 2005–2007). Results fit well with the sowing periods declared by local 

farmers within a survey conducted by the authors, in which the second half of 

April and May were indicated as the two main sowing periods. Results from this 

study are also well aligned to the most widely used comprehensive crop calendars, 

such as the global dataset of sowing periods proposed by FAO. 

Although the combined use of SAR polarizations has been previously used for 

agricultural applications, the novelty of this approach relies on the use of a 

normalized SAR-based index, which allows filtering out the effect of bare soil and 

clearer detection of the signals induced by crop growth. Further analyses 

combining more satellite constellations and ground information for validation, 

could exploit the EO-based methodology proposed in this study to assess more 

precise sowing periods for various crops. 

For the future, even temperate areas are expected to suffer lack of water and 

yield losses, because of changes in the precipitation regimes and withdrawable 

water for irrigation. Remote sensing is a very useful tool to support effective 

adaptation strategies to climate change, especially in those regions where new 

agricultural mindsets are increasingly required. 
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Chapter 5 

Conclusions 

The research work described in this thesis exploits the potential of Earth 

Observations for the assessment of agricultural evapotranspirative requirements. 

Satellite technology proved to be a valuable tool for retrieving climate information, 

providing reliable solutions for agricultural applications and improving the 

accuracy large-scale hydrological modelling. The global food security is seriously 

threatened by climate changes since agricultural production is exposed to 

increasingly severe droughts and lacks of available freshwater for irrigation.  

This research aims to take advantage of EO-based re-analysis data to describe 

the global climate-driven agricultural requirements, highlighting critical impacts 

and statistically significant trends. The research has some innovative aspects, since 

the water-soil balance model described in Chapter 2 was coupled with daily 

gridded information of precipitation and evapotranspiration; to the best of our 

knowledge, this is the first global assessment of crop water requirements driven 

by actual daily climate data over a 50-year period. Moreover, a method for the 

estimation of crop sowing periods and growth monitoring based on optical and 

radar data is also described in this thesis.  

Assessing the agricultural stress and the water needed for irrigation has never 

been more important, since the availability of freshwater is seriously challenged 

as result of climate change. Effective water management policies and adaptation 

strategies have never been more urgent to limit the exposure of agricultural 

production to climate change. The widespreading of the “agriculture 4.0” concept 

lays the foundation of the next food production mindset, which will probably be 

highly dependent on our capacity to use technological tools for the crop 

management, including the EO sensors. In addition to this, the SDGs from the UN 

Agenda 2030 clearly point out the importance of ensuring food security to face the 

unprecedented cotemporary population growth.  

The first Chapter of the thesis introduces the research questions and points out 

the background of the research field. Objectives and limitations are presented and 

discussed, in order to clarify the strengths and the weaknesses of the results. 

Moreover, a brief review of the most used satellite sensors for agricultural 

applications is presented. Most of the satellites equipped for EO missions retrieve 



Chapter 5 

 

102 
 

optical and radar measurements, according to the purpose of each space mission. 

An additional review of EO-based products for agricultural and hydrological 

modelling has been included in Appendix A. 

In Chapter 2, the hydrological model for the computation of crop water 

requirement is presented. The soil-water balance is driven by daily data of 

precipitation and reference evapotranspiration, computing the crop-specific 

assessment of actual evapotranspiration. The hydro-climatic variables were 

retrieved from ERA5 reanalysis dataset from the Climate Change Service of the 

Copernicus European Programme, which provides tents of hourly gridded climate 

variables. The model was tested by assessing the global irrigation requirements of 

26 main crops for year 2000 and comparing results with previous studies and 

national data of withdrawals for irrigation. In this Chapter, the methods for the 

daily aggregation of ERA5 data are described, detailing the computing and the 

calibration of reference evapotranspiration; the procedure used to match the 

spatial resolution of ERA5 (0.25° x 0.25°) and MIRCA2000 (0.0833° x 0.0833°), i.e. 

the gridded crop dataset on which the assessment was based, is also discussed in 

this Chapter.  

