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Notation

Throughout this manuscript, we will refer with N, R and C to the natural,
real and complex numerical fields, respectively. Scalars are identified with a
plain lower-case font x, vectors with bold lower-case font x and matrices with
a bold upper-case font X. Sets are denoted with a calligraphic notation X .
The symbol j =

√
−1 is the imaginary unit and the letter s is reserved for the

complex Laplace variable. The i-th vector element is identified as xi, while
the (i, j)-th matrix element as Xi,j. For any complex number z, z∗ denote
its complex conjugate. The notation XT and XH identify the transpose and
conjugate transpose (Hermitian) of matrix X. Depending on the context, sets
are explicitly defined listing their elements between curly brackets {. . .}. The
symbols IP , 1m,n and 1m are reserved, respectively, for the identity matrix of
dimension P , the m×n matrix and the vector of dimension m with all elements
equal to one.. Dimensions will be omitted when clear from the context. The
operators det (X) and rank (X) evaluate the determinant and the rank of their
matrix arguments. The notation λ (X) and σ (X) denote the eigenvalue and
singular value spectra, respectively. Depending on the context, the operator
eig (X) is also used to identify the eigenvalues of matrix X. Vector and (induced)
matrix p-norms are denotes as ∥x∥p and ∥X∥p; when p is omitted, we refer to
the standard Euclidean 2-norm.



Summary

Mathematical modeling has become essential for the electronic industry. Today’s
market necessities demand to match the conflicting requirements of increasingly
faster workflows, together with reliable and accurate designs. Assessing the
robustness of designs may be extremely challenging, due to the presence of
increasingly miniaturized devices, in conjunction with high-frequency signals
and other interfering components placed in close proximity to each other. In
this context, modeling the impact of distributed effects on the reliability of
complex designs demands for sophisticated simulation software that, solving
first-principle equations (e.g., Maxwell’s equations), are capable of accurately
predicting their electrical and electromagnetic behaviors.

However, the impressive accuracy levels achieved by first-principle solvers
come at the cost of prohibitively long runtimes, that badly fit the above-
mentioned design requirements. In this scope, the use of simplified reduced-
order behavioral models (or, macromodels) is extremely helpful. Retaining
only a reduced set of auxiliary variables necessary to accurately reproduce the
input/output behavior or interest, macromodels can replace the original fully
detailed description, enabling for exceptionally fast simulations with a minimal
and controlled error.

The possibility of embedding in the macromodel the variability upon some
parameters, would additionally enable cheap repeated simulations under dif-
ferent configurations of the structure of interest and different environmental
conditions, allowing for variability, optimization and design centering analyses
that would be impractical with first-principle solvers. This manuscript fits in
this last parameterized framework where, although well-consolidated parame-
terized macromodeling strategies are already available, major open problems
are still to be addressed. Throughout this work we will consider data-driven
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approaches, so that parameterized models are constructed from a reduced set
of frequency-domain data, available from simulation.

First, we address the problem of certifying the model stability and passivity,
which are fundamental properties that the model must have to be of practical use
in design flows. A first set of approaches propose to build parameterized models
that are stable and passive by construction, at the cost of a reduced portability
and lack of compactness. Others, instead, enforce these properties employing a
post-processing perturbation strategy, guaranteeing the model compactness. In
this second framework, prior to this work only partial solutions were available,
that were limited to one parameter only. The first technical contribution of this
work is an extension of the latter approach to higher-dimensional parameter
spaces. Formulating a parameter-dependent Hamiltonian matrix, we set up a
scalable algorithm for the identification of stability and passivity violations, to
be removed in a subsequent post-processing phase.

Then, we address the problem of high-dimensional macromodeling, i.e., the
inclusion of a much larger number of parameters in the model, that would be
much more flexible since representative of a wider set of design and working
conditions. Standard parameterized macromodeling strategies are not suited
for high-dimensional tasks, since their identification procedures become expo-
nentially more complex as the number of parameters increases. The second
technical contribution of this work is the formulation of a high-dimensional
model form based on Radial Basis Functions, that is specifically suited to
handle many more parameters without incurring in computational issues. In
addition, we also introduce an innovative set of uniform stability constraints,
whose formulation does not depend on the number of parameters and, thus,
perfectly fits the considered high-dimensional setting.

The last contribution of this thesis is the formulation of a comprehensive
set of strategies, specifically aimed at optimizing, based on the dataset at
hand, the dimension of the approximation spaces and the hyper-parameters
of the radial basis functions, basically without any user interaction. This
enables the development of a high-dimensional fully automated macromodeling
flow that autonomously optimizes the model structure and generates accurate
high-dimensional and guaranteed stable models.
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In summary, this dissertation provides advancements under both a theoreti-
cal and a practical viewpoint. The improvements with respect to prior research
works are documented with relevant numerical examples, demonstrating that
the results of this work are ready for exploitation.



Chapter 1

Introduction

The impressive miniaturization achieved in the last decades by electronic sys-
tems, together with the presence of high-frequency signals and the increasingly
shorter time-to-market, demand for extremely robust and effective product
design phases. In this view, Electronic Design Automation (EDA) tools emerge
as essential assets for the engineers, who can validate the performances of each
individual design step through repeated numerical simulations, rather than re-
sorting to expensive prototyping setups. Most often, simulations are performed
via dedicated software that, based on first-principle equations (in our case, the
Maxwell’s equations), predict the electrical and electromagnetic behavior of
the device under test. In order to accurately estimate the few electrical and/or
electromagnetic variable of interest, the first-principle solvers necessitate to
compute millions (or even billions) of intermediate “internal” unknowns. Hence,
the high-accuracy simulation results achieved by general purpose software may
be extremely demanding in terms of computational resources, to the point of
requiring very expensive ad-hoc hardware configurations.

1.1 Macromodeling

From these considerations stems the push toward Reduced Order Models (ROMs)
or macromodels that, at the cost of a negligible and controlled error, allow
predicting the variables of interest with a minimum effort. This is made possible
by reducing the complexity of the highly detailed solution provided by first-
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Fig. 1.1 Eye diagram analysis of an high-speed interconnect (see [3]) obtained with
a SPICE engine for two different values of the parameter a (the multi-layer PCB
via radius). The simulation is performed by injecting a pseudo-random bit sequence.
Reproduced with permission from [4], © 2017 IEEE

principle solvers, in order to retain only a reduced set of subsidiary variables that
accurately reproduce the input-output relations of interest. Therefore, ROMs
can be successfully employed, for instance, as surrogates of more complex circuit
blocks in time-domain simulations, or as part of more complex software suites,
where they are often employed in the intermediate simulation steps to improve
their performances. The strong demand for electrical and electromagnetic
macromodeling tools pushed for the development of commercial solutions, such
as IdEM [1] and BroadBand Spice [2].

The possibility of extending the above macromodeling scheme to mimic the
input-output responses of interest under different configurations of design and
external environmental parameters (e.g., geometrical dimensions, components
values, incident EM fields, etc.) can be of great advantage for the final design
centering and optimization steps (e.g., eye-diagram analyses of Figure 1.1).
Indeed, these are often performed through Monte Carlo runs that, requiring
repeated solver calls (each corresponding to a different combination of the
parameters), would require impractically long runtimes even with sophisticated
hardware. Conversely, parameterized macromodels are perfectly suited for
these purposes.

An example

Let us make these statements clearer with an example. Suppose to be given
with the RF matching network (first presented in [5]) depicted in Figure 1.2,
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Fig. 1.2 Layout of the considered RF matching network. From [5] © 2022 IEEE

used to match the output impedance (5.8 + j10.9 Ω) of a large-periphery GaN
transistor operating at 28 GHz to the reference impedance of 50 Ω. The
multi-step semi-lumped pi-type matching network includes a short-circuited
stub (also used for device biasing), large series DC-block capacitor and two
shunt capacitors acting as open-circuited stubs. All the components have been
split in parallel pairs. Large and small MIM capacitors have been used in the
RF-short and DC-block, and as open-circuited stubs, respectively. Large MIM
capacitors are implemented by means of a silicon nitride layer (≈ 150 nm),
while small capacitors are realized with an additional oxide layer (≈ 800 nm).
According to the statistical data, a reasonable relative standard deviation for
the layer thicknesses is assumed to be 5% and 3%, respectively.

In order to assess the performances of the matching network under different
configurations of the layer thicknesses, we run a Monte Carlo analysis with 500
trials, assuming uncorrelated variations of the parameters. All the subsequent
simulations have been carried out with Keysight ADS [6].
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Fig. 1.3 Model responses (dots) compared with the EM solver data (light solid lines)
for the scattering matrix elements S1,1 (red), S2,1 (green) and S2,2 (blue). Left panel:
nominal parameter configuration. Right panel: perturbed parameter configuration.
From [5] © 2022 IEEE

We first run full EM simulations with 200 frequency samples. In this setting,
each solver run requires approximately 50 minutes, so that the full Monte Carlo
would require 17 days. Of course, this is impractical.

Then, exploiting some optimizations embedded in the EM solver we have
been able to complete each parametric simulation in about 3 minutes, corre-
sponding to 25 hours for the complete Monte Carlo run.

Let us now run the same variability analysis with a parametric macromodel.
The first step is to derive a reduced yet significant set of initial parametric
scattering responses at the network ports. For this example, we precomputed
(employing the optimized version of the ADS Momentum EM solver) 9 para-
metric frequency responses, for a total CPU time of approximately 30 minutes.
These data are subsequently used to train the model by means of ad-hoc
identification algorithms, that will be discussed in Chapter 2. As depicted
in Figure 1.3 for the nominal (left panel) and for a perturbed (right panel)
parameter configuration, the model (dots) accurately reproduce the original
data (light solid lines).

Then, the parameterized model is converted into an equivalent SPICE
netlist (see Chapter 2 for details), that is used in ADS in place of the original
complex matching network. In this setting, the Monte Carlo analysis took less
than a minute. Thus, considering the additional overhead required to evaluate
the training responses (≈ 30 minutes) and the model extraction that took
few seconds, using a macromodel enables for a 48× speedup with an error in
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the order of 10−3 with respect to the original EM solver data. However, once
the macromodel is available, it is meant to be reused multiple times without
repeating the identification procedure. Hence, considering only the simulation
time, we achieve a speedup of approximately 1500× when compared with the
optimized simulation. This is not an isolated case. Indeed, compressions in the
order of approximately 1000×, corresponding to approximation errors below
1% are common when using macromodels.

1.2 Stability and passivity

Beside the accuracy, in order to be reliably employed as surrogates in time-
domain simulations, macromodels must also be representative of some physical
properties of the reference circuit block, namely, stability and passivity. Models
that are not stable or not passive may be the root cause of unreliable simulations
and must be avoided. We refer the Reader to Chapter 3 for a detailed discussion
on this topic, including a set of relevant examples.

Guaranteeing stability and passivity of parameterized models has been
tackled under several standpoints. Some techniques [7–9] propose a model
structure that is stable and passive by construction, at the cost of a reduced
model compactness and portability. Others [10, 11], instead, generate compact
parameterized models that may require some post-processing manipulations
to enforce stability and passivity. A comprehensive review is available in
Chapter 2.

Schemes based on stability and passivity enforcement as a post-processing,
in particular the Parameterized Sanathanan Koerner (PSK) approach, will be
the algorithms of choice throughout this work. The corresponding data-driven
macromodeling flow that we will consider in this work is illustrated in Figure 1.4.

1.3 Objectives

One of the main objectives of this work is the definition of a set of model
structures, constraints, and numerical algorithms for enriching parameterized



10 Introduction

Fig. 1.4 Passive data-driven macromodeling flow adopted in this work.

macromodeling tools in order to ensure model stability and passivity. Consid-
ering the model transfer function as a multivariate function of frequency and
one or more external parameters, the goal is then to make the model poles
uniformly stable throughout the parameter space, as well as to make the model
dissipative, again throughout the parameter space. No definitive solution to
this problem exists in the general case. Our proposed solutions are presented
in Chapter 4.

A common limitation, shared among all the available parameterized data-
driven macromodeling schemes, is the impossibility of embedding more than few
independent parameters, due to an exponentially increasing model complexity,
which results in impractically demanding identification procedures. In this
work we will also address this problem, by proposing an innovative high-
dimensional parameterized model structure built on Radial Basis Functions
(RBF). This is the subject of Chapter 5 where, in addition, we will also introduce
innovative stability constraints whose formulation is independent of the number
of parameters, making them perfectly suited for high-dimensional models.

Besides the excellent scalability properties of the proposed RBF schemes,
good approximation results come at the cost of finely tuning some hyper-
parameters of the RBFs. In literature, the problem of estimating optimal
values for the hyper-parameters is well-known [12–15]. As we will thoroughly
discuss in Chapter 6, a direct application of these schemes is not feasible.
In Chapter 6 we introduce a set of innovative hyper-parameter optimization
techniques, specifically tailored to our setting, that allow for an extremely quick
and effective estimation of sub-optimal hyper-parameter values.
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Building upon the above techniques in this manuscript , the final result of
this work summarized in Chapter 6 is the formulation of a high-dimensional
macromodeling flow, that enables the efficient construction of guaranteed stable
parameterized macromodels with less to none user interaction, thus filling
a relevant gap in the literature. More practically, industries would benefit
from the results of this work in terms of more efficient and productive EDA-
based design flows, in all those cases where a fast design space exploration,
optimization, sensitivity and Monte Carlo analyses are required. Ultimately,
simulation software vendors may take advantage of the propsoed automated
macromodeling methods to improve the performances of their commercial
products.



Chapter 2

Literature review

2.1 Background on macromodeling

With the term macromodel we refer to a mathematical description of some
device which is primarily aimed at accurately reproducing its input-output
behavior. For this reason, this approach is also often referred to as behavioral
modeling. Within this paradigm, we can identify two major and complementary
strategies, namely the white-box and black-box approaches.

The white-box setting assumes some degree of knowledge about the device
we are modeling (e.g., the topology of a lumped element electrical circuit). This
information is used to construct ad-hoc model forms that are representative
of the device of interest. Depending on the problem at hand, the translation
of physical knowledge into a model requires some degree of approximation
that must be kept under control to maximize the model accuracy. Often, the
modeling step involves the optimization of the model parameters (e.g., the
values of lumped components) and/or the model structure (e.g., augmentation
of a basic circuit topology [16]) based on the available raw data.

The main advantage of this approach comes with the intrinsic interpretability
of the model that, for instance, can be extremely useful to designers due to the
strong correlation between the model and the real-world device. In addition,
enforcing some constraints on the component values, it is possible to easily
guarantee some physical and/or structural properties that the model must
reproduce (e.g., passivity, stability).
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This approach find its limits when dealing with moderately to highly
complex problem (e.g., distributed networks with non-negligible propagation
time, large interconnect networks, etc. . . ). In those cases, the problem is
twofold. First, we may be limited in the knowledge of the device we are
modeling, which thus translates to incorrect or unreliable model structures.
In addition, for an increasingly large number of components, the complexity
of the resulting optimization problem (often non-convex and characterized by
many local minima) increases, becoming easily intractable.

On the other side, we denote with the term black-box a model defined only
by the functional relations between the input/output ports, disregarding any
prior knowledge about the device under modeling. The main advantage of
the black-box approach is its flexibility, which stems from a model structure
that, instead of being case specific (as in the white-box approach), is purposely
intended to be more general. This enables to model more complex phenomena
such as, for instance, strong high-frequency effects (skin and proximity effect)
or electromagnetic couplings that affect the device of interest.

Moreover, a black-box model can be safely shared without disclosing pro-
prietary information about sensitive device characteristics, as it retains only
the input/output relations. This is a great benefit for vendors, who can safely
share component models with their customers. This, of course, comes with a
reduced interpretability of the model.

The absence of physical-based constraints in the model description may
lead to models lacking physical consistency. For instance, characteristics such
as stability and passivity may not be guaranteed by construction and thus must
be enforced with ad-hoc techniques [17, 18]). Enforcing uniform stability and
passivity in the parameterized setting is one of the key challenges addressed in
this work (see Sections 4.4, 4.7).

Throughout this work, we will focus on the category of black-box macro-
models. Hence, with the term macromodel we will implicitly refer to a black-box
behavioral model. For the interested Reader, we refer to [19] for additional
details on white-box modeling.

Depending on the steps that lead to a macromodel, we can identify two
main approaches.
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2.1.1 Model order reduction

Often, an accurate description of the phenomena of interest requires handling
very large systems of (possibly coupled) differential equations. This primary set
of equations may be derived, for instance, from discretization of field equations
or from a Modified Nodal Analysis (MNA) description of a lumped network.
Usually, such a kind of detailed electrical or electromagnetic characterization
takes into account both the main functional input/output characteristics and
for all the capacitive/inductive or distributed parasitic effects. In the scenario
of numerical simulation, the solution of these highly complex models turns out
to be extremely demanding both in terms of memory and CPU requirements.

A Model Order Reduction (MOR) approach reduces the complexity of the
models (compression) while, at the same time, approximating the input-output
characteristics – the larger is the compression, the less accurate is the Reduced
Order Model (ROM).

Some of the most common MOR approaches rely on projections of an original
large-sized state-space description into lower dimensional sub-spaces, eliminat-
ing possible redundant (thus unnecessary from an input/output standpoint)
dynamics. The MOR algorithm PRIMA (Passive Reduced-Order Interconnect
Macromodeling Algorithm [20]), is one of the most successful due to its passivity
preserving and controlled accuracy properties.

Other techniques, known as truncation methods, reduce the model com-
plexity eliminating some system dynamics with small contributions (measured
in some suitable norm) to the overall input/output characteristics. The most
common truncation method is known in the literature as Truncated Balanced
Realization (TBR) [21, 22].

For a more detailed description of Model Order Reduction techniques, we
refer the Reader to [23–25]

2.1.2 Data-driven approach

The Model Order Reduction approach requires, as a starting point, a detailed
description of the structure of interest. This information is often available
in proprietary and ad-hoc software, but is hidden to the user in common
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commercial products that provide only the input-output results. Another
common scenario where an accurate mathematical characterization of the
device can not be derived, arise in all those cases of measurements performed
on physical hardware. The data acquired from the experiments may come in
the form of tabulated scattering responses obtained by means of Vector Network
Analyzers (VNA) or transient responses evaluated at predefined input-output
port combinations.

A macromodeling approach based solely on a sampled input/output charac-
terization, either simulated or experimental, is defined data-driven and, since
no internal description is required, can be considered fully black-box.

A data-driven macromodeling flow can be split in three separate and subse-
quent steps. First, the set of input/output data must be computed (or measured)
in correspondence to predefined P electrical interface ports. Then, a curve
fitting algorithm is used to synthesize an accurate macromodel representative
of the given raw data. As a final step, if necessary, the macromodel is suitably
post-processed to enforce possible physical inconsistencies (i.e., stability and
passivity).

This work will focus only on the category of data-driven macromodeling
performed in the frequency domain. For the Reader who is interested, we
report some key references concerning time domain approaches [26–28].

2.2 Data-driven macromodeling algorithms

In this Section, we are going to review some state-of-the-art algorithms that
are widely adopted in the context of data-driven modeling of linear systems.

2.2.1 Model structures for lumped LTI systems

Often, general purpose model structures (e.g., neural networks) are the go-to
choice when the inner workings of the device under modeling are completely
unknown. This approach is too general for the objectives of this work, as we
know that the structures of our interest can be accurately described by Linear-
Time-Invariant (LTI) models, thus in terms of coupled Ordinary Differential
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Equations (ODEs). The (possibly) high complexity of these systems of linear
differential equations calls for a representation that links the (time-dependent)
input and output vectors u(t) ∈ RP and y(t) ∈ RP in a compact and meaningful
way. In this view, it is common to use the so-called state-space realization of
the differential equation, defined as (the shorthand notation ẋ refers to the first
time-derivative of vector x)ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.1)

The matrices A ∈ RN̄,N̄ , B ∈ RN̄,P , C ∈ RP,N̄ , D ∈ RP,P are called realization
matrices and the time-dependent vector x(t) ∈ RN̄ collects the model states.
In those cases where the input/output relations are governed also by purely
algebraic equations (in addition to the ODEs), we generalize the state-space
realization to the so-called descriptor realization, that readsEẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.2)

where the matrix E ∈ RN̄,N̄ can be singular. For further use, we introduce the
following definitions [29]:

• a descriptor system is regular if ∃s ∈ C such that det (sE − A) ̸= 0.

• a descriptor system is impulse-free if rank (E) = deg (det (sE − A)).

where the operator deg(·) returns the degree of its polynomial argument.

The descriptor realization is more flexible if compared with the standard
state-space; as an example, the MNA equations can be cast in descriptor form
and not in the standard state-space.

In the following, we will refer to the above realizations with the shorthand
notation  A B

C D


︸ ︷︷ ︸

State-space

,

 [A,E] B
C D


︸ ︷︷ ︸

Descriptor

(2.3)
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Beside the above time-domain description based on ODEs, thanks to the
linearity assumption, it is possible to equivalently describe the input/output
relation of interest in the frequency domain. In this view, we refer to the ratio

H(s) = Y(s)
U(s) ∈ CP,P (2.4)

as transfer function, where s = σ + jω is the Laplace variable and Y(s) ∈
CP , U(s) ∈ CP denote the Laplace transforms of the output y(t) and input
u(t), respectively. The following well-known [19] relation between the state-
space (2.1) and descriptor (2.2) realizations hold

H(s) = C
(
sI − A

)−1
B + D, for state-space realizations, (2.5)

H(s) = C
(
sE − A

)−1
B + D, for descriptor realizations (2.6)

Regular state-space realizations (2.5) are impulse-free by construction, whereas
descriptor realizations (2.6) are impulse-free when H(∞) is bounded.

In our data-driven macromodeling framework, the model H(s) should repro-
duce the broadband behavior of the structure under modeling, characterized
by the P 2 responses collected as entries in a data matrix H̆(s).

2.2.2 Fundamental model properties

Together with the accuracy with respect to the available raw data H̆(s), we
additionally require our models to be representative of physically consistent
electrical and electromagnetic phenomena. In particular, we refer to the
concepts of stability and passivity.

Stability

A LTI system described by (2.1) or (2.2) is physically consistent only if its states
x(t) are bounded for any considered time instant t. We refer to this property as
to stability. In particular, in this work we will consider the stronger definition
of asymptotic stability, which requires the states x(t) of the autonomous (non-
excited) system ẋ(t) = Ax(t) to vanish as x(t) → 0 for t → ∞, for any
finite initial condition x(0). A LTI system is asymptotically stable if the N̄
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eigenvalues λi of matrix A in (2.1) (resp. the finite eigenvalues of the pencil
(A,E) in (2.2)) have a strictly negative real part [30]. Equivalently, a LTI
system described in the frequency domain by the transfer matrix H(s) is
asymptotically stable if H(s) does not have singularities in the closed right-half
complex plane.

Passivity

In addition to the above internal description, the concept of passivity also
considers the input/output net energy flow. In particular, we define as passive
any structure that is unable to generate energy by its own. Examples of passive
devices are ubiquitous, ranging from simple resistors to more complex structures
such as, for instance, Printed Circuit Boards (PCBs). Macromodels of passive
devices must reproduce this property when used as black-box surrogates in
time-domain simulations; otherwise, the nonphysical energy injected in the
network by the non-passive model may drive the whole simulation to instability
(see Figure 3.1 in Chapter 3).

It has been proven that a LTI model of the form (2.1) or (2.2) is passive if
it satisfies the Positive Real Lemma (PRL) or the Bounded Real Lemma (BRL)
for the immittance and scattering representation, respectively. More details on
these properties and a set of relevant results will be provided in the dedicated
Chapter 3.

2.2.3 The rational approximation problem

For simplicity, in the following we will refer to the scalar Single Input - Single
Output (SISO) case (i.e., P = 1). Extension to the general matrix-valued Multi
Input - Multi Output (MIMO) case (i.e., P > 1) will be discussed later, starting
from Section 2.2.5.

For a generic LTI one-port (SISO) system, the transfer function H(s) ∈ C
comes as a rational function of s, as

H(s) = N(s)
D(s) = an̄s

n̄ + an̄−1s
n̄−1 + . . .+ a0

bm̄sm̄ + bm̄−1sm̄−1 + . . .+ b0
(2.7)
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where n̄, m̄ denote the orders of numerator and denominator, respectively.
From now on, it is assumed that the orders m and n are equal, so that H(s) is
a proper rational function. This choice implies the model transfer function to
be asymptotically bounded, which is suitable to approximate, for instance, the
scattering parameters of an electromagnetic device. Extensions to the general
case m ̸= n are straightforward, more details can be found in [19].

We assume that the data we want to model come in the form of tabulated
frequency responses1 H̆(sk) ∈ CP,P (for instance, scattering parameters), eval-
uated in correspondence of discrete frequency samples sk = jω, k = 1, . . . , K.
Our objective is to find suitable coefficients an, bn, such that the model (2.7)
approximates accurately the available data, as

H(sk) ≈ H̆(sk), for k = 1, . . . , K (2.8)

Defining the approximation error ek = e(sk) as

ek = H(sk) − H̆(sk) = N(sk)
D(sk) − H̆(sk) (2.9)

we collect all these elements in vector e and introduce the cumulative error
metric ∥e∥2. The best approximation is reached for the optimal set of coefficients
c = [a0, . . . , an̄−1, an̄, b0, . . . , bn̄−1, bn̄]T that satisfies

copt = arg min
c

∥e∥2 (2.10)

The rational optimization problem (2.10) is non-linear and non-convex, since
the unknowns b0, . . . , bn̄ appear at the denominator. In general, the solution of
rational optimization problems is particularly problematic as the cost-function
is non-convex and may be characterized by multiple local minima that, in turn,
may be far from the global optimum.

2.2.4 Levy’s method

Historically, one of the first attempts to recast the non-convex optimization
problem (2.8) into a more manageable form goes back to the work from E.

1These are often stored in standard .sNp Touchstone format
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C. Levy [31] published in 1959. Provided that the non-convexity arises from
the presence of decision variables appearing at the denominator of H(s), the
main idea is to reformulate the cost function, eliminating the unknowns at the
denominator. Hence, in [31] Levy proposes a modified error metric eL whose
elements eL

k are obtained by multiplying the elements ek by the corresponding
denominator D(sk)

eL
k = D(sk)ek = N(sk) −D(sk)H̆(sk) (2.11)

The modified Levy’s error eL becomes thus linear in the decision variables, and
the resulting optimization problem

arg min
c

∥∥∥eL
∥∥∥

2
(2.12)

can be easily cast in least-squares form, as

arg min
c

∥Ψc∥2 (2.13)

where Ψ =
(
Φ, −H̆Φ

)
, H̆ = diag{H̆(s1), . . . , H̆(sK)} and

Φ =


1 s1 . . . sn̄

1
... ...
1 sK . . . sn̄

K

 , (2.14)

The trivial vanishing solution copt = 0 of (2.13) is avoided by suitably con-
straining the optimization problem.

There are two main problems that affect this approach:

1. The linearization introduced in (2.11) introduces a frequency-dependent
bias in the solution [19].

2. If the poles span several decades, the term |D(sk)|2 is forced to attain
widely varying values when evaluated on the experimental samples sk.
The frequency-dependent bias affecting the solution may thus lead to loss
of accuracy over the fitting band.
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3. The Vandermonde-like structure of the matrix Ψ lead the optimization
problem to be numerically unstable when the polynomial degree n̄ exceed
few units.

2.2.5 Generalized Sanathanan-Koerner iteration

The above problems has been successfully tackled by the so-called Sanathanan-
Koerner (SK) algorithm, then by its extension, the Generalized Sanathanan-
Koerner (GSK) iteration. Since this formulation, as well as the subsequent
vector fitting algorithm, are key for later developments, a detailed review is
reported below, in order to set notation and properly establish background
results. For the same reason we will consider the general MIMO case.

Let us consider the following rational model,

H(s) = N(s)
D(s) = Rn̄s

n̄ + Rn̄−1s
n̄−1 + . . .+ R0

bn̄sn̄ + bn̄−1sn−1 + . . .+ b0
(2.15)

where the numerator matrix coefficients Rn are responsible for the multi-input
multi-output structure. A common denominator among all transfer function
elements is compatible with (2.5) and (2.6).

We start addressing the problem of the frequency dependent bias, whose
complete compensation demands to divide the linearized (matrix valued) Levy’s
residual EL

k by the denominator, i.e.,

EL
k

D(sk) = N(sk) −D(sk)H̆(sk)
D(sk) (2.16)

that we observed earlier to be non-convex in the decision variables. Instead of
aiming for a perfect bias compensation, the approach advised by Sanathanan
and Koerner in [32] starts from (2.16) and proposes a relaxed iterative scheme
that, at each iteration ν, involves the solution of a linear least-squares that
minimizes the modified residual

ESK
k,ν = Nν(sk) −Dν(sk)H̆(sk)

Dν−1(sk) (2.17)
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Differently from the original non-convex formulation (2.16), in (2.17) the
denominator Dν−1(sk) is known at each subsequent iteration ν, leading the
fitting residual (2.17) to be linear in the decision variables. At convergence,
the denominator estimates stabilize, i.e., Dν(s) = Dν−1(s), hence

ESK
k,ν

Dν=Dν−1−−−−−−→ Nν(sk)
Dν(sk) − H̆(sk) = Ek (2.18)

where Ek corresponds to the original unbiased error functional. Therefore, the
weighting introduced in dividing by Dν−1(sk) iteratively removes the bias arising
from the linearization. In literature, this is known as Sanathanan-Koerner (SK)
algorithm.

In turn, the compensation of the frequency-dependent bias attained by the
SK iteration guarantees a controlled error over the entire frequency band, inde-
pendently of the number and distribution of the poles. This enables to extend
the applicability of such a rational approximation scheme to electromagnetic
structures characterized by poles spanning several decades (e.g., transmission
lines, distributed networks, etc. . . ).

