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Abstract

Monitoring people afoot as well as vehicles has become crucial, not only for safety
but also for several practical business applications, facility management, and services.
In relation to that, the proliferation of IoT-based services and the growing industry
of telecommunications are playing a vital role in providing the perfect ecosystem
for advanced smart city use cases. Numerous research and studies supported by the
private sector are addressing the various use cases for mobility tracking and safety
services. The purpose of this work is to make contributions to the mobility tracking
and safety services of smart cities with the help of IoT devices and telecommunica-
tion infrastructures. Hence, IoT based WiFi sensors and MEC based virtual sensors
were used for mobility tracking and safety systems in our work.

The WiFi sensor devices detect the presence of people from the WiFi signals, the
WiFi probe request frames of smartphones. We have considered two types of devices,
namely, commercial, off-the-shelf WiFi scanners and ad-hoc designed WiFi scanners
implemented with Raspberry PIs. They provide different levels of visibility of the
captured traffic. The detected probe request packets contain the associated MAC
address of the transmitting device. Since the MAC address is considered personal
data by the EU GDPR, a privacy protection mechanism was required for tracking
people’s movements. Although the currently available technologies have made ef-
forts through anonymization techniques, the privacy concern remains vulnerable
for MAC addresses. Thus, we have implemented a privacy-preserving scheme for
addressing the privacy challenge and tackled the problem of identifying people’s
movement for the popular mobility patterns in an urban environment by using WiFi
sensors connected to the cellular network. Furthermore, events and group activities
were captured with the support of a model. We illustrate our approach and present
results derived from live measurements in a testbed deployed in the city of Turin
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within the 5G-EVE project.

On the other hand, we have implemented a MEC-based EVS safety service, in
particular collision detection on intersections for vehicles and pedestrians. The
system leverages the mobile network, collecting mobility data (i.e., position, velocity,
acceleration, etc.) periodically from smartphones and onboard units of vehicles in
order to have awareness about the monitored area. The EVS system is capable of
detecting collisions ahead by computing the future trajectories of all the vehicles and
pedestrians in a given geographical area. When imminent collisions are detected,
warning messages are sent to the regarding entities before the impact, so collisions
can be avoided. Furthermore, in the work, traffic flow scenarios were modeled
for an urban environment. The testbed of the system was carried out on the OAI
standard platform. Finally, we present the evaluated performance of the mobility
safety system.
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Chapter 1

Introduction

Nowadays, smart cities are becoming more common in most parts of the world.
The reason behind that is the availability of Internet-of-Things (IoT) technology
and its impact on the performance of services. One of the pillars of a smart city is
the mobility system [3]. For this reason, the growing sector of telecommunications
and IoT services have combined to provide the perfect platform for advanced smart
city use cases. IoT devices can gather and share data about the environment, while
the 5G technology facilitates quick data delivery and response services to support
mobility-based services.

To improve the lives of people through efficient service delivery, it is first important
to understand their needs and demands. One of these needs is systematic mobility
support to accomplish their daily activities. To achieve this, however, detailed mobil-
ity surveys are required so as to understand the behaviors of the environment. It is
essential to have information on people’s mobility, such as where they would like
to go and which route they would like to take frequently through analysis. Thus,
tracking their movements as a means to getting such information is quite beneficial.

Intending to track mobility, it is crucial to have an infrastructure suited for detecting
events in the environment. This infrastructure should have low cost and energy
consumption as much as possible, but most importantly, it must sustain people’s
privacy. Therefore, we will track and monitor mobility through IoT technologies and
mobile network support. IoT devices collect mobility data from their environments
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and forward the data to a secure server through cellular networks. Then, data can be
processed and analyzed from a remote station to study people’s daily activities.

1.1 Mobility monitoring and tracking system

In this work, we are focused on tracking the movements of people in an urban
environment to improve service quality. With that in mind, we can observe the main
practices that should be carried out in tracking mobility. The mobility monitoring
process in a smart city mainly includes three related phases in general, as shown in
Fig 1.1.

Fig. 1.1 Mobility support process

In the first phase, proper information is gathered with the help of IoT sensors. Such
information can be collected from the signals of smartphones, which could be hand-
held or inside a pocket during mobility. For this work, we will consider these signals,
in particular the WiFi probe request packets that are emitted with or without users’
awareness. Details of these signals are discussed in Sec 1.2.

After gathering data through IoT sensors, the second phase deals with management
and support services. In this phase, the privacy of people must be protected primarily.
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Thus, any information that links to their identity must be secured through privacy-
preserving techniques. Afterward, the mobility monitoring process can trail intense
mobility analysis. Although not included in the current work, further data fusion
processes can take place, i.e., integration of other environmental data like air/weather
conditions can be tied with mobility. While these operations are executed, the data
should be stored properly. When needed, the data can be shared between the rightful
owners.

Following the completion of the most significant operations, there could be third-
party applications to support both service providers and service users. These appli-
cations can provide helpful information to the service providers and users with the
help of the second phase procedures. From the application services, schedules and
events can be reported, emergencies can be notified, and any mobility-based service
can be dispatched for users.

1.2 WiFi probes for mobility tracking

The mobility tracking methodologies proposed in this thesis are focused on the WiFi
probe request packets, thus understanding how the protocol works is fundamental.

Before having a WiFi traffic service, a connection procedure must succeed between
a WiFi access point and client devices, such as smartphones and laptops, according
to the 802.11 WiFi protocol. Among various types of management, control, and
data frames used in the protocol, the WiFi probe request packets are part of the
management frame exploited for tracking mobility. For any device to join a WiFi
network, it needs to carry out the authentication and association process by exchang-
ing management frames as defined by the protocol. The procedure, also referred to
as scanning, can be based on either active scanning or passive scanning of nearby
networks.

In the course of active scanning, the client device is responsible for initiating the
network identification process, before the authentication and association, by trans-
mitting probe request packets and listening for a probe response packet from the
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Fig. 1.2 Management frame exchange between a client device and an access point

nearby access points. The probe requests contain information such as the source and
destination addresses, the SSID of the known network, and the supported data rates of
the client device, mainly. While the source address is the MAC address of the device,
the destination address is set to ‘ff:ff:ff:ff:ff:ff’, thus the packet is broadcast. After
receiving the probe packets, the access points in range can notify the client device the
possibility of joining the network through the probe response packet, if at least one
of the advertised data rates is supported by the network. Hence, the authentication
and association procedures can take place through authentication request/response
frames and association request/response frames, respectively. Fig. 1.2 shows the
complete process of the identification, authentication, and association process before
the data exchange between a client device and an access point.

During passive scanning, the client device does not send any probe packets to identify
the network. Instead, the station remains in listening mode for a specific amount of
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Fig. 1.3 WiFi probe request frame [1]

time, waiting for beacon frames broadcast by access points on one of the supported
channels. After a certain time, the client device will switch to the next supported
channel, repeating the process until a connection is established with an access point.

Among the two network identification techniques, the active scanning method is
preferred by client devices most commonly due to the accelerated network associ-
ation and lower energy consumption benefits. Furthermore, hidden networks can
disclose presence information only to the stations sending probe request frames.
These frames should also incorporate the SSID of the hidden network.

As reported by [4], the probe request frames, to be used for mobility tracking, have a
transmission rate ranging from 55 to 2000 per hour depending on the vendor and
the status (e.g., sleep mode) of the mobile devices. The transmission rate does not
have any defined standard, so vendors and applications managing the device are
in charge of how frequently the probes should be generated. When we consider a
tracking system, mobility can be detected from these frames, but it is not possible
to have confidence in the transmission rate of the frames. Although extracting
valuable information from the packets raises privacy concerns, smartphone OS
vendors such as Android and iOS have put into practice a tracking countermeasure, a
MAC address randomization technique. After the execution of the privacy protection
mechanism, when the probe frames are broadcast from the client devices, the original
MAC address is temporarily replaced with a randomly generated MAC address.
Therefore, tracking mobility requires the best efforts in order to formulate significant
information about people’s movement through different techniques.
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1.3 Related works

When we consider people’s mobility monitoring systems, several studies with differ-
ent goals, have proposed various solutions using WiFi probes and other techniques.
Among these works, [5] focuses on building knowledge from WiFi probes targeting
major areas where classification can be applied. [6] targets crowds attending exhi-
bitions. By mounting WiFi/Bluetooth sensors equipped with directional antennas
on the ceiling, localization and crowd density estimation were addressed with video
ground truth support. Before processing, a clustering technique based on the duration
of exhibition hours was also used to identify mobile visitors from stationary devices.
The work on [7] uncovers social relationships based on semantic trajectories, which
are spatial and temporal-based trajectory patterns. The authors have proposed a
classification algorithm to extract the resident population of a building. A cluster is
decided if users are following peak time patterns on the scanner near the building
door. In [8], the use of different buildings and movement patterns between them is
monitored within campus. Groups within a building are identified based on their
length of stay. The relationship among the buildings was based on mobility patterns.
Ground truth data was collected from manual counting of people using the build-
ings. [9] shows the possibility of distinguishing geographical origins from SSIDs of
collected WiFi probes. The authors’ methodology was based on linking Preferred
Network Lists (PNL) with geographical coordinates from the Wigle database. From
the snapshot of crowds, they were able to predict official nationwide voting results.
Different scenario is analyzed as well using GPS data to classify movements and
stops based on threshold parameters for maximal movement and minimal stop dura-
tions [10].

The author of [11] constructed solar-powered WiFi scanners around a large infrastructure-
free camp; as a result, they performed movement analysis between locations near
the scanner and were able to count arrivals and departures for the specific event.
However, the problem of randomization, more on infrastructureless camps, and lack
of ground truth data makes it incomplete. Instead [12], besides just using mobile
phones, it presents a way of retrieving the behavior of groups in a crowd using dedi-
cated WiFi badges that emit probes systematically. This was suggested to address the
uncontrolled probe transmission behavior of phones, which is vendor-based. Alter-
natively, Antonio et al. present a mobility monitoring system based on data collected
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from Bluetooth for urban environment scenarios [13]. The authors’ aim is to detect
jams, trace routes, and compute the average speed of vehicles. In addition, [14]
focuses on estimating traffic volume between points and over multi-points while
maintaining the privacy of vehicles in the traffic data record. The estimation relies
on the number of encoded vehicles at each point and the number of intersections
between the traffic records over time.

The study on [15] presents a technique to estimate the number of footfall by clus-
tering probes based on time and sequence thresholds, which are the maximum
time difference and maximum sequence number difference between probes, respec-
tively. [16] presents mobility monitoring on a customized architecture with stations
and a cloud. While the stations are used for collecting and partial data processing, the
cloud (Google cloud platform) is used for virtualization and data management and
processing. Using the architecture, the authors aim to address mobility monitoring
by focusing on return time, permanence time, and density on a site. The paper [17]
intends to use WiFi technology for indoor localization. The RSSI measured by
multiple sensors is used for training and location estimation. The authors have also
performed data fusion between the motion of the smartphone and a map of the indoor
place. [18] examines the technology for estimating number of people during flows.
The survey is collected to determine the percentile of people who enabled WiFi, and
this percentile was used to convert WiFi counts into estimated number of people.
In order to cover the target area more accurately, [19] presents grid monitoring
methodology for a hub. The methodology used the Kalman filter for estimating RSSI
in a position and fitting curve equation to estimate the relationship between RSSI
and distance of the signal.