The irrigation requirement resulting from the model was found to be about 962 

km3 for year 2000, with a spatial variability mainly dependent on some key factors: 

the distribution of areas equipped for irrigation, the crop intensity (i.e. the 

indicator of multi-seasonal practices on the same areas), the kind of cultivated 

crops (e.g. rice has a high sensitivity to water stress and requires more irrigation 

compared to other cereals), and the lack of precipitation. The soil water balance 

also highlights that an important volume of rainfall (about 672 km3) was lost as 

surplus over irrigated lands because of the seasonal distribution of wet days; this 

water is fed back to the hydrological cycle but does not contribute to satisfy the 

crop evapotranspiration needs. The distributed classification of irrigation 

requirement by classed of water risk highlights that South and East Asia are the 

regions most exposed to possible unavailability of water suitable for irrigation, in 

terms of quantity and quality. The estimations from this thesis were compared 

with national and sub-national data of withdrawals for irrigation: in both cases, 

good agreements were found, especially for the most densely cultivated nations; 

the comparison also pointed out very good alignment between our estimations 

and volumes of applied water and evapotranspirative demand estimated in 

California. 

In Chapter 3, a comprehensive assessment of daily crop water requirements 

was performed to analyze significant trends of irrigation needs and water stress 

periods over the 1970-2019 period. The model described in Chapter 2 was used for 

this assessment, introducing some methodological updates to improve the 

accuracy of the estimations. First of all, a climate-based method for the assignment 

of soil moisture at the sowing date was introduced: in order to partially avoid 
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arbitrary assumptions, the gridded soil moisture data from ERA5 were used to 

define monthly mean values of soil water content, in order to initialize the growing 

season. A sensitivity analysis shows that final ETa is 12% lower if the temporary 

crops are sown with wilting point conditions, compared with the opposite scenario 

at field capacity; a similar analysis shows that the difference is 3% for irrigation 

requirements, comparing the two sowing scenarios. Another improvement was 

the calibration of ET0 over a multi-decade period, using a method improved from 

the one discussed in Chapter 2.  

Results show that global irrigation requirements (I) changed heterogeneously 

from 1970 to 2019. Since the assessment was performed at the daily scale, it was 

possible to highlight significant trends of seasonal days requiring irrigation; the 

case of maize was analyzed in several sub-continental regions of the world, 

highlighting statistically significant increases of annual periods requiring 

irrigation in Europe, East and West Asia, Africa and Oceania; these trends are 

mainly driven by decreases of annual rates and frequencies of precipitation. The 

analysis of I annual rates shows that for more than 53% of irrigated croplands the 

irrigation needs have increased more than 10 mm/year over the 50-year period. 

Moreover, increments higher than 100 mm/year were found in Mediterranean 

Europe, Balkan peninsula, Ukraine, North-East China, the eastern part of 

Australia, Brazil, and the western part of U.S., comparing the mean rates of 1970s 

and 2010s decades. Crop-specific results show that most of the cereals cultivated 

in North America and Europe required more irrigation in 2010s than in 1970s 

(especially rice and wheat). The increase of irrigation requirements is 

progressively higher moving from North to South latitudes, particularly for 

cereals. India and Pakistan, however, show opposite trends and the irrigation 

requirements of the most cultivated crops generally decreased through the 

decades.  

The assessment of actual evapotranspiration over rainfed croplands, where no 

irrigation inputs are supposed to avoid water stress during dry periods, the 

temporal analysis pointed out that 38.1% of areas are affected by statistically 

significant positive trends of annual water-stressed days; moreover, the length of 

stress periods has more than doubled from 1970s to 2010s on 6% of rainfed areas, 

while 16% of rainfed areas show a statistically significant increment of severe 

annual water stressed periods. 

In Chapter 4, a synergic use of optical and radar data from the Sentinel 

constellation was used to retrieve actual maize sowing periods, and to monitor 

maize growing phases during year 2019. A 30 x 30 km pilot area was chosen in 

South Piedmont (Italy), characterized by temperate climate and an extensive 

network of irrigation channels and wells. Combining the local cadastral 

agricultural data and an NDVI-based classification, 1154 maize fields were 

identified and considered within the study. A radar-based index (Polarimetric 
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Ratio Index) was introduced to detect significant changes in the ground surface 

geometry of the fields, in order to identify the emerging periods of plants. The 

actual sowing periods were estimated according to the heath required by the seeds 

to germinate and break through the soil, considering the daily temperature 

measurements over the pilot area. 