We now address the numerical issues inherently associated with the adopted
model rational functional form. It is indeed well known that polynomial
approximation problems may be subject to numerical issues and ill-conditioning,
especially in case of large polynomial orders. We should therefore find a more
suitable model structure that leads to better conditioned optimization problems.
In general, both numerator and denominator can be expressed in terms of linear
combinations of some prescribed basis functions φn(s), resulting in

H(s) = N(s)
D(s) =

∑n̄
n=0 Rnφn(s)∑n̄
n=0 bnφn(s) (2.19)

An appropriate selection of basis functions φn(s) should take into account the
following constraints:

1. the model H(s) must be a rational function in the variable s,

2. the optimization problem should be well-conditioned for any choice of n̄.
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These two constraints are concurrently fulfilled setting the basis functions as
partial fractions, defined asφn(s) = 1, n = 0

φn(s) = 1
s−qn

, n = 1, . . . , n̄
(2.20)

where qn ∈ C are a set of fixed predefined basis poles. The generalized model
structure thus reads

H(s) = N(s)
D(s) =

R0 +∑n̄
n=1

Rn

s−qn

b0 +∑n̄
n=1

bn

s−qn

(2.21)

In the following, we will refer to the model functional form (2.21) as rational
barycentric form, although this term is commonly used only when the constants
R0 and b0 are not present.

The first requirement is trivially satisfied, since the ratio of rational functions
is still a rational function. With regard to the second constraint, we highlight
that a formal conditioning analysis is complex and actually depends on the
input data samples. However, we report a significant numerical illustration in
Figure 2.1 where we compare the condition numbers κΦ of the least-squares
matrices Φ associated with the polynomial basis, defined in (2.14), and with
the partial fraction basis, further defined in (2.28); the condition number κX of
a generic matrix X is defined as

κX := σ̄X

σX
(2.22)

being σ̄X and σX the leading and the least singular values of matrix X, respec-
tively. It measures the robustness of its numerical inversion: the larger the
condition number, the more sensitive is the inversion to numerical perturbations
and round-off errors. The improved conditioning introduced by the partial
fraction basis is immediately evident comparing the orders of magnitudes. Ob-
viously, the conditioning properties in the partial fraction basis strongly depend
on the location of the fixed poles qn, that must be distinct and sufficiently
separated.

Remark 1. With the partial fractions defined in (2.20) we can not express
poles with multiplicity higher than one. However, as pointed out in [33], for any
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Fig. 2.1 Comparing the conditioning of the SK optimization problems associated
with partial fraction basis (left panel) and polynomial basis (right panel)

polynomial with coincident roots we can find another arbitrarily close polynomial
with distinct roots. Therefore, the partial fractions (2.20) are sufficient for our
approximation purposes.

Let us now go through the details of the GSK algorithm. First, let us define
the GSK fitting residual EGSK

k,ν , defined as in (2.17) with modified Nν(sk),
Dν(sk), that now make reference to the more general model structure (2.21).
In addition, let us collect the (unknown) model coefficient in vector c, as

c = [rT
(1,1), . . . , rT

(P,P ),bT]T (2.23)

where ri,j collects the n̄+ 1 expansion coefficients of Rn, associated with port
(i, j), and b = [b0, . . . , bn̄]T.

At each iteration ν, an estimate of the model coefficients cν is obtained by
minimizing the error EGSK

k,ν , k = 1, . . . , K in least-squares sense. To this end,
we consider each input/output port combination separately, and we set up the
following least-squares optimization problem

cν = arg min
c

∥Ψνc∥ (2.24)

where the regressor matrix is defined as

Ψν =


Γν Ξν

(1,1)
. . . ...

Γν Ξν
(P,P )

 ∈ CP 2K×(P 2+1)(n̄+1), (2.25)
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and

Γν = Wν−1Φ ∈ CK×(n̄+1), (2.26)
Ξν

(i,j) = −Wν−1H̆(i,j)Φ ∈ CK×(n̄+1). (2.27)

The matrix Φ contains the evaluated partial fraction bases, as

Φ =


1 1

s1−q1
. . . 1

s1−qn̄... ...
... ...
1 1

sK−q1
. . . 1

sK−qn̄

 (2.28)

and

Wν−1 = diag{Dν−1(s1), . . . , Dν−1(sK)} (2.29)
H̆(i,j) = diag{H̆(i,j)(s1), . . . , H̆(i,j)(sK)} (2.30)

At the first GSK iteration, the denominator is initialized as D0(sk) = 1 (i.e.,
bn = 0 for n ≥ 1) and, based on (2.18), the iterative scheme is stopped when
the denominator estimates Dν(sk) converge.

Remark 2. It should be pointed out that the solution vector cν is unique up to
a normalization constant applied to both the model numerator and denominator.
This observation may also arise noting that the GSK least-squares (2.24) is
homogeneous and admits the vanishing trivial solution. This problem can be
circumvented by suitably constraining the optimization problem at each iteration
(e.g., by setting ∥cν∥ = 1). Alternatively, one coefficient can be fixed to a given
prescribed constant, e.g., b0 = 1. A thorough discussion on this topic can be
found in [34].

Remark 3. We remark that there is no guarantee that the SK and GSK schemes
converge to some fixed equilibrium solution. However, non-converging behaviors
(oscillations between two or more fixed points) arise especially when the data
are corrupted by large noise components, a scenario that can be considered to
be very rare in most practical applications [35].
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Fig. 2.2 Comparing the GSK rational model responses (red dashed lines) with the
available raw data (blue solid line) for the selected transmission line example.

Numerical example

In order to illustrate the GSK modeling performance, we report a relevant
numerical example. We consider a trasmission line network, composed of four
cascaded lossy line segments, with three internal loaded stubs. More details on
this structure can be found in Section 4.5.3, where it is fully described in its
parametric form. For this numerical test, we fix the lines and stubs lengths to
7 mm and 9 mm, respectively, while the loads’ reflection coefficients are set to
their nominal values Γ = 0.5.

The GSK scheme is used to construct a rational model for the input/output
scattering parameters in the band [1 Hz, 10 GHz], assuming a number of poles
n̄ = 20. The worst-case relative error is in the order of 10−4, as confirmed by
Figure 2.2, that compares the response S1,1 of the data (blue solid line) and
the model (red-dashed line).

Discussion

Despite the lack of theoretical guarantee of convergence, over the years the GSK
scheme based on partial fraction basis has proven to be a very effective tool for
rational approximation. However, the GSK algorithm provides accurate results
only assuming that the set of basis poles qn is somehow close to the system
poles, which are often unknown. Hence, the need of additional information
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regarding the device under modeling prevents the GSK scheme to be interpreted
as a fully black-box modeling approach.

2.2.6 Vector fitting

The problem of finding a “good” set of basis poles remained unsolved for
several years until, in 1999, B. Gustavsen and A. Semlyen first presented the
so-called Vector Fitting (VF) algorithm in [36]. The idea behind the vector
fitting scheme is simple: starting with a set of arbitrarily chosen initial poles
{qn}n=1,...,n̄, the VF algorithm iteratively updates their estimates until they
converge to the set of poles {pn}n=1,...,n̄ that best fits the available data. We
remark that, in case the data come from a lumped parameters circuit (or from
an electrically distributed structure for which the lumped approximation holds),
the set {pn}n=1,...,n̄ coincide with its dominant poles.

Let us now briefly describe the algorithm. As in the previous SK and
GSK settings, we assume to be given with sampled frequency responses H̆(sk),
evaluated over a prescribed band.

In the first initialization phase of the VF algorithm, we must select a set
of initial poles {qn}. Although this choice may be completely arbitrary, a
thoughtful selection of these poles may dramatically improve the numerical
conditioning. A common practice is to choose a set of weakly damped complex
conjugate poles with imaginary part linearly spaced over the frequency band of
interest [19]. As this set of poles is iteratively updated, we denote the set of
poles at iteration ν as {qn}ν = {qν

1 , . . . , q
ν
n̄}. The associated partial fractions

are therefore identified as φν
n(s).

The basic vector fitting iteration unfolds in 3 main steps. First, assuming
to be at the ν-th iteration, we use the GSK barycentric model form defined
in (2.21) to set up the approximation

Hν(sk) = Nν(s)
Dν(s) =

Rν
0 +∑n̄

n=1
Rν

n

sk−qν−1
n

bν
0 +∑n̄

n=1
bν

n

sk−qν−1
n

≈ H̆(sk) (2.31)

By assumption, the current basis poles {qν−1
n } are known from the previous

iteration; thus, the unknowns {Rν
n}, {bν

n} can be readily computed solving
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min
∥∥∥∥∥Rν

0 +
n̄∑

n=1

Rν
n

sk − qν−1
n

− H̆(sk)
(
bν

0 +
n̄∑

n=1

bν
n

sk − qν−1
n

)∥∥∥∥∥
F

(2.32)

in least-squares sense (for additional technical details, see [19, 34, 37]).

Once both the coefficients Rν
n, bν

n and the fixed poles {qν−1
n } are available,

we can transform the model (2.31) into a classical pole-zeros representation.
The application of this transformation enables to highlight the estimates {pν

n}
of the real system’s poles, that can be easily computed resorting to a state-space
realization of the denominator Dν(s) that is constructed as

Dν(s) →

 Aν 1
bν bν

0

 (2.33)

where Aν = diag{qν−1
1 , . . . , qν−1

n̄ } and bν =
(
bν

1, . . . , b
ν
n̄

)
. The poles {pν

n} are
the zeros of the denominator, that can be thus computed as the poles of its
inverse Dν(s)−1, that has the following state-space representation

(
Dν(s)

)−1
→

 Aν − 1(bν
0)−1(bν)T 1(bν

0)−1

(bν
0)−1bT (bν

0)−1

 (2.34)

Hence, the poles {pν
n} are evaluated as

{pν
n} = eig

(
Aν − 1(bν

0)−1(bν)T
)

(2.35)

where the operator eig(·) compute the eigenvalues of its matrix argument.

The last poles relocation step is what distinguishes the VF from the previous
methods. At this stage, we update (relocate) the set of basis poles to be used
at the next iteration ν + 1 as {qν

n} = {pν
n}. This procedure is repeated until

convergence, that is reached when the pole estimates stabilize, i.e., {qν
n} =

{qν−1
n }. Convergence is usually achieved in few iterations, especially in case the

data are not corrupted by noise.

We highlight that the new set of poles {qν
n} is not guaranteed to have a

negative real part, possibly leading the current model H(s) to be unstable. This
issue is easily circumvented with the so-called pole flipping method: if some



2.2 Data-driven macromodeling algorithms 29

Fig. 2.3 Modeling performances of the vector fitting algorithm on the high-speed
link example. The data and model response are depicted with blue-solid line and
red-dashed line, respectively.

poles qν
n have a positive real part, we set ℜ{qν

n} = −ℜ{qν
n}. This procedure

enforces stability without affecting the model accuracy.

Remark 4. As the GSK, also the VF scheme is not guaranteed to converge.
Actually, there are counterexamples that trigger non-converging behaviors [38].
However, these examples are artificial and specifically created to destabilize the
algorithm; in general, the VF algorithm converges (even fairly quickly) in the
vast majority of practical applications.

Numerical example

We demonstrate the modeling performance of the vector fitting algorithm
on a non-parametric version of the high-speed link described in Section 4.5.2,
consisting of an interconnection between two multi-layer PCBs. In this example,
we consider the case where the pad and anti-pad radii are fixed to 100 µm and
400 µm, respectively.

The VF algorithm is used to obtain a rational model of the scattering
parameters, in the band [0 Hz, 5 GHz]. The modeling procedure has been set
up with n̄ = 24 poles, and returned a stable model whose accuracy is in the
order of 10−4. Figure 2.3 illustrate the modeling accuracy for the S1,1 scattering
matrix element. In addition, Figure 2.4 illustrates the convergence of the vector
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Fig. 2.4 Convergence of the vector fitting algorithm illustrated by measuring the
Hausdorff distance between the set of poles {pn}, evaluated at subsequent iterations.

fitting by measuring the (normalized) distance (in Hausdorff sense [39]) between
the set of poles {pν

n} corresponding to two subsequent iterations ν − 1 and ν.
Starting from the set of initial poles {p0

n}, the subsequent estimates converge
to an equilibrium solution (the “noise” appearing after the tenth iteration is
due to off-band poles that slightly oscillate around their positions).

Discussion

The remarkable characteristics of the vector fitting algorithm justify the vast
literature regarding its extensions. Several efforts have been devoted to improve
the VF numerical characteristics using orthonormal rational basis functions [10]
and to improve the convergence properties in presence of noisy data [40, 41]. To
conclude, we highlight that [26–28] proposed a time-domain VF implementation
that, starting from a time-domain responses, evaluate the poles of the equivalent
frequency-domain representation.

The relevance of rational approximation in many scientific areas motivated
other research efforts. In particular, other well-known approaches are the
Loewner method and the related AAA algorithm. In this work we will not
use these latter schemes, for which a detailed description can be found in the
original publications [42] and [43], respectively.
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2.3 Parameterized macromodeling

During the industrial design and production phases of electronic and electrical
devices, not all the details of the structure are completely defined. For instance,
geometrical and/or component values may still be undetermined, as they require
a final optimization and design centering step. In addition, we know that the
component values are affected by a statistical uncertainty, that often comes
in the form of a probabilistic distribution. Hence, assuming some appropriate
variability bounds, even at finalized design the input/output behavior of the
device is not deterministically defined.

It should also be noted that the electronic components behave differently
depending on the environmental working conditions (e.g., room temperature,
incident EM fields, etc. . . ), that must be carefully taken into consideration in
the design phase. In our view, any of the above variables can be considered as
a parameter that affects the behavior of the system under modeling.

The availability of reduced order models that embed in closed form the
dependence upon such parameters turns out to be extremely helpful, as they
allow a dramatic simplification of the simulation processes that would otherwise
require an enormous effort both in terms of computational resources and
manpower.

The macromodeling techniques described in Section 2.2 are not able to
include in the model a parametric variability. These models will be therefore
denoted as univariate, since the only independent variable is the complex
frequency.

Our objective is instead to obtain a macromodel H(s,ϑ) that embeds
in closed form the dependence upon a (possibly large) set of independent
parameters, collected in vector ϑ = [ϑ1, . . . , ϑρ], that affect the input/output
behavior of the device under modeling. We assume a limited range of validity
for the parameters, that must be bounded within a ρ-dimensional hypercube Θ
that we define parameter space. These parameterized models will be denoted
as multivariate. We remark that these parameters can be of any nature; the
only requirement is that the frequency responses depend continuously on their
variations.
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2.3.1 Parameterized macromodeling flows

Any data-driven parametric macromodeling flow requires a preliminary ex-
traction of parametric frequency responses, either obtained via simulation
or measurements. Throughout this work, we will denote the generic m-th
parametric response as

H̆m = H̆(sk,ϑm), k = 1, . . . , K (2.36)

composed of K frequency samples. All the m̄ available parameterized frequency
responses are then collected in set D, defined as

D := {H̆m : m = 1, . . . , m̄} (2.37)

We assume this parametric dataset to be defined a-priori, hence we do not
consider the availability of on-demand solver calls to interactively or adaptively
gather parameterized samples. In literature, some efforts have been devoted to
investigate this latter possibility, see [44–46].

Based on these available parametric data, we build a model that must
reproduce the broadband frequency response over all the feasible parameter
instances; it must retain a rational frequency dependence, while the parametric
variability can be embedded in different ways. In the past years, several
approaches have been presented to synthesize such models, each coming with its
pros and cons. For instance, some methods are capable of guaranteeing stability
and passivity by construction, at the cost of generating non-compact models
that can not be directly implemented as black-box surrogates in commercial
solvers (e.g., SPICE). Others, conversely, are capable of generating compact
parametric models (thus ready to use in circuit solvers) that, however, require
advanced stability and passivity enforcement techniques.

In the following, we will briefly review the most relevant approaches.

2.3.2 Interpolation-based methods

To begin, we introduce what can be considered one of the most intuitive parame-
terized macromodeling approaches, hereinafter referred to as interpolation based.
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This methodology has been introduced by Ferranti et al. in [47]; successive
and more refined strategies have been later presented in [48, 8, 7, 9]. All these
methods assume the parameterized macromodel to be constructed as a linear
combination of some reference non-parameterized (root) macromodels.

The first macromodeling step, common to all these strategies, consists in
the discretization of the parameter space in ρ-dimensional mutually disjoint
convex volumes Vk, each identified by Nv vertices. For the generic cell Vk, the
vertices locations are identified as ϑi

k, with i = 1, . . . , Nv.

Once the parameter space has been suitably discretized, the next step is
to synthesize the so-called root macromodels. Basically, the root macromodels
R̂(s,ϑi

k) are reference non-parameterized macromodels (obtained, for instance,
through vector fitting) constructed in correspondence to the cell vertices ϑi

k, as

R̂(s,ϑi
k) = R̂0(ϑi

k) +
n̄∑

n=1

R̂n(ϑi
k)

s− qk
n

(2.38)

The root macromodels are enforced to be stable (through pole-flipping) and
passive (usually with a-posteriori passivity enforcement procedures, e.g., [18]).

We remark that, in general, the set of basis poles {qk
n} is different for each

considered vertex.

The multi-variate macromodel is obtained as a linear combination (further
denoted as interpolation) of different features of the root macromodels (e.g.,
transfer matrices, state-space matrices, etc. . . ), which we identify with a
common placeholder Υ(s,ϑ). More in details, for each elementary cell Vk with
vertices ϑk

i , we gather a set of precomputed instances of the model features
Υ̂(s,ϑk

i ), i = 1, . . . , Nv. In correspondence to a generic parameter combination
ϑ located inside the cell Vk, the (local) parameterized model feature is defined
as

Υ(s,ϑ) =
Nv∑
i=1

Υ̂(s,ϑk
i ) Ik

i (ϑ) (2.39)

where Ik
i (ϑ) are multi-linear interpolation kernel, locally defined in the cell Vk.

The most compelling feature of the interpolation approaches is the possibility
of guaranteeing (locally inside Vk) stability and passivity by construction.
Depending on the considered strategy, this is enabled by carefully selecting
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kernels Ik
i (ϑ) that satisfy the following conditions

Ik
i (ϑ) ≥ 0, (2.40)
Ik

i (ϑj) = δi,j, (2.41)
Nv∑
i=1

Ik
i (ϑ) = 1. (2.42)

Among the possible choices, all the above-cited works define Ik
i (ϑ) as piece-wise

functions, suitably defined in order to satisfy (2.40).

Depending on the target of the interpolation procedure, we divide the above
in two categories [7–9, 47, 48]:

• Input/Output methods:
perform the interpolation of the (possibly modified) transfer matrices of
the root macromodels; this category includes the residue interpolation
and shifted/scaled interpolation.

• State-space methods:
perform the interpolation of the state space matrices; this category
includes the direct state-space interpolation and Sylvester interpolation.

Residues interpolation

In the input/output category, the first approach has been presented in [47] and
relies on the interpolation of just the model residues. In fact, it is not advisable
to directly parameterize the model poles, whose parametric trajectories may
undergo non-smooth transitions (e.g., bifurcations) and/or may exhibit high
sensitivity to parameter variations.

Based on the multi-variate interpolation method (2.39), we define Υ(s,ϑ) =
R(s,ϑ) and Υ̂(s,ϑk

i ) = R̂(s,ϑk
i ). Thus, for a generic parameter instance ϑ

belonging to the elementary cell Vk, the (local) multi-variate parameterized
model assumes the form

R(s,ϑ) =
Nv∑
i=1

R̂(s,ϑk
i ) Ik

i (ϑ) (2.43)

Along with the simplicity of this technique, there are several drawbacks:
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1. The presence of non-parameterized poles is a strong limitation since, in
general, even small parameter variations may induce large modifications to
the system dynamics (e.g., parameterized resonances). The assumption
of fixed poles strongly confines the applicability of this method to a
restricted set of applications.

2. The resulting parameterized model R(s,ϑ) is, in general, more complex
than strictly required. In fact, the model (2.43) retains all the poles
of the individual root models R̂(s,ϑk

i ). In the worst-case scenario, in
which all the models R̂(s,ϑk

i ), i = 1, . . . , Nv have a different set of poles
{qk

n}n̄
n=0, the dynamic order of the resulting parameterized model would

be Nv(n̄+ 1) which is, of course, too large.

Indirect poles interpolation

This second input/output approach [7] seeks to parameterize, in addition to
the residues, also the model poles, by introducing an intermediate indirect
parameterization step. Starting from the initial set of root macromodels
R(s,ϑk

i ), for each vertex ϑk
i a set of scaling and shifting coefficients α1,i(ϑk

j )
and α2,i(ϑk

j ), j = 1, . . . , Nv is computed, so that the shifted and scaled model

R̃(s,ϑk
i ) = α1,i(ϑk

j )R(α2,i(ϑk
j )s,ϑk

i ) (2.44)

is as close as possible to the other root models R(s,ϑk
j ), for each i, j = 1, . . . , Nv.

See [7] for more details.

Then, the estimates of coefficients α1,i(ϑ), α2,i(ϑ) evaluated at a generic
parameter combination ϑ are obtained through (2.39) by interpolation, as

α1,i(ϑ) =
Nv∑
j=1

α1,i(ϑk
j )Ik

j (ϑ) (2.45)

and similarly for α2,i(ϑ).

Finally, the multivariate macromodel evaluated at ϑ is obtained interpolat-
ing at an input-output level, as

R(s,ϑ) =
Nv∑
i=1

α1,i(ϑ)R(α2,i(ϑ)s,ϑk
i )Ik

i (ϑ) (2.46)
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Similarly to the residue interpolation approach, combining (in this case shifted
and scaled) transfer matrices lead, in general, the resulting multi-variate model
R(s,ϑ) to be excessively complex.

In contrast, instead, this second strategy allows for a pole parameterization
induced by the shifting coefficients. However, being α2,i(ϑ) only multiplicative
constants, they do not allow for a complete control over the poles parameteri-
zation and act only as scaling constants over all the poles.

State-space interpolation

As a result of the input/output interpolation strategy, both the above ap-
proaches produce models with higher complexity than necessary. This problem
has originally been tackled in [8] by resorting to a state-space description of
the root macromodels. Hence, denoting as usual the root model located at
the vertex ϑk

i as R(s,ϑk
i ), let us define the associated state-space realization

matrices as {Ak
i ,Bk

i ,Ck
i ,Dk

i }.

Let us assume that all the root macromodels R(s,ϑk
i ) are guaranteed

passive, therefore there must necessarily exist a symmetric positive definite
Lyapunov matrix Pk

i that satisfies the Positive Real Lemma or the Bounded
Real Lemma (see [8, 49] and Section 3.2). This matrix is computed for all
the available root models (for advanced details about its practical evaluation,
see [8]) and used to project the original state-space representation onto an
equivalent non-impulsive descriptor form, as

 [Pk
i Ak

i ,Pk
i ] Pk

i Bk
i

Ck
i 0

 (2.47)

corresponding to the local root macromodel

R(s,ϑk
i ) = Ck

i

(
sPk

i − Pk
i Ak

i

)−1
Pk

i Bk
i (2.48)

It should be noted that the realizations (2.47) are not unique, since constructed
upon Lyapunov matrices that are computed independently for each vertex.
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Then, exploiting the Lur’e equations [50], the descriptor form (2.48) can
be re-written introducing Gk

i = −Pk
i Ak

i , as

R(s,ϑk
i ) = Ck

i

(
sPk

i + Gk
i

)−1 (
Ck

i

)T
(2.49)

where the properties Pk
i Bk

i =
(
Ck

i

)T
, Pk

i =
(
Pk

i

)T
and the positive definitess

of Gk
i +

(
Gk

i

)T
guarantee the passivity.

Finally, the parameterized macromodel is obtained by suitably gluing the
root descriptor realization matrices Ck

i , Pk
i , Gk

i , Pk
i Bk

i . If we assume a generic
parameter instance ϑ belonging to the cell Vk, we achieve a (local) parame-
terization of the above matrices through the multi-linear interpolation (2.39),
as

Ck(ϑ) =
Nv∑
i=1

Ck
i I

k
i (ϑ) (2.50)

and similarly for Pk(ϑ), Gk(ϑ),
(
PkBk

)
(ϑ). Based on these interpolated

realization matrices, we can construct the (local) parameterized macromodel
R(s,ϑ).

The use of positive definite interpolation kernels Ii(ϑ) guarantees that the
final parameterized model R(s,ϑ) is uniformly passive within the considered
elementary cell Vk.

A direct interpolation in the state-space has two main advantages:

1. the final parameterized model does not suffer from an increased complexity,
as in the case of input/output methods, and

2. the parameterization of the poles is more flexible, boosting the modeling
capabilities.

However, as pointed out in [7, 9], the direct interpolation of realization
matrices may give rise to some problems, such as the lack of smoothness of the
parameter-dependent interpolated state-space matrices.
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Sylvester’s realization interpolation

To circumvent this problem, it would be required to project the realization
matrices onto a common parameter-invariant subspace; in fact, performing
interpolations in this space would guarantee the smoothness of the resulting
parameterized matrices.

This idea has been developed in [9], where the parameter-invariant Sylvester’s
realization is introduced, defined for the root macromodel R(s,ϑk

i ) as
 Ã − B̃k

i F B̃k
i

C̃k
i D̃k

i

 (2.51)

The terms Ã, F are suitably defined pivot matrices, that we assume to be
known at this stage. Initially, the root models R(s,ϑk

i ) are characterized by a
canonical realization, associated with matrices {Ak

i ,Bk
i ,Ck

i ,Dk
i }. Then, the

solutions Xk
i of the following Sylvester’s equation

Ak
i Xk

i − Xk
i Ã + Bk

i F = 0 (2.52)

are used as similarity transformations to project the original realization onto
the Sylvester’s base (2.51), as

Ã − B̃F =
(
Xk

i

)−1
Ak

i Xk
i (2.53)

B̃k
i =

(
Xk

i

)−1
Bk

i (2.54)

C̃k
i = Ck

i Xk
i (2.55)

D̃k
i = Dk

i (2.56)

In [9] it has been pointed out that if the following conditions hold

1. the pair (Ã,F) is observable,

2. the intersection of the eigenspectra of Ak
i and Ã is empty,

3. the pair (Ak
i ,Bk

i ) is observable

the Sylvester’s equation (2.52) has a unique and non-singular solution. Hence,
realization matrices that are projected onto a Sylvester’s form share the same
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basis and the safely interpolated without the risk of non-smooth results. Some
practical rules to select appropriate pivot matrices fulfilling the above constraints
are reported in [9].

For each root model we thus compute the matrix Xk
i , used to project

the standard realization {Ak
i ,Bk

i ,Ck
i ,Dk

i } onto the common Sylverster’s form.
Then, following the same procedure detailed in the Direct State-Space Inter-
polation method, and assuming the parameter instance ϑ to be located inside
the elementary cell Vk, we set up a local parameterization of the Sylvester’s
realization matrices, as

P̃k(ϑ) =
Nv∑
i=1

P̃k
i I

k
i (ϑ) (2.57)

and similarly for D̃k(ϑ), C̃k(ϑ) and
(
P̃kB̃k

)
(ϑ).

The auxiliary root matrices P̃k
i are Lyapunov matrices associated with

Positive Real and Bounded Real Lemmas, suitably modified to match the new
Sylvester’s realization.

The resulting parameterized model R(s,ϑ), defined as

R(s,ϑ) = C̃k(ϑ)
(
sP̃k(ϑ) − P̃k(ϑ)Ãk(ϑ)

)−1
P̃k(ϑ)B̃k(ϑ) + D̃k(ϑ) (2.58)

As in the previous cases, if the interpolation kernels Ii(ϑ) are positive definite,
the multi-variate model R(s,ϑ) is guaranteed to be locally (within the cell Vk)
uniformly passive.

Discussion

All the above interpolation methods enable to synthesize accurate parameterized
macromodels that are ensured to be passive by construction over the whole
parameter space and do not require a-posteriori passivity enforcement runs.

However, there are some non-negligible drawbacks. First, it is not possible
to obtain a closed functional model form. This stems from the local nature of
the parameterized model, that limits its validity to the considered elementary
cell. Therefore, such a model is fully defined only in case the entire set of root
macromodels is provided. This strongly undermines the applicability of these
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models as compact surrogates of circuit blocks to be used in commercial solvers
(e.g., SPICE).

In addition, it should be noted that the accuracy and the complexity of
the final model heavily depends on the number and the placement of the root
macromodels. This problem has been tackled in [51] and [52], where adaptive
algorithms based on the iterative (sub-gridding) partitioning of the parameter
space in smaller hyper-rectangles is used to determine a sub-optimal set of root
macromodels.

These approaches can be applied successfully in case of a reduced number
of parameters, but they are limited by the adopted sub-gridding partition rule,
whose computational complexity scales badly in case of several independent
parameters. Therefore, the number of root macromodels required to fully define
the parameterized model may quickly blow up, undermining the applicability
and portability of these approaches.

2.3.3 Parameterized Sanathanan-Koerner iteration

The last parameterized modeling method we describe is the so-called Parame-
terized Sanathanan-Koerner (PSK) method. This approach has been originally
introduced in [10, 11] as a parametric generalization of the GSK iteration,
summarized in Section 2.2.5. The PSK method makes use of the same GSK
barycentric model form, that we report here for completeness

H(s) =
∑n̄

n=0 Rnφn(s)∑n̄
n=0 rnφn(s) =

R0 +∑n̄
n=1

Rn

s−qn

r0 +∑n̄
n=1

rn

s−qn

(2.59)

The parametric dependence is embedded in the model under the following
assumptions:

1. the model common basis poles qn that build the barycentric model form are
not parameterized and are not relocated during the model identification
procedure;

2. only the numerator and denominator coefficients Rn, rn are in charge of
inducing a smooth parameterization on the model responses.
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Under these assumptions, the model takes the form

H(s,ϑ) = N(s,ϑ)
D(s,ϑ) =

∑n̄
n=0 Rn(ϑ)φn(s)∑n̄
n=0 rn(ϑ)φn(s) =

R0(ϑ) +∑n̄
n=1

Rn(ϑ)
s−qn

r0(ϑ) +∑n̄
n=1

rn(ϑ)
s−qn

(2.60)

The parameterized coefficients are assumed to be a (multi)-linear expansion
of suitable basis functions ξℓ(ϑ), as

Rn(ϑ) =
∑

ℓ∈IN

Rn,ℓ ξℓ(ϑ) =
∑

ℓ∈IN

Rn,ℓ ξℓ1(ϑ1) × · · · × ξℓρ(ϑρ) (2.61a)

rn(ϑ) =
∑

ℓ∈ID

rn,ℓ ξℓ(ϑ) =
∑

ℓ∈ID

rn,ℓ ξℓ1(ϑ1) × · · · × ξℓρ(ϑρ) (2.61b)

where ℓ = [ℓ1, . . . , ℓρ] is a multi-index that attains values within the sets IN

and ID, that are defined as

IN := {ℓi ∈ N : ℓi ≤ ℓ̄N
i } (2.62a)

ID := {ℓi ∈ N : ℓi ≤ ℓ̄D
i } (2.62b)

For later use, we define as |ID| and |IN | the cardinality of sets IN and ID,
respectively.