Several other works in the literature, primarily in the automotive sector, have also
considered mobility safety services, such as [20]. For instance, [21, 22], suggested
collision detection and avoidance systems without the support of any cellular in-
frastructure. The work presented in [21] aims at collisions between vehicles and
pedestrians in industrial plants, with no specification of what type of wireless com-
munication technology is used. Instead, [22] aims to improve the response time of
first aid by using a smartphone accelerometer in order to automatically detect colli-
sions after the incidents. The work in [23] proposed a collision detection application
based on cellular infrastructure vehicle-to-vehicle communications. The authors
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consider only continuously active direct communication between vehicles, which is
not always available in urban environments.

In recent times, the mobile network has become the main supporting infrastructure
for the automotive sector. Various works, such as [24–26], have compared the 4G-
LTE network to the 802.11p network, and [26] concludes that the mobile network is
superior to the 802.11p network. Instead, [25] considers the cellular network to be
inconvenient for a collision detection system because of the handoff procedures and
the Doppler effect. Nevertheless, the controversy remains in the research world.

1.4 Structure of the thesis

In this work, we have used two types of sensor systems for monitoring mobility in a
given geographical area. The first one is an IoT-based WiFi sensor, while the second
one is a virtual sensor system. The next three chapters (Chapter 2, Chapter 3, and
Chapter 4) focus on WiFi-based sensor systems, while the last chapter (Chapter 5)
covers the virtual sensor system based on mobile networks.

The organization of the following chapters includes a privacy-preserving technique
for WiFi-based mobility tracking systems, Chapter 2, where off-the-shelf and ad-hoc
designed WiFi sensors are used for detecting the presence of individuals. The sensors
can collect WiFi probe request frames from mobile devices, in which the frames in-
clude the MAC address of the device. Since the MAC address is considered personal
data by the EU General Data Protection Rule (GDPR), a privacy-preserving mecha-
nism is required to collect and process the WiFi probes used in the tracking system.
After addressing the privacy challenges in Chapter 2, the next chapter, Chapter 3,
focuses on the mobility tracking system. In this chapter, we emphasize mobility
tracking methodologies. Along with that, we use the 5G-EVE architecture for the
mobility testbed. Furthermore, ground-truth experiments are made for mobility flow
scenarios. In chapter 4, statistical analyses are made based on the collected WiFi
probes and the associated MAC addresses. In addition to that, a model is used to
detect groups and related events in the environment. The final main chapter of the
thesis, Chapter 5, unlike the previous chapter, is based on a virtual sensor system
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implemented as a MEC service. The work focuses on delivering a mobility safety
service for vehicles and pedestrians by detecting collisions ahead.





Chapter 2

A Privacy-preserving Scheme for
Passive Monitoring of People’s
Mobility through WiFi Beacons

Part of the work presented in this chapter has been published in [27, 28]:

• Kalkidan Gebru, Marco Rapelli, Riccardo Rusca, Claudio Casetti, Carla
Fabiana Chiasserini, Paolo Giaccone, "Edge-based passive crowd monitoring
through WiFi Beacons," Computer Communications, Volume 192, 2022, Pages
163-170,ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2022.06.003.

• K. Gebru, "A Privacy-preserving Scheme for Passive Monitoring of Peo-
ple’s Flows through WiFi Beacons," 2022 IEEE 19th Annual Consumer Com-
munications & Networking Conference (CCNC), 2022, pp. 421-424, doi:
10.1109/CCNC49033.2022.9700591.

Analyzing people’s movements in urban environments is central to several criti-
cal applications related to safety, as well as to a plethora of convenience services
designed for mobile users (e.g., car sharing, use of public transports, and store
recommendation systems). In particular, for many applications, it is essential to
detect the pattern taken by people’s flows at different times of the day/week. One
of the key technologies to achieve this goal is the IoT [29, 16], as IoT devices are
becoming pervasive and most of them are equipped with a radio interface, such
as WiFi, that can conveniently connect them with other devices as well as with
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the communication network infrastructure. Furthermore, they typically consume
little energy, hence they contribute to creating sustainable communication systems,
have low cost, and pose less privacy issues than other devices like smart city cameras.

In this part of the work, we are interested in preserving users’ privacy during data
collection and processing. In particular, we focus on exploiting both commercial
sensors and such simple devices as Raspberry PIs, equipped with a WiFi interface.
Such devices can scan the WiFi spectrum for probe requests, i.e., packets transmitted
by user hand-handled devices towards nearby access points. Using the logs provided
by these spectrum scanners, we develop techniques to ensure that the collection and
processing of the data meets the GDPR [30].

2.1 Data collection for WiFi based passive monitoring

To monitor people’s mobility, data can be collected from different sources, such
as cameras. However, the focus of this work is on collecting the WiFi signals that
are generated by mobile devices so that meaningful mobility information can be
developed. Since individuals’ privacy must be protected primarily, both off-the-shelf
and custom-built WiFi sensors filter signals, collecting only the WiFi probe request
packets required for tracking.

To study and support mobility in a smart city, two off-the-shelf devices are installed
at the Politecnico di Torino campus in Torino, Italy, by the collaboration of Telecom
Italia (TIM) and Comune di Torino for the 5G deployment project. These devices,
henceforth referred to as sensors and scanners, are capable of sensing the WiFi
signals that are transmitted from nearby mobile devices. One of the scanners, labeled
X on Fig. 2.1, is located on the street of Corso Castelfidardo, at the last gate of
Politecnico di Torino when facing the Porta Susa train station, thus covering the
activity close to the gate mostly. The second scanner, labeled Y on Fig. 2.1, is placed
on the street of Corso Castelfidardo, attached nearby another gate of Politecnico
di Torino. This gate is the first next-door to the Liceo Scientifico Galileo Ferraris
high school. The two scanners can process only the WiFi probe request packets that
are broadcast through the active scanning process, so they will only listen passively.
On top of filtering the WiFi probe request frames, these sensors also hide parts of
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Fig. 2.1 Mobility environment and scanners

the frame, presenting only the MAC address of the device (hashed) and the vendor
information extracted from the first three bytes of the MAC address. This means
these off-the-shelf scanners are purposed for counting devices nearby since the only
considered part of the frame is the MAC address. Other than the hashed MAC
address and the vendor information, the received signal strength (RSSI) and the
timestamp are recorded per frame upon reception. Fig. 2.2 shows this information in
JSON format.

"data":[{"RSSI":"-68","Vendor":"Unknown","TimeStamp":"2019-04-15 
12:32:45","MAC":"B7800478990D1DB2BF3E60B491F0FA62DD4AF1D199382331A01EE5BA"},
{"RSSI":"-64","Vendor":"Unknown","TimeStamp":"2019-04-15 
12:32:45","MAC":"9EBA73946A39D741DAC93C6AAB80182FD567088541B3ACCC12332901"},
{"RSSI":"-1","Vendor":"Unknown","TimeStamp":"2019-04-15 
12:32:45","MAC":"3F21F524CDE802F7621A3B8223F932162F319808830AC08F144314FA"},
{"RSSI":"-1","Vendor":"Unknown","TimeStamp":"2019-04-15 
12:32:45","MAC":"17285C38E98866838A2B28801BAAF907E6BAAA3BA8629078BC8AFCDD"},
{"RSSI":"-1","Vendor":"Unknown","TimeStamp":"2019-04-15 
12:32:45","MAC":"B57A06FC0CDC4291DD237AC269FD0CEA5E60D4B9B5ACD149EC5FD759"},
{"RSSI":"-86","Vendor":"Apple","TimeStamp":"2019-04-15 
12:32:45","MAC":"9E1732ACFBA05D4CE26E77F74370E30F568884EA09412255383A0BFB"},
{"RSSI":"-1","Vendor":"Apple","TimeStamp":"2019-04-15 
12:32:45","MAC":"ACBA1DF88216CC19B3A07A5B4B5C75A8AB7779E31871A22B551FCC54"}]

Fig. 2.2 Log sample of probe requests recorded by the off-the-shelf WiFi scanners

The second ad-hoc designed WiFi sensors, instead, are aimed at collecting the WiFi
probe request packets along with all the fields of the frame. Hence, data processing
is more practicable on these types of sensors than on commercial ones. Note
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that, the purpose of collecting such information is to support the mobility system,
thus people’s privacy must be taken into account. For that reason, a necessary
privacy-preserving scheme has been implemented to deal with such types of sensors.
Sec. 2.3.2 explains further how data is managed on such types of sensors.

2.2 Privacy challenges

The first and most important part of WiFi-based mobility monitoring is the data
collection. These days, however, data collection is not allowed completely due
to privacy reasons, and for those allowed, there are privacy protections made by
the law as well as the technology developers. For that reason, there are two main
privacy challenges when considering data collection and processing on WiFi-based
monitoring.

2.2.1 General data protection

In the first place, concerning the law, there are regulations, such as the GDPR set by
the EU, that are challenging for data collection and processing. These regulations
apply to any organization or body intending to control or process the collected data.
The goal of such regulations is to give people control over their personal data. Hence,
the GDPR has defined personal data as "any information relating to an identified or
identifiable natural person (data subject)". Today, most communications and services
require personal information that could reversely identify individuals. When we
consider the WiFi-based mobility tracking, which is based on the probe request
packets, the most sensitive information is the MAC address, while the remaining
fields do not pose any threat to users. Although the other fields, such as the sequence
numbers and tagged parameters extracted from the Information Element (IE) of the
probe packets, could be leveraged [15], they ultimately rely on the MAC address
for the association. Therefore, since the primarily important field of the WiFi probe
request frame for tracking, the MAC address, is considered personal data by the
GDPR, the data process and management cannot be at will.

On the other hand, processing mechanisms such as pseudonymization and encryption,
where the personal information is replaced by another unique identifier, could be
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considered. However, these techniques remain vulnerable since they can be used to
re-identify a person, so MAC remains personal data. The other technique pointed out
by the GDPR is anonymization, with the idea of anonymized data being irreversible.
Thus, data such as MAC addresses are no longer considered personal data. To support
anonymization, there are modern hash functions that digest personal data. Such
mechanisms are implemented by off-the-shelf scanners, for instance, the Meshlium
WiFi scanner. However, whether these techniques are sufficient on their own or have
met the GDPR requirement remains an open question. Therefore, further explanation
is given in Sec. 2.3.1 when we look at the anonymization technique implemented by
the off-the-shelf scanners.

2.2.2 Device’s privacy

Apart from the regulations, there is another challenge implemented by mobile devices,
where personal data is completely hidden as a privacy protection mechanism. This is
done when sending probe request frames. Instead of the original personal data (MAC
address), a randomly generated MAC address is used. As a result, the technique
is known as randomization. When devices employ randomized MAC addresses
in addition to the original, there is going to be bias in the WiFi-based mobility
monitoring system. In other words, while a device is supposed to be counted once, it
is reported more than once with different identifiers (MAC addresses). Therefore,
such personal data protection methods have extreme challenges for the WiFi-based
mobility monitoring system.

2.3 Privacy-preserving schemes of WiFi sensors

As stated in Sec. 2.1, we have leveraged both off-the-shelf Meshlium WiFi scanners
and ad-hoc designed WiFi sensors. The first device has its own privacy-preserving
scheme implemented by construction, specifically the anonymization technique.
However, the privacy-preserving scheme implementation of the second device, the
ad-hoc designed WiFi sensor, is up to the designers since access to the data is
unrestricted on such devices. The privacy-preserving scheme of the two WiFi
sensors is explained in the next two sections.
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Fig. 2.3 Off-the-shelf and offhand devices used for the WiFi sensors

2.3.1 Anonymization in commercial WiFi sensors

The WiFi probe request frames from nearby devices are collected by off-the-shelf
WiFi sensors. However, data access is strongly restricted. The only information
recorded from the received frames is the MAC address in digested format. Although
there are three additional fields attached to it, they are not part of the WiFi probe
request packets. These three fields are (i) the vendor information, (ii) the RSSI, and
(iii) the timestamp, as seen in Fig. 2.2. While the received signal strength and the
timestamp are measured and tagged with the reception time by the scanner, respec-
tively, the vendor information is extracted from the first three bytes of the MAC
address before the digesting process. In order to reveal the name of the vendor, the
first three bytes of the predigested MAC address are searched on the local database
of the scanner. When doing this, if the vendor is not on the local data list of the
known vendors, the vendor information is labeled as Unknown.