Results show a high reliability of local crop classifications, but only for the year 

to which the cadastral crop data refer; this is an effect of annual crop rotation 

practices. The analysis based on the Polarimetric Ratio Index shows that maize 

fields were sown between April and May in 2019. The 81% of sowings were 

concentrated in two periods: about 52% of maize was sowed between April 25th 

and 30th, 28% from May 13th to the end of May. Radar acquisitions turned out to be 

more sensitive to the dry biomass of maize in the final part of the growing season 

(August-October) than optical data. The actual sowing periods were found 

moderately correlated with the elevation above the sea level of the fields (R=0.41): 

apparently, maize is generally sowed later at higher elevations, which is consistent 

with the spatio-temporal distribution of optimum temperature conditions for 

planting. Moreover, the maize sowed in May and June at lower elevations is likely 

cultivated on those parcels where winter crops are cultivated up to late spring, 

according to the information retrieved from the local farmers (Appendix B).  

Limitations 

The limitations of this thesis are mainly due to the lack of information about the 

temporal variability of global crop distribution and growing calendars: most of the 

crop-specific information still refers to circa year 2000. Despite some authors 

provided information about temporal dynamics of agricultural areas, like the 

study by Siebert et al. [144] which describes the evolution of irrigated areas from 

1900 to 2005, a few crop-specific information is actually available at large spatial 

scales: in particular, there is a lack of information of global datasets providing 

consistent information of crop distribution, multi-seasonal practices and growing 

calendars . Recent studies focused on this lack on information, providing gridded 

datasets of global crop-specific areas. For example, the SPAM2010 dataset [145] 

[146] describes the spatial distribution of agricultural areas of 42 major crops, both 

for rainfed and irrigated scenarios, including also gridded information of yield and 

agricultural production for circa year 2010; recently, the GAEZ+2015 dataset was 

published in order to provide updated information of irrigated and rainfed crop-

specific areas, describing also multi-seasonal practices and sowing/harvesting 

calendars [147]. However, a coupled information of areas and growing calendars, 

which are very important for the assessment of water requirements, is rarely 

available.  
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Within the present analysis, the crop information from the MIRCA2000 dataset 

was used, detailing rainfed and irrigated scenarios, multi-seasonal practices and 

monthly calendars. The use of a fixed-in-time distribution of croplands (in this 

case, referred to circa year 2000) limits the possibility to assess the temporal 

variability of the water volumes required by agriculture over the world: for a 

volumetric analysis, the crop-specific cultivated area must be known, in addition 

to the rate of water requirements (expressed as water depth per unit of area). The 

lack of information about temporal evolution of croplands, limits the possibility to 

convert the water depth of evapotranspirative demand in a crop-specific 

volumetric requirement. However, the temporal variability of water requirement 

rates is a reliable indicator of the climate impact on agricultural evapotranspiration 

and can be used to analyze the role of climate change in the water stress variability 

in different regions of the world. 

Another limitation is the lack of information about irrigation efficiencies. For 

year 2000 a good information of national and sub-national withdrawals for 

irrigation is also available. Yet, the comparison between the national withdrawals 

and the estimated requirements would also require some information about crop-

specific irrigation efficiencies to validate the model accuracy. The efficiency is 

expressed as ratio between the irrigation ideally needed by crops and the volume 

of water withdrawn for irrigation. Without this information or some other 

distributed data of irrigation practices, the two quantities can only be compared in 

terms of orders of magnitude. However, some additional information was used in 

this thesis to partially fill the lack of efficiency information in some relevant areas. 

For example, the practice of “deficit irrigation” was checked for those nations 

where requirements were estimated higher than actual withdrawals. Some crops 

were also associated to very low efficiencies, explaining withdrawals extremely 

higher than requirements in those nations where these crops are widely cultivated 

(e.g., cultivations of rice in Japan determine a national mean efficiency lower than 

0.1). 

The analysis of local sowing practices is potentially a useful instrument to 

understand the dynamics of the crop planting, which is highly dependent on local 

policies and agricultural incentives (e.g. crop switch, annual crop rotation, change 

of single-crop variety) but also on the annual climate conditions. Moreover, a 

reliable tool for the estimation of local sowing periods could be an important 

source of information to check the reliability of large-scale calendars. The main 

limitation of the remote sensing-based analysis is the lack of information about 

actual sowing declarations from farmers or public authorities, which limits the 

possibility of validation at the field scale. In order to improve the applicability of 

the method proposed in Chapter 4, more crop-specific data should be collected at 

the field scale, in order to have a proper comprehension of the local pattern of 

planting periods. 
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Recommendations for future research 

This thesis aims to contribute to the broad field of study that is the use of Earth 

Observation for large-scale hydrological assessments and agriculture monitoring. 