Remark 5. The selection of appropriate parameter basis functions ξℓ(ϑ) is
fundamental to ensure an appropriate parameterization of the model responses.
In case no a-priori information are available, it is common to set the basis func-
tions as (first kind) Chebyshev’s polynomial, due to their favorable numerical
properties. On the contrary, in case the effects of the parameter variation on
the data is known, ad-hoc bases should be used (see [53]) to improve accuracy
and interpretability.

Plugging the definitions (2.61) in (2.60) leads to the final PSK model form,
that reads

H(s,ϑ) = N(s,ϑ)
D(s,ϑ) =

∑n̄
n=0

∑
ℓ∈IN

Rn,ℓξℓ(ϑ)φn(s)∑n̄
n=0

∑
ℓ∈ID

rn,ℓξℓ(ϑ)φn(s) (2.63)
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It should be highlighted that such a model structure allows for an implicit
pole parameterization; this can be easily verified noting that, simplifying the
common fixed denominators 1/(s− qn), we obtain a standard parameterized
pole/residue form,

H(s,ϑ) =
∑

ℓ∈IN

∑n̄
n=0 Rn,ℓξℓ(ϑ)φn(s)∑

ℓ∈ID

∑n̄
n=0 rn,ℓξℓ(ϑ)φn(s) = P0(ϑ) +

n̄∑
n=1

Pn(ϑ)
s− pn(ϑ) (2.64)

where the model poles pn(ϑ) are indirectly parameterized as the zeros of the
denominator function [53].

We finally remark that, in order to be compliant with the physics of the
problem, the model H(s,ϑ) must have a real-valued impulse response, which
is guaranteed whenever H(s∗,ϑ) = H∗(s,ϑ). This constraint is embedded in
the model by enforcing

1. Rn,ℓ ∈ R, if qn ∈ R, and

2. Rn,ℓ = R∗
n+1,ℓ, if qn = q′

n + q′′
n ∈ C and qn+1 = q∗

n

and similarly on the denominator coefficients rn,ℓ.

Model identification

In order to properly set up model identification, we split the parameterized
dataset D defined in (2.37) in two mutually disjoint subsets T and V, each
composed of mt and mv samples, respectively. The elements collected in the
training set T are used to construct the model, while the validation set V is
used to validate the model accuracy. In order to guarantee a uniform accuracy
over Θ, both the training and validation subsets are selected to homogeneously
cover the parameter space.

Based on the above definitions, the numerator and denominator unknowns
Rn,ℓ, rn,ℓ are evaluated enforcing the accuracy on the elements of the training
set T , as ∥∥∥∥∥N(sk,ϑm)

D(sk,ϑm) − H̆(sk,ϑm)
∥∥∥∥∥

F

≈ 0 (2.65)



2.3 Parameterized macromodeling 43

This results in a non-convex optimization problem in the decision variables Rn,ℓ,
rn,ℓ that closely matches the univariate GSK rational fitting problem (2.9). The
approach devised in [11] thus applies the same relaxation scheme, iteratively
solving

∥∥∥∥∥Nν(sk,ϑm) −Dν(sk,ϑm)H̆(sk,ϑm)
Dν−1(sk,ϑm)

∥∥∥∥∥
F

≈ 0, ν = 1, 2, . . . (2.66)

where the numerator and denominator decision variables appear linearly. The
intermediate solutions cν of (2.66) are thus computed as

cν = arg min
c

∥Ψνc∥ (2.67)

with cν = [rT
(1,1), . . . , rT

(P,P ),bT]T; the vector r(i,j) stores the (i, j)-th elements of
Rn,ℓ associated with all the (n, ℓ) combinations, while b = [r0,ℓ1 , . . . , rn̄,ℓ̄]T.

Remark 6. Following the GSK scheme, also the PSK iteration is initialized
with D0(sk,ϑm) = 1, and the iterations stop when the denominator estimates
stabilize.

The intermediate regressor matrix Ψν is defined following (2.25), as

Ψν =


Γν Ξν

(1,1)
. . . ...

Γν Ξν
(P,P )

 ∈ CP 2Km̄×(n̄+1)(P 2|IN |+|ID|), (2.68)

with suitable modifications to its building blocks Γν and Ξν
(i,j), which we define

as

Γν = Wν−1XN , (2.69a)
Ξν

(i,j) = −Wν−1H̆(i,j)XD. (2.69b)

As in the univariate case, the diagonal matrices Wν−1 and H̆(i,j) collect, re-
spectively, the (inverse) denominator samples 1/Dν−1(sk,ϑm) available from
the previous iteration, and the sampled frequency responses H(i,j)(sk,ϑm).
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In the parameterized setting, the Cauchy matrix Φ in (2.69) is replaced by
matrix XN,D, defined as (the operator ⊗ denotes the Kronecker product)

XN,D = Φ ⊗ KN,D (2.70)

whose elements embed the products ξℓ(ϑ)φn(s) of the frequency/parameter
basis functions. The matrix Φ is defined as in (2.28) and KN,D collect the pa-
rameter basis functions, evaluated in correspondence to the available parameter
samples, as

KN,D =


ξℓ1(ϑ1) · · · ξℓ̄(ϑ1)

... ...
ξℓ1(ϑm̄T

) · · · ξℓ̄(ϑm̄T
)

 (2.71)

Fast-PSK

The PSK iteration will be our algorithm of choice. In view of the further
developments of Section 6.1, it is useful to introduce the Fast-PSK scheme,
originally presented in [54], that dramatically improves the performances of the
standard PSK implementation.

Following [55], it is possible to exploit the particular bordered block diag-
onal structure of the matrix Ψν , that enables to separate the evaluation of
the (matrix) numerator and the (scalar) denominator unknowns. For each
input/output port combination (i, j), we first evaluate the QR factorizations of
the block matrices

Qν
(i,j)Rν

(i,j) =
(
Γν Ξν

(i,j)

)
(2.72)

where the upper triangular matrix Rν
(i,j) is partitioned as

Rν
(i,j) =


Rν

(i,j;1,1) Rν
(i,j;1,2)

0 Rν
(i,j;2,2)

 (2.73)

Then, when all the sub-matrices Rν
(i,j;2,2), i, j = 1, . . . , P , are available, the

intermediate denominator coefficients collected in vector bν are computed by
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solving 
Rν

(1,1;2,2)
...

Rν
(P,P ;2,2)

bν = R̄νbν ≈ 0 (2.74)

As pointed out in [54], this procedure amounts to iteratively solve only for
the (reduced) set of denominator unknowns bν , which are the only variables
required to proceed in the PSK scheme.

Assuming that the iterations stop at ν = ν̄, we finally compute (only once)
the numerator unknowns by solving another least squares problem with multiple
right-hand sides

Γν̄A ≈ B (2.75)

where the matrix unknown is

A =
(
r(1,1) . . . r(P,P )

)
(2.76)

and
B =

(
−Ξ(1,1)bν̄ · · · −Ξ(P,P )bν̄

)
. (2.77)

The advantages of this implementation are particularly evident when the
number of ports is large. For a detailed description see the original publica-
tion [54].

Numerical example

We demonstrate the performances of the PSK iteration by constructing a
parameterized model of the double-folded microstrip filter depicted in Figure 2.5,
first presented in [47, 56]. Its electrical behavior is parameterized through the
length ϑ of the stubs, that can vary in the range [2.08, 2.28] mm.

This device is characterized by means of its input-output scattering pa-
rameters, evaluated in correspondence of a discrete set of m̄ = 21 parameter
instances in the range [2.08, 2.28] mm, each composed of K = 300 frequency
samples, covering the band [5 GHz, 20 GHz]. Setting up the PSK algorithm
with n̄ = 10, and IN = ID = {0, 1, 2}, we obtained a parameterized model of
the form (2.63), whose worst-case error with respect to the validation data is
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Fig. 2.5 Double-folded microstrip used as test-case for the Parameterized Sanathanan
Koerner algorithm.

approximately 1%. Figure 2.6 compares the model responses (red-dashed lines)
with respect to the validation data (blue-solid lines).

Discussion

The standard PSK algorithm is an efficient extension of the GSK scheme to
the parameterized setting. Experimental results (see, for instance, [11, 54, 57])
demonstrate the high performances of this method. In addition, the use of
a closed model form (2.64) enables to easily convert the frequency-domain
PSK model to equivalent parameterized SPICE circuit blocks, to be used as
surrogates in time-domain simulations (see [4]). However, a reliable use of
these models in circuit solvers may be precluded due to the lack of stability
and passivity guarantees.

In [4] and [58], some techniques have been developed to enforce stability
and passivity, respectively. Still, these strategies are limited to one parameter
only and suffer from some reliability issues, see Section 4.3.4.

Finally, as for the other parameterized modeling approaches, also the PSK
can not handle more than few parameters. In fact, for a growing number of
independent parameters the memory and CPU requirements blow exponentially
(see Section 5.3.2).
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Fig. 2.6 Comparing the parametric raw data (blue-solid line) with the corresponding
responses of the parameterized PSK model (red-dashed lines).

PSK state-space realizations

The PSK model structure can be further expressed in terms of a parameterized
state-space realizations, defined as

ẋ(t,ϑ) = A(ϑ)x(t,ϑ)) + B(ϑ)u(t)
y(t,ϑ) = C(ϑ)x(t,ϑ)) + D(ϑ)u(t)

(2.78)

Following the procedure in [11], this can be easily achieved by first deriving
the state-space realization of the model numerator and denominator separately,
as

N(s,ϑ) ↔

 A0 B0

C1(ϑ) D1(ϑ)

 (2.79a)

D(s,ϑ)Ip ↔

 A0 B0

C2(ϑ) D2(ϑ)

 (2.79b)

where, defining the auxiliary matrices (n̄r and n̄c denote the number of real
poles and complex conjugate pairs, respectively)
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A0,r = blkdiag {qnIP }n̄r

n=1 (2.80)

A0,c = blkdiag
IP ⊗

 q′
n q′′

n

−q′′
n q′

n


n̄=n̄r+n̄c

n=n̄r+1

B0,r = IP ⊗ [1, . . . , 1]T

B0,c = IP ⊗ [2, 0, . . . , 2, 0]T

C1,r(ϑ) = [R1(ϑ), . . . ,Rn̄r(ϑ)]
C1,c(ϑ) =

[
R′

n̄r+1(ϑ),R′′
n̄r+1(ϑ), . . . ,R′

n̄(ϑ),R′′
n̄(ϑ)

]
C2,r(ϑ) = [r1(ϑ)IP , . . . , rn̄r(ϑ)IP ]
C2,c(ϑ) =

[
r′

n̄r+1(ϑ)IP , rn̄r+1(ϑ)IP , . . . , r
′
n̄(ϑ)IP , r

′′
n̄(ϑ)IP

]
the realization matrices in (2.79) are defined as

A0 = blkdiag{A0,r,A0,c} (2.81)
BT

0 =
[
BT

0r,BT
0c

]
C1(ϑ) = [C1,r(ϑ), C1,c(ϑ)]
C2(ϑ) = [C2,r(ϑ), C2,c(ϑ)]
D1(ϑ) = R0(ϑ)
D2(ϑ) = IP r0(ϑ).

We remark that qn identifies a real pole and q′
n, q′′

n denote the real and
imaginary parts of a complex pole. Similarly, R′

n(ϑ), R′′
n(ϑ), and r′

n(ϑ), r′′
n(ϑ)

identify the real and imaginary parts for the numerator and denominator
coefficients, respectively.

A state-space realization for H(s,ϑ) = N(s,ϑ)(D(s,ϑ)−1IP ) can be derived
as

H(s,ϑ) ↔

 A0 − B0D−1
2 (ϑ)C2(ϑ) B0D−1

2 (ϑ)
C1(ϑ) − D1(ϑ)D−1

2 (ϑ)C2(ϑ) D1(ϑ)D−1
2 (ϑ)

 (2.82)

The above (2.82) is not very practical, since all the realization matrices
depend on the parameters in a complex way as a result of the inversion in the
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term D2(ϑ). In [11], it has been shown that this problem can be circumvented
resorting to an equivalent descriptor realizationEẋ(t,ϑ) = A(ϑ)x(t,ϑ)) + Bu(t,ϑ)

y(t,ϑ) = C(ϑ)x(t,ϑ)
(2.83)

where

A(ϑ) =
 A0 B0

C2(ϑ) D2(ϑ)

 E =
IP n̄ 0

0 0

 (2.84)

C(ϑ) = (C1(ϑ), D1(ϑ)) B = (0P n̄,P , −IP )T (2.85)

At the cost of a small increase in the number of states, in the descriptor form
all the realization matrices are linear in the individual parameterized matrices.

It is remarkable that, in the above descriptor realization, only the matrices
A(ϑ) and C(ϑ) depend on the parameters. In this regard, we highlight that
throughout this work it will be often useful to represent the parameterized
realization matrices as linear combinations of constant coefficients, weighted by
the basis functions ξℓ(ϑ), as

A(ϑ) =
∑
ℓ∈I

Aℓξℓ(ϑ) (2.86)

and, similarly, for C(ϑ).

SPICE synthesis

The PSK model form (2.63) allows for an equivalent representation as a param-
eterized SPICE netlist [4], to be used as parameterized black-box surrogate in
circuit solvers. For the further development we assume the PSK model to be
representative of a P -port circuit block characterized in scattering parameters.
Following [4], the SPICE synthesis works as follows. Let us first decompose
the rational PSK model into its numerator and denominator components.

1. We consider the denominator as a one-port admittance YD(s,ϑ) =
D(s,ϑ), with its interface subsidiary voltage vD and current iD, sat-
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Fig. 2.7 Equivalent SPICE realization of (top panel) denominator sub-block (k-th
out of P ); (middle panel) numerator sub-block; (bottom panel) external connection
of the PSK model (k-th out of P in Norton form, scattering representation.)
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isfying

iD = YD(s,ϑ)vD (2.87)
vD = Y −1

D (s,ϑ)iD (2.88)

The above scalar relations extend to the MIMO case by representing the
1-port denominator as a diagonal P -port system, as

D(s,ϑ) = IPD(s,ϑ) (2.89)

collecting P identical replicas of D(s,ϑ). Each diagonal element is
associated with its interface voltages vD,k and currents iD,k, with k =
1, . . . , P , stored in vectors vD and iD, respectively, obeying

iD = YD(s,ϑ)vD (2.90)
vD = Y−1

D (s,ϑ)iD (2.91)

2. The numerator is natively considered as a P-port admittance YN (s,ϑ) =
N(s,ϑ), that links the subsidiary port currents iN and voltages vN , as

iN = N(s,ϑ)vN (2.92)

3. Under the assumption of scattering representation, the model (2.63)
links the incident a = [a1, . . . , aP ] and reflected b = [b1, . . . , bP ] power-
normalized waves as

b = H(s,ϑ)a = N(s,ϑ)D−1(s,ϑ)a (2.93)

where ak, bk are defined as

ak = 1
2
√
R0

(vk +R0ik) (2.94)

bk = 1
2
√
R0

(vk −R0ik) (2.95)

and R0 identifies the port reference impedance.
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1 · vD1F
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r0(ϑ)vD r1(ϑ)vC,1 rn̄(ϑ)vC,n̄. . .

iD

vD

+

−

Fig. 2.8 Realization of the denominator admittance sub-block D(s,ϑ). Top panel:
synthesis of the qn-th pole with RC cell; bottom panel: external interface.

These transfer function blocks are interconnected as in Figure 2.7 by em-
ploying dependent sources, as

1. iD = a, so that the voltage measured at the output of the denominator sub-
block is vD = D(s,ϑ)a. Figure 2.7 (top panel) illustrate how dependent
sources are used to synthesize each wave ak.

2. vN = vD, so that b = H(s,ϑ) (see Figure 2.7, middle panel).

3. b = iN , to obtain b = H(s,ϑ)a. See Figure 2.7 (bottom panel), where
the output relation (2.95) is synthesized in Norton form.

The synthesis of each transfer function block follows the same approach.
In the following, we analyze only the realization of D(s,ϑ), the extension to
D(s,ϑ) and N(s,ϑ) is straightforward. From (2.63), it is possible to write

iD = D(s,ϑ)vD =
n̄∑

n=0
jD,n (2.96)

where jD,0 = r0(ϑ)vD and jD,n = rn(ϑ)vC,n, with vC,n = (s− qn)−1vD. Under
the assumption of stable basis poles, the subsidiary voltages vC,n are realized as
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RC cells (coupled RC cell are used to synthesize complex conjugate basis poles),
see Figure 2.8, top panel. Each current jD,n is realized through a Voltage-
Controlled-Current-Source, with a parameterized trans-conductance rn(ϑ). The
superposition in (2.96) is obtained as in the bottom panel of Figure 2.8.

2.3.4 Other techniques

Beside the above strategies, in the past years other parameterized macromodel-
ing approaches have been proposed. Some rely on parameterized extensions
of the univariate Loewner framework, such as [59]. However, as pointed out
in [60], this approach works well only if the dynamic order remains constant
under parameter variations. Other methods, introduced in [61] and [62] propose
to natively build a parameterized version of the Loewner framework. These
methods, however, can handle very few parameters due to the curse of di-
mensionality and, in addition, may give rise to non-smooth behavior of the
approximation [63]. These problems have been addressed in [63] where a novel
interpretation of the parameterized approximation problem in the Loewner
framework has been proposed. We remark that, since all the above approaches
exploit a rational barycentric form, it is possible to construct SPICE compatible
netlists to be used in circuit solvers.

In addition to the above methods, it has been recently introduced in [64] the
p-AAA algorithm, a parameterized extension of the univariate AAA scheme [43].
Despite the good modeling results, also this approach may suffer from the curse
of dimensionality when the number of parameters exceeds few units.

The main drawback of all these methods is the lack of stability and passivity
enforcement strategies, that undermines the applicability of these models in
time-domain simulation settings.

2.4 Open problems

To summarize, each parameterized macromodeling algorithm comes with its
pros and cons. In regard to the PSK scheme, we already pointed out that
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current strategies are not capable of uniformly guaranteeing the models to be
stable and passive for more than one independent parameter.

The other major limitation common to all the presented macromodeling
techniques is the inability of handling more than few independent parame-
ters. This mainly stems from a non-optimized model formulation that, as
the number of parameters increases, requires the estimation of an exponen-
tially growing number of model unknowns, making the identification procedure
computationally unfeasible for most of the commercial hardware.

First, taking inspiration from [4, 58] we will address the problem of enforcing
stability and passivity in Chapter 4. In particular, we are going to propose
some relevant improvements to extend their application domain toward high-
dimensional setting.

Then, in Chapter 5 we will tackle the problem of high-dimensional modeling.
We will propose an optimized model structure built upon unstructured Radial
Basis Functions capable of handling an increased number of parameters. In
addition, we will propose a novel stability enforcement strategy, which is
particularly suited in the considered high-dimensional framework.

Finally, in the last Chapter 6 we will propose a fully automated (high-
dimensional) modeling flow. The main result of this Chapter is the development
of ad-hoc algorithms for the optimization of the hyper-parameters embedded
in the model structure.

All the above results will be demonstrated through relevant numerical
examples.



Chapter 3

Passivity of LTI systems

In this work, we are interested in electric, electronic and electromagnetic struc-
tures that are passive, in the sense that they are only allowed to either dissipate
or redistribute the supplied energy, but not to generate “new” energy on their
own. For reasons that will be soon evident, a surrogate model must comply with
such energetic properties of the considered device. Unfortunately, the inevitable
numerical approximations arising from the modeling procedure (in our case,
accomplished through the PSK iteration) may give rise to local violations.
When used as a surrogate multi-port subsystem of an interconnected passive
network, a non-passive surrogate model may inject nonphysical “numerical”
energy in the network that, in turn, may drive time-domain simulations to
instability. Therefore, the need of reliable and stable simulations is the main
driver for requiring the passivity of surrogate macromodels.

In this chapter, we consider the particular case of a LTI parameterized
model H(s,ϑ0), evaluated in correspondence to a frozen parameter value ϑ0.
For simplicity, we refer to this non-parametric model as to H(s). We exploit this
particular case to introduce the main results about the theory of dissipativity
for LTI systems. The parametric case will be addressed in Chapter 4.

Let us now consider the example of a simple interconnection illustrated in
the top-panel of Figure 3.1, composed of a stable two-port surrogate model H(s)
terminated on a passive load. If the model is not passive for some frequency
values, there exists a set of terminations such that, under certain excitation
conditions, makes the whole system unstable. The bottom panel of Figure 3.1
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Fig. 3.1 An example of a time-domain simulation for a non-passive macromodel. The
top panel depicts the considered system: an interconnection of a non-passive model
with a passive load. The system is supplied with a single tone signal vi(t). Bottom
panel: resulting unstable voltage vL(t), evaluated at the interconnection node.

depicts the unstable behavior of the load voltage vL(t) excited by a single-tone
input operating at the frequency where the model behaves as non-passive.

In order to compensate for such non-passive behaviors (from now on referred
to as passivity violations) it is common to follow a two step approach:

1. first, all the frequency bands where the model H(s) exhibits a non-passive
behavior are determined, then

2. all the detected passivity violations are removed in a subsequent enforce-
ment phase.

The effectiveness of such a passivity enforcement scheme strongly depends on
the availability of reliable characterization and/or sampling algorithms able to
detect all the non-passive frequency sub-bands, since unresolved violations can
not be removed.

In this Chapter, we first introduce the concept of dissipativity in a general
form in Section 3.1. Then, in Sections 3.2 and 3.3 we will focus on LTI systems,
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providing a precise passivity characterization both in the time and frequency
domain. Finally, in Section 3.4, we address the problem of finding all the
passivity violation sub-band introducing Hamiltonian-based adaptive sampling.

3.1 Theoretical aspects of dissipativity

In the following, we summarize some known theoretical results associated to the
concept of dissipativity. In order to keep the discussion as concise as possible,
we will report and analyze only the results of interest, referring the Reader to
the cited references for additional details

3.1.1 Dissipative systems

Depending on the considered application field, the literature refers to the
concept of dissipativity and passivity with different terms. Nevertheless, all the
definitions make reference to the net energy flow absorbed by the considered
multiport system. We introduce the supply rate function p(t) : U×Y → R that
quantifies the amount of absorbed power by a generic LTI multi-port system,
characterized by P input u(t) ∈ U and P output y(t) ∈ Y signals.

Due to practical interests, the literature commonly refers to supply rates
associated with immittance (either impedance or admittance) and scattering
representations, for which it holds

1. Immittance: p(t) = u(t)Ty(t),

2. Scattering: p(t) = u(t)Tu(t) − y(t)Ty(t)

More general formulations are available based on the so-called quadratic sup-
ply [65], defined as

p(t) = u(t)TQu(t) + u(t)TSy(t) + y(t)TSTu(t) + y(t)TRy(t) (3.1)

or, in a more compact form, as

p(t) =
u(t)

y(t)

TQ S
ST R

u(t)
y(t)

 (3.2)
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where Q,S, and R are real-valued matrices of dimension P × P . The standard
immittance and scattering cases boil down to setting Q = R = 0, S = 1

2IP and
Q = IP , R = −IP , S = 0, respectively.

Based on the concept of supply rate, it is possible to provide [65, 66] the
following definition for dissipativity, that correlates the net energy flow with
the energy stored by the system (for this reason often referred to as internal
passivity)

Definition 1. A multi-port system is defined dissipative if there exists a scalar
storage function V (x(t)) such that it holds

V (x(t2)) ≤ V (x(t1)) +
∫ t2

t1
p(t)dt, ∀ t2 ≥ t1 (3.3)

where (3.3) is commonly known with the name of dissipation inequality, and the
scalar function V (x(t)) : X → R accounts for the energy stored in the system
at any time instant t. The above definition of dissipativity should be interpreted
as follows: the difference in the internal stored energy V (x(t2))−V (x(t1)) must
not exceed the total energy supplied to the system, identified by the integral
term at the right-hand-side. The terms “dissipative” and “passive” are assumed
to be synonyms, despite a somewhat inconsistent usage of these two terms in
the literature in different application fields of electrical engineering, systems
and control, and applied mathematics.

Such a definition of dissipativity implies that a passive system can not
return power to the external environment before its absorption; this implies, in
turn, the system causality. Since we consider only causal physical structures,
we adopt this definition for dissipativity. For other (less stringent) definitions
of passivity, we refer the Reader to [67, 19].

It is worth noting that, in case the storage function V (x) is at least differ-
entiable, the dissipation inequality can be stated in differential form, as

dV (x(t))
d(t) ≤ p(t) (3.4)

In the following, we will use this latter differential interpretation of the dissipa-
tion inequality.
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3.2 Characterization via Linear Matrix Inequal-
ities

The above definitions of dissipativity are fairly general and apply to any linear
and non-linear system. We now address the particular case of interest in this
work, namely the LTI macromodels H(s), that can be realized as a regular
state-space system, as ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3.5)

where the model poles are assumed stable and with realization matrices that
are real-valued.

For the class of LTI systems, the appropriate choice of storage function is
known to be a quadratic function of the states [68],

V (x(t)) = x(t)TPx(t) (3.6)

with P = PT, P ≻ 0. Then, plugging in (3.4) the definition of supply rate p(t)
in (3.2) and (3.6), leads to the following passivity condition

d
(
x(t)TPx(t)

)
dt

≤ u(t)TQu(t)+u(t)TSy(t)+y(t)TSTu(t)+y(t)TRy(t) (3.7)

Exploiting the state equations (3.5), the above inequality can be cast in matrix
form; we have the following result [65].

Lemma 1. A LTI system, whose supply rate is defined as in (3.2), is passive
if and only if there exists P = PT, P ≻ 0, such that, for any signal x(t), u(t)
satisfying the state equations, the following holds
x(t)

u(t)

TATP + PA − CTRC PB − (SC)T − CTRD
BTP − SC − DTRC −Q − SD − (SD)T − DTRD

x(t)
u(t)

 ≤ 0

(3.8)

The feasibility of the Linear Matrix Inequality (LMI) (3.8) provides a
dissipativity certificate for the LTI model described by realization matrices
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(A, B, C, D), when the excitation conditions are specified by the supply
rate p(t) through matrices Q,S,R. In case there are no symmetric Lyapunov
matrices P that satisfy (3.8), the model is not passive.

Although the result of Lemma 1 is general, in literature it is common to
split the immittance and scattering characterization. This is easily achieved
by selecting appropriately the matrices Q, S and R and give rise to the well-
known [49, 65] Positive Real Lemma (PRL), for immittance parameters, and
the Bounded Real Lemma (BRL), for scattering parameters

Lemma 2. Positive Real Lemma [49, 65]
A LTI system in immittance representation, whose states x(t) and inputs u(t)

satisfy the state equations, is passive if and only if there exists P = PT,P ≻ 0,
such that x(t)

u(t)

TATP + PA PB − CT

BTP − C −(D + DT)

x(t)
u(t)

 ≤ 0 (3.9)

Lemma 3. Bounded Real Lemma [49, 65]
A LTI system in scattering representation, whose states x(t) and inputs u(t)

satisfy the state equations, is passive if and only if there exists P = PT, P ≻ 0,
such thatx(t)

u(t)

TATP + PA + CTC PB + CTD
BTP + DTC −(IP − DTD)

x(t)
u(t)

 ≤ 0 (3.10)

3.3 Passivity characterization in the frequency
domain

Beside the algebraic passivity characterization provided by the PRL and the
BRL, it is equivalently possible to carry out a passivity characterization in the
Laplace domain based on the transfer matrix H(s) associated to the realization
matrices. As a consequence of our hypotheses on the state-space system (3.5),
also H(s) is assumed to be stable. Introducing first the definitions of Positive
Real (PR) and Bounded Real (BR) transfer matrices [49, 69, 70]

Definition 2. Positive Real Matrix
A transfer matrix H(s) is positive real if the following conditions are concur-

rently satisfied
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1. H(s) is analytic in ℜ{s} > 0,

2. H∗(s) = H(s∗), i.e., the impulse response is real-valued,

3. H(s) + HH(s) ⪰ 0, for ℜ{s} > 0

Definition 3. Bounded Real Matrix
A transfer matrix H(s) is bounded real if the following conditions are concur-

rently satisfied

1. H(s) is analytic in ℜ{s} > 0,

2. H∗(s) = H(s∗), i.e., the impulse response is real-valued,

3. I − H(s)HH(s) ⪰ 0, for ℜ{s} > 0.

the connection between the time and the Laplace domain is well-established
and stated in the following Theorem [49, 69, 70]

Theorem 1. A LTI system in immittance (resp. scattering) representation
associated with a transfer matrix H(s) is passive if and only if H(s) is Positive
Real (resp. Bounded Real).

Let us analyze more in details the Definitions 2 and 3. The first condition
implies that the model H(s) is stable, which is satisfied by our assumptions.
Also the second condition is structurally guaranteed by the assumption of real-
valued realization matrices. On the contrary, there are no a-priori assumptions
implying the energy dissipativity entailed by the third condition. So, in order
to verify that H(s) is either PR or BR (thus, passive), we are required to
sample I − H(s)HH(s) and H(s) + HH(s) over the open complex plane C+ in
order to check their positive semi-definitess; this is of course impractical.