As observed so far, one step of the privacy-preserving scheme of the scanner is to
drop most of the fields of the probe request frame when storing. The other footstep
of the scheme, which could be more important than the previous, is the digesting of
the MAC address since it is considered personal data by the EU GDPR. In order to
obscure this personal data irreversibly, the scanner has leveraged the SHA-224, thus
anonymizing the detected source MAC address of the transmitting device. Since
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anonymized data is no longer considered personal data according to the GDPR, the
procedure has met the required criteria. However, that is not the case with the MAC
address. It is true for hash functions to be irreversible in several scenarios. Yet, when
it comes to digesting MAC addresses, even state-of-the-art hash functions cannot
guarantee privacy as expected and considered by the EU GDPR as well.

The weak point of the anonymization-based privacy-preserving technique lies in the
MAC address itself. Since the MAC address is 6-bytes in memory, the maximum
possible number of addresses that can be used is 248. This number can even be
less because the first three bytes represent vendors, which were about 32,207 in
number until this year, 2022. This means the total number of MAC addresses in
the world is no more than 239, i.e., 215 for vendors and 224 for device identifiers.
Hence, the search space of the MAC address is 239, which is limited, if not small, for
today’s computing machines. With this bounded list, someone dedicated can reverse
the anonymous identifier back to the original MAC address. Therefore, in order
to preserve people’s privacy when dealing with MAC addresses, a better approach
should be considered when designing. For this reason, Sec. 2.4 explains an enhanced
solution for the privacy challenge of the MAC address.

2.3.2 Privacy in ad-hoc designed WiFi sensors

For the second type of WiFi sensors, Raspberry PI devices are exploited as ad-hoc
designed sensors to detect people’s near-by presence. These off-hand sensors are
configured to resemble the first off-the-shelf scanners, so a USB dongle antenna is
used for capturing the WiFi probe requests. The RP devices are of model B, having a
1.2 GHz 64-bit quad-core ARM Cortex-A53 CPU and 1 GB of RAM, along with the
Linux operating system. Although they support 802.11n WiFi, the onboard antenna
does not recognize a monitor mode to capture the WiFi management packets, thus
the necessity for the USB dongle antenna.

One of the benefits of having these devices is their cost, in which the entire amount
was no more than fifty euros. The other most important advantage of these sensors
over the commercial WiFi scanners is the unrestricted data access of probe request
frames, in which more fields, such as the sequence number and tagged parameters,
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can be used in addition to the original MAC address. This supports addressing one
of the privacy challenges, the randomization problem. Therefore, by using this data,
a de-randomization procedure is implemented while maintaining the individuals’
privacy.

It is quite common now for devices with WiFi cards to use the randomization tech-
nique as a countermeasure for privacy breaches to avoid being tracked. This is a
challenge for a mobility monitoring system since the devices use more than one MAC
address during the scanning phase. Having more than one address per device causes
counting bias during the mobility monitor and tracking. To tackle the problem, it is
quite useful to have access to the received MAC address before anonymization. Note
that anonymization is mandatory as set by the GDPR to protect privacy. For instance,
off-the-shelf WiFi scanners such as Meshlium extract the vendor information from
the first three bytes of the MAC address before anonymization.

The de-randomization procedure is based on local processing of the MAC addresses
prior to the mandated anonymization. The Raspberry PI devices were handy for
designing ad-hoc WiFi scanners that capture detailed information about the received
probe request packets. However, this is a violation of the user’s privacy since the
MAC addresses are considered to be personal information by the GDPR. At the same
time, it will be impossible to separate the randomized MAC addresses from the orig-
inal ones unless the received probe packets are processed before the anonymization,
like the previously mentioned off-the-shelf scanner Meshlium.

For the de-randomization scheme, the proposed methodology in [31], which targets
counting people on a public transportation system, is considered. The scheme mainly
exploits the temporal correlation of the data which is included in the header of the
probe packet, such as the sequence number, since it is incremental and cyclic to be
matched with a likely device [31, 15].

In the de-randomization process, firstly, WiFi traffic is captured by the ad-hoc scanner,
but only the probe packets that can be identified with their sub-type tag parameter
of 0×04 are temporarily stored on the local buffer with a timestamp. The header
data is then processed to generate a classifying probabilistic score. The score is
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based on the incremental and cyclic sequence numbers of two probe packets; thus, if
the difference in the sequence numbers is acceptable in the limited time frame, the
additional tagged parameters in the IE field are checked for a match. After that, the
probabilistic score is extracted from the difference between the sequence numbers
and the time difference between them. Hence, the higher the score, the more likely it
is that the two MAC addresses belong to the same device. In accordance with the
GDPR, the MAC address is anonymized after de-randomization using the SHA-224
hash function.

2.4 Secure anonymization for MAC addresses

From Sec. 2.3.1, we have seen the limitation of the anonymization of the MAC
addresses, where the main problem resides in the MAC address itself. Since the
search space of the addresses is limited, an anonymized MAC address can be mapped
to the original address. Thus, the approach requires further improvement to preserve
people’s privacy during mobility.

Since the MAC addresses, including the randomized ones, are fully controlled by
the vendors during the transmissions, it is impossible to have more MAC addresses
than those that are out there. Therefore, after receiving the source address from the
devices and before directly applying the hash function, the source address can be
modified in a way to increase the search space. Keep in mind that we are interested
in monitoring mobility but at the same time addressing privacy concerns. Hence,
during the source address modification, the procedure must be common for all the
MAC addresses to sustain the mobility monitoring. In addition, the storage space for
the information must not grow any larger.

When we consider SHA-224 for anonymization, for instance, regardless of the bit
size of the MAC address, it will consume 28-bytes of memory for each. The men-
tioned hash function, by construction, has a much larger search space when compared
with the MAC address. The proposed methodology is based on this difference in
the search spaces between the MAC addresses and the hash functions. While the
maximum search space for the MAC address is 248, it is 2224 for the hash function,
leaving 2176 slots idle permanently. The strategy is to exploit these available idle



20
A Privacy-preserving Scheme for Passive Monitoring of People’s Mobility through

WiFi Beacons

slots. According to our example, the idle slot will support up to 22 additional bytes.
The ideal solution is to compensate the idle slots with a security string, referred to
as a password, of length at least 22-bytes for the SHA-224. Therefore, whenever a
probe packet is detected, the MAC address is chained with a password before the
digest procedure. The chaining process may include shuffling the MAC address with
the password in any format, or just concatenating the two in any order.

Fig. 2.4 Search space of the newly set of annonymized MAC addresses

The selected passwords can be of any type, such as ASCII characters. In order to
illustrate the improvement of the search space, let’s consider the ASCII printable
characters, which are around 95; thus, a character will consume 8 bits. Even though
the 8-bits can support up to 256 symbols, only the 95 ASCII characters are exploited
for the system. Hence, when a single character is chained with a MAC address, the
search space will stretch 95 times larger. Fig. 2.4 shows how the usage of ASCII
character passwords quickly enlarges the search space of the MAC addresses. Ac-
cording to the result, if we consider the 22-byte idle slots of SHA-224 for the MAC
address, the search space can be improved 1045 folds, hence instead of 248 the new
search space becomes 248×9522 just by chaining a password.
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The other important parameter for the password is how frequently it should be used
with the MAC address. As a result, if a single password of length 22 bytes is per-
manently stored in a SHA-224, the password itself may require up to 9522 brute
force attempts for the ASCII characters. In this case, the search to re-identify the
source MAC address is harder but not impossible since the security is bottle-necked
to using a single password. This is not encouraged in the cyber security policies
either, i.e., passwords should be changed on a regular basis. On the contrary, when
passwords are changed frequently, their effects need to be observed, mainly on our
mobility tracking. Note that, while supporting privacy according to the GDPR, the
main goal is to track people’s mobility via their MAC addresses. For this reason, we
have analyzed the effect of password frequency on the set of MAC addresses. In the
experiment, sets containing 30k, 700k, and 1.2 million unique MAC addresses were
tested separately. During the test, k (i.e., k ∈ {1,2, . . . ,30}) passwords are applied
to a set, i.e., the password is changed k times over a set, thus k is referred to as
password frequency. In order to apply k passwords to a set of MAC addresses, the
set is partitioned into k parts. Then, the different k passwords are chained with the
different k partitions before applying the SHA digest. The data set partitioning can
be based on the time of the day. For instance, the 30k MAC addresses in the first set
are collected from a single day, as shown in Fig. 4.4. Thus, when the k passwords
are applied to the set, it means every m = 1440/k minutes a new password will be
generated and be chained with the incoming probes.

As shown on Fig. 2.5, when we use more than one password, the original data set
will be modified, i.e., the size of the new data set is larger than the original. Since
we are focused on monitoring mobility, using passwords frequently will create bias
in the head count, on top of the randomization challenge. In the mobility tracking,
however, the head count is at most important on the daily bases. Thus, the password
change can be performed once per day to sustain the original database as much as
possible, as shown in Fig. 2.5. In order to mitigate the marginal bias, the change can
be made at times when the traffic is quite insignificant, such as at midnight.

Operation cost

In this section, the performance of the anonymization process, with password chain-
ing, is evaluated in CPU time milliseconds for the four hash functions: SHA-224,
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Fig. 2.5 Password application frequency

SHA-256, SHA-384, and SHA-512. For this operation, the CPU time is computed
as the time it took to complete chaining 50,000 MAC addresses with a password of
length d in characters and digest the chained 50,000 modified identifiers. The results
are presented as follows:

SHA-224
The function takes each chained identifier and outputs a fingerprint of size 28-bytes.
It took around 34 milliseconds, mostly for passwords of length less than 44 characters
(d <= 43), with a 98% confidence interval. Instead, for larger d, d >= 44, it took
an immediate shift to around 42 milliseconds.

SHA-256
Similar to the SHA-224, the operation took around 34 milliseconds to digest the
50,000 chained identifiers. Again, when used with longer password strings of length
d greater than 43, the performance decreased quickly to 43 milliseconds. Note that
the output of this hash function has length of 32 bytes irrespective of the password
length d, which is closely related to the SHA-224 having only four bytes less.
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(a) SHA-224 (b) SHA-256

(c) SHA-384 (d) SHA-512

Fig. 2.6 Secure anonymization CPU time

SHA-384
The chaining and digesting of 50,000 MAC addresses took mostly 41.5 milliseconds
for SHA-384, the 48-byte hashing function. Compared with the previous two (SHA-
224 and SHA-256), the SHA-384 took 7.5 milliseconds more. The reason for this
delay is that the hash function requires 80 rounds to complete the digest, whereas
SHA-224 and SHA-256 only require 64 rounds.

SHA-512
The digesting function takes similar rounds as the SHA-384 but outputs a fingerprint
of size 64 bytes. In order to complete hashing the 50,000 chained MAC addresses, it
required mostly 41 milliseconds as the SHA-384.
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2.5 Final remark

In this chapter we have covered the foundation of a mobility tracking application.
Based on two different types of WiFi signal sensors (off-the-shelf and ad-hoc de-
signed), probe request frames were collected from mobile devices. Since the packets
include personal data, in particular the MAC address of the device, personal data
protection was required during the data collection and processing phase. Thus, by
identifying the limitations of the currently available privacy protection techniques,
the implemented privacy-preserving scheme has addressed the privacy challenges
for WiFi-based mobility tracking.