The use of reanalysis products to study the impact of climate variability on crop 

water requirements has proven to have a high potential for future studies. In fact, 

several future follow-up studies could be conduct on the basis of the model 

presented in this thesis and of the methods for the monitoring of crop growing 

phases.    

In order to assess the temporal variability of volumetric irrigation requirements, 

a proper knowledge of how the crop-specific areas changed over the years. 

Recently, new large-scale agricultural datasets were published, providing new 

agricultural information for years after 2000 (e.g. irrigated and rainfed growing 

calendars, spatial distribution of multi-cropping practices, irrigated and rainfed 

yields). Future analyses could be performed in order to consider the volumetric 

variability of crop evapotranspiration and irrigation requirements, for which the 

temporal variability of crop areas is essential.  

Future comprehensive assessments could be carried out using new re-analysis 

outputs, in order to improve the quality of the climate-drive estimations. Despite 

ERA5 proved to be a reliable dataset for large-scale agricultural and hydrological 

assessment, future comparisons of several re-analysis products could lead to the 

use of most recent releases of ERA5 (e.g. AgERA5, the product designed for 

agriculture which was recently released on the Climate Data Store of Copernicus) 

or to comparative assessments to evaluate the performance of climate data in 

different climatic regions and different regions of the world. 

Due to the importance of water uses for agriculture to ensure future food 

security, the model presented in this thesis could be used to analyze possible future 

scenarios of climate-driven crop water requirements and related impacts on yields. 

The Copernicus Climate Data Store provides several datasets of large-scale 

projected climate data, considering different possible future carbon emissions.  The 

model described in this thesis cold be a valuable instrument to assess the 

sensitivity of future crop yields to precipitation rates and frequency, temperatures 

and other climate variables, sowing and harvesting dates periods, presence of 

deficit irrigation practices and several other factors. 

This research field has a great potential in terms of economic impacts. 

Agriculture is seriously threatened by climate change and technological services 

for mitigation and adaptation strategies are becoming increasingly popular also at 

the regional or sub-regional scale. Public authorities, farmers, insurance 

companies, are just some the many stakeholders which would benefit from the 

widespread of reliable EO-based tools. The model and the methodology proposed 
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in this thesis are currently being used for a sub-regional assessment of crop 

irrigation requirements in the Southern region of Piedmont, over the same pilot 

area discussed in Chapter 4. Regional data of crop distribution allows the analysis 

of agricultural water needs in terms of water volumes, in order to compare the 

estimates to the available water resources at the basin level. Moreover, a method 

for the detection of irrigation events over the same area is actually under 

development, based on the combined use of Sentinel-1 and Sentinel-2 information: 

within the Brobbio-Pesio district, actual daily information of irrigation volumes 

provided to the fields are actually available for some years, allowing a validation 

of the satellite-based estimations. 

Finally, a strongest synergy between researchers, farmers and public authorities 

will be required in the future, in order to enhance the EO-based information. Some 

of the concepts and methods described in this thesis are currently at the basis of 

several projects aimed to provide commercial services, in order to transfer as much 

as possible research knowledge to develop operative tools for Agriculture 4.0. 
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Appendix A. List of main EO-based 

products  

Table 10. List of main used precipitation datasets. The products are grouped according to 

the source of data (gauged-based, satellite-based) and a third group details the reanalysis 

EO-based products. 