In our case, we can however introduce some simplifications. It is indeed
known [70, 71] that asymptotically stable lumped LTI systems are associated
with rational transfer matrices H(s), for which it is possible to check the
positive semi-definiteness of H(s) + H(s)H and I − H(s)HH(s) along the only
imaginary axis s = jω.
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Fig. 3.2 Frequency-domain characterization of passivity. Left panel: immittance
model characterized by λmin(jω). Right panel: scattering model characterized by
σmax(jω). In both the cases the models are not passive in the frequency sub-band
[ω1, ω2] (and its respective symmetric [−ω1, −ω2])

Resorting to the following auxiliary quantities

λmin(jω) = min λ
(
H(jω) + HH(jω)

)
(3.11)

σmax(jω) = max σ (H(jω))

the above positive semi-definitess conditions can be equivalently stated as

λmin(jω) ≥ 0, ∀ω in case of immittance (3.12a)
σmax(jω) ≤ 1, ∀ω in case of scattering (3.12b)

In the left panel (resp. right panel) of Figure 3.2 we depict the minimum
eigenvalue λmin(jω) (resp. maximum singular value σmax(jω)) associated with a
model in immittance (resp. scattering) representation. Both the models are
not passive in the frequency sub-band (ω1, ω2). For completeness, we report
also the symmetric part ω < 0, which is however redundant due to realness
conditions and will not be considered in the following.

The frequency-domain conditions (3.12) provide useful further information
regarding the “locations” of passive/non-passive frequency sub-bands, and
the worst-case instance of the passivity violations. As we pointed out in the
introductory part of this Chapter, in order to guarantee a reliable passivity
enforcement procedure, we are required to identify all the non-passive violation
sub-bands. Not only, we must also gather the associated worst-case violation
(i.e., local minima/maxima of λmin(jω,ϑ) or σmax(jω,ϑ)). This procedure
requires evaluating samples of λmin(jω), σmax(jω) in correspondence of several
discrete frequency values. A possibly adaptive/iterative sampling process in
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the frequency domain can be used to retrieve such information. A preferable
algebraic approach is discussed next.

3.4 Hamiltonian passivity characterization

The identification of the frequency sub-bands corresponding to passivity vi-
olations is best achieved through the Hamiltonian method. In a nutshell,
the Hamiltonian method can be interpreted as an algebraic tool that enables
to exactly detect the boundaries of passive/non-passive frequency sub-bands
(ω1, ω2 in Figure 3.2), without resorting to expensive sampling techniques. In
the following, we will briefly go through the main results; further technical
details can be found in [19] and references therein.

Let us collectively define the matrices H(jω) + H(jω)H and I − H(jω)HH(jω)
as Ψ(jω), commonly known as spectral density function [65]. We flag the
frequency value jω as

• passive (dissipative), if Ψ(jω) ⪰ 0,

• non-passive otherwise

It is readily understood that transitions between non-passive and passive
behaviors occur when (at least) one eigenvalue of Ψ(jω) vanishes. Equivalently,
assuming that such a transition occurs at jω0, there must exist a non-trivial
vector v ∈ N {Ψ(jω0)} such that

Ψ(jω0)v = 0 (3.13)

which implies that the frequency values that bound the passivity violation
sub-bands (e.g., ω1, ω2 in Figure 3.2) must be sought as the zeros of Ψ(jω,ϑ).

The evaluation of the spectral density function zeros is better achieved
considering its analytic extension Ψ(s) in the complex plane, and computing
the poles of its inverse Ψ(s,ϑ)−1, to which corresponds the following state-space
realization  AΨ − BΨD−1

Ψ CΨ BΨD−1
Ψ

−D−1
Ψ CΨ D−1

Ψ

 , (3.14)
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where {AΨ,BΨ,CΨ,DΨ} = {AΨ,BΨ,CΨ,DΨ} are the realization matrices
of Ψ(s). Following standard arguments, the poles of Ψ(s,ϑ)−1 (the zeros of
Ψ(s,ϑ)) can be thus evaluated as the eigenvalues of AΨ−1 = AΨ − BΨD−1

Ψ CΨ.
Now, the matrix AΨ−1 for the two considered input/output representation
(immittance or scattering) is easily obtained as

MI =

A − B
(
D + DT

)−1
C −B

(
D + DT

)−1
BT

CT
(
D + DT

)−1
C −AT + CT

(
D + DT

)−1
BT

 (3.15)

in the immittance case

MS =

A + B
(
I − DTD

)−1
DTC −B

(
I − DTD

)−1
BT

CT
(
I − DTD

)−1
C −AT + CTD

(
I − DTD

)−1
BT

 (3.16)

in the scattering case. The matrices MI and MS have a Hamiltonian structure,
for additional details see [19]. Based on this derivation, we have the following
result [72]

Theorem 2. Let H(s) be the transfer matrix of an immittance (resp. scattering)
system associated with realization matrices {A,B,C,D}, where D + DT (resp.
I − DTD) is non-singular and A is stable. Then, jω0 is a purely imaginary
eigenvalue of MI (resp. MS) if and only if Ψ(jω0)v = 0, v ̸= 0.

For a formal proof, we refer the Reader to [72].

Theorem 2 provides a “practical rule” to infer the passivity properties of
LTI systems: instead of resorting to heuristic frequency sampling strategies,
the eigenspectrum Λ of suitable Hamiltonian matrices provides a complete
dissipativity characterization that is guaranteed not to miss any small localized
passivity violation. The frequencies ωi ∈ Ω (sorted in ascending order) asso-
ciated to the purely imaginary Hamiltonian eigenvalues jωi ∈ Λ partition the
frequency axis in disjoint passive and non-passive sub-bands Ωi = [ωi−1, ωi). The
partitioning is completed by adding the left and rightmost bands Ω0 = [0, ω1)
and Ωı̄ = [ωı̄,∞).

Remark 7. The Hamiltonian eigenspectrum satisfies a four-quadrant symmetry.
Without loss of generality, we can thus consider only the purely imaginary
eigenvalues with a positive imaginary part.
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Figure 3.3 provides a graphical illustration of the above partitioning procedure.
In the left panel, we are representing the symmetric Hamiltonian eigenspectrum;
among the 20 eigenvalues, four {jω1, jω2,−jω1,−jω2} are purely imaginary, of
which we consider only the positive subset. Therefore, {ω1, ω2} induce the
frequency-axis partitioning [0, ω1) ∪ [ω1, ω2) ∪ [ω2,∞). Within these sub-bands,
Theorem 2 ensures that the system is either dissipative or active; transitions
between these two behaviors occur in correspondence of ω = ω1 and ω2, as
illustrated in the right panel.

In order to determine whether the considered sub-band Ωi is passive or not, it
is sufficient to evaluate λmin(jω) (in the immittance case) or σmax(jω,ϑ) (in the
scattering case) for any jω (strictly) within each band Ωi; as a common practice,
we pick the sub-band center ĵωi. In case λmin(ĵωi) > 0 (or, σmax(ĵωi,ϑ) < 1) the
sub-band is uniformly passive (green segment), otherwise it is labelled as active
(red segment). For each sub-band Ωi we additionally define the worst-case
passivity violation λ̄i

min, or σ̄i
max, as

λ̄i
min = arg min

ω∈Ωi

λmin(jω) (3.17)

σ̄i
max = arg max

ω∈Ωi

σmax(jω) (3.18)

attained in correspondence of ω = ω̄i. The worst-case violations are compactly
denoted with the tuples (ω̄i, λ̄

i
min) or (ω̄iσ̄

i
max).

The above Hamiltonian matrices can be thus employed as a powerful tool
to assess the passivity of LTI models, as stated by the following [18, 19]

Theorem 3. Let H(s) be the transfer matrix of an immittance (resp. scattering)
system described by state-space matrices {A,B,C,D}, where D+DT ≻ 0 (resp.
I − DTD ≻ 0) and A is stable. If the Hamiltonian matrix MI (resp. MS) does
not have purely imaginary eigenvalues, then H(s) is passive.

Extended Hamiltonian pencil

In Theorem 2 we deliberately left out the cases where
(
D + DT

)
and

(
I − DTD

)
are singular, for which the Hamiltonian matrices MI , MS are not defined.
Under these conditions, a more general approach based on the so-called Skew-
Hamiltonian Hamiltonian (SHH) pencils is available. In particular, slightly
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Fig. 3.3 Illustration of the Hamiltonian-based passivity characterization. Right
panel: symmetric Hamiltonian eigenspectrum. Left panel: representation of λmin(jω)
and σmax(jω) as a function of the frequency. The purely imaginary eigenvalues
ω1, ω2 partition the frequency axis in passive (green segments) and non-passive (red
segments) sub-bands.

modifying the proof that leads to Theorem 2 [73] it is possible to show that
the following equalities hold


A 0 B
0 −AT −CT

C BT D + DT


︸ ︷︷ ︸

MI,ext

q = jω0


I 0 0
0 I 0
0 0 0


︸ ︷︷ ︸

YI

q (3.19)

for the immittance, and


A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D I


︸ ︷︷ ︸

MS,ext

q = jω0


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

YS

q (3.20)

for the scattering representation, respectively, whenever one eigenvalue of
Ψ(jω) vanishes in correspondence of jω = jω0.The above can be regarded
as Generalized Eigenvalue Problems (GEP) associated with the SHH pairs
(MI,ext,YI) and (MS,ext,YS) whose purely imaginary solutions jω0 correspond
to the spectral zeros of Ψ(s).
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Thus, in case the terms (D + D) and
(
I + DTD

)
are singular, the set of non-

passive sub-bands (if any) can be computed resorting to the computation of the
generalized SHH (finite) eigenvalues, associated with GEPs (3.19) and (3.20).

Remark 8. The SHH pencils (MI,ext,YI) and (MS,ext,YS) are characterized
by the presence of P and 2P infinite eigenvalues, respectively, corresponding to
the dimension of the singular subspace of matrices YI and YS. This justifies
why we refer to the subset of finite SHH eigenvalues.

Generalized Hamiltonian pencils

As a further generalization, we consider the parameterized model H(s) in the
following descriptor formEẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.21)

which is assumed to be regular and impulse free. As in the case of regular
state-space models, following similar arguments it is possible to prove that the
zeros of the spectral density function Ψ(s) associated to a model in descriptor
form correspond to the generalized finite eigenvalues of a SHH matrix pair. In
details, Ψ(jω0) is singular if and only if jω0 satisfies the following generalized
eigenvalue problems


A 0 B
0 −AT −CT

C BT 0


︸ ︷︷ ︸

MI,ext

q = jω0


E 0 0
0 E 0
0 0 0


︸ ︷︷ ︸

YI

q (3.22)

for the immittance, and


A 0 B 0
0 −AT 0 −CT

0 BT −I 0
C 0 0 I


︸ ︷︷ ︸

MS,ext

q = jω0


E 0 0 0
0 E 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

YS

q (3.23)
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for the scattering representation.

For ease of explanation, in the following we will always refer to the more
general case of Skew-Hamiltonian Hamiltonian GEP problem, with the associ-
ated set of (finite) generalized eigenvalues. This choice is not restrictive, since
the standard eigenvalue problem associated with matrices MI , MS can be
trivially converted to an equivalent GEP as

MI → (MI , I) (3.24)
MS → (MS, I) (3.25)

3.5 Enforcing passivity

We now address the problem of enforcing passivity of non-passive models. The
passivity enforcement problem can be summarized as follows: given an initially
non-passive model H(s), find a suitably small perturbation ∆H(s) such that
the perturbed model

Ĥ(s) = H(s) + ∆H(s) (3.26)

is uniformly passive over jω and, concurrently accurate over the band of
interest. Hence, enforcing the model passivity amounts to solving the following
optimization problem

min ∥∆H(s)∥ (3.27)
s.t. Ĥ(s) is passive

Expressing the perturbation ∆H(s) in terms of its descriptor realization matri-
ces, as

∆H(s) = ∆C (sE − A)−1 B (3.28)

where we follow the common choice to perturb only the state-output matrix
∆C. In fact, it is not advisable to perturb the matrices E, A, in order to
preserve poles. Under these assumptions, the model perturbation ∆H(s) is
linear in the decision variable ∆C leading, in turn, to a convex cost function.
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The dissipativity conditions we discussed in the previous sections will be
regarded as constraints that must be enforced to guarantee the model passivity.
We can formulate three alternative passivity constraints.

3.5.1 LMI constraints

Let us assume that H(s) is an asymptotically stable non-passive model, associ-
ated to state-space realization matrices {A,B,C,D}.1. In addition, we assume
the model to be asymptotically passive, i.e., it is passive at s = jω → ∞. The
PRL and BRL (see Section 3.2) guarantee that there is not a symmetric and
positive definite matrix P satisfying

ATP + PA PTB − CT

BTP − C −
(
D + DT

)
︸ ︷︷ ︸

LI(P)

⪯ 0


ATP + PA PB CT

BTP −I DT

C D −I


︸ ︷︷ ︸

LS(P)

⪯ 0 (3.29)

for immittance (LI(P)) and scattering (LS(P)) models. The equivalence
of (3.10) and LS(P) (which is preferable since the realization matrices appear
linearly) is verified by computing the Schur complement of the bottom-right
block of LS(P). In the following, both the above matrices will be identified as
L(P).

Provided that the perturbation ∆C on the state-output matrix accordingly
perturb the matrix L as L + ∆L, following [75, 76] passivity can be enforced
solving

min ∥∆H∥ s.t. P = PT ≻ 0, L(P) + ∆L(P) ⪯ 0 (3.30)

with ∆H = ∆C (sI − A)−1 B. The above optimization problem is a convex
LMI-constrained problem, routinely solved with off-the-shelf solvers. Although
the theoretical guarantee that a unique solution exists, the huge CPU effort
required to solve (3.30) makes this approach feasible only for reduced size
problems [77].

1We consider a state-space realization, since the formulation of LMI constraints based
on descriptor forms necessitate to address some additional technical questions, which are
deemed outside the scope of this work (see [74]).
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3.5.2 Hamiltonian perturbation

Assuming that H(s) is an asymptotically stable model, the purely imaginary
eigenvalues jωi of the associated Hamiltonian matrix M (see Section 3.4) denote
the presence of non-passive frequency bands. The Hamiltonian perturbation
scheme [18] envisages to enforce passivity by inducing spectral perturbations
on the purely imaginary eigenvalues of M, so that they are displaced outside
the imaginary axis in order to remove passivity violations.

Considering a perturbation of state-output matrix as C + ∆C, the Hamil-
tonian matrix is correspondingly perturbed as M + ∆M; in turn, the purely
imaginary eigenvalues jωi are modified as jωi+j∆ωi(∆C). The passivity enforce-
ment procedure devised in [18] amounts to finding the minimal perturbations
∆C so that the extent of ∆ωi(∆C) is sufficient to move the eigenvalues jωi

out of the imaginary axis. In [18] it has been shown that, under a first-order
approximation of ∆ωi(∆C), this problem can be cast as a linearly constrained
least-squares, whose solution is standard. The linearization procedure makes
the considered perturbation approach valid only up to first-order approxima-
tion, hence multiple iterations may be required to compensate all the passivity
violations. Some advanced implementations of this approach can be found
in [77, 78].

3.5.3 Local frequency constraints

Consider once again a non-passive and asymptotically stable model, for which all
the violation sub-bands Ωi = [ωi−1, ωi), together with the worst-case violations
(ω̄i, λ̄

i
min), or (ω̄i, σ̄

i
min), are known (for instance, by means of the Hamiltonian

sampling outlined in Section 3.4). In Figure 3.4 we depict the least eigenvalue
λmin(jω) (black solid line), together with the associated worst-case violations
λ̄1

min, λ̄2
min for an illustrative immittance model (similar conclusions hold for

scattering models, considering the largest singular value σmax(jω)).

Assuming to perturb the state-output matrix as C+∆C, the least eigenvalue
λmin(jω) or the largest singular value σmax(jω) are correspondingly modified. As
introduced in [79, 80], to enforce passivity we seek for a minimal perturbation
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∆C that locally displaces all the local minima λ̄i
min or maxima σ̄i

max such that

λ̄i
min + ∆λ̄i

min(∆C) ≥ 0, or σ̄i
max + ∆σ̄i

max(∆C) ≤ 1. (3.31)

Expressing the perturbations ∆λ̄i
min(∆C) and ∆σ̄i

max(∆C) through a first-order
linearization, the above (3.31) are used to formulate linear passivity constraints
of the following optimization problem

min ∥∆C∥ s.t. gT
i · x − hi ≤ 0, i = 1, . . . , ī (3.32)

where gi collect suitably computed coefficient and x stores the vectorized
decision variable, respectively (see [79, 80] for details). The scalar hi is set to
λ̄i

min and 1 − σ̄i
max for the immittance and scattering cases, respectively. The

dashed line in Figure 3.4 shows the passive λmin(jω) as resulting from (3.32).

This will be our method of choice for passivity enforcement of parameterized
models, therefore a detailed derivation for the above expressions will be provided
later in the dedicated Section 4.4.

Solving (3.32) does not necessarily lead to a passive model. In fact, the linear
approximation of the real eigenvalues/singular values perturbations induced by
∆C provide only a simplified polytopic representation of the “real” feasibility
set of (3.27). Nonetheless, the linearized constraints provide a reduction of the
violation regions; therefore, the problem (3.32) is repeatedly solved until all
the violations are eliminated.

Remark 9. We remark that the enforcement of local passivity constraints
may induce the onset of unwanted violations in already passive sub-bands.
This problem has been tackled in [81] where a robust scheme, collecting the
constraints associated to subsequent iterations, prevents the appearance of
unexpected violations.
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Fig. 3.4 Passivity enforcement via local frequency constraints. Black solid line: least
eigenvalue of the original non-passive model. Black dashed line: least eigenvalue of
the perturbed passive model.



Chapter 4

Checking and enforcing passivity
of parameterized models

In this Chapter, we are going to elaborate on the dissipativity characterization
discussed in Chapter 3 to extend its applicability to the parameterized frame-
work. For the further developments, in Section 4.1 we first introduce a scheme
to enforce stability, uniformly over the parameter space. Then, in Section 4.2
we introduce the problem of checking passivity of parameterized models, for
which we propose an innovative solution in Section 4.3, further used to set
up a passivity enforcement scheme in Section 4.4. The results are reported in
Section 4.5. Finally, limitations of the method and its application to uniform
stability enforcement are discussed in Sections 4.6 and 4.7.

4.1 Parametric uniform model stability

We recall from Section 2.3.3, that the PSK parameterized model that we
consider has the form (2.64), that we report below for convenience

H(s,ϑ) =
∑

ℓ∈IN

∑n̄
n=0 Rn,ℓξℓ(ϑ)φn(s)∑

ℓ∈ID

∑n̄
n=0 rn,ℓξℓ(ϑ)φn(s) = P0(ϑ) +

n̄∑
n=1

Pn(ϑ)
s− pn(ϑ) (4.1)
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to which are associated the parameterized state-space and descriptor realizations A(ϑ) B(ϑ)
C(ϑ) D(ϑ)


︸ ︷︷ ︸

state-space

 [A(ϑ),E] B
C(ϑ) 0


︸ ︷︷ ︸

descriptor

(4.2)

defined in (2.78) and (2.83), respectively. We have the following definition:

Definition 4 (Uniform stability). A parameterized LTI model of the form (4.1)
is defined uniformly (asymptotically) stable if ℜ{pn(ϑ)} < 0 ∀n and ∀ϑ ∈ Θ.
Equivalently, a parameterized LTI model in state-space (resp. descriptor)
realization is uniformly (asymptotically) stable if the eigenvalues of A(ϑ) (resp.
of the pencil (A(ϑ),E)) have a uniformly negative real part ∀ϑ ∈ Θ.

As already mentioned in Chapter 2, the parameterized model poles never
appear explicitly in the Parameterized Sanathanan-Koerner scheme that, in-
stead, provides an implicit parameterization. Hence, we lose the direct control
over the model poles that, for some parameter instances, may become unstable
and a direct stability enforcement during the fitting step is thus unfeasible.

The strategy proposed in [58] considers a different viewpoint: instead of
considering the model poles, the uniform model stability is attained by enforcing
the model denominator to be a Positive Real (PR) function [49, 70]. Following
Definition 2 for Positive Real Matrices, the scalar denominator function

D(s,ϑ) =
∑

ℓ∈ID

r0,ℓξℓ(ϑ) +
n̄∑

n=1

∑
ℓ∈ID

rn,ℓ
ξℓ(ϑ)
s− qn

(4.3)

is defined PR if, for all ϑ ∈ Θ, it holds that

1. D(s,ϑ) is regular for ℜ{s} > 0;

2. D∗(s,ϑ) = D(s∗,ϑ);

3. ℜ{D(s,ϑ)} > 0 for ℜ{s} > 0.

Note that, if the denominator is PR, also D−1(s,ϑ) is PR. Provided that any
PR system is stable [70] since regular for ℜ{s} > 0, we conclude that the
denominator positive realness (PR-ness) is a sufficient condition for uniform
stability.
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Based on the considerations of Section 3.3, the validity of the first two
conditions is always verified by our assumptions on the model structure, whereas
we have no guarantees about the validity of the third, that depends on the
actual values of the denominator coefficients. Thus, in order to guarantee the
PR-ness of the denominator (thus, uniform stability over Θ), we must enforce
the third condition uniformly over the continuous domain C+ × Θ

4.1.1 Enforcing uniform stability via linear constraints

Based on the above considerations, it is possible to formulate a set of (strict)
positive realness constraints for D(s,ϑ) can be formulated as

ℜ


n̄∑

n=0

∑
ℓ∈ID

rn,ℓ ξℓ(ϑ̂q)φn(jω̂q)
 > γ > 0 (4.4)

over a discrete set of frequency-parameter combinations (jω̂q, ϑ̂q), where γ is
an arbitrary positive constant. The above PR-ness constraints can be easily
enforced during the model fitting procedure. Therefore, at each PSK iteration
ν, we first collect the locations (jω̂q, ϑ̂q) in set Aν , then we compute the
denominator unknowns solving the following stability preserving optimization
problem (here reported in the Fast-PSK form)

min
∥∥∥R̄νbν

∥∥∥ (4.5)

s.t. Pνbν > d (4.6)

where P(q;n,ℓ) = rν
n,ℓ ξℓ(ϑ̂q)φn(jω̂q) and the q-th element of d is γ. The numera-

tor coefficients are then evaluated following the PSK scheme.

Concerning the selection of the frequency-parameter combinations (jω̂q, ϑ̂q),
the most straightforward choice is to pick the samples (jω̂q, ϑ̂q) over a dense
grid over jR × Θ. This approach has two main drawbacks:

• it does not provide any guarantee not to miss localized frequency-parameter
combinations where the denominator is not PR, and

• the resulting number of constraints quickly blows up when the number of
parameters exceed few units.
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An optimized strategy for selecting a reduced, yet sufficient, set of PR-ness
constraints will be provided in Section 4.7. This strategy requires however a
number of preliminary theoretical and algorithmic tools, discussed next. The
above uniform stability procedure has been introduced as an anticipation, since
the uniform stability will be a prerequisite for all subsequent derivations.

4.2 Parametric uniform passivity

Let us now turn to extend the passivity characterization of Chapter 3 to the
parameterized setting. The availability of the above discussed uniform stability
enforcement scheme enables for a straightforward extension of the uni-variate
dissipativity description. In particular, based on (3.11), we introduce the
auxiliary quantities

λmin(jω,ϑ) = min λ
(
H(jω,ϑ) + HH(jω,ϑ)

)
(4.7)

σmax(jω,ϑ) = max σ (H(jω,ϑ))

and we formulate the following definition

Definition 5 (Uniform passivity). A uniformly stable parameterized LTI model
of the form (4.1) is defined uniformly passive if

λmin(jω,ϑ) ≥ 0, ∀ω,ϑ ∈ Θ in case of immittance (4.8a)
σmax(jω,ϑ) ≤ 1, ∀ω,ϑ ∈ Θ in case of scattering (4.8b)

In contrast with the uni-variate framework, where the Hamiltonian scheme
allows to algebraically pinpoint all the non-passive frequency sub-bands, in the
parameterized setting checking uniform passivity is much more complicated. In
fact, we are now required to sample a (ρ+1)-dimensional space in order to detect
all the areas (Fig. 4.1 left panel, red regions), volumes (Fig. 4.1, right panel,
red regions) and, in general, higher dimensional manifolds that incorporate the
frequency-parameter combinations (jω,ϑ) for which the conditions (4.8) are
violated.

Based on the results of Chapter 3, we can however introduce some simplifi-
cations. Indeed, if we employ the Hamiltonian scheme, instead of sampling the
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Fig. 4.1 The left and right panels show a graphical illustration of the violation areas
Θα for a one- and bi-dimensional parameter space, respectively.

(ρ+ 1)-dimensional frequency-parameter space, we can restrict our search to
the smaller parameter space only; here, it is required to detect (and accurately
track) all the disjoint regions Θα ∈ Θ, α = 1, 2, . . . (represented as light red
segments and surfaces in the left and right panels of Figure 4.1, respectively)
where the dissipativity conditions (4.8) are not satisfied.

For each of these regions, we define the worst-case passivity violation based
on the definition (3.11), as

λ̄α
min = inf

ω∈R,ϑ∈Θα

λmin(jω,ϑ) (4.9)

σ̄α
max = sup

ω∈R,ϑ∈Θα

σmax(jω,ϑ) (4.10)

for immittance and scattering systems, respectively. Together with their
location (ω̄α, ϑ̄α) in the frequency-parameter space, the worst-case violations are
fully defined by the triple {ω̄µ, ϑ̄µ, λ̄

µ
min} (immittance case) and {ω̄µ, ϑ̄µ, σ̄

µ
max}

(scattering case).

Let us clarify these ideas with an example. Without loss of generality, we
consider a model in immittance representation, however, equivalent consid-
erations can be drawn for the scattering case. With reference to the panels
of Figure 4.1, each non-passive region Θα ∈ Θ encloses one particular pa-
rameter value ϑNP , associated to models H(s,ϑNP ), whose corresponding
SHH pencil shows some (finite) purely imaginary eigenvalues (see Figure 4.2,
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Fig. 4.2 Passivity characterization of a parameterized immittance model H(s,ϑ).
Left column: non-passive instance of λmin(jω,ϑNP ), together with the associated
SHH eigenspectrum. Right column: same for the passive parameter combination ϑP .

bottom-left panel). These eigenvalues define non-passive frequency sub-bands,
as highlighted in the top-left panel of Figure 4.2. Conversely, all the parameter
samples ϑP located in the green segments (left panel) or surfaces (right panel)
are associated to passive models H(s,ϑP ), as shown in the left column of
Figure 4.2.

4.2.1 Parameterized Hamiltonian eigenspectrum

Based on the parametric realizations (4.2), we generalize the definitions (3.15),
and (3.16) introducing the parameterized Hamiltonian matrices MI(ϑ) and
MS(ϑ). The same holds for their SHH (extended and generalized) pencil
extensions (see Section 3.4). In the following, we analyze how their eigenspectra
varies under parameter perturbations.

Let us consider the case in which, starting from a nominal configuration
ϑ0, the parameter vector is perturbed as ϑ = ϑ0 + δϑ. Correspondingly, the
SHH pencil is therefore modified, as well as its eigenspectrum. Depending on
the initial spectral configuration and the perturbation extent, some initially
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Fig. 4.3 Typical parameterized Hamiltonian eigenvelues λi(ϑq). The big yellow dots
depict the Hamiltonian (or SHH) eigenspectrum at a nominal parameter configuration
ϑq, while the small blue dots represent the eigenspectrum evaluated for increasing
parameter variations δϑi. The red segments represent the first order perturbations
λ̂i(ϑ).

non-imaginary eigenvalues may become purely imaginary, giving rise to a
new passivity violation, and vice-versa. In Figure 4.3 we report a typical
parameterized SHH eigenspectrum: where the yellow dots correspond to the
nominal case ϑ0, while the small blue dots represent the spectrum evaluated
along a one-dimensional cut δϑ = pδt, with p ∈ Rρ, ∥p∥ = 1. The passivity
characterization of a parameterized model is inevitably parameter dependent.

Unfortunately, there is not a parameterized counterpart of the standard
Hamiltonian method, that would enable the determination of passivity violations
as a closed form algebraic problem. Looking at Figure 4.3 we see that the
detection of all the passivity violations, would require a very dense sampling
resolution to keep track of the highly non-linear SHH eigenvalues trajectories,
that usually exhibit very high sensitivities with respect to parameter variations.
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This is, however, extremely demanding in terms of CPU effort, as it requires
the repeated computation of the Hamiltonian eigenvalues.

In the following, we are going to present one of the main result of this
work: an adaptive strategy (originally introduced in [82]) that, based on first
order perturbations of the SHH eigenvalues, enables to detect the relevant
passivity violations while minimizing the number of evaluations of the SHH
eigenspectrum, thus minimizing the computational effort.

Our approach is inspired by [58], that originally proposed a multi-variate
passivity verification based on an adaptive parameter space sampling. Building
upon the same methodology, our method sets itself as an extension and proposes
a more robust solution.

4.3 Perturbation based passivity verification

Our multi-variate adaptive passivity check algorithm builds on the Hamiltonian
approach to appropriately scan the parameter space Θ. It can be summarized
as follows:

1. In a first initialization phase, we define a reference distribution of param-
eter samples ϑq, q = 1, . . . , q̄, (see top-left panel of Figure 4.4);

2. for each of the available samples ϑq we compute the SHH eigenspectrum
Λq;

3. based on the spectra Λq, we determine if the tested parameter samples
ϑq are passive (green dots) or not (red dots);

4. then, we determine if the set of available samples ϑq is sufficient to
completely determine the passivity violations or, conversely, if additional
refined are required in some regions;

5. in case a finer sampling is needed, extra ∆q̄ samples are added and the
process repeats from step 2) (see iterations J = 0, 1, 2 in Figure 4.4 for
an illustration of the adaptive sampling steps);

6. the procedure stop when no additional samples are required or a maximum
number of iterations is reached (right-bottom panel of Figure 4.4).
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Such an algorithm can be cast in the broad category of exploration and
exploitation methods, which are standard in literature [44, 83]. We are required
to infer (without actually sampling) if passivity violations do or do not exist
in the continuous parameter space Θ, relying only on a finite (and possibly
small) set of “measurements” ϑq. Our multi-variate passivity verification
algorithm must be therefore equipped with some predictive capabilities, to
provide information on the presence (or absence) of passivity violations in the
neighborhood of the points ϑq.

4.3.1 Derivatives of SHH pencils and eigenvalues

The predictive information is gathered in the form of first order perturbations
δλi(ϑq) of the SHH eigenvalues, induced by small perturbations δϑ on the
parameters. Let us proceed in steps:

1. A compact notation:
First, let us introduce a compact notation that will prove useful in the
following. Considering a generic real-valued matrix function X(ϑ) ∈ Rm,n,
we collect its first-order derivatives with respect to the vector variable ϑ

in a 3-way tensor D{X(ϑ)} ∈ Rm,n,ρ, where

D{X(ϑ)}i,j,ν = ∂Xi,j(ϑ)
∂ϑν

. (4.11)

The derivative tensor evaluated for the parameter combination ϑq is
denoted as Dϑq{X(ϑ)}.