Chapter 3

IoT-based Mobility Tracking for
Smart City Applications

Part of the work presented in this chapter has been published in [27, 32]:

• Kalkidan Gebru, Marco Rapelli, Riccardo Rusca, Claudio Casetti, Carla
Fabiana Chiasserini, Paolo Giaccone, "Edge-based passive crowd monitoring
through WiFi Beacons," Computer Communications, Volume 192, 2022, Pages
163-170, ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2022.06.003.

• K. Gebru, C. Casetti, C. F. Chiasserini and P. Giaccone, "IoT-based Mo-
bility Tracking for Smart City Applications," 2020 European Conference on
Networks and Communications (EuCNC), 2020, pp. 326-330, doi: 10.1109/Eu-
CNC48522.2020.9200941.

It is widely believed that IoT systems will have a momentous impact on people’s
everyday lives, as testified by the development of specific use cases for upcoming
5G networks. Nowhere will this impact be more tangible than in our cities. One
of the key smart city scenarios addressed by the 5G-EVE project [33] requires the
identification and quantification of people in sensitive areas (e.g., for safety and
security purposes, such as during large crowd gatherings) or in areas of transit (e.g.,
for the purpose of dimensioning transportation networks or transit/parking/sheltering
infrastructure, etc.). While the detection of presence and head count is important,
more valuable information would stem from the identification of flows of people.
Cameras can be used for this purpose, although they require a high upfront invest-
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ment, resource-consuming detection software, and maintenance, not to mention the
privacy concerns they usually raise.

Alternative solutions exist, such as sensors that scan the WiFi bands and passively
capture probes transmitted by smartphones as they try to identify known nearby WiFi
access points. However, these sensors have some limitations: (i) they only detect
people who have a smartphone (although it can be argued that this is now the majority
of passers-by); (ii) if used alone, they only quantify the presence of people, not the
path they are taking; and (iii) the information they expose is non-customizable and is
heavily influenced by implementation nuances in WiFi probe timing, necessitating
considerable inference.

In this work, we address the above concerns, presenting a framework that uses
data collected by commercial WiFi probe-detection sensors to infer flow densities
and direction of transit of people on city streets. As mentioned above, inference
techniques have to contend with the implementation uncertainties and partiality
of information exposed by commercial scanners. For this reason, we engaged in
a measurement campaign in a real testbed scenario, realized within the 5G-EVE
project, that allowed us to establish a ground truth on which to test our framework.

3.1 System architecture

At one of its site facilities, the Italian site, the 5G-EVE project includes a safety
and environment use case for smart cities. The goal of this use case is to manage
large crowds, primarily students on their daily commute. As a result, the cooperation
between TIM and the Comune di Torino supports the 5G development project
by supplying cellular infrastructure and Meshlium WiFi sensors, as mentioned in
Sec. 2.1. The mobility monitoring system developed as part of the 5G-EVE project
is based on the sensor devices and network infrastructure provided, as depicted in
Fig. 3.1. The next sections detail all of the architecture’s components and their
functions in supporting the crowd management system.
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Fig. 3.1 5G-EVE architecture

Mobile Devices
Mobile devices, smartphones in particular, nowadays support different modes of
communication. Among them, cellular communication and WiFi communication are
the most dominant ones since they are the currently available technologies to reach
the outside world for data and service at the tip of the finger. Although mobility
tracking is possible through the cellular infrastructure, the information is strongly
protected by the service providers as well as by law. Thus, it cannot openly support
businesses and public services that are interested in mobility information. WiFi in-
stead, not as strict as cellular communication, emits trails of signals that can be used
for tracking with manageable and much lower privacy risks, i.e., without invading
the privacy of the device owner.

During mobility, it is common to see people with smartphones performing personal
activities such as online social communication. These smartphones, with or without
the user’s awareness, are capable of transmitting WiFi probes periodically, depending
on vendors and applications, either trying to join a network if not connected already
or performing WiFi roaming when the signal strength weakens. Thus, WiFi signal
sensors are used to capture these signals for mobility tracking purposes.
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WiFi Sensors
The WiFi signal sensors scan the WiFi bands at 2.4 and 5 GHz while passively
listening to WiFi probe packets associated with mobile devices, including those from
WiFi enabled stationary devices. Once a probe is detected, the information will be
stored locally first. However, before storing the information, the MAC address of the
device must be anonymized with strong hash functions for privacy reasons. Thus, on
the record, only the anonymized version of the MAC address should be visible.

The scanners also have a SIM card to have communication with a cellular infrastruc-
ture. After the probes along with the anonymized MAC are saved locally, an agent
of the OneM2M platform, which is located on the scanners, will forward the data
through the underlying cellular network towards the OneM2M storage server located
on the core network.

Agents
A OneM2M agent configured on the scanners is responsible for a scheduled data
transfer. The agent sends the collected probe records towards the OneM2M server
on the core network through the underling network. The data exchange operation
with the platform is performed by one of the accessible protocols: HTTPs, MQTT,
or CoAP.

OneM2M platform
OneM2M defines standards for Machine-to-Machine (M2M) and the IoT for inter-
operable frameworks. The standard uses a 3-layered model to support end-to-end
services. These layers are: the application layer, the common services layer, and
the underling network services layer. The application layer has an entity called an
Application Entity (AE) residing on one or more nodes to implement applications.
The AE, which interacts with non-OneM2M systems such as mobile devices, is
responsible for collecting the probes as well as interacting with Common Service
Entity (CSE) which is part of the common service layer through the Mca reference
point. The CSE deals with data storing and sharing, event detection and notification,
scheduling of data exchanges, and device management, and can be embedded in a
gateway device (middle node) or cloud service platform to expose common service
functions for other entities, such as another CSE and cloud infrastructures through
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the Mcc reference point. The final and third layer, the Network Service layer, also
has an entity called a Network Service Entity (NSE) which provides services from
the underlying network to the CSEs. While data transfer services are handled by
the underlying network between the OneM2M entities, the NSE will be responsible
for managing the devices. The OneM2M platform categorizes the set of nodes into
two domains in general. The first is the field domain, which includes sensors and
gateways, while the second is the infrastructure domain, containing larger computer
servers and applications.

In the project, the OneM2M communication between the sensors in the field domain
(which contain an agent of the OneM2M) and the servers in the core network (which
contains an agent of the OneM2M) is through a cellular network. The collected
probes will be forwarded from the sensors to the servers periodically every two
minutes by the OneM2M agent located on the sensors. The OneM2M platform is
based on RESTful implementation following a store and share methodology. Based
on the standard, data can be sent from an entity (e.g., sensors) called a producer and
read by an entity called a consumer (e.g., a remote station). The process is performed
through request/response in HTTP and publish/subscribe in MQTT.

Remote station
The remote station is the final component in the architecture. After the probe request
packets are collected by the sensors and stored on the OneM2M server, they should
be analyzed to identify people’s mobility behaviors in the environment, thus the
need for the remote station. The remote station is mainly used by privileged users to
remotely access the data from the OneM2M platform using one of the three available
protocols, i.e., HTTPS, MQTT, or CoAP. These privileged users can either subscribe
to receive data notifications from the platform or directly download the data for the
required analysis and management purposes.

3.2 Proof of concept scenario and challenges

For performing the mobility tracking activities, the two commercial WiFi sensors
installed at the gates of the Politecnico di Torino (shown on Fig. 2.1) along with
the 5G-EVE architecture (Fig. 3.1) are used for our testbed. By using the testbed,
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the probe request packets were collected from the people passing-by the scanners,
then the frames were stored on the OneM2M server. After that, the collected data
was downloaded from the remote station for the analysis. However, there were
mainly three challenges in performing the operation to achieve the objective. These
challenges are from the default behaviors of the scanners, the effect of randomization,
and the behavior of the environment. These challenges are explained in detail in the
following sections.

3.2.1 Default behaviors of scanners

The off-the-shelf scanners used on the testbed have their own default configurations
that cannot be accessed by us. One of the behaviors is that they store a limited part
of the detected probe request frame. The only available attributes of the frame are
the MAC address (hashed), the vendor information, the RSSI, and the timestamp.
Among them, the vendor information adds no value to our mobility tracking system
since it is extracted from the first three bytes of the MAC address. The RSSI is used
for tracking mobility on other projects with different scenarios. It is not incorporated
in our methodologies for the reasons explained in Sec. 3.2.3. The other pieces of
information, MAC addresses and timestamps, are included in our methodologies, but
with their own challenges. The challenges related to the MAC address are explained
in Sec. 3.2.2. When we consider the timestamp, packets are recorded every 51
seconds. In other words, for 51 seconds the scanner is actively listening for the probe
request frames, and then all the collected packets are time-stamped once with the
exact same time reference. This approach is not convenient since it hides the correct
probe transmission time, thus the presence of individuals. Besides, the processing
load could become imbalanced for real-time data processors due to the 51-second
idleness and accumulated load. Fig. 3.2 shows how the scanners generalize the
inter-probe time every 51 seconds.

3.2.2 Randomization effect

Devices have incorporated the randomization approach, which uses temporary ran-
domized MAC addresses rather than the global unique identifier, as a countermeasure
against tracking, as specified in Sec. 2.2.2. This section demonstrates the impact of
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Fig. 3.2 Probe inter-times by Meshlium scanner

the gathered probe requests over a specified time period.

On a general observation, around Politecnico di Torino, over the period of nearly
two-and-a-half months, we have found 1,260,875 unique MAC addresses. Within
those days, in the second semester of 2019, the maximum number of MAC addresses
seen on a single day is 30,867 on June 07, on scanner Y, as seen in Fig. 4.4. From this
information, one may ask if this number is the approximate value of the maximum
number of passers-by. However, this is not the case. While there are 565,550 unique
mac addresses on scanner X, there are 736,150 on scanner Y (as shown in Fig. 3.3).

When we consider the number of unique devices observed in the area, which is
1.2 million, and compare it with the whole population of Turin which is less than
2 million, we cannot either state the practicability of covering more than half the
population with just two scanners placed at a close distance from each other, or map
a single MAC address towards a single user. Hence, the head count during mobility
becomes more challenging. It is evident that the scanners are also recording the
randomly generated temporary MAC address from the probe request packets.

As seen on Fig. 3.4 (a) and Fig. 3.5 (a), the number of MAC addresses that are seen
for the first time over the days keeps increasing drastically, except for the Easter
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Fig. 3.3 Effect of randomization: all MAC addresses

(a) New MAC addresses (b) Percentile of new MAC addresses

Fig. 3.4 Daily new MAC addresses on scanner-X

holiday season, where the growth is lower, and when the sensors are in a power-off
state, i.e., not recording. When we look at the percentile of those daily new MAC
addresses, Fig. 3.4 (b) and Fig. 3.5 (b), the growth rate is linear over the period,
including for the Easter holiday. That means regardless of the daily number of
MAC addresses being large or small, there is a fixed average percentile that can
differentiate the new addresses from those that are formerly seen addresses. Thus,
the never-ending daily increase in the number of new addresses, which could be
considered as the effect of randomization as well, makes crowd monitoring difficult.
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(a) New MAC addresses (b) Percentile of new MAC addresses

Fig. 3.5 Daily new MAC addresses on scanner-Y

One may consider filtering devices (MAC addresses) that are seen only once over
a long period of time to bypass the challenge. Even if the assumption could be
correct, especially for mobility tracking because at least two points are required to
trace a path, it is also impractical to conclude that all MAC addresses seen once are
randomized mac addresses. Evidently, from the list of original MAC addresses which
are registered at Politecnico di Torino, there exist a few thousand MAC addresses
that are seen only once over the two-and-a-half months period, as shown in Fig. 3.6.