Precipitation 

dataset 
Resolution Frequency Coverage Period 

Gauge-based Products 

CRU 0.5° x 0.5° monthly Global Land 1901 - present 

GHCN-M 5° x 5° monthly Global Land 1900 - present 

GPCC 0.5° x 0.5° monthly Global Land 1901 - 2013 

 1° x 1° monthly Global Land 1902 - 2013 

 2.5° x 2.5° monthly Global Land 1903 - 2013 

GPCC-daily 1° x 1° daily Global Land 1988 - 2013 

PREC/L 0.5° x 0.5° monthly Global Land 1948 - 2010 

 1° x 1° monthly Global Land 1948 - present 

 2.5° x 2.5° monthly Global Land 1948 - present 

UDEL 0.5° x 0.5° monthly Global Land 1900 - 2014 

CPC-Global 0.5° x 0.5° daily Global Land 1979 - 2015 

Satellite-based Products 

GPCP 2.5° x 2.5° monthly Global 1979 - present 

GPCP 1dd 1° x 1° daily Global 1996 - present 

GPCP_PEN_v2.2 2.5° x 2.5° 5-daily Global 1979 - 2014 

CMAP 2.5° x 2.5° monthly Global 1979 - present 

TRMM 3B42 0.25° x 0.25° monthly 50°N - 50°S 1998 - present 

TRMM 3B43 0.25° x 0.25° daily/3-h 50°N - 50°S 1998 - present 

GSMaP 0.1° x 0.1° daily/1-h 60°N - 60°S 2002 - 2012 

PERSIANN-CCS 0.04° x 0.04° 6-h/3-h/30-min 60°N - 60°S 2003 - present 

PERSIANN-CDR 0.25° x 0.25° daily/6-h/3-h 60°N - 60°S 1983 - present 

CMORPH 8 km x 8 km 6-h/3-h/30-min 60°N - 60°S 2002 - present 

GPM 0.1° x 0.1° daily/3-h/30 min 60°N - 60°S 2015 - present 

GPM+SM2RAIN 0.25° x 0.25° daily 60°N - 60°S 2007 - 2018 

MSWEB 0.1° x 0.1° daily/3-h Global 1979 - present 

CHIRPS 0.05° x 0.05° daily 50°N - 50°S 1981 - present 

Re-Analysis Products 

NCEP 1 2.5° x 2.5° monthly/daily/6-h Global 1948 - present 

NCEP 2 1.875° x 1.875° monthly/6-h Global 1979 - present 

ERA Interim 0.75° x 0.75° monthly/6-h Global 1979 - present 

ERA5 0.25° x 0.25° monthly/1-h Global 1950 - present 
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ERA5 Land 0.1° x 0.1° monthly/1-h Global Land 1950 - present 

AgERA5 0.1° x 0.1° daily Global Land 1979 - present 

20CRv2 2° x 2° monthly/daily/6-h Global 1871 - 2012 

JRA-55 60 km monthly/6-h/3-h Global 1958 - present 

MERRA 0.5° x 0.67° daily Global 1979 - present 

MERRA Land 0.5° x 0.67° monthly/daily/1-h Global 1980 - present 

CFSR 38 km 6-h Global 1979 - 2010 

 
 

Table 11. List of the most used global datasets of evapotranspiration. Datasets are grouped 

according to the type of ET (potential/reference or actual). Acronyms: PM: Penman-

Monteith; SEBM: Surface Energy Balance Model; LSM: Land surface model; PT: Priestley-

Taylor; SSF: Soil stress factor; SC: Surface Conductance; RS-SEB: Remotely sensed surface 

energy balance; SWB: Soil water balance; PML: Penman–Monteith–Leuning. 

ET dataset Resolution Frequency Period Method 

Global Reference & Potential ET 

CRU 0.5° monthly 1901 - p PM 

ERA5 0.25° 1-h 1950 - p SEBM 

ERA5 Land 0.1° 1-h 1950 - p SEBM 

GLEAM3.3 PET 0.25° daily 1981 - 2018 PT 

MOD16 PET 0.5° 8 days 1981 - 2019 PM 

PT-JPL 0.5° monthly 1986 - 1995 PT 

Singer et al. (2020) [148] 0.1° 1-h 1981 - p PM 

Global Actual ET 

ERA5 0.25° 1-h 1950 - p SEBM 

ERA5 Land 0.1° 1-h 1950 - p SEBM 

FLDAS 0.1° monthly 1982 - p LSM 

GLDAS V20 0.1° 3-h 1948 - 2010 LSM 

GLDAS V21 0.25° 3-h 2000 - p LSM 

GLEAM 3.3 0.2° monthly 2003 - 2018 PT, SSF 

GLEAM 3.3a 0.2° monthly 1980 - 2018 PT, SSF 

JRA-55 1.25° 3-h 1959 - p SEBM 

MERRA-2 0.5° 1-h 1980 - p SEBM 

MOD16A2 V105 1 km 8 days 2000 - 2014 PM, SC 

MOD16A2 V6 500m 8 days 2001 - p PM, SC 

NTSG 8 km monthly 1982 - 2013 Modified PM and PT 

PML 500m 8 days 2002 - 2017 PML 

SEBS 5 km monthly 2001 - 2010 RS-SEB 

SSEBop 1 km monthly 2003 - p PM 

TerraClimate 0.25° monthly 1958 - 2018 SWB 
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Table 12. List of the most used gridded datasets of global crop distribution. 