For each (i, j)-th element Xi,j(ϑ) of X(ϑ), the first-order Taylor expansion
centered in ϑq reads

Xi,j(ϑq + δϑ) ≈ Xi,j(ϑq) + ∇ϑqXi,j(ϑ)T · δϑ (4.12)

where ∇ϑq denotes the gradient operator evaluated at ϑq, i.e.,

∇ϑqXi,j(ϑ) =
[
∂Xi,j

∂ϑ1

∣∣∣∣
ϑ1=ϑ1

q

, . . . ,
∂Xi,j

∂ϑρ

∣∣∣∣
ϑρ=ϑρ

q

]T

. (4.13)
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Iteration J = 0 Iteration J = 1

Iteration J = 2 Iteration J = 3

Fig. 4.4 Results of the proposed adaptive passivity verification algorithm. The four
panels depict the sampled parameter space: the red and green dots correspond to
non-passive and passive parameter combinations, respectively. Starting from the
first coarse initialization sampling (top-left corner), the adaptive strategy iteratively
refines the passivity violation boundaries and, concurrently, search for passivity
violations with a small footprint (see the two bottom panels). From [82] © 2018
IEEE
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Based on the above definitions, the expansion (4.12) can be compactly
written for the entire matrix X(ϑ) as

X(ϑq + δϑ) ≈ X(ϑq) + Dϑq{X(ϑ)} ×3 δϑ (4.14)

where ×r denotes the r-mode tensor product (see [84] for details), so
that the (i, j)-th vector element of Dϑq{X(ϑ)} ×3 δϑ corresponds to the
vector inner product ∇ϑqXi,j(ϑ)T · δϑ.

2. Derivatives of Hamiltonian matrices:
Then, we derive a first-order approximation for the perturbed SHH pencil
(M(ϑq + δϑ),Y) where, dropping the subscripts (I, S), we concurrently
consider immittance and scattering representations. The first step is to
compute the derivatives (with respect to ϑ) of the realization matrices.
To this end, let us consider a descriptor realization for H(s,ϑ), for which
the parameterized realization matrices A(ϑ) and C(ϑ) can be expressed
as linear combinations of the basis functions, see (2.86).

Adopting the above notation, we can easily define the derivatives of the
realization matrices, as

D{A(ϑ)} =
∑
ℓ∈I

Aℓ ◦ ∇ξℓ(ϑ), (4.15)

and, similarly, for C(ϑ). The operator ◦ denotes the outer product [84],
that stores the individual products of Aℓ with the element of ∇ξℓ(ϑ) along
the third dimension of the tensor. Based on the definition (3.22), (3.23),
these expressions are used to construct the derivative tensor D{M(ϑ)}
of the Hamiltonian matrix M(ϑ), used to compute its first-order pertur-
bation through (4.14), as

M(ϑq + δϑ) ≈ M(ϑq) + Dϑq{M(ϑ)} ×3 δϑ. (4.16)

The perturbed SHH pencil thus reads (M(ϑq + δϑ),Y).

3. First-order approximation of SHH eigenvalues:
Let us consider a (finite) eigenvalue λi(ϑq) of (M(ϑq),Y), and let us
denote ui, vi the associated right and left eigenvectors. Standard results
in eigenvalue perturbation theory [85] enables us to derive a first-order
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approximation for the trajectory of λi(ϑ), when subject to a perturbation
ϑ = ϑq + δϑ, as

λ̂i(ϑ) ≈ λi(ϑq) + δλi(ϑq), (4.17)

where the perturbation term reads

δλi(ϑq) ≈
Dϑq{M(ϑ)} ×1 v∗

i ×2 ui ×3 δϑ

vH
i · Y · ui

(4.18)

In Figure 4.3 the first order eigenvalues perturbations are depicted with
solid red lines that, as expected, are tangent to the exact non-linear eigenvalues
trajectories at ϑq. Not surprisingly, the linear predictions (represented with
the terminal red dots) are valid only for small δt.

We remark that the “length” of the linear perturbations (more in details,
their 2-norm) provides useful information associated to the sensitivity of the
eigenvalues to parameter variations. As we will see in Section 4.3.4, this is one
of the key points for the improved reliability of this approach.

4.3.2 Adaptive sampling via Hamiltonian spectral per-
turbation

The linear perturbation scheme we just introduced enables to make a prediction
on the SHH eigenspectrum in correspondence to a small neighborhood of a
given parameter combination ϑq. This capability is exploited by our passivity
verification scheme to infer the onset of possible violations in unexplored regions
of the parameter space. In terms of computational efficiency, this is highly
beneficial. Indeed, computing the linear predictions through (4.17) comes
almost at a zero-cost and can be repeatedly executed to fully explore the
SHH eigenspectrum in the neighborhood of ϑq; the exact SHH eigenvalues are
evaluated only in case some violations are predicted, dramatically reducing the
overall computational cost.

Our multi-variate adaptive algorithm consists of two main steps: an initial
grid initialization and a subsequent adaptive grid refinement.
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(a) ρ = 2 (b) ρ = 3

Fig. 4.5 Elementary cell Γτ in 2D (left) and 3D (right) being refined along the first
direction ν = 1. Filled yellow dots and red dashed dots represent vertices and edge
midpoints, respectively. From [82] © 2018 IEEE

Grid initialization

As a first step, we partition the parameter space Θ according to a (hyper)-cubic
Cartesian lattice. Assuming jν

0 to be the initial refinement level associated
with the ν-th dimension, this is achieved subdividing each parameter space
direction ν = 1, . . . , ρ in 2jν

0 in equally sized sub-intervals, whose end-points
are collected in set Sjν

0
, defined as

Sjν
0

= {k 2−jν
0 , k = 0, . . . , 2jν

0 } (4.19)

The initial set of vertices ϑq, uniquely identified with a global index q = 1, . . . , q̄,
are collected in set V0, defined by the Cartesian product

V0 = Sj1
0

× Sj2
0
×, . . . ,×Sjρ

0
(4.20)

The above partitioning is completely determined by the triple {V0, E0,F0},
where F0 collects the elementary hyper-cubic cells Γτ , τ = 1, . . . , τ̄ , while E0

collects the cell’s edges connecting two adjacent vertices. With reference to
the elementary cell Γτ (depicted in Figure 4.5 for the bi- and tri-parameter
cases), we denote the associated edges as eτ,m ∈ E0, m = 1, . . . , ρ2ρ−1 and their
endpoint vertices as ϑγ

m,τ ∈ V0, γ = 1, 2
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Fig. 4.6 Representation of one eigenvalue of ΨI(jω,ϑq) corresponding to a fixed
parameter value ϑq. The eigenvalue λ (solid black line) crosses the zero baseline
for ω = ωi (the imaginary SHH eigenvalues, blue large dots), delimiting non-passive
frequency bands Ωq,1, Ωq,2 (highlighted as thick red lines). Local minima are denoted
as small black dots. From [82] © 2018 IEEE

As the initial grid is available, we compute the SHH eigenvalues λq,i = λi(ϑq)
in correspondence of each vertex ϑq ∈ V0, together with the associated left
and right eigenvectors vq,i, uq,i; we collect the triples {λq,i,vq,i,uq,i} in set L0.
Then, considering only the purely imaginary eigenvalues λq,i = jωq,i, we extract
the corresponding frequencies ωq,i that we collect in set Ωq. On the basis of
Theorem 3, if Ωq = ∅ we flag the vertex ϑq as passive (identified with green dots
in Figure 4.4); otherwise, ϑq is flagged as non-passive (identified as red filled
dots in Figure 4.4). The non-passive frequency sub-bands delimited by the
frequency values ωq,i ∈ Ωq are identified as Ωq,β, with β = 1, . . . , β̄q. Finally, for
each non-passive sub-band Ωq,β we determine the worst-case passivity violation
λ̄min, σ̄max occurring at frequency ω̄µ = ω̄q,β. See Figure 4.6 for an illustration.

Together with the parameter combination ϑ̄µ = ϑq, we collect the worst-case
violation data {ω̄µ, ϑ̄µ, λ̄

µ
min} (immittance case) and {ω̄µ, ϑ̄µ, σ̄

µ
max} (scattering

case), in a common set Wµ, µ = 1, . . . , µ̄, updated anytime other violations are
detected.

Grid refinement

Based on the initial coarse sampling, the location estimates of passivity vi-
olations (if any) are iteratively refined in this second iterative step. At any
iteration J = 1, 2, . . ., we are given with sets FJ−1, VJ−1, EJ−1, describing the
structure of the adaptive grid at the previous iteration, together with LJ−1

that stores the eigenvalues/eigenvectors evaluated at each grid node.
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This information is employed to process all the elementary cells Γτ , looping
over the elements of set FJ−1. First, in regard to the generic cell Γτ , we
define the midpoints ϑτ,m associated with the edges eτ,m connecting the vertices
ϑγ

τ,m, γ = 1, 2 (see Figure 4.5 for an illustration). Then, considering the m-th
edge eτ,m, the eigenvalues λγ

τ,m;i at the reference vertices ϑγ
τ,m are perturbed

through (4.17) in order to evaluate their predictions λ̂γ
τ,m;i in correspondence

to the midpoint ϑτ,m.

Remark 10. Due to the 4-quadrant symmetry of the SHH eigenspectrum we
consider only the finite eigenvalues in the 2nd quadrant.

Based on these estimates, we infer the presence (or absence) of localized
passivity violations along the edge eτ,m; anytime the following conditions hold

1. ℜ{λ̂γ
τ,m;i − λγ

τ,m;i} > 0 for some γ, implying that λγ
τ,m;i is moving closer

to the imaginary axis, and

2. ℜ{λ̂γ
τ,m;i} > −δ for the same γ fulfilling above condition, where δ > 0 is

a small predefined threshold,

the edge is refined adding the critical midpoint ϑτ,m as a new vertex. In order to
subdivide the cell Γτ in structured partitions, the detection of critical midpoints
triggers the addition of other 2ρ−1 midpoints that complete the partitioning of
the current cell in two smaller sub-cells. Whenever a new sub-cell is created, it
is added to the set FJ , while its vertices and edges are added to sets VJ and
EJ , respectively. Finally, we flag the new vertices as passive or non-passive by
evaluating the SHH eigenvalues that are stored, together with the eigenvectors,
in set LJ .

A graphical illustration of the above refinement rules is provided in Fig-
ure 4.7: only the first case highlights the presence of a critical midpoint, since
the considered eigenvalue is moving closer to the imaginary axis. Conversely,
cases 2) and 3) are considered not critical since the eigenvalue predictions are
either sufficiently far from the imaginary axis or, indeed, reveal the tendency
of the considered eigenvalues to move in the opposite direction.

The above procedure is performed only in case both the edge endpoints
are passive, since small localized passivity violations may be hidden between
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Fig. 4.7 Graphical representation of the adaptive refinement rules. Yellow dots: SHH
eigenvalues λγ

τ,m;i computed at vertex ϑγ
τ,m; green and red dots: linear prediction

(red thick lines with arrows) of perturbed eigenvalues λ̂γ
τ,m;i at the edge midpoint

ϑτ,m; blue dotted lines: exact eigenvalue trajectories along the edge eτ,m. From [82]
© 2018 IEEE

the two nodes. In other circumstances, however, we can already deduce the
presence of passivity violations without any further information, in particular:

• it both end-points are non-passive: in this occurrence no refinement is
required, as a local violation has been already detected;

• if one endpoint is non-passive and the other is passive: we already detected
the presence of a passivity violation; the edge needs further refinements to
accurately detect the violation boundaries, located between the considered
edges.

The adaptive refinement procedure is equipped with a safe termination
threshold, achieved when the number of iterations J reaches a maximum
level Jmax. This is particularly useful in the case of nearly lossless models,
characterized by SHH eigenvalues that are uniformly close to the imaginary
axis and, depending on the selected threshold δ, may trigger unnecessary grid
refinements. Such a termination rule sets an upper bound on the sampling
resolution, potentially undermining the reliability since small passivity violations
may be missed. This occurrence can be circumvented by setting Jmax to
a sufficiently large value; in our tests, Jmax in the range [5, 10] proved to
be a reasonable trade-off between computational complexity and sampling
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resolution. In case residual passivity violations remain undetected, these would
be practically unimportant.

4.3.3 A relevant test-case

The adaptive capabilities of the presented passivity verification algorithm are
reported in the four panels of Figure 4.4, showing the sampled parameter space
over successive refinement adaptive steps. The green and red filled dots denote,
respectively, passive and non-passive parameter instances.

We start with a 9 × 9 uniform grid (obtained setting j1
0 = j2

0 = 3) at
the first initialization iteration (J = 0); although some initial estimates on
the distribution of passive/non-passive regions can already be inferred, their
resolution is very poor. As the iterations proceed, the proposed adaptive
algorithm better tracks the boundaries of violation regions until, at iteration
J = 3, they are perfectly resolved.

This example is particularly relevant, as it demonstrates that:

• the proposed adaptive strategy samples the parameter space only where
strictly required; no unnecessary samples are added in uniformly passive
or active regions;

• the predictive properties that we embedded through the linear pertur-
bation of the SHH eigenvalues guarantee an improved reliability. In
fact, despite the small violation located in the top-left corner remained
undetected in the first two iterations (in a seemingly uniformly passive
region), the algorithm “predicted” its presence and was able to identify it
at iteration J = 2.

For this particular case, the absence of other hidden passivity violations has
been confirmed through a verification test based on a fine gridding.

4.3.4 Comparison with other approaches

We now compare the above perturbation-based adaptive sampling with the
method presented in [58]. The first major improvement of our method consists
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in the extension to higher-dimensional spaces (2-D, 3-D), whereas the method
in [58] is limited to one independent parameter only.

Further, the proposed approach highlights and solves some reliability issues
that affect [58]. The reason for this, is better understood recalling that the
adaptive procedure in [58] relies on the spectral distance function ψ(ϑ)

ψ(ϑ) = min
λ(ϑ)∈Λ(ϑ)

| ℜ{λ(ϑ)}|
ϱ(ϑ) (4.21)

with ϱ(ϑ) the spectral radius of Λq; this function turns out to be particularly
useful, as it measures the (normalized) distance between the imaginary axis
and the closest eigenvalue. Parameter occurrences at which ψ(ϑ) = 0 highlight
the presence of purely imaginary SHH eigenvalues, denoting the presence of
non-passive behaviors; otherwise, if ψ(ϑ) ̸= 0, there can not be purely imaginary
eigenvalues, which implies local passivity.

Although the function ψ(ϑ) is non-smooth by definition, the approach
devised in [58] considers its abrupt variations as indicative of possible passivity
violations. Hence, the adaptive rule proposed in [58] can be summarized as
follows: if the degree of smoothness of ψ(ϑ) is higher than a predefined threshold,
no actions are required; otherwise, a refinement procedure is triggered to better
explore the parameter space.

In this regard, in [58] it has been pointed out that sharp and localized
passivity violations can be detected by increasing the number of refinement
iterations; this is however not true. Indeed, in the left panel of Figure 4.8 we
depict the function ψ(ϑ) obtained with the method [58] while, on the right
panel, the one obtained adopting the proposed strategy (computed with a
subsequent reconstruction and not used for actual calculations). The onset of
the small violation at ϑ ≈ 28 has been completely missed by the approach [58],
while it is detected and accurately tracked by the proposed method.

The reason behind the improved accuracy becomes evident looking at
Figure 4.9, where we depict the trajectories of the two SHH eigenvalues that are
closest to the imaginary axis, in correspondence to a parameter range [ϑ1, ϑ2]
that encloses the sharp violation. The algorithm [58] detects only the presence
of the eigenvalue λ1(ϑ) (since closer to the imaginary axis in correspondence to



4.4 Enforcing passivity of parameterized models 91

20 25 30
 (mm)

0

2

4

6

(
)

10-4

20 25 30
 (mm)

0

2

4

6

(
)

10-4

Fig. 4.8 Comparing the spectral distance functions for the two approaches. Left
panel: function ψ(ϑ) adaptively sampled with the bisection method [58]. Right panel:
reconstruction of the sampled function ψ(ϑ) resulting from the proposed approach.
From [82] © 2018 IEEE

the reference values ϑ = ϑ1 and ϑ = ϑ2) and misses the “fast” eigenvalue λ2(ϑ)
that undergoes a fast passive / non-passive / passive transition.

Conversely, the additional information about the SHH eigenvalues sensitivity
carried by their parameter-derivatives enables to detect the “critical speed” of
the eigenvalue λ2(ϑ), triggering a refinement that, in turn, detects the presence
of a violation.

4.4 Enforcing passivity of parameterized mod-
els

Once a complete description of the passivity violation areas is obtained, we can
proceed with the subsequent passivity enforcement step, in which all the de-
tected violations are compensated. Following [58], we consider a parameterized
extension of the local perturbation scheme, outlined in Section 3.5.3 for the non-
parametric case. Hence, the need of a reliable passivity verification algorithm
becomes justified, since undetected violations can not be compensated.

We highlight that [86] has recently presented a parameterized extension of
the LMI approach (discussed in Section 3.5.1 for the univariate setting) that,
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Fig. 4.9 Hamiltonian eigenvalues trajectories associated to the spectral distance
function of Figure 4.8. The red eigenvalue corresponds to the “fast” eigenvalue, while
the green trajectory corresponds to the “slow” eigenvalue. From [82] © 2018 IEEE

although theoretically guaranteed to generate a uniformly passive model, it
is feasible only for small-scale problems. Instead, the adopted perturbation
approach has a broader range of applicability, at the cost of a required iterative
process.

The parametric passivity enforcement procedure is similar to its univariate
counterpart: starting from an originally non-passive model H(s,ϑ), we need to
find a suitably small perturbation ∆H(s,ϑ) such that the perturbed model

Ĥ(s,ϑ) = H(s,ϑ) + ∆H(s,ϑ) (4.22)

is uniformly passive in the frequency-parameter space jR × Θ, remaining
concurrently accurate on the band of interest. Based on the considerations of
Section 3.5, expressing ∆H(s,ϑ) in the following descriptor form proves to be
particularly suitable

∆H(s,ϑ) = ∆C(ϑ) (sE − A(ϑ))−1 B (4.23)

where only the state-output matrix ∆C(ϑ) is perturbed. Recalling that, in
the descriptor form, we are allowed to expand the realization matrices as linear
combinations of the parameter basis functions (2.86), we define the unknown
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perturbation matrix ∆C(ϑ) as

∆C(ϑ) =
∑

ℓ∈IN

∆Cℓ ξℓ(ϑ), (4.24)

where ∆Cℓ are the optimization variables that we collect in a block matrix as
X = (∆C1, . . . ,∆Cℓ).

For the further developments, it is convenient to write (4.23) in a more
compact form, where the decision variables X appear explicitly. To this end,
defining the auxiliary function Z(s,ϑ) as

Z(s,ϑ) =
{
[ξ1(ϑ), . . . , ξℓ̄(ϑ)]T ⊗ IP (n̄+1)

}
[sE − A(ϑ)]−1B (4.25)

it is easy to prove that the unknown perturbation ∆H(s,ϑ) can be written as

∆H(s,ϑ) = X · Z(s,ϑ), (4.26)

In the end, enforcing passivity of parameterized models requires solving the
problem

min ∥∆H(s,ϑ)∥ (4.27)
s.t. Ĥ(s,ϑ) is passive

that, while minimizing the model perturbations ∆Cℓ, removes the passivity
violations through suitable constraints, that will be discussed in the following.

4.4.1 Local linearized passivity constraints

Based on the information collected in set Wµ during the passivity verification
step, we formulate a set of (linearized) passivity constraints. This is enabled
by exploiting the information about the worst-case passivity violations Wµ,
gathered during the passivity check. The passivity constraints must be ade-
quately defined according to the selected model representation (immittance or
scattering); let us analyze the two cases separately.
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Immittance:

Let us consider the worst-case passivity violation Wµ that, in the immit-
tance case, is defined by the triple {ω̄µ, ϑ̄µ, λ̄

µ
min}. In order to construct a

local passivity constraint, we must perturb the negative eigenvalue λ̄µ
min of

H
(
jω̄µ, ϑ̄µ

)
+ HH

(
jω̄µ, ϑ̄µ

)
to enforce its local non-negativity, as

λ̄µ
min + ∆λ̄µ

min ≥ 0 (4.28)

by means of a suitable model perturbation ∆H(s,ϑ). The local passivity
constraint associated with the µ-th sampled violation is thus formulated as

− ∆λ̄µ
min ≤ λ̄µ

min. (4.29)

Following simple eigenvalue perturbation arguments [85], we can explicitly
write the first-order approximation for ∆λ̄µ

min induced by the perturbation
∆H

(
ω̄µ, ϑ̄µ

)
, that reads

∆λ̄µ
min ≈ 2ℜ{vH

µ ∆H
(
ω̄µ, ϑ̄µ

)
vµ}, (4.30)

where vµ is the right eigenvector of H
(
ω̄µ, ϑ̄µ

)
associated with λ̄µ

min. Plugging
the approximation (4.30) in (4.29) leads to the following linearized passivity
constraint

− 2ℜ{vH
µ ∆H

(
ω̄µ, ϑ̄µ

)
vµ} ≤ λ̄µ

min. (4.31)

Finally. exploiting the definition of ∆H(s,ϑ) in (4.26), through simple algebraic
manipulations the linear constraint (4.31) can be re-written as

−2 ℜ{[Z(jω̄µ, ϑ̄µ) vµ]T ⊗ vH
µ }︸ ︷︷ ︸

yT
µ

·x ≤ λ̄µ
min. (4.32)

where decision variables x = vet{X} are explicit. Equation 4.32 forms the local
passivity constraint to be enforced for all the passivity violations in W .



4.4 Enforcing passivity of parameterized models 95

Scattering:

In the scattering case, the µ-th worst-case passivity violation is defined by
the triple {ω̄µ, ϑ̄µ, σ̄

µ
max}. Similarly to the immittance case, local passivity is

enforced by suitably perturbing the non-passive singular value σ̄µ
max. In details,

we aim for a local perturbation ∆σ̄µ
max such that the perturbed singular value

σ̄µ
max + ∆σ̄µ

max satisfies the passivity condition

∆σ̄µ
max ≤ 1 − σ̄µ

max (4.33)

The model perturbation ∆H(ω̄µ, ϑ̄µ) induces a variation on the singular values
that, at the first order, can be approximated as

∆σ̄µ
max ≈ ℜ{uH

µ ∆H(jω̄µ, ϑ̄µ)vµ} (4.34)

Expressing the above equation in terms of the decision variable x through (4.26),
we obtain the following linearized passivity constraint

ℜ{[Z(jω̄µ, ϑ̄µ) vµ]T ⊗ uH
µ }︸ ︷︷ ︸

zT
µ

·x ≤ 1 − σ̄µ
max (4.35)

to be enforced for any violation in Wµ.

A unified notation

In both the immittance and scattering representation, the passivity constraints
come in the form of linear inequalities. If we define now

gµ = −yµ, hµ = λ̄µ
min immittance,

gµ = zµ, hµ = 1 − σ̄µ
max scattering,

the above passivity constraints can be unified under the common notation

gT
µ · x − hµ ≤ 0, µ = 1, . . . , µ̄. (4.36)
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4.4.2 Preserving the accuracy

While enforcing the above passivity constraints, the model accuracy is preserved
by minimizing the model perturbation ∥∆H(sκ,ϑκ)∥ over a set of predefined
frequency-parameter combinations (sκ,ϑκ), κ = 1, . . . , κ̄; these, for instance,
can be selected as belonging to the dataset used to construct the original model.
This requirement is readily translated in the form of a cost functional, defined
as

F (x) =
κ̄∑

κ=1
∥∆H(sκ,ϑκ)∥2

F =
κ̄∑

κ=1
∥X · Z(sκ,ϑκ)∥2

F (4.37)

Remark 11. Depending on the problem at hand, suitable frequency/parameter
weighting schemes can be applied with minor modifications to the cost functional
F (x).

4.4.3 Passivity enforcement iteration

Based on the cost-function (4.37) and the constraints (4.36), we are ready to
formulate the passivity enforcement problem as

min
x
F (x) (4.38)

s.t. gT
µ · x − hµ ≤ 0, µ = 1, . . . , µ̄

As in the univariate setting, the linearization of the real eigenvalues/singular
values perturbations lead the constraints (4.36) to be valid only up to a first-
order approximation. Thus, the solution of (4.38) is not guaranteed to return
a uniformly passive model. Following the univariate scheme, this problem is
addressed repeatedly solving (4.38), until all the violations are eliminated (see
later Figure 4.13 for an illustration).

Remark 12. As detailed in Section 3.5.3, compensating a discrete set of
passivity violations by means of the perturbation ∆H(s,ϑ), may induce the
onset of new violations in already passive regions. Based on a parametric
extension of [81], this problem can be solved by formulating a more robust
passivity enforcement scheme that prevents the rise of new unwanted violations.
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In Algorithm (1) we provide a high-level pseudo-code for the proposed
passivity enforcement scheme, where a distinction between the passivity en-
forcement iteration (outer iterations) and passivity assessment iterations (inner
iterations) can be appreciated.

Algorithm 1 Multi-variate passivity enforcement
Require: Initial (possibly) non-passive parameterized model (2.64)

1: repeat (passivity enforcement iterations)
2: Compute the SHH eigenvalues at initial grid points in V0 (Sec. 4.3.2)
3: Collect the eigenvalues/eigenvectors in set L0 (Sec. 4.3.2)
4: Initialize local passivity violations W (Sec. 4.3.2)
5: for J = 1, . . . , Jmax (passivity check iterations) do
6: Loop over the cells Γτ and determine which must be refined
7: if some cells must be refined then
8: Refine critical cells (Sec. 4.3.2)
9: Compute (and collect in LJ) the SHH eigs at new points

10: Update set W
11: else
12: break
13: end if
14: end for
15: if W ̸= ∅ (model is not passive) then
16: Formulate local passivity constraints and solve (4.38)
17: Apply the perturbation ∆H(s,ϑ) to the current model as in (4.22).
18: end if
19: until W = ∅ (model is passive)
20: return Passive model Ĥ(s,ϑ)

4.5 Numerical experiments

In this section, we will test the performances of the proposed parameterized
passivity verification and enforcement strategies. Our test-bench is composed
of EM structures, parameterized by up to 3 parameters. The experiments have
been performed on a standard 16 GB of RAM laptop, running an Intel CPU
(Core-i7 2.3 GHz).
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Fig. 4.10 Illustration of the partially coupled multi-conductor line used to test the
proposed passivity verification and enforcement algorithm.Dimensions are not to
scale.

4.5.1 Partially coupled multi-conductor line

Our first example is a single-parameter electrical interconnect, depicted in
Figure 4.10, composed of three adjacent differential pairs, each made of two par-
allel wires with a circular section (their center-to-center separation is 1.61 mm,
while their length is 10 cm), forming a 6-wire multi-conductor transmission
line. These differential pairs are assumed to be coupled for a reduced length
Lc, which is our parameter ϑ. The range of variation is ϑ ∈ Θ = [20, 40] mm.
For additional details on this structure see [58]

Setting n̄ = 30, IN = ID = 1, . . . , 5, we compute a first parameterized
model using the PSK iteration over the set of training parameterized frequency
responses; each is composed of k̄ = 500 samples in the band [1 Hz, 5 GHz]. Since
this initial model is not passive, we apply the proposed passivity enforcement
algorithm that, in 12 iterations, produced a uniformly passive model. As
illustrated in Figure 4.11 for a representative input/output response, the model
is remarkably accurate with respect to the original data (the worst-case relative
RMS error is 13 · 10−3)

The original non-passive model is used to demonstrate the reliability issues
of the method in [58] and, consequently, the improved performance of the
proposed strategy. In the right panel of Figure 4.8 we show the results of the
proposed adaptive sampling (Jmax = 10), when applied to the model returned
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Fig. 4.11 Comparison between passive model and raw data for one representative
response S6,6(jω, ϑ) of the partially coupled interconnect of Sec. 4.5.1. The various
response pairs correspond to a linear sweep on ϑ in its range. From [82] © 2018 IEEE

by the passivity enforcement method as implemented in [58]. The model still
shows a localized violation, missed by the approach [58], whose results are
depicted in the left panel.

4.5.2 A parameterized multi-board interconnect

In this second example we turn to a 2-parameters case. We consider a multi-
board link connecting two multi-layer PCBs (see Figure 4.12 for an illustration
and [3] for further details), by means of strip-line segments, a dedicated connec-
tor and its via fields. The geometrical dimensions of the link are parameterized
by the radii of the via pad (ϑ1) and anti-pad (ϑ2) that, respectively, attain
values in the ranges [100, 300] µm and [400, 600] µm.

The electrical behavior of this structure is known from m̄ = 81 parametric
frequency responses spanning the band [0, 5] GHz (courtesy of Prof. C. Schuster
and Dr. J. Preibisch, Technische Universität Hamburg-Harburg, Hamburg,
Germany). We constructed an initial model with n̄ = 24, and IN = ID defined
by (2.62) by setting ℓ̄N

1 = ℓ̄N
2 = 3, ℓ̄D

1 = ℓ̄D
2 = 3. The resulting worst-case

relative RMS error among all the input/output responses is 14 · 10−3. This
model turns out to be not passive, as confirmed by top-left panel of Figure 4.13,
where the red dots correspond to the non-passive parameter instances. We thus
apply our proposed passivity enforcement algorithm.
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Fig. 4.12 High-speed interconnection between two multi-layer PCBs. The drawing is
only for illustrative purposes and not to scale. From [86] © 2022 IEEE

The other panels of Fig. 4.13 show the intermediate iterative steps, con-
firming that the violation (red) areas are progressively removed. We obtained
a passive model in 5 iterations (for a total CPU time of 12 minutes), whose
worst-case relative RMS error is 14 · 10−3; this is remarkable, since no accu-
racy degradation occurred while enforcing passivity. The model accuracy is
confirmed by the panels of Figure 4.14, comparing the responses of the passive
model to the raw data, by sweeping one single parameter at a time, while
keeping the other fixed.