On the other hand, we can mostly be certain that the devices that are seen more than
once are the real MAC addresses of devices. Analytically, the probability of a single
randomized address being generated by more than one device in the same time frame
is (let’s call it P(collision)):

P(collision) = 1
2(2n)

where n is the number of bits considered for the randomization. When all 48 bits of
the MAC address are considered for randomization, i.e., full-address randomization,
the possibility of collision between randomized addresses (P(collision)) is extremely
low. However, n can be lower than 48 since there are nearly 215 vendors as mentioned
in Sec. 2.3.1. When vendors only randomize the last three bytes of the MAC address,
the maximum probability P(collision) is:

P(collision) = 1
2(224)
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Fig. 3.6 Non-randomized Polito MAC addresses

Thus, when MAC addresses are classified between randomized and original, all
the MAC addresses recorded by the scanner that are seen more than once can
be categorized as original MAC addresses. Another methodology to bypass the
randomization is explained in [15]. However, the work in [15] requires the sequence
number and the tagged parameters of the probe request frames, which in this scenario
are missing. The de-randomization methodology is adapted in Sec. 2.3.2 for ad-hoc
designed sensors.

3.2.3 Environmental behavior

During the reception of the WiFi probes, the sensors can evaluate the RSSI and infer
the distance from the device [34]. Thus, from the measurement, movements can
be tracked. This methodology works well for indoor scenarios but not so well for
outdoor scenarios because signal propagation and attenuation are heavily influenced
by the environment [35]. The multipath effect and the way users hold the mobile
devices also affect the received signal strength parameter and can lead to noisy sig-
nals [36]. However, in order to be certain of the possibility of RSSI based tracking,
a preliminary test was performed on the testbed using two android-based Samsung
and Asus smartphones.
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Fig. 3.7 RSSI mobility tracking: phone A

Fig. 3.8 RSSI mobility tracking: phone B

In the experiment, we walked starting from the position of scanner-Y towards scanner-
X . When walking, there is a minimum of a 3 minute stop at every 10 meter distance
in order to transmit at least 3 probes from the smartphones at each position. The
probes from the trial were detected by the scanners. However, the collected informa-
tion is different between the phones. Firstly, when we look at how far probes can be
received by the scanners, scanner-Y has detected the probes from smartphone-A up
to 100 meters, while it was 120 meters for smartphone-B. Furthermore, the number
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of received probes has variations from one to five among the positions, which could
translate to loss of signal in a noisy environment.

Most importantly, however, the distance measured by the scanner is unreliable since
there is a clear disparity between the distance estimations from the same position.
For reasons mentioned so far, the RSSI will not be considered to track the mobility
of our outdoor tests.

3.3 Mobility flow tracking

The purpose of this work is to track people’s movements in the environment. For this
reason, we have used the 5G-EVE architecture and testbed (Fig. 3.1). On the testbed,
we have carried out mobility experiments to apply mobility tracking methodologies
and test the performance. In the following sections, the applied methodologies and
the experiments are presented in detail.

3.3.1 Mobility pattern detection

In this section, we will provide an assessment of mobility patterns based on the
two scanners. Our main goals here are, first, to identify the most popular mobility
patterns; second, to observe the phenomenon of MAC randomization on the patterns;
and finally, to investigate whether the methodology for identifying the patterns is
sufficient or not for a mobility tracking system.

We downloaded a data set from the OneM2M server for the analysis, a typical week
in October 2019. The downloaded data set consists of 195,762 distinct MAC ad-
dresses. It is expected, among the unique set of addresses, for devices to appear with
more than one MAC address, as discussed in the concept of randomization. Hence,
we can only infer an upper bound on the number of devices near-by or passing-by
the two scanners.

In order to make a classification between the mobility patterns taken by the passing-by
individuals, we have come up with a methodology to represent the coverage informa-
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tion with strings. Fortunately, the scanners have been identified and conferred with
the strings ‘X’ and ‘Y ’ thus far, so there is no need to change the representations.
Therefore, the testbed area which is covered by scanner X only will be labeled as "X",
and the area covered by scanner Y only will be labeled as "Y" during the process. In
addition, as seen in the study of RSSI tracking with the two mobile devices (Fig. 3.7
and Fig. 3.8), there is an overlapping area that is covered by both scanners. Thus,
besides the strings ‘X’ and ‘Y’, a third string is required to represent the overlapping
area to have better precision. Whenever a device is seen on both scanners at the same
time, therefore, it will be assigned the string ‘Z’.

For each collected MAC on the analyzed trace, we computed the temporal sequence
τ of detection events that can be represented as follows: τ = [(ti,si)]i, for increasing
values of ti, (i = 0,1,2, ...). A generic pair in τ represents the events according to
which scanner si detected the device at time ti , where si ∈ {X ,Y}.

The next step after labeling the coverage area is to set up a considerable time frame
for a single movement between two positions, i.e., to determine a maximum time
limit for the movement between the possible coverage areas. For this reason, on
the test bed, 4 minutes is assumed to be sufficient to change between coverage
areas during mobility. Thus, τ is partitioned into sub-sequences by gathering all
the consecutive coverage events occurring with a time difference of no more than 4
minutes.

According to the results shown on Fig. 3.9, most of the devices are seen under a
single coverage area ‘X’, ‘Y ’, and ‘Z’, which means the movement is either limited
or the device is stationed. In order to observe the effect of MAC randomization,
the collected list of 34,927 Politecnico MAC addresses is incorporated into the
result as well. Note that these MAC addresses are not randomized since they are col-
lected after being associated with one of the access points at the Politecnico di Torino.

Referring to mobility as a transition between the set of areas, it is practical to classify
all the mobility patterns having more than one string, such as ‘XY’ and ‘YX’, on
the labels. It is also possible to remark that these mobilities are not affected by the
randomization process. That is to say, while we consider the occurrences of the
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Fig. 3.9 Most popular mobility patters

patterns ‘X’, ‘Y ’ and ‘Z’ as an upper bound due to randomization, the occurrences of
the patterns such as ‘XY’ and ‘YX’ can be considered as a fairly exact number. The
preceding statement can be justified in two cases. The first one is to take into account
the probability of having two mobiles using the same MAC address at the same
time, i.e., a collision during the randomization, which is extremely low as explained
in Sec. 3.2.2. Thus, when a single MAC address is captured by two scanners in
a different but limited time frame, unlike ‘Z’ where a signal is detected by both
scanners at the same time, we can say the probes are from the same device. On the
contrary, however, the device could be in its randomized state during the 4 minute
time frame mobility, which leads to the second required justification. Since we are
not interested in the device’s identity, whether it is randomized or not, it cannot
affect the number of devices for that time frame. Therefore, the head count during
the mobility can be supported by having more than one scanner covering different
areas, regardless of the randomization effect.

Although the string-based mobility pattern classification provides a solid foundation
for tracking groups and individuals, it is limited in another way. The methodology
could support the classification of directional flows at a higher level, but not in details.
We can consider a scenario where there is more than one route in the same direction.
For instance, two individuals, starting from the same position, may take different
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paths to reach the same destination, where in this case, the mobility pattern classifier
can not separate the two flows. Therefore, another methodology, the foot-printing
technique, has been developed for classifying paths, including flows in the same
directions.

3.3.2 Foot-printing technique for mobility tracking

The aim of our mobility tracking system is to associate the probes transmitted by
a mobile device and detected by the WiFi sensors to the most likely path, across
a given set of predefined paths that are monitored in the area. The classification
is based on some preliminary experiments to build the “ground-truth” information,
which allows to build a catalog of footprint vectors for each possible path. Thus,
when a new mobile device is detected by the sensors, the sequence of coverage
events detected by the scanners is compared with all known footprints and the path
with the most similar footprint is associated as output of the mobility tracking, as
detailed more formally in the following.

Let P be the set of predefined paths in the considered area to monitor and let p ∈P

be a generic path. We assume to have just 2 WiFi sensors, denoted as X and Y . In
order to compute the footprint fp of a path p, we let the sensors collect probe samples
by having a person walk along p for k times, carrying a device. In the following, we
will refer to such a device as “ground-truth device” and to each walk along p as a
“run”. Each run generates a temporal sequence T of detection events that can be
represented as follows: T = [(ti,si)]i, for increasing values of ti, i = 0,1,2, .... A
generic pair in T represents the events according to which sensor si detected the
ground-truth device at time ti, where si ∈ {X ,Y}. Consider the following simple
example (assuming all times expressed in seconds):

T = [(0,X),(30,X),(60,X),(90,X),(100,Y ),

(120,X),(130,Y ),(160,Y ),(190,Y ),(220,X)].

The above expression can be interpreted in the following way: the ground-truth
device was detected by scanner X at times 0,30,60,90,120,210 and by scanner Y
at times 100,130,160,190. Note that detection events occur at multiples of 30s,
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i.e., periodically as in the considered off-the-shelf scanners (see Sec. 2.3.1), and the
sampling events have a 10s offset between scanners. Now from T we compute a
path map γ(ti) = 2 if si = X and γ(ti) = 1 is si = Y . These two integer values have
been arbitrarily chosen and do not affect at all the final classification result. Fig. 3.10
shows the path map for the considered simple case scenario.

Fig. 3.10 Sample path map of the simple scenario

Let δ be the observation period, i.e., the total duration during which the ground-truth
device has been detected, i.e., δ = maxi{ti}−mini{ti}. Let us now partition the
observation period into N temporal sub-intervals, each of duration δ/N. Notably, N
is the only parameter that should be tuned according to the proposed scheme and
later we will show that already N = 4 yields good results. In the example, δ = 210s
and each sub-interval lasts 52.5s when N = 4.

With the above data we can now compute the footprint fp. We remark that this is
just one of the possible footprints that can be designed for path identification. The
footprint we use is represented by a vector of 2N real numbers, formally fp ∈ R2N .
We divide such a vector in two parts:

• coverage part: the first N values of the footprint ( fp(i) for i ∈ {1, . . . ,N})
are computed as the average of γ(t) for each sub-interval. This weighs the
detection of the device from multiple scanners during the same intervals.



42 IoT-based Mobility Tracking for Smart City Applications

• direction part: the last N values of the footprint ( fp(i) for i ∈ {N+1, . . . ,2N})
model the mobility direction between the two scanners for each sub-intervals.
Formally, it is computed as the slope of the best fitting linear interpolating
function of the samples within the considered sub-interval.

In the considered example, the sub-intervals would be:

[0,52.5), [52.5,105), [105,157.5), [157.5,210]

and the corresponding foot-print would be computed as:

fp = [2,1.67,1.5,1.33︸ ︷︷ ︸
coverage

,0,−0.019,−0.1,0.018︸ ︷︷ ︸
direction

]

Indeed, during the first sub-interval the ground-truth device was detected by only by
scanner X (i.e., 2) and the corresponding slope is 0. During the second sub-interval,
it was detected twice by X (i.e., 2) and once by Y (i.e., 1), thus the average is 1.67
and the corresponding slope is negative, suggesting that the device moved mainly
from X to Y . A similar reasoning applies to the following two sub-intervals.

By performing many runs with the ground-truth device, a set of footprints is attached
to each path. Thus, in order to find a match for a new device, the mobility tracking
system computes its footprint and looks up the most similar footprint, using a simple
Euclidean norm to evaluate the distance between vectors. In case many paths show
footprints at a minimum distance, the path with the maximum number of minimum
distance footprints is chosen. If still more than one path is found, the device is
marked as untraceable.