Gridded crop dataset 

(source) 
Variables Crops 

Coverage 

(spatial 

resolution) 

Period 

(temporal 

resolution) 

M3Crops 

(census) 
Crop areas, yields 175 

Global 

(0.0833°x0.0833°) 

Circa 2000 

(annual) 

MIRCA2000 

(census, model) 

Crop areas, planting and 

harvesting months, irrigated and 

rainfed areas, crop intensities 

26 
Global 

(0.0833°x0.0833°) 

Circa 2000 

(monthly) 

SPAM2010 

(census, satellite and model) 

Crop areas, yields, irrigated and 

rainfed areas 
42 

Global 

(0.0833°x0.0833°) 

Circa 2010 

(annual) 

GAEZ 

(census, model) 

Crop areas, yields, productions, 

non-crop-specific irrigated areas 
23 

Global 

(0.0833°x0.0833°) 

Circa 2000 and 

2010 

(annual) 

RiceAtlas 

(census) 

Crop areas, production, planting 

and harvesting months 
1 

Global 

(2725 spatial 

units) 

Circa 2010 

(annual) 

GFSAD30 

(satellite, census) 

Crop areas, irrigated and 

rainfed areas, crop intensities, 

crop change over 1990-2017 

8 
Global 

(30x30 m) 

1990-2017 

(monthly) 

GDHY 

(census, satellite, model) 
Yield 4 

Global 

(0.5°x0.5°) 

1982-2016 

(seasonal) 

SAGE 

(census) 
Planting and harvesting dates 19 

Global 

(0.0833°x0.0833°) 

1990s or early 

2000s 

GAEZ+2015 

(census, satellite, model) 

Crop areas, planting and 

harvesting months, irrigated and 

rainfed areas, crop intensities 

26 
Global 

(0.0833°x0.0833°) 

Circa 2015 

(monthly) 

GRIPC 

(census, satellite, model) 

Rainfed and irrigated croplands, 

paddies extent 
1 

Global 

(0.0833°x0.0833°) 

Circa 2015 

(annual) 

  



Appendix B. Survey among maize farmers in South Piedmont 

 

111 
 

Appendix B. Survey among maize 

farmers in South Piedmont 

In November 2021, five farmers from the Brobbio-Pesio irrigation district were 

asked to answer a survey about maize cultivation practices and use of irrigation 

water. This survey was performed to give consistency to the results discussed in 

Chapter 4.  

Following are answers provided by the farmers to each question (e.g. F1: 

answer from Farmer 1). 

Irrigation Practices 

Question 1. Do you benefit from irrigation infrastructure for maize cultivation? 

F1. Yes, I use water provided by the Brobbio-Pesio irrigation channels. 

F2. Yes, I use water provided by the Brobbio-Pesio irrigation channels. 

F3. Yes, I use water provided by the Brobbio-Pesio irrigation channels.  

F4. Yes, I use water provided by the Brobbio-Pesio irrigation channels and 

additional water from private wells. 

F5. Yes, I use water provided by the Brobbio-Pesio irrigation channels. 

Question 2. If the answer to Question 1 is “yes”, what irrigation techniques are used? 

F1. Surface irrigation. 

F2. Surface irrigation. 

F3. Surface irrigation. I know that other consortia are switching to drop 

irrigation and pivot irrigation. 

F4. Surface irrigation using water from the irrigation channels and drop 

irrigation using water withdrawn from wells. 

F5. Surface irrigation. 
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Question 3. Maize fields are usually irrigated according to the authorization calendar (i) 

regardless of the availability of rainfall water; (ii) just in case precipitation was 

not optimal? 

F1. Maize field are only irrigated during dry periods, according to the 

authorization calendars. If the soil moisture reaches optimum with 

rainfall, maize is not irrigated.  

F2. Maize fields are irrigated only during dry periods, according to the 

authorization calendars. The choice of irrigation days is based on the 

farmer’s experience, not on soil moisture measurements or weather 

forecasts. 

F3. The authorization to use irrigation channels lasts five months, from May 

1st to September 30th. Irrigation water is provided to maize fields 

according to the real need for water, during dry periods. 

F4. The fields which are irrigated with the irrigation channels is very 

gravelly: irrigation is provided during dry periods but also when forecast 

services predict lacks of precipitation. 