4.5.3 A transmission-line network

The last example is a lossy transmission-line network represented in Figure 4.15,
made of four cascaded line segments with three internal stubs, loaded with purely
resistive loads. For this structure we consider two different and increasingly
complex parameterizations. First, we parameterize the length of the central
stub and of its adjacent line segments, that vary in the ranges ϑ1 ∈ [5, 7]
mm and ϑ2 ∈ [9, 10] mm, respectively. Then, we consider a more complex
3-parameters version, obtained by parameterized also the load connected to the
central stub by means of its reflection coefficient ϑ3 ∈ [0.1, 0.5]; we additionally
restricted the range of ϑ1 to [6, 7] mm, since the first extended range led to
a first-pass passive model, which required no further compensation. All the
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Iteration 0 Iteration 1

Iteration 2 Iteration 5

Fig. 4.13 Passivity characterization of the multiboard interconnect model illustrated
after successive passivity enforcement (outer) iterations. Empty green (filled red)
dots highlight passive (non-passive) parameter values for which no (some) SHH
eigenvalues are detected by the proposed adaptive sampling algorithm. From [82]
© 2018 IEEE
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Fig. 4.14 Model responses compared to raw data for the multiboard interconnect
parameterized by via pad (ϑ1) and antipad (ϑ2) radii. From [82] © 2018 IEEE

other geometric and electrical parameters are fixed to their nominal values:
L = 7 mm for the direct lines, Ls = 1 mm for the stubs and Γ1 = Γ3 = 0.5 for
the other reflection coefficients.

Using the PSK scheme, we extracted two initial models: for the 2-parameters
we set n̄ = 20, ℓ̄N

1 = ℓ̄N
2 = 3, ℓ̄D

1 = ℓ̄D
2 = 3, while for the 3-parameters we have

n̄ = 20, ℓ̄N
1 = ℓ̄N

2 = 3, ℓ̄N
3 = 2, and ℓ̄D

1 = ℓ̄D
2 = 3, ℓ̄D

3 = 2. The definitions of
order sets IN , ID is then obtained with (2.62).

The raw dataset is composed of parametric scattering responses, evaluated
over the band [1 Hz, 10 GHz], that are obtained with a frequency-domain 2D
integral field solver, in combination with a dedicated transmission line solver.
With respect to the available validation data, the worst-case RMS relative error
is 46.2 · 10−3 and 22.6 · 10−3 for bi- and tri-parameter models, respectively.

As confirmed by Figure 4.16, both the initial parameterized models were not
passive. Applying the proposed passivity enforcement scheme, the 2-parameter
model became passive in 9 iterations (Jmax = 8), that required 22 minutes.
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Fig. 4.15 Illustration of the transmission-line network used as test-case.

Instead, in the 3-parameter case, only 1 iteration (20 minutes) was needed to
eliminate the small violation localized in the top right corner (see Figure 4.16).

The accuracy of the final passive 2-parameter model is confirmed in the
panels of Figure 4.17a-b, that compare its responses with respect to the original
raw data for fixed values ϑ1 = 6.1 mm and ϑ2 = 9.5 mm, while sweeping the
other free parameters. Similarly, the panels c-b of Figure 4.17 confirm the
accuracy of the passive 3-parameters model. The final worst-case RMS error is
46.2 · 10−3 and 22.7 · 10−3 for the 2- and 3-parameter models, respectively.

4.5.4 Computational Times

Finally, we compare the computational performances (in terms of required
CPU time) of the proposed algorithm with the method in [58]. We remark that
this comparison is performed only for single-parameter models, for which the
method[58] can be applied.

The results of this comparative test are shown in Figure 4.18, demonstrating
that the CPU times of the proposed adaptive algorithm (orange bars) are
comparable to (and in some cases even lower than) the ones of [58] (empty
bars). Thus, the improvement in reliability comes with no extra cost in terms
of computational effort.
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Iteration 0 Iteration 2

Iteration 5 Iteration 9

Iteration 0 Iteration 1

Fig. 4.16 As in Fig. 4.13, but for the transmission line network models. Panels
(a)–(d) refers to the bi-variate model, while (e)–(f) show the parameter space for the
tri-parameter case. From [82] © 2018 IEEE
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Fig. 4.17 a) and b): comparison between original data and passive model responses
for the bi-parameter transmission line model, parameterized by stub and line lengths,
ϑ1 and ϑ2 respectively; c) and d) same for the tri-parameter transmission line model,
parameterized by stub and line lengths (ϑ1, ϑ2 respectively) and load reflection
coefficient ϑ3. From [82] © 2018 IEEE.
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Fig. 4.18 Runtime of proposed passivity enforcement scheme (orange bars) compared
to [58] (empty bars). From [82] © 2018 IEEE

4.6 Limitations and open problems

The proposed passivity verification and enforcement schemes has proven to be
very effective in all the considered test-cases. Major reliability improvements and
good scaling properties up to 3 independent parameters has been demonstrated
with relevant numerical examples.

However, this approach can not be considered the ultimate solution to the
problem of multi-variate passivity enforcement problem. In fact, although
the computationally most expensive task is the computation of the Hamil-
tonian eigenvalues (whose complexity scales as O(n3) [87], where the matrix
dimension n scales linearly with respect to the number of ports and the dy-
namic/polynomial orders), the number of required eigenvalue extractions scales
exponentially with the number of parameters, making the overall complexity to
scale as O(kρ), k ∈ N. On standard machines, the applicability of the proposed
approach is therefore limited up to 2-3 parameters only.

The strategy devised in [86] partially overcomes this problem, exploiting
an LMI-based approach that theoretically guarantees uniform passivity. The
computational complexity of a LMI-constrained optimization problem (if no
matrix structural properties are exploited) scales with the sixth power of the
number of optimization variables [88], that are cumulatively determined by the
number of parameters, dynamic/polynomial orders and the number of ports.
In principle, the approach [86] has no limitations to the number of parameters,



4.7 Adaptive stability enforcement 107

as long as the number of poles, polynomial orders and number of ports are
sufficiently small.

Figure 4.19 confirms the above theoretical discussion on a numerical test-case.
We model a one-parameter multi-conductor transmission line (see Section 4.19
for details) for an increasing number of I/O ports, namely from 2 to 6 ports,
while keeping fixed the number of poles and polynomial orders. It results that,
for comparable model-data accuracies (Figure 4.19, top panel), the scaling
law of the computational runtimes (Figure 4.19, bottom panel) of [86] is
very unfavorable with respect to the one associated to the proposed adaptive
sampling approach. In addition to the CPU effort, it should be noted that also
the memory requirements of [86] do not scale favorably. As an example, the 6
ports model synthesis required almost 23 GB of RAM, while the implementation
of the proposed algorithm can run on a standard 16 GB RAM laptop.

4.7 Adaptive stability enforcement

Let us now review the problem of enforcing uniform stability introduced
in Section 4.1. Based on [4], we showed that the positive realness of the
model denominator is a sufficient condition to guarantee uniform stability.
We concluded Section 4.1 arguing that an appropriate selection of frequency-
parameter locations where to enforce stability constraints is fundamental to
practically employ this technique.

However, we now understand that requiring the denominator to be a pos-
itive real function is equivalent to asking for its passivity, when interpreted
as an immittance one-port system. The presented adaptive passivity veri-
fication algorithm can thus be directly applied to efficiently search for the
frequency-parameter locations where the denominator in not passive, thus not
PR. Assuming to be at the ν-th PSK iteration, we can therefore set up an
adaptive stability enforcement algorithm as:

1. we extract the denominator Dν−1(s,ϑ) associated to the model Hν−1(s,ϑ)
evaluated at the previous iteration ν − 1;
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Fig. 4.19 Comparison of the proposed technique (blue bars) with respect to [86]
(orange bars). Top panel: modeling errors; bottom panel: CPU runtimes.
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Fig. 4.20 Adaptive sampling of a 2D parameter space at two successive PSK iterations.
Red and green dots denote, respectively, locally unstable and stable parameter
combinations. Left panel: residual local unstable parameter combinations are present
during iteration. Right panel: uniformly stable macromodel obtained by adding
uniform stability constraints at locally unstable parameter points.

2. assuming Dν−1(s,ϑ) to be an immittance one-port system, we perform
the adaptive passivity check to gather the locations (jωq,ϑq) ∈ Aν where
Dν−1(s,ϑ) is not passive, i.e., not PR;

3. based on the set Aν , we build the PR-ness constraints (4.4) and obtain the
current denominator Dν(s,ϑ) solving the constrained PSK problem (4.5).

This procedure has been first introduced in [4] in case of a single independent
parameter; in [89] the presented adaptive passivity verification algorithm has
been employed to extend the applicability of this method to higher dimensional
spaces.

Figure 4.20 reports the results of the proposed adaptive sampling method
applied to enforcing uniform stability to the 2-parameters transmission line
network model of Section 4.5.3: the left panel shows localized residual (possibly)
unstable regions (red dots) while, on the right panel, we show the results
obtained by enforcing the uniform stability constraints in correspondence to
locally not PR parameter locations. The absence of residual not PR regions
demonstrate the capability of this approach to synthesize uniformly stable
models.
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Although the use of the adaptive sampling scheme dramatically reduces the
computational effort required to formulate the stability constraints (with respect
to a fine gridding), we must be aware of its limitations (see Section 4.6), that
make it not adequate in case of medium to large parameter spaces. This problem
will be addressed in Chapter 5, Section 5.2 where, under some conditions on the
parameter basis functions, we will introduce a stability enforcement strategy
whose complexity is independent on the number of parameters.

Robust stability enforcement

The above procedure has proved its effectiveness in many documented test-
cases [4, 90]. However, we should keep in mind that uniform stability is enforced
only in correspondence to the selected frequency parameter locations (jωq,ϑq),
and nothing prevents the current denominator estimate Dν(s,ϑ) to become
negative at different parameter locations at the subsequent iteration. An
example of this occurrence is reported in the left column of Figure 4.21, that
illustrates the stability violation locations on the parameter space for three
successive fitting iterations for the case study of a parameterized H-antenna we
originally presented in [91] (full details can be found in [44]). A red to black
relative color scale is used to represent the extent of each local violation (in
terms of minimum real part of the model denominator). It can be noted that,
despite the constraints (4.4) are enforced at each of the highlighted points, new
violations reappear at the same locations at subsequent iterations.

Such a circumstance may dramatically impair the PSK scheme convergence,
in which case we expect that the coefficient update dν

n,ℓ vanishes through
subsequent iterations, as

dν
n,ℓ =

∣∣∣rν
n,ℓ − rν−1

n,ℓ

∣∣∣ ν→∞−−−→ 0 ∀n, ∀ℓ. (4.39)

The unpredictable re-appearance of previously compensated violation may
cause the denominator estimates rν

n,ℓ to undergo erratic behaviors through the
PSK iterations, which never converge as required by (4.39). In this regard, we
report in Figure 4.22 the results associated with the same H-antenna example
of Figure 4.21; despite the model responses, (mid-left panel of Fig. 4.22) are
accurate, the top-left panel highlights that the denominator estimates never
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Iteration 1

Iteration 2

Iteration 3

Fig. 4.21 Location in the parameter space Θ of stability constraints for three suc-
cessive fitting iterations. Left column: standard approach of [90] with independent
stability constraints at each iteration. Right column: proposed robust approach,
with constraints accumulation through iterations (violation extent is represented
with a red-to-black color scale, with transparent dots representing the constraints at
previous iterations). From [91] © 2019 IEEE
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stabilize leading, in turn, to positive instances of the parameterized model poles
(bottom-left panel).

We tackled this problem in [91] where, inspired by the robust passivity en-
forcement implementation [92], we introduced a robust version of the stability
preserving PSK iteration. The direct implementation of the approach [92],
would require to aggregate predicted constraints in order to prevent the re-
appearance of PR-ness violations. However, such a look ahead scheme necessi-
tates of (possibly very expensive) additional PSK iterations, only devoted to
predict the future constraints’ locations.

In [91] we proposed, instead, a more efficient look behind robust iteration.
Assuming to be at the ν-th PSK iteration, the stability constraints are built
over the aggregated set of previous violation locations, as

ℜ{Dν(jω,ϑ)} > γ, ∀(jωq,ϑq) ∈ ∪ν−1
i=1 Ai, (4.40)

The results of the proposed robust iteration are illustrated in the right
column of Figure 4.21, where each panel shows the accumulated constraints from
the previous iterations using transparent dots. This example provides a clear
illustration that, from a geometrical standpoint, aggregating the constraints is
equivalent to narrowing the feasible set of the optimization problem, that is
constructed as the intersection of the feasible sets corresponding to the previous
iterations.

In Figure 4.22 we show that, using the aggregate set of constraints, the
denominator coefficient estimates converge monotonically (top panel), the
model accuracy is not compromised with respect to the standard approach
(middle panel), and the parameterized poles are uniformly confined in the
left-half complex plane (bottom panel).
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Fig. 4.22 Macromodeling results using standard PSK iteration (left panels) and
proposed look-behind robust iterations (right panels) applied to an H-shaped antenna.
Top panels: evolution of coefficient updates through iterations. Middle panels:
selected model responses for few parameter configurations, compared with raw data.
Bottom panels: parameterized model poles. From [91] © 2019 IEEE



Chapter 5

Towards High-dimensional
parameterized macromodeling

In the last few decades, high-dimensionality problems have been unceasingly
gaining more importance, mainly for their relevance in practical applications.
High-dimensionality problems are typical of many scientific fields, ranging from
applied mathematics and different areas of science (modeling of scattered data
and solutions of partial differential equations) to, for instance, mathematical
finance, computer graphics and learning theory [93].

In our context, the availability of high-dimensional macromodels that depend
on several independent parameters would be highly beneficial, especially for
the designers, who can exploit these models for simplified and more efficient
design centering, optimization and sensitivity analyses.

It has been already noted that the complexity of the PSK parameterized
macromodel as defined in Chapter 2, Section 2.3.3, does not scale favorably
in case of a large number of parameters. Taking inspiration from the vast
literature concerning the multi-variate approximation theory, in this chapter
we are going to introduce a novel parameterized macromodel structure that
allows a much better scaling in higher dimensional settings.
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5.1 Radial Basis Functions approximation

5.1.1 Scattered data approximation

Let us take a step back to review the problem of scattered data interpolation.
Assume that we are given with scattered instances s̆(xi), i = 1, . . . , N of an
unknown (smooth) function s̆(x) : Θ ⊆ Rρ → R, ρ ≫ 1, that we want to recon-
struct up to some prescribed accuracy. The solution to such an approximation
problem belongs to the class of mesh-free or unstructured methods. Briefly
speaking, a mesh-free approximation technique does not require the data to be
arranged according to a predefined “rigid” structure (e.g., Cartesian lattice).
These techniques have been designed to guarantee an improved versatility that
enables to easily solve high-dimensional problems, for which no a-priori data
distributions are given.

In this regard, the main feature that makes mesh-free approximations so
interesting, is that their complexity does not depend on the space dimension
ρ, but only on the smoothness of the function s̆(x) [93–96]. More in details,
given the target function instances s̆(xi) evaluated in correspondence of data
sites xi, we set up the approximation s(x) ≈ s̆(x), as

s(x) =
ℓ̄∑

ℓ=1
αℓΦℓ(x) (5.1)

where αℓ are expansion coefficients (to be estimated) and Φℓ : Rρ → R are
some basis functions in charge of mapping the ρ-dimensional domain to the
scalar image of the approximation. The unknown expansion coefficients αℓ

are computed enforcing the accuracy of the model s(x) on the data samples
s̆(x); this translates in the solution of a linear system Φa = s̆ (or least squares
problem Φa ≈ s̆) where [Φ]i,ℓ = Φℓ(xi), aℓ = αℓ and s̆i = s̆(xi).

5.1.2 Radial Basis Functions

In order to obtain the desired results, both in terms of accuracy and scalability,
an appropriate choice of the basis functions Φ is fundamental. In literature, it is
common to set Φℓ(x) as Radial Basis Functions (RBFs), initially introduced by
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R.L. Hardy in [97], which have proven to be extremely powerful. Following the
definition provided in [93], they are defined as the composition of a univariate
scalar function ϕ(∥x − xℓ∥) that depends on the norm (usually Euclidean) of
the input variable x, as

Φℓ(x) = Φ(x − xℓ) = ϕ(∥x − xℓ∥) (5.2)

The input variable x thus appears inside a suitable norm operator, that
translates the multi-variate input into a scalar variable This is the reason
behind the excellent scalability properties of the RBFs: independently of the
dimension ρ of the input space Θ, the radial basis function always “processes”
nothing more than a scalar variable.

Following definition (5.2), the RBFs are defined upon the hyper-parameter
xℓ. Although it may have several geometrical interpretations, we will refer to
xℓ as the center of the radial basis function. These basis functions are termed
radial in the sense that ϕ(∥x − xℓ∥) = ϕ(r), where r can be though as the
“radius” of the basis function, as it attains the same value at a distance r from
its symmetry center xℓ. See Figure 5.1 for a graphical illustration. In these
terms, the functional form of the approximation (5.1) can be interpreted as a
weighted sum of shifted and scaled radial basis functions.

Remark 13. The Radial Basis Functions we will use throughout this chap-
ter have strong connections with other mathematical fields. For instance, in
functional analysis they serve as kernels of integral operators. In the machine
learning community (especially in case of Support Vector Machines) it is com-
mon to use RBF as “kernels” to map the input space to the feature space. For
these reasons, in literature it is common to interchangeably use the terms kernel
and Radial Basis Functions.

5.1.3 Mairhuber-Curtis Theorem

Although slightly outside the scope of this work, we deem useful to provide
additional details about mesh-free methods in scattered data interpolation. In
particular, studying the interpolation problem Φa = s̆, it is possible to prove
that we can guarantee the existence and uniqueness of the solution a only if
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we employ unstructured methods [93, 95]. The Reader who is not interested
can skip this part without loss of continuity.

In details, it is known that a solution a exists and is unique if and only if
Φ is invertible, i.e., det{Φ} ̸= 0. This condition always holds in the univariate
setting, in which one can fix in advance a basis function (such as a degree N − 1
polynomial) to exactly interpolate N distinct (real-valued) data points. In
the multivariate setting, however, the Mairhuber-Curtis theorem shows that
we can not draw similar conclusions. Before presenting the theorem, let us
introduce the following definition

Definition 6 (Haar space). Let us assume that Θ ⊆ Rρ contains at least ℓ̄
points. In addition, let us define B ⊆ C(Θ), with C(Θ) the space continuous
functions on Θ, as a ℓ̄-dimensional linear space with basis {Φ1(x), . . . ,Φℓ̄(x)}.
Then, B is a ℓ̄-dimensional ’Haar’ space on Θ if

det (Φ) ̸= 0 (5.3)

for any distinct x1, . . . ,xℓ̄ ∈ Θ.

The existence of a Haar space on Θ guarantees the invertibility of the system
matrix Φ. We have the following result (which we report verbatim from [95])

Theorem 4 (Mairhuber-Curtis). Suppose that Θ ⊆ Rρ, ρ ≥ 2, contains an
interior point. Then there exists no Haar space on Θ of dimension ℓ̄ ≥ 2

Theorem 4 states that, if we define in advance a set of basis functions
{Φ1(x), . . . ,Φℓ̄(x)} that build Φ, we can not guarantee its invertibility, thus
the existence of a multi-dimensional interpolant of the form 5.1. As an example,
multi-variate polynomials can not construct Haar spaces, thus can not be used
to interpolate data that are arbitrarily scattered on Θ (see [95] for details).

Therefore, the Mairhuber-Curtis Theorem states that a multi-dimensional
interpolation problem should not rely on fixed basis functions Φℓ(x); instead,
they must be data-dependent, so that an invertible system matrix Φ can be
constructed, independently on the data locations. In this view, the mesh-free
methods can be considered the natural framework for multi-variate interpolation
problems.
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Fig. 5.1 Three radial basis functions tested in this work, depicted in a 2D domain.
From left to right: Gaussian RBF, inverse multiquadric RBF, multiquadric RBF.
From [101] © 2020 IEEE

5.1.4 RBF taxonomy

In the literature, it is common to subdivide the radial basis functions in two
main categories: infinitely smooth and compactly supported RBFs. The latter
have been originally proposed in [98–100] with the purpose of constructing
sparse RBF interpolation matrices. Since we do not require any sparsity in our
problems, we will employ infinitely smooth RBFs. The most notable are:

• Gaussian: Φε
ℓ(x) := e−ε2∥x−xℓ∥2

• Multiquadric: Φε
ℓ(x) =

√
ε2 + ∥x − xℓ∥2

• Inverse multiquadric: Φε
ℓ(x) = 1√

ε2+∥x−xℓ∥2

Other notable RBFs are, for instance: inverse quadric, thin plate spline and
Matern kernels. See [94] for more details.

In Section 5.1.4 we will analyze the former three, when used to embed the
parameter variability in frequency-domain parameterized macromodels; we
provide a graphical representation of these RBFs in Figure 5.1. All three of
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Gaussian Multiquadric Inverse multiquadric

Fig. 5.2 In the three panels, we illustrate the effect that variations of the shape
parameter have on the three considered RBFs. For ease of representation, we represent
the RBFs evaluated along a one one-dimensional cut of the parameter space.

these functions are positive over their domain; in Section 5.2, we will exploit this
property to show that, when used as parameter basis functions, it is possible
to guarantee the model uniform stability through a finite set of constraints
formulated on the model coefficients.

We highlight that most of the RBFs are defined upon a hyper-parameter
ε, commonly known as shape parameter or form factor, that determines their
“shape”; in particular, this parameter selects the “width” or “size” of the RBFs,
that become narrower or flatter depending on its value. Figure 5.2 shows how
variations of the RBFs’ form factor affect their shape.

In order to obtain the desired approximation accuracy, this parameter must
be optimized depending on the problem at hand; unfortunately, the problem
of choosing the optimal value is strongly non-convex and, to the best of the
Author’s knowledge, all the available methods are based on heuristic rules and
do not provide guarantees of optimality.

We can thus conclude that most common radial basis functions are fully
defined up to the selection of two hyper-parameters: the RBFs’ centers xℓ and
the shape parameter ε. The selection of sub-optimal hyper-parameters will be
subject of the investigations of Chapter 6.

5.2 High-dimensional macromodeling

Planning to use a mesh-free (unstructured) approach to embed several pa-
rameters in our parameterized macromodels is in fact quite straightforward.
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Recalling the polynomial-based PSK model structure (2.63), we embed the
parameter variability in the model by setting the RBFs as parameter basis
functions, i.e.,

ξε
ℓ (ϑ) = Φε

ℓ(ϑ) (5.4)

which leads to the following high-dimensional PSK model structure

H(s; ϑ) = N(s; ϑ)
D(s; ϑ) =

∑n̄
n=0

∑ℓ̄N
ℓ=1 Rn,ℓ ξ

ε
ℓ (ϑ)φn(s)∑n̄

n=0
∑ℓ̄D

ℓ=1 rn,ℓ ξε
ℓ (ϑ)φn(s)

. (5.5)

It should be noted that, although Equations (2.63) and (5.5) seem identical,
the latter is independent of the dimension ρ of the embedding space Θ. Indeed,
in the standard model form (2.63) the strong dependence on the number of
parameters is hidden in the definitions of sets IN and ID, whose cardinality
grows exponentially as ρ increases. Conversely, in Equation (5.5), the number
of basis functions ℓ̄N , ℓ̄D depend solely on the smoothness of the parametric
variability and not on number of parameters. In the following, we will often
refer to ℓ̄N and ℓ̄D as parametric order.

High-dimensional model identification

Although the high-dimensional model form (5.5) slightly differs from the stan-
dard (2.63), the PSK iteration can be still adopted to identify the unknown
coefficients. We therefore iteratively solve the linearized least-square problem
∥Ψνcν∥2 ≈ 0 over the mt elements of the training set T , as in Section 2.3.3.

In this regard, we deem useful to briefly recall that the iteration dependent
regressor Ψν is defined as

Ψν =


Γν Ξν

(1,1)
. . . ...

Γν Ξν
(P,P )

 (5.6)

For further use, we redefine Ψν as a function of the shape parameter, as Ψν(ε).
The dependence upon ε is inherited by its building blocks Γν = Γν(ε) and
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Ξν
i,j = Ξν

i,j(ε) that, following (2.69), are defined as

Γν(ε) = Wν−1XN(ε), (5.7a)
Ξν

(i,j)(ε) = −Wν−1H̆(i,j)XD(ε). (5.7b)

In turn, matrices XN,D(ε) inherit the dependence on the shape parameter by
the kernel matrices1 KN,D(ε), as

XN,D(ε) = Φ ⊗ KN,D(ε) (5.8)

where Φ collects the evaluated partial fraction basis as in (2.28) and KN,D(ε)
is defined as

KN,D(ε) =


ξε

1(ϑ1) · · · ξε
ℓ̄
(ϑ1)

... ...
ξε

1(ϑm̄t) · · · ξε
ℓ̄
(ϑm̄t)

 (5.9)

We assume that the RBFs ξε
ℓ (ϑ) used to construct matrices KN(ε) and

KD(ε) are centered in correspondence of parameter values ϑ̊ℓ, collected in set
CN and CD, respectively. In addition, we also assume that the RBFs are always
positioned in correspondence to a subset of the available training samples, thus
CN , CD ⊆ T .

We conclude highlighting that the proposed high-dimensional version of
the PSK can be naturally cast in the more efficient Fast-PSK, introduced in
Section 2.3.3. For more details see [103].

5.2.1 Enforcing uniform stability

In Chapter 4, Sec. 4.7, we discussed the problem of enforcing uniform stability
on parameterized models, i.e., guaranteeing that the parameterized model poles
have a uniformly negative real part, ∀ϑ ∈ Θ.

We already pointed out that directly operating on the model poles in the
optimization step is not possible, and that it is preferable to pursue an indirect
approach. In details, reporting the results of [4], we demonstrated that a

1In the context of kernel-based approximation, this matrix is also known as Gram
matrix [102].
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sufficient condition for uniform stability is the positive realness of the model
denominator, which can be easily enforced in the fitting step.

However, to guarantee the positive realness of the denominator, we need
to formulate local positivity constraints in correspondence to the frequency-
parameter combinations where the denominator response is negative real, thus
discretizing a continuous (possibly high-dimensional) space. This procedure
inevitably suffers from the curse of dimensionality and can not be practically
employed in our high-dimensional case.

In this regard, one of the main results of this work is indeed the formulation of
uniform stability constraints that are independent of the number of parameters.
The key enabling factor to overcome the curse of dimensionality is to formulate
stability constraints that are based on the model structure, rather than upon the
denominator’s responses. As we preliminarily introduced in [104], then formally
shown in [101], this is possible thanks to the use of positive semi-definite
parameter basis functions

ξε
ℓ (ϑ) ≥ 0, ∀ϑ (5.10)

as the three RBFs that we have taken in consideration. Under this assumption, it
is possible to formulate a set of stability constraints directly on the denominator
coefficients. Assuming rn,ℓ and r′

n,ℓ + jr′′
n,ℓ to be the coefficients associated,

respectively, to the real qn and complex conjugate αn ± jβn stable poles, we
have the following result , whose proof is available in Appendix A

Theorem 5. Let H(s,ϑ) be defined as in (5.5). Assuming that the parameter
basis functions are positive semi-definite and that the basis poles qn of the partial
fractions φn(s) are asymptotically stable, if the following conditions holdrn,ℓ > 0

−αn · r′
n,ℓ ± βn · r′′

n,ℓ > 0
(5.11)

the model H(s,ϑ) is uniformly stable over Rρ.

In case strict positivity is required, we can impose the more stringent
condition rn,ℓ > γr

−αn · r′
n,ℓ ± βn · r′′

n,ℓ > γc

, with γr, γc > 0 (5.12)
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which is numerically preferable.

The use of these constraints is better suited in the high-dimensional setting,
since:

• it does not require to sample the frequency-parameters space, and

• the total number of constraints is defined a-priori by the selected model
structure, and it is equal to ℓ̄D(1 + n̄r + 2n̄c).

We remark that the use of the above stability constraints is not restricted to
the case of RBFs, as any positive semi-definite (structured or unstructured)
parameter basis function can benefit from these new constraints.

As an example, we report the case study we presented in [101] built around
the use of Bernstein polynomials as parametric basis; these polynomials, used
in several application fields [105, 106], have been originally proposed in [107].
Given a maximum degree ℓ̄, the ℓ-th order Bernstein polynomial bℓ,ℓ̄, with ℓ ≤ ℓ̄

is defined in the normalized domain x ∈ [0, 1] as

bℓ,ℓ̄(x) =
(
ℓ̄

ℓ

)
xℓ(1 − x)ℓ̄−ℓ, ℓ = 0, . . . , ℓ̄. (5.13)

In our setting, polynomials expressed in the Bernstein basis are particularly
attractive since they are uniformly positive in the domain [0, 1] and enable the
use of constraints (5.12). We can thus define the multi-variate Bernstein basis
function as

ξℓ(ϑ) =
ρ∏

i=1
ξℓi

(ϑi), ξℓi
(ϑi) = bℓi,ℓ̄i

(ϑi) (5.14)

5.2.2 Discussion

The introduction of the novel stability constraints (5.12), whose construction
does not require any prior sampling of the parameter space, enables a dramatic
reduction in the computational effort required to enforce uniform stability. In
addition, if used simultaneously with positive semi-definite radial basis functions
allow the generation of guaranteed stable high-dimensional parameterized
macromodels. Numerical results in support of these statements are available in
Section 5.3.
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The only drawback of the proposed strategy is that constraints (5.12) are
only sufficient conditions for the denominator’s positive realness, which add
another layer of conservativity to the method. With respect to the sampling-
based approach, we therefore expect a deterioration of the final model-data
accuracy, which we can not quantify a-priori. This problem will be analyzed
in the following section, where we will compare the Chebychev and Bernstein
polynomial bases applying, respectively, the standard and the new set of
constraints.

5.3 High-dimensional modeling – experiments

In this section, we will go through an experimental campaign aimed at assessing
the performances of the proposed RBF modeling approach. In addition, we will
compare the novel stability constraints (5.11) and (5.12) with the sampling-
based approach.