3.3.3 Ground-truth experiment

To put our footprint methodology to the test, we devised a mobility scenario in which
four paths denoted by AB, BA, AC, and CA are chosen for the experiment, as shown
in Fig. 3.11. The letters A, B, and C on the map (Fig. 3.11) represent the starting and
ending positions during the ground-truth data collection process. The paths are sig-
nificant for the people accessing services from the area as well as the people residing
on the blocks. The mobility tracking, especially path detection, is challenging since
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all the mentioned paths are partially covered by the two scanners. In the experiment,
17 runs were performed for each path at a slow pace. As a ground-truth device, a
Samsung A6 smartphone with Android 9.0 was used to broadcast probes during
the mobility. In order to impose frequent probe transmissions during the walk, the
smartphone was forced to detect all available WiFi networks in the area. During the
walks, the actual time at which the walk started and ended has been recorded for
each run on the paths.

The scanners were also collecting the detected probe packets from the phone and
storing the extracted information on the OneM2M server. Once after completing
the activity, all the trace logs related to the ground-truth device, referring to the
period of interest, are downloaded from the OneM2M server. Then, all the runs
were foot-printed with the corresponding temporal information according to the
foot-printing methodology explained in the previous section. From these sets of
footprints, a catalog is formed for later path classification and performance testing.

Fig. 3.11 Paths for ground-truth

Fig. 3.11 shows the four paths (AB, BA, AC, and CA) along with the three starting
and ending points (A, B, and C), marked with yellow lines and circles. The two
scanners labeled as X and Y are also presented with the orange hexagons.
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Experimental results

In order to evaluate the performance of the mobility tracking methodology, the
accuracy of the path classification was tested using a cross-validation technique.
During this trial, a single run was used as a test data while the remaining runs
were used as a training set. According to the result, most of the test runs were
correctly identified by the approach. However, minor incorrect classifications were
also detected from the overall test runs of the paths, as shown in Fig. 3.12. Note that
these errors are due to the strong similarity of two paths that are in the same direction.

(a) Path AB (b) Path BA

(c) Path AC (d) Path CA

Fig. 3.12 Accuracy of mobility tracking algorithm
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3.4 Final remarks

The focus of this chapter was the WiFi-based mobility tracking system. We have used
the 5G-EVE architecture for our testbed, collecting probe request frames through
off-the-shelf WiFi sensor. Through our tracking methodologies, we were able to
classify the most popular patterns as well as mobility paths. We have validated our
approach through ground-truth experiments.





Chapter 4

Passive Crowd Monitoring

We made environmental observations using two off-the-shelf WiFi sensors in this
section of the work. As employed so far, the two WiFi scanners are located at the
gates of the Politecnico di Torino, as shown in 2.1 with X and Y representations.
Since these sensors are installed on campus, a statistical analysis of the Politecnico
community can be performed. Our analysis includes identifying groups from the
crowd as well as detecting events from daily activities. Furthermore, our investigation
is supported by a model.

4.1 Statistical analysis

The two scanners at the Politecnico have been actively collecting probe request
frames since the early 2019. In order to make the observations, we have downloaded
traces of data from a remote station. The downloaded data set is from the second
semester of 2019, from March the 27th up to 9th of June. Based on that, we have
made a general analysis of the environmental activities nearby the two sensors.

4.1.1 Probes

In the first phase, a general statistical analysis of probes from the two scanners over
the mentioned period is presented. According to the daily statistics, there are days
when the scanners record up to 54K probe packets, as seen in Fig. 4.2. On the
contrary, there are also continuous days where there are no probe packets recorded
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by the scanners; two rounds for scanner X , and only one larger round for scanner Y ,
as seen in Fig. 4.1 and Fig. 4.2, respectively. Those days with no records of probe
packets are the days when the scanners were turned off since the launch was in a
trial phase.

Another observation from the shapes of the probe graphs is the scale variation be-
tween the medium and large number of daily probes. For instance, on both scanner
X and scanner Y , the last ten-to-twelve days of April are smaller than the most. The
reason behind that was the Easter holiday season, where most students travel to join
their families for the celebration.

One more phenomenon worth mentioning could be the two-day drop after most large
records in the probe packets, for instance, the last two days on both the scanners
and similar ones. Clearly, these are patterns showing the weekdays and weekends.
While the number of recorded probe packets on the weekdays is normally larger, the
weekends, especially Sundays, are smaller.

Finally, when we compare the probe records between the scanners themselves,
scanner Y mostly detects a greater number of probes than scanner X . If we consider
maximums, scanner Y recorded 53,922 on the 4th of June, while this number was
40,218 for scanner X on the same date. From this and the general intuitive graph
observation, we can infer the presence of more activities nearby scanner Y on active
days. However, better routines are observed more on scanner X .

4.1.2 MAC addresses

Every probe packet received by the scanners has a source MAC address linked to
the transmitting device. On an ideal assumption, the MAC address can be used for a
head count and, furthermore, for tracking mobility. With that in mind, we can look
at the statistics on devices, and thus the number of people nearby or passing-by the
scanners, from the MAC address analysis.

Fig. 4.3 and Fig. 4.4 show the number of MAC addresses recorded per day over the
presented period. The first observation on the graph is its shape over the days, which
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Fig. 4.1 Number of daily probes for the first scanner

Fig. 4.2 Number of daily probes for the second scanner

Fig. 4.3 Number of daily MAC addresses for the first scanner
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Fig. 4.4 Number of daily MAC addresses for the second scanner

complements the pattern of the probe packets presented in the probe statistics. Like
the probes, we can notice the difference between the weekdays and weekends, the
Easter holiday season, and the activities which are more regular on scanner X than
on scanner Y . When we look at the maximum number of devices recorded by the
scanner, scanner Y has detected the probes from more devices than scanner X , 30k
and 18k respectively, as expected from the probe statistics.

4.2 Model based event analysis

During mobility monitoring, one of the important pieces of information for the
mobility-based service providers is knowing the crowd movements. In a large crowd,
there are groups and individuals performing their daily activities at different times,
for varying durations. The service providers could also be interested in service load
and idleness along with the time in order to improve the service quality. Therefore,
in this part of the work, we have considered modeling the events in the environment
with a queue system.

For the modeled queue system, we have made preliminary definitions from the queue
model terms as follows. Whenever an individual or a group is seen for the first time,
the event can be referred to as an arrival, and when the same individual or group
leaves the area under coverage, it can be referred to as a departure. Based on arrival
and departure events, the time between the arrival and the departure is considered a
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service time. Thus, in this section, we will perform classifications in order to capture
groups from the crowd and, furthermore, process the information to track groups,
i.e., the times for the arrival and departure of a group.

On the premises of the queue model, three arrival and departure event cases can be
analyzed: under scanner-X only, scanner-Y only, and under both scanners together,
scanner-X&Y , as shown in Fig. 4.5, Fig. 4.10, and Fig. 4.15, respectively. Note that,
on the third case, scanner-X&Y , order of arrival will not be considered, i.e., X → Y
and Y → X are overlooked. In addition, any back and forth movement between the
scanners is considered part of the service until a complete departure from both the
scanners is noticed. Furthermore, on the events, when a probe is detected from a
device only once but never on that day, it is considered an immediate loss after an
arrival, and for a MAC address associated with more than one probe, the first probe
is marked as an arrival event while the last one is taken as a departure event.

4.2.1 Scanner-X events

In this case, there are three types of events: arrival, departure, and loss. Between
these events, two situations can occur; either scanner-X detects a single probe from a
device over the course of the day, in which case it is assumed lost, thus marked as a
loss event; or the scanner receives more than one probe, where the first probe of the
device is tagged as an arrival and the last probe of the day is tagged as a departure
event. The time between the arrival and the departure is labeled as the service time
where the device could be transmitting more probe packets or be silent, i.e., out of
scanner-X’s reach.

When we look at the arrivals and departures for scanner-X on Fig. 4.6 (a) and Fig. 4.6
(b), there are two phases of growth over time. The arrival rate, initially, is much
slower, with almost no activity for the first seven hours after midnight. This is
expected since the campus is closed during those hours. Then, in the second phase,
from 7 until 21, the growth curve went up significantly, highlighting the increase
in the number of devices in the area over the period. Finally, it starts leveling off
through the night after 21. On the result, the departure is at a close rate to the arrival.
This shows the fact that the detected devices are leaving the site quickly. We can
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Fig. 4.5 Queue model for scanner-X

(a) Arrivals CDF (b) Departures CDF

(c) Losses CDF (d) Service time PDF

Fig. 4.6 Distribution of events on scanner-X
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also see in Fig. 4.6 (c), that the loss curve has a similar shape to the arrival curve.
This is expected since losses occur immediately after the arrival, according to our
assumption. Thus, we can classify the active hours using the arrival and departure
CDF distribution of the model.

Fig. 4.7 Arrival and departure PDF for scanner-X

On Fig. 4.6 (d), we can observe the true service time distribution for the devices.
According to the result, most of the devices stayed for a very brief amount of time,
for a few minutes. There are, of course, devices having a service time duration of
up to 3 hours or more, but they are relatively very small in number as seen from the
distribution.

Finally, for the case, the PDF of arrival and departure over the times is presented in
Fig. 4.7. The result shows some peak values for specific hours, revealing significant
traffic during mobility. These hours are the times for the class schedules of the
Politecnico di Torino, i.e., starting from 8:30 students either attend or leave every 90
minutes. Thus, by looking at peaks in the PDF of the model output, it is possible to
detect important schedules affecting the traffic flow.
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Fig. 4.8 Arrivals on scanner X

Fig. 4.9 Departures on scanner X

In order to verify the founding, we have taken daily traces for a week, from Monday
29/04 to Sunday 05/06 of the year 2019. Each circle, colored for the days, is the
group of devices detected by scanner-X over a ten-minute window in Fig. 4.8 and
Fig. 4.9. When we look the peak arrival times for the classified groups, as in Fig. 4.8,
it matches exactly the PDF of the arrivals in Fig. 4.7, and similarly for the departures
in Fig. 4.9 and Fig. 4.7.
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4.2.2 Scanner-Y events

The second case is similar to the first, but instead of scanner-X , the events are on
scanner-Y . The arrival and departure curves in Fig. 4.11 show a steady state for the
first seven hours of the day, and then start taking off exponentially until they reach
the night hours of the day. However, a small decrease in the growth rate is noticed at
the 14th hour, which could indicate a meaningful phenomenon during the day that
needs further observation from another point of view to see the details. Let’s call the
phenomenon P1 to verify it later.

Fig. 4.10 Queue model for scanner-Y

The loss curve in Fig. 4.11 is similar to the arrival curve as expected and explained
in the previous case (Sec. 4.2.1). From the service time plot in Fig. 4.11 (d), most of
the detected devices have stayed for a shorter period of time. However, a minor peak
is noticed after 360 minutes (6 hours). Which means, there are groups staying for 6
hours near the scanner-Y . Again, here, further examination is necessary to justify the
moment, thus let’s call the phenomenon P2 for now.

In order to verify phenomenons P1 and P2, we can look at the hour-by details from
the PDF of the arrival and departures of the model in Fig. 4.12. Unlike the first case
of scanner-X (Sec. 4.2.1), the major peaks are on the 8th hour for the arrival and on
the 14th hour for the departure. Thus, P1 matches the peak value of the departure
distribution, while the absolute time difference between the peak arrival and the peak
departure complements the phenomenon P2. Unlike the Politecnico di Torino groups
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(a) Arrivals CDF (b) Departures CDF

(c) Losses CDF (d) Service time PDF

Fig. 4.11 Distribution of events on scanner-Y

in which the daily events take place every 90 minutes, this group, with phenomena
P1 and P2, has daily routines running for 6 hours. It should be noted that this scanner
(scanner–Y ), which is located at the gate of Politecnico di Torino, is very close to
the gate of the Liceo Scientifico Galileo Ferraris high school. Hence, the scanner
has captured the schedules of the high school student groups, the starting and ending
times of their daily activities.