F5. Irrigation is provided according to the authorization calendars, but only 

during dry periods. 

Question 4. What is the mean frequency of irrigation? 

F1. Usually between 4 and 6 irrigation events per growing season. The 

frequency is higher during dry periods. For example, 4 waterings were 

carried out in 2020 and 8 waterings in 2021 (very dry year). The necessity 

of irrigation is evaluated by the farmer, without field measures or 

meteorological forecasts. 

F2. The irrigation frequency is usually 9-10 days for an average year, starting 

from late June. Maize fields can be irrigated up to 7-8 times per growing 

season during dry years (like 2021), while 2-3 irrigation events are 

enough during wettest years (like 2019). 

F3. The average frequency is 4-5 times per growing season, usually from July. 

August and September are the months with the highest irrigation 

frequency. 

F4. Irrigation is provided about every 15 days starting from late June. Drop 

irrigation is provided with very high frequency (every 2-3 days). 
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F5. For maize is optimal an irrigation event every 15-20 days. For an average 

year, 3-4 waterings are optimal. During dry years, like 2021, maize 

requires more irrigation and up to 5-6 waterings can be provided. 

Maize sowing periods and cultivation practices 

Question 5. In which period of the year is maize usually sown? 

F1. Usually, maize is sown twice per year. First sowing between the 1oth and 

30th of April; second sowing occurs between the end of May and the first 

half of June. The choice of the sowing date depends mainly on soil 

moisture and weather conditions: soil temperature must be equal or 

above 13°C, and there must be low risk of late frost. 

F2. Maize is usually sown during the second half of April, or between May 

15th and the first week of June. The period depends on the final product 

to be obtained: chopped maize or dry grain. The choice of sowing day is 

mainly driven by meteorological factors and soil temperature. 

F3. According to the soil moisture and weather conditions, maize is sown 

from the beginning of April. The provider of seeds ensures farmers 

against late frost: if the plant growth is blocked by late frosts in April, a 

new sowing can be done for free. 

F4. If the soil moisture and weather conditions are optimal, sowing period 

starts during the second half of April. 

F5. Two growing seasons are usually planned. The first starts in April 

(usually during the last two weeks) and the second starts in late May. 

Question 6. In which period of the year is maize usually harvested? 

F1. Usually between September and October (e.g., October in 2021). The 

harvesting period depends on the intended use of maize, for which 

grains must reach optimum levels of moisture. A moisture of 30% - 35% 

is required for chopped maize; a moisture of 25% is required for dry 

grain at the sowing date (after that, grains are left to dry up to 12%). 

F2. Chopped maize is usually harvested around September 15th. Dry grain 

maize is usually harvested around the middle of October. 

F3. The most important factor is the optimum moisture of maize grains. 

Usually, the maize growing season lasts 120-130. 
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F4. From the second half of September to late October, according to the 

required moisture of maize seeds and on weather conditions. 

F5. Chopped maize is usually harvested at the beginning of September. The 

harvesting period for dry grain maize is usually October. 

Question 7. How are corn fields used during rest periods? (e.g. fallow lands, other crops) 

F1. Fields are usually cultivated with fodder grasses or winter wheat from 

autumn to spring. Typically, the rotation scheme for these months is: 1 

year of winter wheat and then 3 consecutive years of fodder grasses. 

Maize is not cultivated in summer after winter wheat, because wheat is 

harvested in July. 

F2. The crop rotation involves fodder grasses and barley (all cultivated in 

summer). The scheme is 5-6 years of fodder grasses, 1-2 years of maize, 

1-2 years of barley. 

F3. Maize fields are usually lying fallow during winter. 

F4. Croplands are located at high elevations, close to the Alps. Nothing is 

cultivated during winter. 

F5. Crop rotation is a summer practice. During winter, croplands are 

harvested with fodder grasses. 

Question 8. Approximately, how long do the plants take to reach the maximum stage of 

growth from seed? 

F1. The maximum growing stage is reached by maize in the second half of 

July for those years when seeds are sown around April 15th.  

F2. Between June 20th and the first week of July, according on the date of 

sown.  

F3. The maximum stage of growth is usually reached in the first two weeks 

of July. 

F4. The maximum stage of growth is usually reached in the week of July. 

F5. According to the maize variety, the maximum growing phase is reached 

in mid-July. 
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