5.3.1 Extensive performance comparison

Before testing the RBFs on high-dimensional examples, we report the results
of an extensive testing campaign, originally presented in [101], aimed at

• comparing the modeling performances of the different parameterization
schemes (both structured and unstructured), and

• demonstrate the advantages of using positive definite basis functions
together with the proposed stability constraints (5.11) and (5.12).

In this regard, we considered a suite of 10 different benchmarks. All the con-
sidered devices are listed in Table 5.1, together with the associated parameters,
their variation ranges and relevant literature references where additional details
can be found. Structures 1 − 5 depend on ρ = 2 independent parameters, while
structures 6 − 10 depends on ρ = 3 parameters. Among all the test-cases, we
include both active devices, linearized around their operating point for small
signal analysis, (structures 1 − 5) and passive interconnects (structures 6 − 10).
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Despite the high-dimensional capabilities of the radial basis functions,
we limit to three the number of parameters allowing the comparison with
pre-existing approaches based upon multi-variate combinations of univariate
polynomials (Chebychev, in our case) that are considered as reference.

For each structure in Table 5.1, we synthesized a uniformly stable macro-
model according to the following parameterization schemes

• Structured

1. multivariate Chebychev polynomials, for which uniform stability
has been enforced according to the adaptive sampling scheme of
Section 4.7 [4].

2. multivariate Bernstein polynomial, defined in (5.14), where stability
has been enforced with the constraints (5.12)

• Unstructured

1. Gaussian RBF,

2. Multiquadric RBF,

3. Inverse multiquadric RBF.

For all the unstructured bases, uniform stability is enforced by exploiting the
constraints (5.12).

In order to evaluate the extent of conservativity losses induced by con-
straints (5.12) with respect to the “sampling based” approach, we decided to
provide a comparison with the Bernstein structured basis. This comparison
is meaningful since, for a fixed maximum expansion degree, the polynomial
approximation space is invariant with respect to change of basis. Thus, neglect-
ing minor deviations induced by the different conditioning of the optimization
problem (which are irrelevant for our purposes), the only measurable differ-
ence in model accuracy with respect to the reference is due to the different
conservativity levels induced by the stability enforcement procedure.

In our comparative test, we evaluate the quality of the observed macromod-
eling techniques by means of the following metrics :



126 Towards High-dimensional parameterized macromodeling

Table 5.1 Benchmark suite used for the comparative study of different parameteriza-
tion schemes. For each test case 1–10 the table reports dataset information as: the
number of parameters ρ, the total number of frequency samples k̄ for each of the m̄
available parametric responses, and details on structure type, individual parameters
with their range, and references for additional info.

# ρ k̄ m̄ Type Parameters Range
1 2 273 341 Buffer [108] Bias voltage (V) [0.5, 1.5]

Temperature (◦C) [20, 50]
2 2 293 231 Buffer [108] Bias voltage (V) [0.5, 1.5]

Temperature (◦C) [20, 40]
3 2 213 119 LNA [108] Bias voltage (V) [0.9, 1.2]

Temperature (◦C) [−30, 130]
4 2 235 35 LNA [108] Bias voltage (V) [0.9, 1.2]

Input Voltage (V) [0.4, 0.6]
5 2 210 231 OpAmp [109] Bias voltage (V) [1.1, 1.3]

Gain [1.01, 2]
6 3 831 935 OpAmp [109] Bias voltage (V) [1.1, 1.3]

Temperature (◦C) [−30, 130]
Gain [1.01, 2]

7 3 901 300 TL network [110] Inductance (nH) [4.5, 5.5]
Inductance (nH) [9, 11]
Capacitance (pF) [0.9, 1.1]

8 3 901 300 TL network [110] Inductance (nH) [9, 11]
Capacitance (pF) [0.45, 0.55]
Resistance (Ω) [45, 55]

9 3 901 300 TL network [110] Inductance (nH) [9, 11]
Resistance (Ω) [45, 55]
Conductor width (µm) [90, 210]

10 3 2000 216 TL filter [82] Stub length (mm) [6, 7]
Line length (mm) [9, 10]
Load Γ [0.1, 0.5]
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• Extraction Runtime: the CPU time required to iteratively solve the PSK
optimization problem, subject to the case-specific stability constraints. In
order to ensure the comparison to be meaningful, we forced the number
of PSK iterations to 10, which turned out to be sufficient to reach
convergence in all the considered test-cases.

• Model Complexity: measures the complexity of the parameterized models
based on the total number of free coefficients that are optimized during
the model synthesis step.

• Model Accuracy: evaluates the model-data accuracy in terms of the RMS
absolute error.

In order to better characterize the considered modeling strategies, we carried
out two different experiments:

1. First, we derived a set of models by fixing the same complexity with the aim
of comparing the attainable accuracy using the different parameterization
strategies, together with the associated uniform stability constraints.

2. A second experiment has been performed, instead, by setting a fixed
target model-data error δ = 10−2, that we consider to be an acceptable
engineering accuracy for reduced macromodels. Hence, differently from
the first experiment, the model accuracy has been finely tuned to reach
the prescribed precision.

Following our work [101], the results of this section are obtained without
resorting to advanced techniques to optimize the hyper-parameters of the RBFs.
The number of RBFs has been selected by hand and their centers are located
in correspondence to a random subset of the training data samples; the shape
parameter ε is instead selected with a simple grid search.

The proposed results will show that, even with such a naive approach, the
model-data accuracy is excellent.

Remark 14. The shape parameter optimization step is extremely demanding,
as it requires the repeated extraction of macromodels for several values of ε;
the time required for the optimization of the shape parameter is not considered
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in the Extraction Runtime metric. In Chapter 6 we are going to introduce
optimized techniques that dramatically reduce the computational effort required
to determine an optimal shape parameter.

First experiment: fixed model complexity

The results of the first experiment are shown in panels a) and c) of Figure 5.3,
for the two and three parameter cases, respectively. The complexity has been
determined so that all the parameterization schemes could attain an acceptable
accuracy; only three structures (3,9,10) resulted in slightly larger errors with
multiquadric and inverse multiquadric RBFs.

First, let us compare the Chebychev and Bernstein polynomial bases. As
expected, the use of Chebychev basis provides the most accurate models (see
subpanels a.1 and c.1 of Figure 5.3), due to the reduced conservativity of the
stability constraints based on adaptive samplings. On the other hand, this
increased accuracy comes at the cost of an increased extraction runtime (mostly
employed to adaptively determine the constraints locations), which becomes
impractical for the three-dimensional test-cases, as evident in subpanel c.3. In
this latter case, the speed-up is almost 100× for all the considered examples.

Considering now the RBFs parameterizations, we notice that the multi-
quadric basis performs worst, while the Gaussian and the inverse multiquadric
are almost comparable. Compared, instead, with the polynomial bases, we
notice the expected degradation with respect to Chebychev parameterization,
but even with respect to the Bernstein basis with which shares the stability
constraints. This may be the result of non-optimal estimates of the hyper-
parameters; however, the accuracies are still acceptable.

In regard to the computational aspect, the extraction runtime of the RBF
models is almost equal to the Bernstein case since, for any number of model
coefficients, the complexity of the associated optimization problem is identical.

To summarize:

• The novel stability constraints (5.11) introduce a degradation on the
model accuracy. However, the model-data accuracy is still acceptable for
engineering purposes.
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• The accuracy of the RBF models is, in general, worse than its counterpart
based on Bernstein polynomials.

• The use of the new constraints (5.11) provides a significant speed-up
(approximately, 100× for the 3-D models) with respect to the “standard”
sampling based approach.

Second experiment: fixed model accuracy

We now compare the modeling results at a fixed target model-data accuracy,
which is set to δ = 10−2 in terms of RMS worst-case absolute error. The model
parametric orders are tuned accordingly.

Also this second set of experiments confirm that using positive semi-definite
basis the extraction runtimes are dramatically reduced if compared with Cheby-
chev polynomials (see subpanels b.3 and d.3 of Figure 5.3). In addition, it
is possible to appreciate the high-dimensional approximation capabilities of
the RBFs by looking at subpanels b.2 and especially d.2, where it is evident
the reduced complexity of the RBF models with respect to Chebychev and
Bernstein parameterizations. Here, the improvement is still moderate due to
the small ρ; see the next Section for high-dimensional examples where the RBF
parameterization proves to be the only viable choice.

5.3.2 Scalability comparison

This second experimental campaign aims at showing the limits of “classi-
cal” approaches based on multi-variate combinations of polynomials in high-
dimensional setting and, at the same time, demonstrating the excellent scala-
bility properties of the RBFs.

We perform a comparative study considering lumped-distributed active
circuit blocks. In particular, we consider a Low Noise Amplifier (LNA) shown
in Figure 5.4 originally presented in [111], and we are interested to derive a
linearized parameterized macromodel that reproduces the (linearized) small-
signal input/output behavior at the ports “RF in” and “RF out”. The structure
is parameterized by ten independent parameters (see Table 5.2 for the complete
list): six are associated to lumped components (parasitic series inductances and
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Fig. 5.3 Performance comparison of different parameterizations for ten benchmark
structures: cases 1–5 (panels a, b) with ρ = 2 parameters, and 6–10 (panels c, d)
with ρ = 3 parameters. Subpanels (a.i) and (c.i) for i = 1, 2, 3 compare performance
in terms of model accuracy, complexity, and runtime with a fixed total number of
model coefficients for each individual example. Subpanels (b.i) and (d.i) show results
obtained by tuning model complexity so that a prescribed model accuracy is attained.
From [101] © 2020 IEEE
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Fig. 5.4 A Low Noise Amplifier circuit [111]. From [101] © 2020 IEEE

shunt capacitances of the BJT), while the other four are geometrical properties
of the transmission lines.

Table 5.2 LNA parameters. First six parameters: parasitic inductances and capaci-
tances of the transistor. The remaining parameters are substrate thickness, conductor
thickness, conductor width for lines TL1, TL2, TL3 and conductor width for line
TL4.

# Parameter ϑi ϑi
min ϑi

max
1 Lb (nH) 0.88 1.32
2 Lc (nH) 0.88 1.32
3 Le (nH) 0.20 0.30
4 Ccb (pF) 0.0016 0.0024
5 Cbe (pF) 0.064 0.096
6 Cce (pF) 0.064 0.096
7 h (mm) 0.45 0.55
8 tk (µm) 1.8 2.2
9 w1,2,3 (mm) 0.225 0.275
10 w4 (mm) 0.72 0.88

Adding one parameter at a time from ρ = 1 to ρ = 10 from the one
listed in Table 5.2, we compute a set of Mρ = 200 ρ parameterized scattering
responses through repeated HSPICE [112] runs. The Mρ parametric samples
are distributed on Θ according to a Latin Hypercube distribution [113], that
uniformly fills the available space, which makes it an excellent choice for our
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purposes. Note that a uniform Cartesian sampling of high dimensional spaces
would have resulted in an exponentially increasing number of responses, which
of course is impractical.

For each of these ten (increasingly larger) dataset, we construct a uni-
formly stable model using both the polynomial Bernstein and the unstructured
Gaussian bases. The rationale behind this choice is twofold:

1. we need to compare parameterizations for which the uniform stability
constraints (5.12) are applicable, and

2. among the considered RBFs, the Gaussian appeared to provide the best
performances according to the results of the previous comparative test.

All the models were built with a number of poles n̄ = 16 and their complexity
has been tuned to reach the prescribed RMS absolute error of δ = 0.01.

In Figure 5.5 we report the results of the comparative test. As already
highlighted in the comparative test, the unstructured RBF models suffer from
a slight accuracy degradation, although the attained accuracy is higher than
the considered threshold δ = 0.01.

Considering the scalability properties, using the Bernstein polynomial basis,
we are allowed to generate macromodels up to ρ = 6, due to an exponentially
growing complexity that limits the applicability to larger parameter spaces.
Conversely, in this high-dimensional setting, the superiority of the Gaussian
RBF parameterization is evident from the bottom panel of Figure 5.5, which
demonstrates a controlled growth of the model complexity as ρ increases. This
proves that a mesh-free (positive semi-definite) RBF approach is ideal to
synthesize guaranteed stable high-dimensional models.

In this regard, we go through the modeling steps for the largest 10-
dimensional LNA amplifier. Based on the aforementioned rules, the available
dataset is composed of m̄ = 2000 parametric frequency responses (distributed
according to a Latin Hypercube sampling), each made of k̄ = 701 linearly
spaced samples in the range 1 − 10 GHz. We remark that, among the 2000
available samples, only m̄t = 160 were exploited to train the model, while the
other were left for validation purposes. For such a high-dimensional model-
ing task, only RBF-based parameterization are viable solutions to obtain a
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Fig. 5.5 Model accuracy and complexity of the LNA example obtained using Bernstein
polynomials and Gaussian RBFs, for increasing parameter space dimension ρ.

uniformly stable macromodel. The documented results refer to the Gaussian
RBF.

Following a grid search optimization, a sub-optimal shape parameter value
has been found equal to ε = 0.03. The parameterized model has n̄ = 16 poles,
pre-computed (in correspondence of the centroid of the parameter space) by VF
runs in the initialization step, and the parameterization is induced by ℓ̄N = 90
and ℓ̄D = 5 Gaussian basis for numerator and denominator, respectively.

The model extraction required only 91 seconds, and its accuracy with
respect to the available validation samples is 7.72 · 10−3 (which is remarkable
given the reduced number of coefficients compared to the parameter space
dimension) that is confirmed in Fig. 5.6, that compares the model responses
over a randomly selected subset of validation samples.
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S(1,1) data
S(1,1) model

Fig. 5.6 Comparison of LNA model responses to corresponding raw validation
responses, randomly selected in the 10-dimensional parameter space. From [101]
© 2020 IEEE

5.4 Discussion

In this chapter, we introduced the topic of high-dimensional macromodeling.
We argued that a classical approach based on multi-linear combinations of
univariate polynomials is not feasible in case the number of parameters exceeds
few units.

We addressed this problem following a mesh-free/unstructured approach
that, as pointed out in the introductory section, is the only feasible way to
address high-dimensional problems. In particular, we adopted Radial Basis
Functions, and we performed a thorough comparison over several test cases

One of the most compelling results of this chapter is the formulation of
uniform stability constraints that, at the cost of a slightly increased conser-
vativity, allow the construction of guaranteed stable parameterized models,
independently of the number of parameters. This was not possible with earlier
approaches that suffer from the curse of dimensionality. We remark that even
in low-dimensional settings, the use of these novel stability constraints lead to
a major performance improvement in terms of computational efficiency.

In order to fully leverage the potential of RBFs it is required to finely tune
their hyper-parameters. Although a grid search optimization may be successful
(as demonstrated through numerical experiments), the computational effort is
excessive.
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In the following Chapter, we introduce several innovative and optimized
strategies to select sub-optimal RBFs’ hyperparameters. These will be used to
develop a fully automated high-dimensional macromodeling algorithm, which
may be considered as the main result of this work.



Chapter 6

Fully automated macromodeling

In this Chapter, we introduce several strategies for the automated selection
of RBFs’ hyper-parameters. The result is a complete set of algorithmic methods
that autonomously determine the model orders and the RBFs’ shape param-
eters. These are then used to develop a (high-dimensional) fully automated
macromodeling strategy.

6.1 Hyper-parameters optimization

The adoption of unstructured Radial Basis Functions has proven to be a
winning solution in the context of high-dimensional macromodeling. Besides
their undisputable advantages in high-dimensional settings, the success of
RBF methods strongly depends on some hyper-parameters, that encode the
“geometrical” properties of the bases. Thus, the RBF hyper-parameters must
be finely tuned to reach the desired model’s accuracy and complexity. In
Chapter 5 we voluntarily avoided discussing on the choice of hyper-parameter,
whose optimization will be covered here.

In the following, we will consider only the Gaussian RBFs that, as already
pointed out in Section 5.1.4, are defined upon two hyperparameters: location
and number of RBFs (which we collectively consider as a unique set of hyper-
parameters) and their shape parameter. In the following, we assume that the
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Fig. 6.1 Approximation results with finely tuned hyper-parameters.

shape parameter is shared among all the considered RBFs’. Studies on spatially
variable shape parameters can be found in [114, 115].

In order to illustrate the importance of an accurate selection of the hyper-
parameters, we consider a simple illustrative example. Let us assume that we
aim at approximating a univariate function s̆(x), represented with a blue solid
line in Figure 6.2, defined as

s̆(x) = x+ sin(14x)
1 + 7x (6.1)

in the domain x ∈ [0, 1]. Based on a set of 100 linearly spaced instances of
s̆(x), we first build an RBF least-squares approximation. The hyper-parameters
have been optimized with a fine grid search optimization, that resulted in 10
RBFs (represented with black dashed lines in Figure 6.2) uniformly spaced in
the [0, 1] domain and with a near-optimal1 shape parameter ε ≈ 2. As depicted
in Figure 6.1, the resulting RBF approximation (red-dashed line) perfectly fits
the data.

Then, starting from these near-optimal hyper-parameter estimates, we pur-
posely change their values to better understand the effect on the approximation
quality. In the left panel, we modify only the shape parameter while, on the
right panel, we freeze the shape parameter and modify both the location and
the number of RBFs. Let us analyze these results separately.

1We can not claim optimality, since our hyper-parameter optimization is based on a finite
set of candidate configurations.
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Fig. 6.2 Comparing the effect of the hyper-parameters on RBF approximation
accuracy. Left panel: the number of RBF and their centers are optimized, while the
shape parameter is too large; right panel: the shape parameter is optimized, while
the distribution and the number of RBF is modified (see text).

• Changing the shape parameter: In this example, we increased ε up to 10,
which caused the RBFs to narrow around their centers. This led to a major
degradation of the approximation, that now exhibits a more “oscillatory”
behavior induced by the narrower basis functions. We can conclude
that, if the shape parameter exceeds a predefined (case-dependent) value,
the approximation quality inevitably decreases. On the contrary, good
approximation properties can be obtained for small ε. We will discuss on
this subject in the dedicated Section 6.2.1.

• Changing position and number of RBFs: In this second case, we first
reduce the number of RBF to 5, then we shift their distribution to the
left-hand-side of the domain. Many numerical tests demonstrate that
the accuracy does not depend significantly on the actual selection of the
RBFs’ location, but rather is strongly conditioned by their number; we
must thus ensure a sufficient number of basis functions to properly catch
the target function variability.

On the other hand, although an excessively large number of RBFs does not
necessarily lead to an accuracy degradation (except for possible numerical
issues), it should be kept as small as possible to keep the model complexity
under control.

Except for few simple cases, the optimization of the hyper-parameters can
not be performed in a simple closed form and, in general, we must settle for
sub-optimal approximated estimates whose computation is often delegated to
black-box optimization algorithms [15]
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Tuning the RBFs’ hyper-parameters can be regarded as a supervised op-
timization problem that, based on sampled instanced of the unknown target
function, searches the most suitable hyper-parameter configuration by max-
imizing some performance metrics. Methods based on simple grid search
techniques, or more sophisticated strategies based on maximum likelihood
estimators [12, 15], Bayesian optimization and evolutionary algorithms [15] are
routinely applied [13–15].

Unfortunately, a direct application of these strategies in our framework is
not feasible, since:

• we can not be given with a unique set of sampled instances of the target
function to approximate. In fact, for each different frequency value, the
parametric dependence that we are required to approximate may undergo
significant variations (e.g., parameterized resonances).

• All the most common techniques have been proposed in the context of
linear models; instead, we are considering a rational RBF model, for
which these strategies do not directly apply. Very few results regarding
rational RBF approximation are available in literature [116, 117], but
none addresses the optimization of the shape parameter.

• The evaluation of performance metrics is based upon the repeated extrac-
tion of intermediate models that, in our setting, may require unacceptably
long runtimes; indeed, we remark that the synthesis of a parameterized
macromodel requires the iterative solution of linearly re-weighted (possibly
large) least-square problems.

We can conclude that, without an efficient scheme that allows a fast estimation of
the RBFs’ hyper-parameters, the use RBFs in high-dimensional macromodeling
remains impractical. In this Chapter we aim at presenting a comprehensive
set of techniques, originally introduced by the Author in [103, 118, 119] that
optimize the evaluation of sub-optimal hyper-parameter values. In details, we
will present a very efficient strategy for the optimization of the shape parameter
that, interestingly enough, does not require any information about the target
function. Then, we will propose two greedy approaches to select the number
and locations of the RBFs.
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Remark 15. Even though the proposed hyper-parameter optimization schemes
are presented as independent, they are in fact strongly correlated and should be
interpreted as parts of a more general optimization strategy (see Section 6.4.2).

6.2 A sub-optimal shape parameter selection
strategy

We start investigating the problem of finding a (sub)-optimal value for the
shape parameter ε. In the literature, this question has been tackled under
numerous standpoints. On one hand, the problem has been addressed following
more theoretical-grounded strategies; for instance, the results in [120] provide
meaningful approximation error bounds based on ε and on the data sample
distribution. Others, instead, target this subject following a “statistical” ap-
proach, suggesting to evaluate the shape parameter based on the optimization
of some error indicators [12]. The former, although theoretically relevant, turn
out to be of little practical use in our context. The latter, that are routinely
adopted in most of the machine learning schemes (see, for instance, [121]),
require repeated model extractions, resulting to be of very limited use in our
framework. Thus, we aim at something different.

In the following, we will introduce a heuristic strategy, first presented in [118]
then theoretically proved in [103], that estimates a “good” value of the shape
parameter based only on the spectral properties of the PSK matrices, without
the need of any information about the function to approximate.

6.2.1 Accuracy, conditioning, and shape parameter

In order to better understand which characteristics must be reflected by a
“good” estimate of the shape parameter, we investigate its connections with the
model accuracy and the condition number of the PSK matrices. In support of
the following observations, we make reference to Figure 6.3 that compares the
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Fig. 6.3 Dependence on the shape parameter ε of model-data error (top panel),
condition number of matrix Ψ(ε) (middle panel), and least singular value of matrix
Ψ(ε) (bottom panel). For all panels, three regions are highlighted: A (numerical
instabilities associated with small ε), B (acceptable model accuracy), C (loss of
approximation capabilities). Green region: candidate sub-optimal shape parameter
values. From [103] © 2021 IEEE

above variables of interest in the case of a square integrated coil, parameterized
by its side length.2 Let us analyze the two opposing asymptotic behaviors:

1. Case ε → ∞:
Based on the observations in Section 6.1, for increasing values of ε the
Gaussian RBFs progressively narrow around their centers ϑ̊ℓ. In the limit
case of ε → ∞, the RBF takes the form of a “needle”, centered in ϑ̊ℓ.
The asymptotic behavior is

ξ∞
ℓ (ϑ) =

1 if ϑ = ϑ̊ℓ

0 if ϑ ̸= ϑ̊ℓ

(6.2)

2We remark that the results are general and apply independently on the considered
test-case.
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Fig. 6.4 Comparing the approximation performances for different values of the shape
parameter. Left panel: large ε, representative of the asymptotic case ε → ∞. Right
panel: small ε, representative of the flat limit ε → 0.

A model built in correspondence to ε → ∞ exactly interpolates the data
at the RBF centers and identically vanishes elsewhere, as depicted in
the left panel of Figure 6.4. This asymptotic condition always results in
a poor modeling accuracy, since no continuous approximations can be
achieved.

This is observable in the top panel of Figure 6.3 (region C) that, in the
case of our running example, illustrates the growth of the model-data
error attained for increasingly large values of ε.

By contrast, when ε → ∞ the fitting problem is very well conditioned.
In fact, based on (6.2), under rows and columns permutations, the kernel
matrix KN,D(ε) becomes

KN,D(∞) =
Iℓ̄

0

 (6.3)

that, by definition, has the optimal condition number κK(∞) = 1.

Thus, following the definitions in Section 5.2 it is readily understood that
the good numerical properties of KN,D(∞) are inherited by the whole set
of PSK matrices. This is confirmed by the middle panel of Figure 6.3, in
region C.

2. Case ε → 0:
When ε → 0 the Gaussian RBFs increasingly flatten, becoming somehow
“insensitive” to their separating distances. In turn, the associated kernel
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matrix becomes a matrix of all ones

KN,D(0) = 1m̄×ℓ̄ (6.4)

which is singular and, thus, the approximation can not be computed
numerically. Even for small (yet not vanishing) values of ε it is common
to run into numerical issues (see Figure 6.4, right panel).

This behavior is illustrated in Figure 6.3 (middle panel, region B) where
the condition number grows exponentially for decreasing values of ε. In
addition, in correspondence to “region A” of the top panel, it is clear that
the accuracy degradation is induced by a very poor conditioning.

On the other hand, a set of remarkable results surprisingly prove that the
limit of the interpolation when ε → 0 indeed exists, and it has been proven
to coincide with the De Boor/Ron “least polynomial” interpolant [122].
Then, we expect a polynomial accuracy in the so-called RBFs’ “flat limit”,
which is particularly attractive when approximating smooth functions.

Remark 16. The well-behaved polynomial “flat limit” has encouraged fur-
ther investigations. In particular, under appropriate change of basis, the
mentioned numerical issues can be greatly alleviated, see [123] and [124]
for a review. However, better conditioned bases are always found in the
form of multi-variate polynomials, that scale badly in high-dimensional
spaces and can not be adopted in our schemes.

We highlight that, although there are proven results for the asymptotic
limit ε → 0, good approximation results are still obtained with non-
vanishing, yet small, shape parameters. This is demonstrated in the
top-panel of Figure 6.3, showing that good approximation results can be
obtained in the whole region B.

Based on the above observations, the “good” shape parameter value must
be sought as sufficiently small ε to ensure accuracy, yet sufficiently large to
prevent numerical problems. In the following, we further elaborate on the
above statements.
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6.2.2 On the numerical conditioning and accuracy

In the following, we will prove that the behavior of the condition number κΨ(ε)
illustrated in Figure 6.3 is typical for Gaussian RBF kernel matrices. We will
use this results to set up the optimization algorithm in Section 6.2.3.

First, we recall that κΨ(ε) = σ̄Ψ(ε)/σΨ(ε), where σ̄Ψ(ε) and σΨ(ε) are,
respectively, the leading and the least singular values of matrix Ψ(ε). These
singular values are separately analyzed below.

1. The least singular value:
For a complete characterization of the least singular value σΨ(ε), an in-
depth analysis of the spectral properties of PSK sub-matrices is required.
This analysis is presented in Appendix B, where we prove the following
main result.

Theorem 6. Let Ψν(ε) be the iteration dependent PSK regressor defined
in (5.6). Let us additionally assume that the associated kernel matrices
KN,D(ε) are constructed so that m̄t > ℓ̄N,D + 2. Then, if ε → 0 the least
singular value σΨ(ε) decays asymptotically as

σΨ(ε) = O(ετ ), τ ≥ 4, τ ∈ N. (6.5)

This statement is confirmed by the bottom panel of Figure 6.3, region
B, where the least singular value σΨ(ε) decays linearly with a constant
τ ∈ N, when plotted on a log-log scale. We highlight that the flattening
in region A is induced only by truncation errors when evaluating the
SVD.

2. The leading singular value:
Conversely, it can be proven that the leading singular value σ̄Ψ(ε) does
not to change significantly as ε changes. In particular, we have the
following result,

Proposition 1. Let K(ε) be a Gaussian Kernel Matrix as defined in (5.9).
Independently of the value ε, its leading singular value σ̄K(ε) is bounded
in the interval

[
1,

√
m̄tℓ̄

]
.
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The proof is reported in Appendix C.

In particular, the leading singular value is analytically known to be
exactly 1 and

√
m̄tℓ̄, for ε → 0 and ε → ∞, respectively. Thus, based on

the construction of the PSK regressor detailed in Section 5.2 we conclude
that the leading singular value σ̄Ψ(ε) of Ψ(ε) attains values in a closed
interval that does not depend on ε. More precisely,

σ̄Ψ(ε) ∼ C (6.6)

where C is a positive constant.

By assembling the above observations, we can conclude that

κΨ(ε) = σ̄Ψ(ε)
σΨ(ε) ∼ C

σΨ(ε) ε → 0 (6.7)

where, by virtue of Theorem 6, it holds that σΨ(ε) = O(ετ ). We thus finally
conclude that the condition number κΨ(ε) grows as O(1/ετ ) for ε → 0, as
demonstrated numerically in Figure 6.3, region B. In addition, the middle
and bottom panel confirm that the least singular value is almost inversely
proportional to the condition number within the region B.

To summarize:

1. large values of ε lead to very well-conditioned fitting problems, but the
associated models are inaccurate since the RBFs are too narrow;

2. small values of ε would produce accurate models, but the fitting problem
is prone to numerical instabilities.

Shape parameter values belonging to center region B in Figure 6.3 concurrently
fulfill the above conflicting requirements, since

1. they are small enough to guarantee a proper model parameterization;

2. they are sufficiently large to ensure a reasonable conditioning of the PSK
fitting problem.



146 Fully automated macromodeling

In order to guarantee the best possible condition number, we want to pick
a sub-optimal value of ε that minimizes κΨ(ε). Thus, instead of considering
the whole region B, we narrow our search to the green-shaded region, located
at the interface of areas B and C.

6.2.3 An algorithm for choosing the shape parameter

Developing on the above considerations, we can introduce our efficient algorithm
for selecting a sub-optimal value of the shape parameter ε∗. As anticipated, we
aim at detecting the green-shaded area illustrated in Figure 6.3, located at the
interface of regions B and C.

Exploiting the least singular value as a proxy for the condition number, we
are thus interested in pinpointing the corner point between the scaling range of
σΨ(ε) as O(ετ ), and the subsequent nearly constant range.

Following the strategy proposed in [103, 118], we pre-compute a set of shape
parameter-singular value pairs (red filled dots in Figure 6.5)

{(εt, σΨ(εt)), t = 1, . . . , t̄}

over a set {ε1, ε2, . . . , εt̄} of increasing logarithmically spaced shape parameter
candidates (3–4 points per decade have proved to be sufficient). We consequently
define ϵt = log εt and ϱt = log σΨ(εt).