Similarly, the arrival and departure event model is confirmed with a detailed daily
presentation of the similar week, as shown in Fig. 4.13 and Fig. 4.14. In the figures,
the detected devices are groped in a ten-minute window time frame. As expected,
the timing of groups, especially those of larger size, harmonizes with the arrival and
departure PDF peaks.



4.2 Model based event analysis 57

Fig. 4.12 Arrival and departure PDF for scanner-Y

Fig. 4.13 Arrivals on scanner Y

4.2.3 Scanner-X&Y events

In the last case, it considers both the scanners together instead of just one separately.
On this model, the arrival event, the first probe detection, can be either by scanner-X
or by scanner-Y . Similarly to the previous cases, the device can be silent or out of
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Fig. 4.14 Departures on scanner Y

reach for the entire day after transmitting a single probe, where the event is marked
as a loss in the system. However, if the device keeps transmitting the probe at least
once after its first probe over the day, and if detected by at least one of the scanners,
its last probe of the day will be labeled for the departure event. Thus, the absolute
time difference between the arrival and the departure event is the service time as
per the model. During the service time, probes from the device can jump between
the scanners before departure, for example, first detected by scanner-X , then by
scanner-Y , then again by scanner-X(X → Y → X), or first detected by scanner-Y ,
then by scanner-X , then again by scanner-Y (Y → X → Y ).

When the two scanners are combined, the most important phenomena captured by
the separate models are not hidden in the integrated model. As we can see from
the arrival and departure graph from Fig. 4.16, for instance, phenomenon P1 of the
second case (Sec. 4.2.2) is detected at the same 14th hour as in the current model.
The assumptions and the results remain similar for the loss curves between the first
two models and the last model, evidently as well, as seen in Fig. 4.16.

In Fig. 4.16 (d), the service time of the third model summarizes both the first and sec-
ond models. Besides the short service times detected by the scanner-X and scanner-Y ,
the minor peak of the 6 hour service time from the second case (Sec. 4.2.2) is per-
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Fig. 4.15 Queue model for scanner-X&Y

ceived in the result of the current model.

The final PDF plot of arrivals and departures on Fig. 4.17 recaps the hour-by-hour
main events seen by the first two separate cases. The pivotal events, such as the 90
minute effect for the campus groups and the 6-hour daily high school lessons, are
spotted from the distribution of the third model.
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(a) Arrivals CDF (b) Departures CDF

(c) Losses CDF (d) Service time PDF

Fig. 4.16 Distribution of events on scanner-X&Y
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Fig. 4.17 Arrival and departure PDF for scanner-X&Y
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4.3 Final remark

In this chapter, we have looked at statistical analysis of groups from WiFi probe
request frames and MAC addresses incorporated with the frame. From the statis-
tics, we have detected events. The analysis was supported by a model, where the
distributions of the model were able to complement the analyzed statistics.





Chapter 5

MEC-based Extended Virtual Sensing
for Mobility Safety Service

Part of the work presented in this chapter has been published in [37, 38]:

• Avino, Giuseppe and Bande, Paolo and Frangoudis, Pantelis A. and Vitale,
Christian and Casetti, Claudio and Chiasserini, Carla Fabiana and Gebru,
Kalkidan and Ksentini, Adlen and Zennaro, Giuliana, "A MEC-Based Extended
Virtual Sensing for Automotive Services," in IEEE Transactions on Network
and Service Management, vol. 16, no. 4, pp. 1450-1463, Dec. 2019, doi:
10.1109/TNSM.2019.2931878.

• Avino, Giuseppe and Giordanino, Marina and Franzoudis, Pantelis A. and
Vitale, Christian and Casetti, Claudio and Chiasserini, Carla Fabiana and Ge-
bru, Kalkidan and Ksentini, Adlen and Stojanovic, Aleksandra, "A MEC-based
Extended Virtual Sensing for Automotive Services," 2019 AEIT International
Conference of Electrical and Electronic Technologies for Automotive (AEIT
AUTOMOTIVE), 2019, pp. 1-6, doi: 10.23919/EETA.2019.8804512.

Road traffic injuries are causing consequential damage to societies. According to
the World Health Organization (WHO), the leading cause of death for children and
young adults aged less than 30 is road traffic injuries [39]. In order to address this,
the automotive sector is focused on traffic safety applications. The goal of this
work is to deal with the road traffic injuries that could occur during mobility. For
this reason, the Extended Virtual Sensing (EVS) system was developed in order to



5.1 MEC Architecture 65

predict future accidents involving vehicles and pedestrians. The system is capable
of determining collisions at road intersections, thus making early notifications for
the concerned entities to avoid accidents. The system collects mobility data from
vehicles and pedestrians to have a broad environmental view before the required
warnings. Since such safety systems relay on low latency infrastructure, the EVS
system is based on MEC technology. In order to implement the MEC system, we
have used the OpenAirInterface (OAI) standard platform. Furthermore, an urban
environment with intersecting roads is modeled to test the EVS system, where on the
model the traffic flows of vehicles and pedestrians are emulated. The performance of
the implemented safety system is also included in the chapter.

5.1 MEC Architecture

Multi-access Edge Computing (MEC) enables MEC applications to run at the net-
work edge, within an operator network. These MEC applications, comprising
important functions, are virtualized applications supported by a virtualization frame-
work such as Virtual Machines and container applications inside a MEC host. MEC
services are delivered through the MEC applications. Therefore, the MEC platform
enables a setting where applications can discover, advertise, consume, and offer
services.

The MEC host containing the MEC platform and applications is responsible for
providing the necessary resources in order to facilitate the required computations and
storage along with the networking services. Each MEC application specifies rules
and requirements, such as the maximum latency, corresponding to the service. These
demanded specifications must be confirmed by the MEC system level management,
which is in charge of an overall view of the MEC system.

The management entity handles the services and the available resources through MEC
Orchestrator. Besides validating rules and requirements, the orchestrator controls
the on-boarding and offloading as well as audits the integrity and authenticity of
applications. Furthermore, the MEC Orchestrator is responsible for relocating
applications when needed. Requests for instantiation and termination processes of
the applications are via the CFS portal and from device applications. Before the
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Fig. 5.1 Multi-access edge system reference architecture (ETSI, [2])

Orchestrator further processes and manages the applications, the Operations Support
System, which is another component of the management entity, is accountable for
deciding whether to grant or not the forwarded requests.

5.2 Extended Virtual Sensing Application

Throughout mobility, vehicles and pedestrians can get enhanced safety services from
various information sources. The vehicles in particular can take advantage of the
embedded ADAS sensor systems (i.e., radar, camera, etc.) to acquire environmen-
tal data, unlike the pedestrians. However, the Extended Virtual Sensing system is
capable of delivering momentous services for both vehicles and pedestrians. The
central server of the EVS system collects data from vehicles and pedestrians’ smart-
phones concerning their whereabouts and situations, thus developing safety-related
information from the collected corporative data in order to provide environmental
awareness to users. The EVS, apart from the ADAS system, can be considered as a
virtual sensor for the cars, while pedestrians benefit from an auxiliary safety-related
geographical sense. Hence, based on the notification message from the server, the
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users or the autonomous system can take measures in order to avoid safety risks.

The EVS system has three main benefits for users. The first is larger coverage area
support, i.e., the EVS can manage a wider area than the ADAS sensors. Secondly,
vehicles that are not equipped with a full-fledged set of ADAS sensors as well as
pedestrians can be assisted through the virtual sensor. Most importantly, the third
benefit is the prediction service on future safety threats during mobility.

In this work, the particular service of the EVS is compatible with one of the 5GT
project safety use cases, which provides road safety service for automotive. The
goal of the service is to spot and avoid forthcoming collisions between vehicles
as well as with pedestrians. Since these types of collisions mostly occur at road
intersections, the future collision sensor, referred to as a collision detector, focuses
on such crossroads. In order to perform accurately, the collision detector relies on
two procedures.

The first one is the message exchange process in which vehicles and pedestrians
periodically transmit mobility status information towards the EVS central server, i.e.,
the collision detection application. Thus, from the collected messages, the server
is responsible for identifying vehicles and pedestrians that are at risk and notifying
them prior to the imminent collision. The message exchange is explained further in
the next section (Sec. 5.2.1).

The second most important part of the safety service on the EVS system is the
collision detection algorithm, which computes the prospective collisions for the
vehicles and pedestrians. The details of the execution of the algorithm are explained
in Section (Sec. 5.2.2). Thus, in the following sections, the message exchange
process and the collision detection process are presented.

5.2.1 EVS messages exchange

The collision detector system on the EVS is based on two types of messages. The
first is transmitted from the vehicles and pedestrians towards the collision detection
server, while the second is directed from the server towards vehicles and pedestri-
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ans at risk. These messages, used in road safety services, are defined in the ETSI
reference architecture document. The first messages generated by the vehicles and
pedestrians are called Cooperative Awareness Messages (CAM), and the second
messages forwarded by the server are called Decentralized Environment Notification
Messages (DENM), as defined by the standard.

The CAMs sent by the users should mainly contain the current position, speed, and
heading information at least. However, additional information such as the type and
size of the vehicle could be encoded in the message. According to the ETSI, these
beacon packets should be small in size, specifically 50 to 300 bytes, and should be
transmitted at least once every one second, unless there is a sudden change in posi-
tion, speed, or heading information, in which case CAMs must be generated every
100 milliseconds for three consecutively at least. The 100 milliseconds frequency is
triggered by the speed change of 5 meters per second, position change of 4 meters,
and heading change of 4 degrees or more.

The second type of message, DENMs, is transmitted not frequently but when neces-
sary, unlike the CAMs. It is only necessary to transmit the DENMs when the system
detects a forthcoming impact between two entities. Thus, the notification message is
forwarded only to the concerning entities continuously, every 100 milliseconds, until
there is a response from the entity or the safety threat is clear.

5.2.2 Collision detection

The heart of the EVS system for road safety is the collision detection application.
The goal of this application is to prevent future mobility accidents. It, therefore,
leverages the cooperative messages collected from the vehicles and pedestrians. The
CAMs are the foundation of the collision detection algorithm in order to compute
the future encounters for the users. The algorithm, as seen in Alg. 1, is called and
executed per CAM since with every CAM there is new information. As the new
cooperative awareness message arrives from an entity, it is matched with all the latest
CAM of the remaining entities in the geographical area. As a result, if two or more
entities are at risk of colliding in the future, each entity is tagged for the DENM
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notification message. The collision detection algorithm is examined more in detail
in the following section.

Collision Detection algorithm

The CD algorithm is critical to the service because it is the only unit that can pre-
dict future events. It can notify entities at risk of collision ahead if the situation is
inevitable. In order to do the operation, the CD algorithm takes as an input the latest
position, velocity, and acceleration of the entity along with the remaining set of latest
CAMs in the environment (Line 0). After collecting the inputs, an empty set, as a
temporary memory, is created to record entities at risk (Line 1). Then, the future
trajectory of the entities is computed from the input (Line 2 and Line 3). Next, the
future trajectory is computed for all the remaining entities in the area (Line 6 and

Algorithm 1 Collision detection pseudocode

Require: p⃗0, v⃗, a⃗,β
1: ζ ← /0
2: px(t)← p0

x + vxt + 1
2 axt2

3: py(t)← p0
y + vyt + 1

2 ayt2

4: for all b ∈ β do
5: read ⃗̃0p,⃗̃v,⃗̃a from b
6: p̃x(t)← p̃0

x + ṽxt + 1
2 ãxt2

7: p̃y(t)← p̃0
y + v̂yt + 1

2 ãyt2

8: D(t)← (px(t)− p̃x(t))2 +(py(t)− p̃y(t))2

MMMM =
[
p0

x− p̃0
x +(vx− ṽx) t + 1

2 (ax− ãx) t2
]2
+

MMMMMi
[
p0

y− p̃0
y +(vy− ṽy) t + 1

2 (ay− ãy) t2
]2

9: τ ← t : d
dt D(t) = 0

10: for all t⋆ ∈ τ do
11: if t⋆ < 0 or t⋆ > t2ct then
12: continue
13: end if
14: d⋆←

√
D(t⋆)

15: if d⋆ ≤ s2ct then
16: ζ ← ζ ∪{b}
17: break
18: end if
19: end for
20: end for
21: return ζ
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Line 7), after taking the inputs from the CAM database (Line 5). Following that,
the trajectories of the entities are matched with each other in order to compute the
distance between them (Line 8). Then, the time instance when the two entities were
at their closest distance from each other is extracted in Line 9. Since the equation is
biquadratic, more than one time instance is returned on Line 9. Thus, in Line 10, all
the instances are taken into consideration.

In Line 11, two conditions are checked: whether the returned time is negative or
greater than a time threshold value (the time threshold is explained in Sec. 5.2.2). A
negative t on the result indicates a growing distance between the two entities, while
a value greater than the time threshold indicates an early, if not unnecessary, warning
since situations may be altered (i.e., entities can break, change heading, etc. with a
larger time window). Thus, if the entities are moving further apart from each other or
the time is early, the collision threat is ignored for the moment (Line 12). However, if
the time instance t is positive and below the time threshold, the distance between the
entities at time t is extracted (Line 14) to be matched with another threshold value
(Line 9), a distance threshold (explained in Sec. 5.2.2). If the extracted distance is
less than the distance threshold value (Line 15), the entities are expected to collide,
hence the entities are pushed into the set ζ for notification (Line 16). Finally, the set
ζ is forwarded to the DENM transmitter as explained in Sec. 5.2.1.

Collision detection parameters

In the algorithm, there are two important parameters that can affect the perfor-
mance of the EVS system; a time threshold (T2C) and a distance threshold (S2C)
parameter. While the first is referred to in the work as time-to-collision, the second
is called space-to-collision.

The first parameter, T2C, is the time difference between the time when the two entities
are close to each other and the current running time of the algorithm. The threshold
value considers the time needed for transmitting the warning (DENM), the reaction
time after receiving the DENM, the breaking to stop the entity, and a safe margin.
Therefore, if this threshold is lower, collision could be inevitable and detection will
be considered late. Instead, when this threshold is higher, false positive warnings
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Fig. 5.2 Collision detection parameters: S2C and T2C

could be transmitted since one of the entities could at least change the parameters in
milliseconds, i.e., make breaks, change headings, etc. Hence, the value must balance
the required time in order to improve the performance of the algorithm.

The second parameter, S2C, is the minimum distance between the two entities over
the trajectory made by the algorithm. The threshold value controls the performance
of the system. When this threshold is lower, the forthcoming collisions could be
undetected by the algorithm, so true negative effects can take place. On the other
hand, when the S2C value is higher, the entities could receive a false positive alert
since there may not be a collision if the entities are further apart from each other.
In the algorithm, this value should also consider the size of the entities to cover the
whole body on the trajectory of the likely collision ahead. Thus, for larger entities,
the value should increase in order to detect collisions at the tail of the entity as well.
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5.3 Testbed design and implementation

In order to achieve our goal, a testbed has been implemented for the MEC-based
EVS system. The testbed includes three classes: users, a cellular infrastructure, and
the EVS service, as shown in Fig. 5.3.

Fig. 5.3 MEC-based Extended Virtual Sensing testbed

The first class, the users, has two physical hosts whose main responsibility is to
transmit predetermined CAMs of vehicles and pedestrians as programmed. These
messages are real packets communicated over a cellular network, where the hosts
act as User Equipment (UE) of the LTE infrastructure. In order to generate the coop-
erative awareness messages from the UE, the traffic flow of vehicles and pedestrians
is emulated on the SUMO traffic simulator, and traces of each flow are recorded in
advance. In the simulation, position, speed, acceleration, and heading information
are encoded and logged every 100 milliseconds for each entity. Thus, the two UE
hosts can emulate the traffic flow of vehicles and pedestrians from the traces and
forward every single CAM on time towards the EVS service provider through the
cellular infrastructure.
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The UEs and the LTE cellular infrastructure are implemented based on the OAI stan-
dard. The over-the-air communication between the UEs and the eNB is supported by
the USRP radio board on the testbed, as shown in Fig. 5.3. On the platform, the three
main systems, the HSS, the MME, and the PGW, are virtualized and incorporated
into the EPC host. Hence, each and every CAM from the UEs can reach the MEC
server through the PGW.

The MEC host, located at the edge of the testbed, has two VNFs in order to deliver
the EVS service to the users. The first VNF is the Cooperative Information Manager
(CIM), whose role is to receive the CAM messages from the UEs and manage
them. Thus, the CIM features two modules: a receiver module and an information
management module (IM). The receiver module is accountable for three tasks:
collecting the CAMs from the UEs over the UDP; decoding the CAMs to extract
the information; and forwarding the information towards the IM that is in charge of
storing the decoded information. The second VNF of the EVS system located on the
MEC host is the Collision Detector (CD). This virtualized instance includes three
modules: the CD manager, the CD algorithm, and the DENM transmitter. The CD
manager requests the set of CAMs from the IM of the CIM. During this procedure,
CAMs only from the monitored area can be extracted. After that, the CD manager
forwards the latest CAMs to the CD algorithm. Thus, the CD algorithm computes
the trajectories of all the vehicles and pedestrians from the monitored area in order to
detect collisions ahead, thus tagging entities at risk. Once vehicles and pedestrians
are tagged for future collision by the CD algorithm, information about the tagged
entities is forwarded to the third module of the CD VNF, the DENM transmitter.
Therefore, the DENM transmitter is responsible for notifying the entities at risk
through the DENM protocol.

5.4 Proof of concept scenario

In support of the work, we have modeled mobility in an urban environment. The main
purpose of the EVS service is to enhance safety by avoiding imminent collisions
during mobility. The modeled environment is designed in a way to induce collisions,
which the EVS system can counter. For this reason, there are two intersections for
the impacts between vehicles and three pedestrian crossings for the misfortune of
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pedestrians on the road map (shown in Fig. 5.4).

Fig. 5.4 Simulated mobility scenario

On top of this road map, the traffic flow of vehicles and pedestrians is modeled with
the Poisson process of rate of λv = 0.7 and λp = 0.15 independently, where λv is the
arrival rate for vehicles and λp is the arrival rate for pedestrians. The chosen average
arrival rates provide a stable system but fabricate collisions at the intersections and
the crossings.

The scenario, which is carried out by the SUMO traffic simulator, has extra pa-
rameters such as the dimension and speed of the entities. Thus, on the simulator,
the dimensions are 4.3m×1.8m and 0.2m×0.4m respectively, for the vehicles and
pedestrians. As for the speed, the maximum is 50kph (13.9m/s) for vehicles and
7.2kph (2m/s) for pedestrians.
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5.4.1 Collision Detection performance

From the discussion made on Sec. 5.2.2, the performance of the algorithm, thus
the EVS system, depends on the S2C and T2C threshold values. While the T2C
determines the detection to be late or on time, the S2C controls the warnings to be
false positive when too small or undetected (i.e., true negatives) when too large.
Based on that, the thresholds are set empirically on the system for the chosen scenario
(Sec. 5.4), as follows.

• V2V : S2C = 3.7 meters, T2C = 2.5 seconds, where V2V refers collision between
vehicles

• V2P : S2C = 1.4 meters, T2C = 0.9 seconds, where V2P refers collision between
vehicle and pedestrian

(a) Collision detection (b) False positives

Fig. 5.5 Collision between vehicles

Note that the separate values between V2V and V2P are due to the different reaction
behaviors of vehicles and pedestrians as well as the different sizes of the entities.

The results in Fig. 5.5 and Fig. 5.6 show the performance of the algorithm. With the
selected parameters, all the inevitable collisions are detected. However, false positive
warnings are noticed as well. When details of the false negatives are investigated,
Fig. 5.7 shows the warnings are caused by short-distance errors of less than one meter.
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(a) Collision detection (b) False positives

Fig. 5.6 Collision between vehicles and pedestrians

Fig. 5.7 CDF of false positives

The reason for having these false positives is the behavior of the traffic simulator.
The SUMO simulator is a discrete-time simulator, thus in the simulation the stepping
time is set to 100 milliseconds, i.e., any value lower than this will drag the system
down. Instead, the trajectory computation made by the algorithm is continuous.
Hence, while the algorithm detects the collision perfectly, the discrete time simulator
skips the events between 100 milliseconds. It should be noted that, according to the
simulation, a vehicle can move 1.3 meters over 100 milliseconds and a pedestrian 0.2
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meters over the skipped duration. Therefore, the false positive results are expected
to be the effects of the simulator and the algorithm.

5.5 Final remark

The chapter has covered a MEC-based EVS system, a mobility safety service based
on a "virtual sensor" system. The system was able to detect collisions ahead between
vehicles as well as between vehicles and pedestrians. Mobility traffic was modeled
in an urban environment to test the performance of the system, and the result was a
success.





Chapter 6

Conclusions

With respect to people’s mobility, we have made contributions in order to provide
support for safety-related and other services in general. Systems that can facilitate
the support of environmental services as well as safety services have an immense
impact on users during mobility. In regard to that, we have offered what we believe
could assist the interested sectors through this work: mobility tracking and safety
support systems. These systems basically collect mobility data from people while
moving in order to deliver the required services. Hence, we have used two types
of sensor systems for the purpose of monitoring mobility in a given geographical area.

The first one is an IoT based WiFi sensor, while the second one is a virtual sensor
system. The first sensor system, the IoT-based WiFi sensor, is used for detecting
WiFi signals from mobile devices without the need for third-party applications for
the purpose of tracking mobility. In order to achieve this, we have leveraged two
types of WiFi sensors; off-the-shelf commercial WiFi sensors and ad-hoc designed
WiFi sensors. With the help of these sensors, WiFi probe request frames in particular,
were collected during the mobility of people. These probe request packets contain
information such as the MAC address of the device, which is used by the mobility
tracking system. To protect people’s privacy when collecting these data, which are
considered personal by the EU GDPR, we have implemented a privacy-preserving
scheme. Moreover, we have used the 5G-EVE architecture along with the scanners
as a testbed for the mobility tracking application. On top of our testbed, we have
made ground-truth experiments with scenarios of mobility flow. Finally, we have
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applied our mobility tracking methodologies in order to make classifications between
mobility patterns and flows, thus validating the work.

The second sensor system supports both vehicles and pedestrians with safety services
during mobility. The system relays on two types of messages exchanged between
users and the server. The first type of message, encoded with the latest mobility data
such as position and heading, is transmitted by vehicles and pedestrians. Instead,
the second message is a safety warning sent from the EVS system, which monitors
the geographical area. In order to do this, the EVS system has included a safety
service system, in particular a Collision Detector. The purpose of the CD system is
to predict collisions ahead in the environment from the messages sent by vehicles
and pedestrians. Thus, upon detecting imminent collisions, the CD will notify the
concerned entities before the incident, which is highly critical for avoiding traffic
accident injuries. In order to carry out and test the system, we have implemented a
testbed based on the OAI standard. Furthermore, we have modeled the traffic flows
of vehicles and pedestrians in an urban environment, which allowed us to measure
the performance of the system. According to the results, the work was successful.
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