In order to localize the green-shaded corner point, we benefit from the result
of Theorem 7 that ensures a power-law decay for σΨ(ε) for ε → 0. Our proposed
algorithm works iteratively; at each iteration J ≤ t̄, we construct a log-log
regression line ζJ(ε) = αJ log ε+βJ (black thick line in Figure 6.5) on the current
pairs {(ϵt, ϱt), t = 1, . . . , J}. The corner point of our interest is assumed to be
detected when the relative deviation ∆J+1 = |ζJ(εJ+1) − ϱJ+1| /ϱJ+1 exceeds
a predefined threshold ∆th. Therefore, assuming that at iteration J∗ we have
∆J∗+1 > ∆th, the optimization procedure stops, and we set ε∗ = εJ∗ .

The following Algorithm 2 provides a pseudo-code for the above procedure.
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Fig. 6.5 Iterative regression (black thick line) on shape parameter-singular value
pairs {ϵt, ϱt} (red dots). From [103] © 2021 IEEE

6.2.4 From regressor to kernel matrices

The procedure devised in Algorithm 2 would require iterated estimations of ε,
one at each PSK iteration that, in turn, would demand for expensive repeated
(least) singular value computations. The following observations highlight that,
fortunately, this is not necessary, since

• Even if the regressor matrix Ψν(ε) is updated at each PSK iteration ν,
we can be convinced that the dependence of its least singular value on ε

is nearly invariant through iterations. Therefore, the sub-optimal shape
parameter value ε∗ can be estimated once at the first PSK iteration, and
reused at the subsequent iterations.

• The dependence on ε of the least singular value σΨ(ε) of Ψµ(ε) is inherited
by the Fast-PSK matrix R̄µ(ε) (see Section 2.3.3 and [103]), which is
significantly smaller. Sub-optimal shape parameter values can be thus
inferred based on the singular values of R̄µ(ε) in place of Ψµ(ε), enabling
a considerable performance improvement.

• A substantially more efficient implementation relies on the RBF kernel
matrices KN (ε), KD(ε) associated, respectively, to the model numerator
and denominator. By construction, the kernel matrices are much smaller
than both the full and reduced PSK regressors Ψµ(ε) and R̄µ(ε), enabling
for an extremely fast computation of their singular values. In Appendix B
we will prove that the dependence on ε of Ψµ(ε) (or, equivalently R̄µ(ε))
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Algorithm 2 Sub-optimal shape parameter selection [118]
Require: Log-spaced samples {ε1, . . . , εt̄}.
Require: Stopping threshold ∆th

Require: Reference matrix Z(ε): Ψ(ε), R̄(ε), or KN,D(ε)
1: Compute ϵt = log εt and ϱt = log σZ(εt) for t = 1, . . . , t̄
2: for J = 2, . . . , t̄ do
3: Build regression line ζJ(ε) = αJ log ε+ βJ using pairs

{(ϵt, ϱt), t = 1, . . . , J}
4: Evaluate ∆J+1 = |ζJ(εJ+1) − ϱJ+1| /ϱJ+1
5: if ∆J+1 > ∆th then
6: Set ε∗ = εJ

7: break
8: end if
9: end for

10: return Sub-optimal shape parameter ε∗.

is shared with σKN
(ε) and σKD

(ε); therefore, sub-optimal shape parame-
ter estimates can be efficiently recovered exploiting the reduced kernel
matrices. In addition, this last implementation enables for an individual
selection of ε for numerator and denominator, separately; this is not
possible in the previous approaches.

In summary, we propose here an efficient algorithm that estimates sub-optimal
numerator and denominator shape parameter values ε∗

N and ε∗
D, applying

Algorithm 2 to the kernel matrices KN(ε) and KD(ε), separately.

6.2.5 Numerical experiment

In order to assess its performances, we will compare the proposed strategy with
a standard grid search. We want to construct a RBF model for a double folded
microstrip filter, introduced in Section 2.3.3. This structure depends only on
one external parameter, namely the length of the microstrip stubs. Although it
may seem a quite simplistic example for our RBF high-dimensional framework,
we remark that the results are general and still hold in higher dimensional
spaces; our choice for a reduced dimensional test case stems from the need
for a reasonably fast grid search to use as reference benchmark. We assume
that the sub-optimal shape parameter value must be sought in the interval
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Fig. 6.6 Testing the performances of the proposed shape parameter selection algorithm.
We illustrate with a suitable color-scale the model-data error obtained spanning εN

and εD over a uniform grid. The result of our approach (green cross) is compared
with a reference grid search (red circle).

[10−3, 10] (both for numerator and denominator), that is discretized in t̄ = 20
logarithmically spaced samples εt. The selection of the stopping threshold
∆th is fundamental to ensure good performance from the proposed estimation
algorithm. Unfortunately, we do not still have theoretically grounded rules to
guide a case-dependent selection of the stopping threshold. Nonetheless, in all
the considered test-cases (more than the ones reported in this manuscript) we
noticed that accurate results can be obtained setting ∆th to 0.03 − 0.04; in all
the numerical examples we will propose in the following, we will use ∆th = 0.04.
Still, further studies are in order to gain a better understanding.

Based on the above settings, we ran our algorithm and compared the result
with a reference grid search performed on a uniform 20 × 20 grid spanning the
same range [10−3, 10]. Figure 6.6 illustrates the outcome of our comparative
test. Even if the solution found with Algorithm 2 (green cross) differs from the
optimal solution (red circle), both correspond to fairly accurate models; in fact,
the grid search results in a model-data worst case error of 6.8 · 10−3, while the
proposed heuristic method produce a slightly less accurate model, whose error
is 8.6 · 10−3.



150 Fully automated macromodeling

Another key aspect is the computational effort: the grid search took 270 sec-
onds to fully explore the 20 × 20 grid, while the proposed strategy required only
0.16 seconds to compute a sub-optimal estimate. This means that our strategy
is approximately 1700 times faster, at the cost of an irrelevant degradation of
the model accuracy with respect to the global optimum.

Remark 17. We are aware that there exist more advanced techniques to
estimate more efficiently the shape parameter [12–15]. However, all of these
methods require, at least, the extraction of one macromodel; the proposed strategy
does not.

As a comparison, one model extraction (without shape parameter estimation)
requires approximately 0.8 seconds, which is 5 times slower than what required
by our algorithm for a full ε estimation.

We conclude that any method requiring the repeated extraction of inter-
mediate models can not be computationally more efficient than our proposed
strategy.

6.3 Choosing RBFs’ location and number

We now turn to considering the other hyper-parameters: the RBFs’ locations
and their number (also referred to as parametric order). Although they can
be considered as distinct, their close correlation necessitates a concurrent
optimization; in the following, we will thus treat these two as a single hyper-
parameter set.

Remark 18. We recall that all the hyper-parameters optimization steps are
distinct, but interdependent; in the following we will thus assume the shape
parameter to be optimized at some optimal (or, sub-optimal) value ε∗ (obtained,
for instance, with Algorithm 2).

There exist well-established techniques that optimize both the positioning
and the number of RBFs. The most renown (thanks to their high accuracy
and implementation simplicity) are based on data splitting, such as k-fold or
leave-one-out cross validation (see, for instance, [125, 126]). The interested
Reader can find more advanced techniques in [127–129]. Despite all of these
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strategies are routinely used to solve machine learning tasks, their successful
adoption requires the repeated extractions of numerous intermediate models,
which is unpractical in our setting.

Others, instead, proposed some techniques built upon clustering algorithms
that optimize the RBFs locations based on the geometric distribution of the
training data samples space [128, 130, 131]. In our setting, however, the
particular distribution of the data samples in the input space is not necessarily
representative of their variability.

Therefore, none of the most common schemes seems to be adequate for our
parameterized macromodeling setting. In [119] and [103] we thus introduced
two ad-hoc strategies:

1. the first concurrently optimizes both the model orders and the RBFs’
centers;

2. the second, instead, assumes a predefined distribution for the centers,
and only the model orders are optimized.

In the following, we will go through the details of both these approaches, for
which we will provide relevant numerical examples and a final comparison.

6.3.1 Method 1: concurrent optimization

This first method, originally presented in [119], proposes a concurrent optimiza-
tion of both the number of RBFs (model orders) and of their positioning on the
parameter space following an iterative greedy strategy. The main idea can be
briefly summarized as follows: at each iteration ν, we add a new RBF whose
center is positioned in correspondence to a (sub-optimal) location, in order to
progressively reduce the model-data error through iterations; the iterations
stop when the accuracy is sufficiently adequate.

Such a centers’ optimization procedure can not be directly performed
on the continuous parameter space, on which we therefore induce a prior
discretization on M samples: the finer is the resolution, the most accurate is
the selection of locally optimal centers. The discretization procedure amounts
to determine M frequency responses evaluated in correspondence of as many
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parameters combinations ϑm, that we collect in a (iteration independent) set
M = {ϑ1, . . . ,ϑM}.

This set is split in two mutually disjoint (iteration dependent) subsets
Mt

ν and Mv
ν , composed of mt

ν and mv
ν samples, respectively. We have that

M = Mt
ν ∪Mv

ν and M = mt
ν +mv

ν . The parametric samples in set Mt
ν are used

to train the model, while the samples in Mv
ν are used for validation purposes.

A third set denoted as Mc
ν ⊆ Mt

ν , collects the locations of the mc
ν < mt

ν RBFs
that are used to construct the model Hν(s,ϑ) at the current iteration ν.

Remark 19. Since we can not precisely ascribe the presence of large local
model-data errors to the model’s numerator or denominator, we assume that
they share the same common set of basis functions.

Let us now go through the algorithm steps.

1. Initialization: As anticipated, the set M is not augmented through
iterations (e.g., via on demand solver calls). In order to have a complete
and meaningful representation of the parameter space, we must initialize
M in a way that the samples ϑm uniformly cover Θ. To this end, it is
possible to adopt low discrepancy sequences (such as Sobol and Halton
sequences) or Latin Hypercube sampling schemes.

The set M is then partitioned in the two mutually disjoint training
and validation subsets. In order to control the model accuracy over
the entire parameter space, also the training samples must be uniformly
distributed. To this end, we consider a ρ-dimensional truncated Sobol
sequence St [132], composed of mt

0 samples

St := {si : i = 1, . . . ,mt
0} (6.8)

The initial training set Mt
0 is then populated with the elements of M

that are the nearest neighbors to the elements of St.

The same procedure is repeated to populate the set Sc of RBF centers. We
thus define another truncated Sobol sequence Sc, composed of mc

0 < mt
0

samples, and the initial centers are chosen as the nearest neighbors of
Mt

0 to Sc.
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Remark 20. In order to ensure a sufficiently over-determined fitting
problem that prevent possible overfitting issues, we enforce that mt

ν ≥ 2mc
ν

at all the greedy iterations.

If these Sobol sequences are defined upon a common initialization seed
(which is often the case), then Sc ⊆ St; therefore, the initial RBF
centers can be selected as the first mc

0 element of St and there is no
need of constructing the sequence Sc. The first model H0(s,ϑ) is thus
initialized with (common) numerator and denominator parametric orders
ℓ̄N = ℓ̄D = mc

0.

2. Adaptive augmentation Assuming to be at the ν-th iteration, we construct
the model Hν(s,ϑ) based on the sets Mt

ν , Mc
ν , Mv

ν available from the
previous iteration; we assume the shape parameter to be optimized with
Algorithm 2, At this stage, we evaluate the worst-case RMS error Eν(ϑm),
defined as

Eν(ϑm) = max
i,j

√√√√ 1
K

K∑
k=1

∣∣∣Hν
i,j(jωk,ϑm) − (H̆k,m)i,j

∣∣∣2, (6.9)

over all the validation samples in Mv
ν . Based upon this metric, we select

the new RBF center according to

ϑ̃
ν = arg max

ϑm∈Mv
ν

Eν(ϑm) (6.10)

as the particular validation sample for which the model-data error is
largest. The sets are then updated as

Mt
ν+1 = Mt

ν ∪ ϑ̃
ν

Mc
ν+1 = Mc

ν ∪ ϑ̃
ν

Mv
ν+1 = Mv

ν \ ϑ̃
ν

(6.11)

The algorithm stops at iteration ν̄ when the following condition is reached,

max
ϑm∈Mv

ν̄−1
E ν̄(ϑm) < Emax (6.12)
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where Emax is a user-defined error threshold. If the above condition is
never reached, the algorithm safely stops whenever ν = νmax in order to
prevent uncontrolled behaviors.

The final model has parametric orders ℓ̄N = ℓ̄D = mc
0 + ν̄.

The above centers’ selection greedy algorithm is summarized in form of pseudo-
code in Algorithm 3

Algorithm 3 Adaptive RBFs center selection
Require: Parametric dataset M
Require: Control parameters Emax, νmax, mt

0, mc
0

1: Populate Mt
0 and Mc

0
2: Set Mv

0 = M \ Mt
0

3: Set ν = 0
4: repeat
5: Optimize ε with Algorithm 2
6: Generate model Hν(s,ϑ) on training samples Mt

ν

7: Evaluate error function Eν(ϑm), ∀ϑm ∈ Mv
ν

8: Define new RBF center ϑ̃
ν as in (6.10)

9: Update sets Mt
ν , Mv

ν , Mc
ν as in (6.11)

10: Update iteration index ν = ν + 1
11: until Eν(ϑm) < Emax, ∀ϑm ∈ Mv

ν or ν = νmax
12: return Final model Hν̄(s,ϑ)

Numerical experiment (1) - a linearized buffer model

We first study a 2-parameter example to better illustrate the proposed strategy.
Considering a two-stage buffer (linearized around its working condition for small-
signal operation, parameterized by the operation temperature T = [20, 50] ◦C

and the bias voltage Vdd ∈ [0.5, 1.5] V (see [108] for full details). The full
dataset M is composed of M = 341 parametric frequency responses computed
through small-signal AC sweeps in a circuit solver, arranged in a 11 × 31
Cartesian grid. Each frequency response includes K = 274 frequency samples
in the band fmin = 0 Hz, fmax = 10 THz (to show the high-frequency behavior).

The proposed centers’ selection algorithm is initialized with mt
0 = 40,

mc
0 = 10, the maximum allowed number of additional RBFs is νmax = 30, and

the error threshold Emax is set to 10−2. With a number of poles n̄ = 5, the
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S(1,1) data
S(1,1) model

Fig. 6.7 Validation of the buffer model (red-dotted line) compared to raw data (blue
solid line). From [119] © 2020 IEEE.

proposed approach extracts an accurate and uniformly stable model, whose
worst-case absolute error on the validation samples is 7.47 × 10−3, including 9
additional RBFs; the final model orders are therefore ℓ̄N = ℓ̄D = 19. The final
model complexity, defined as η = ℓ̄N + ℓ̄D, is η = 38.

A comparison between model and data responses is provided in Fig 6.7.

The four panels in Figure 6.8 illustrate the adaptive steps over 4 iterations.
The model-data error Eν(ϑm) evaluated on the current parametric validation
samples is represented with a suitable color scale. The green-black dots depict
the current set of RBF centers Mc

ν and the red-filled dot represent the new
RBF center ϑ̃

ν obtained as in (6.10). As expected, the adaptive algorithm
locate new RBFs in correspondence to the largest error instance and obtains a
uniformly accurate model in few iterations. The overall CPU time required to
complete the optimization procedure is approximately 3 minutes.

Numerical experiment (2) – a linearized low noise amplifier

In this second example, we consider the linearized 10-dimensional LNA model
described in Section 5.3.2. We start with a set M composed of M = 2000
samples generated according to a Latin Hypercube sampling (see Section 5.3.2
and [101] for more details). To achieve the desired accuracy, the algorithm
starts with mc

0 = 80 RBF centers and mt
0 = 360 training samples; the control
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Fig. 6.8 Buffer model vs data error for some relevant algorithm iterations. Black
dots depict the location of current RBF centers; red dots denote candidate new RBF
centers.
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S(1,1) data
S(1,1) model

Fig. 6.9 Parametric model responses compared with a randomly selected subset of
validation data.

parameters are set as νmax = 30 and Emax = 10−2. The model dynamic order
is set to n̄ = 16;

Differently from the previous bi-dimensional example, in high-dimensional
space it is not possible to represent the error distribution as in Figure 6.8. For
this example, we thus visualize the algorithm progress through histograms
showing the distribution of the error over the validation samples.

As demonstrated in the four panels of Figure 6.9, the proposed algorithm
placed 8 additional RBFs to obtain a uniformly stable model, whose accuracy
is uniformly below the threshold Emax and equal to 9.52 × 10−3 in terms of
absolute validation error. The final model complexity is η = 176.

Figure 6.9 compares the model responses with randomly chosen raw val-
idation data. The adaptive augmentation procedure required approximately
35 minutes (using the optimized shape parameter selection presented in Sec-
tion 6.2.3).

Together with the additional examples presented in [119], the above results
demonstrate that the proposed concurrent optimization procedure enables the
construction of uniformly accurate and stable macromodels, independently on
the parameter space dimension.
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Fig. 6.10 Augmentation algorithm progresses through the adaptive iterations for the
10-parameters linearized LNA example.
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Discussion

We should point out that, although the adaptive procedure enables to add a
reduced number of suitably positioned RBFs, the assumption of a common
shared basis for numerator and denominator leads to unnecessarily complex
models, especially when the parameter variability is complicated to track.

Another, perhaps more relevant, problem, stems from the need of computing
in advance a large set of validation samples Mv upon which we search the
additional RBF centers. In fact, the generation of large amounts of parametric
data may require extremely demanding repeated solver runs. This first approach
is thus feasible whenever the extraction of parametric data is reasonably fast
and when the (expected) model complexity is reasonably small.

6.3.2 Method 2: optimizing only the number of RBFs

Based on the above discussion, we are going to present a different strategy,
originally presented in [103], developed in the interest of model compactness
and computational runtime.

To this end, in this second method we do not seek for a sub-optimal RBFs
distribution, but rather we assume a predefined distribution of the RBF centers,
which is required only to cover as uniformly as possible the parameter space
(Sobol sequences can therefore be good candidates).

Remark 21. Although quite strong, this assumption is reasonable in our pa-
rameterized macromodeling setting; in fact, several numerical tests demonstrate
that the improvement in model accuracy is not justified by the considerable
computational effort required to optimize the RBFs’ locations.

The sequence of choice is then used for the expansion of both the numerator
and the denominator that, in contrast with the previous method, are now
considered independently, i.e., ℓ̄N may be different from ℓ̄D. This additional
degree of freedom will lead to a considerable reduction of the model complexity
(see Section 6.3.2 for numerical results)

Let us therefore consider two sets of numerator and denominator candidate
orders LN = {ℓ̄1

N , . . . , ℓ̄
r̄
N} and LD = {ℓ̄1

D, . . . , ℓ̄
t̄
D}, respectively, whose elements
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are sorted in ascending order. In principle, the set of candidate orders should
be chosen according to the parametric variability to approximate. However,
this information is often unavailable. As a general rule, we noticed that the
heuristic rule ℓ̄1

N = 4ρ, ℓ̄1
D = 2ρ has proven to be successful in our test cases.

In case additional information on the parametric variability are available, these
can be used to facilitate the algorithm to find the most suitable orders.

Each element of the sets LN , LD is associated with its corresponding centers,
as

Cr
N = {ϑm ∈ T : m = 1, . . . , ℓ̄r

N} r = 1, . . . , r̄
Ct

D = {ϑm ∈ T : m = 1, . . . , ℓ̄t
D} t = 1, . . . , t̄

(6.13)

for numerator and denominator, respectively. We recall that T is the training
set, composed of m̄t parametric responses used to fit the model. Following a
procedure similar to the one exploited in the method 1, the elements of sets Cr

N

Ct
D are selected as the nearest neighbors in T of a truncated Sobol or Halton

sequence. This choice enables a uniform coverage of the parameter space, which
improves the numerical conditioning of the fitting problem and the accuracy of
the resulting model. Then, once the number of numerator and denominator
RBF is selected, their location on the parameter space is easily determined
through (6.13).

We remark that the candidate orders in LN,D must fulfill two constraints

1. in order to ensure the applicability of the proposed algorithm for the
selection of the shape parameter, we must guarantee that ℓ̄1

N,D > ρ+ 2;

2. in addition, we must guarantee that the model fitting problem is suffi-
ciently over-determined by setting 2(ℓ̄r̄

N + ℓ̄t̄
D) < m̄t.

Our objective is to find the most appropriate combination of model orders ℓ̄N ,
ℓ̄D from sets LN and LD that maximizes the model-data accuracy. To this
end, we use a steepest-descent strategy similar to [63], that proposes an order
selection strategy in the context of parameterized Loewner macromodeling.

The number of numerator and denominator basis functions is determined
exploiting a sub-optimal greedy approach, by updating at each iteration the
numerator and denominator orders, denoted as ℓ̄r

N , ℓ̄t
D and indexed by the pair
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(r, t). In the following, we denote the model-data error evaluated at ℓ̄N and ℓ̄D

as E(ℓ̄N , ℓ̄D, ε).

Remark 22. Each model extraction may require several PSK iterations to
reach convergence. In order to improve the performances, we do not wait for
convergence, and we perform only the first iteration. We consider the resulting
model-data error as a proxy for the model accuracy attained at convergence;
this is justified since the accuracy at convergence is higher with respect to the
one at the first iteration.

Further, optimizing the shape parameter through Algorithm 2, we introduce
E∗(ℓ̄N , ℓ̄D) = minε E(ℓ̄N , ℓ̄D, ε)

At each greedy iteration, we evaluate the errors

E∗(ℓ̄r+δ
N , ℓ̄t

D) and E∗(ℓ̄r
N , ℓ̄

t+δ
D ), (6.14)

where δ = 1, . . . , δ̄ is a predefined step size, and we update indices r and or t
based on which combination provides the smallest error. The process is then
repeated until a sub-optimal pair {ℓ̄N , ℓ̄D} is found.

In Figure 6.11 we illustrate the progresses of this order selection algorithm.
Starting from ℓ̄1

N = 5 and ℓ̄1
D = 5, the algorithm optimizes the number of RBFs

following the (locally) the steepest descent path, identified with a red solid line.
In this specific case, the lowest error instance is attained in correspondence of
the maximum allowed orders, both at numerator and denominator; however,
this is not always true (see, for instance, Figure 6.16).

Numerical examples – comparing the two approaches

To assess the performance of this second strategy, we repeat the same test
on the 10-parameters linearized LNA (see Section 5.3.2) used to test the first
method, in order to provide a comparison between these two approaches. For a
detailed description of the structure under modeling, we refer the Reader to
Section 5.3.2.

We configured the shape parameter selection algorithm with the same
settings used when testing the first concurrent optimization method and, follow-
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Fig. 6.11 Steps of the greedy RBF order selection algorithm. The surface represent
the error E∗(ℓ̄N , ℓ̄D) after shape parameter optimization; the red thick line shows
the path followed by the algorithm.

ing the proposed heuristic initialization rules, the steepest-descent algorithm
searches on the sets LN = {40, 41, . . . , 50} and LD = {20, 21, . . . , 30}.

This second optimization method selected sub-optimal orders ℓ̄N = 43 and
ℓ̄D = 24 which results in a uniformly stable macromodel whose accuracy in
uniformly below 1%; Figure 6.12 compares the model responses for a randomly
selected subset among the available m̄ = 2000 raw data samples, confirming the
accuracy. The overall CPU time to optimize the model orders is 13 minutes.

As anticipated, this strategy aims at optimizing the model structure, pro-
ducing more compact models. Based on the model complexity η defined in
Section 6.3.1, we recall the first concurrent optimization strategy provided a
model with η = 176. In contrast, this second method resulted in η = 67. It is
remarkable that, for the same model accuracy, the second approach provided a
compression of approximately 62%.

In regard to the CPU time, the first approach requires 35 minutes, in
contrast with this second that optimized the orders in 13 minutes, resulting in
a speed-up of approximately 3 times.
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Fig. 6.12 Comparing the model responses over a random subset of validation samples
for the LNA test-case. From [103] © 2021 IEEE

6.4 A fully-automated macromodeling flow

After the introduction of efficient algorithmic strategies for the automated
optimization of the RBFs’ hyper-parameters, we are very close to set up a fully
automated high-dimensional macromodeling strategy. The only missing step is
the optimization of the number of poles n̄, which we address below.

6.4.1 Optimizing the number of model poles

The problem of selecting a suitable dynamic order n̄ has been already solved in
the context of non-parameterized macromodeling. Following similar techniques,
we present a heuristic parameterized extension that, despite its simplicity,
provides good results in acceptably short runtimes.

The estimation of a proper dynamic order n̄ is performed iteratively in
a pre-processing step. First, we define and collect a set of candidate orders
{n̄1, . . . , n̄q̄}, sorted in ascending order. Then, among all the available data
samples, we select a significant subset of frequency responses associated to
some parameter values ϑz

P = {ϑz ∈ T : z = 1, . . . , z̄}. (6.15)
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Our strategy is to collect in P the parameter locations corresponding to the
nearest neighbors in T to the vertices and centroid of the parameter space. We
remark that this choice is not restrictive.

By iteratively increasing the order n̄ = n̄1, n̄2, . . . , we independently apply
the VF algorithm to all the z̄ frequency responses collected corresponding to the
parameter instances in set P . It is expected that, as the iterations I proceed,
the worst case model-data error EI , evaluated among all the z̄ elements, reduces.
The iterations stop at I = I∗ when EI∗ < Eth, with Eth a predefined threshold.
The corresponding order n̄ = n̄I∗ is selected, and the common basis poles {qn}
are selected as the poles of the vector fitting model associated to the nearest
neighbor to the centroid of the parameter space. In Figure 6.15 we illustrate
the performances of this algorithm on a relevant example.

6.4.2 An algorithm for automated macromodeling

Now we have all the building blocks to develop an automated procedure to
construct high-dimensional (guaranteed stable) parameterized macromodels.

Remark 23. In this work, we assume that the parameterized raw data are
available, and no additional on demand solver calls are required.

The proposed strategy is illustrated in the block diagram of Figure 6.13.
Starting from the parametric raw data H̆k,m, we first determine the dynamic
order as described in Section 6.4.1. As n̄ is available, we estimate the RBFs’
locations and their number with the strategies elaborated in Section 6.3. Then,
we compute a sub-optimal shape parameter value through Algorithm 2, that is
finally used to construct a parameterized uniformly stable macromodel H(s,ϑ).

On the left, we provide a list of the algorithm’s control parameters for
each modeling step. We remark that, although some control parameters are
inherently case-dependent i.e., LN , LD, for all the others there are trade-off
configurations that turned out to be suitable for all the considered test-cases.
Expert users can thus finely tune these additional parameters to optimize the
modeling performances; conversely, unexperienced users may still successfully
use the proposed procedure with standard settings, at the cost of a slight
performance degradation.
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Fig. 6.13 High-level block diagram of the proposed automated parameterized macro-
modeling flow.
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6.4.3 Numerical experiments:

We are going to test the proposed automated macromodeling scheme on nu-
merical examples. All the results have been obtained on a standard 16 GB
commercial laptop, running an 2.30 GHz i7 Intel processor.

A multi-board interconnect

To begin, we consider a reduced complexity bi-dimensional (ρ = 2) test-case, in
order to better illustrate our proposed scheme. The device under modeling is
the multi-board interconnection introduced in Chapter 4. We refer the reader
to Section 4.5.2 and [3] for detailed information.

The proposed automated macromodeling strategy has been executed using
the following control parameters.

1. Dynamic order selection:
The set of candidate orders is {10, 11, . . . , 29, 30}, and the stopping
threshold has been set to Eth = 10−3.

2. Parameter order selection:
In all the proposed examples, the RBFs’ location and number will be
optimized using the second approach (optimization of only the number
of RBFs). Here, we set LN = LD = {5, . . . , 10} and use a step size δ̄ = 2.

3. Shape parameter selection:
The shape parameter has been selected among 10 logarithmically spaced
candidates ranging from 10−3 to 10, and using a stopping threshold
∆th = 4 × 10−2.

Based on these settings, the proposed scheme returned the sub-optimal
hyper-parameter listed in Table 6.1. The hyper-parameters optimization and
the model synthesis procedure cumulatively required only 41 seconds. The
worst-case model-data error with respect to validation samples is 7 × 10−3. The
accuracy is confirmed by Figure 6.14, that compares the modeled transmission
S-parameters corresponding to a randomly selected subset of validation data.



6.4 A fully-automated macromodeling flow 167

Table 6.1 Hyper-parameters selected by proposed algorithm for the multi-board
interconnect.

Number of poles n̄ 24
Numerator parameter order ℓ̄N 10
Denominator parameter order ℓ̄D 8
Numerator shape parameter ε∗

N 0.4642
Denominator shape parameter ε∗

D 0.4642

Fig. 6.14 Model responses compared with validation data for the multi-board inter-
connect example. Blue lines: randomly-selected validation data. Red dashed lines:
corresponding model responses. From [103] © 2021 IEEE
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Fig. 6.15 Multiboard interconnect: iterations of the dynamic order selection algorithm.
Blue markers: worst-case model data error (among the selected parameter values)
for subsequent candidate number of poles; red-dashed line: stopping threshold; green
circle: selected dynamic order. From [103] © 2021 IEEE

We now assess the performances of all the hyper-parameters optimization
steps, by comparing the obtained estimates with the results given by an
exhaustive grid search.

1. Dynamic order selection:
As demonstrated in Figure 6.15, starting from n̄1 = 10, the algorithm
iteratively increases the number of poles, until the stopping condition
EI∗ < Eth is reached at iteration I∗ = 15 (depicted with a green circle),
that corresponds to n̄ = 24. It is worth noting that the error saturates
at 10−4 for large n̄, highlighting the presence of non-causal or noisy
components in the data. This sets a limit on the attainable accuracy,
which must be taken into consideration when setting Eth.

2. Parameter order selection:
In Figure 6.11 we represent the iterative steps of the order selection
algorithm of Section 6.3.2. Starting from ℓ̄1

N = ℓ̄1
D = 5, it iteratively

follows the locally optimal path until it stops at ℓ̄5
N = 10, ℓ̄5

D = 8 after 5
iterations.

3. Shape parameter selection:
Similarly to Figure 6.6, in Fig. 6.17 we compare the shape parameter
estimates {εN , εD} obtained through the proposed Algorithm 2 (green
cross) with the reference solution obtained with grid search (red circle).
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Fig. 6.16 The same as in Figure 6.11, but for the multi-board interconnect example.
From [103] © 2021 IEEE

The model-data accuracy, evaluated for different {εN , εD} combinations is
represented with a suitable color-scale. The estimates computed with our
heuristic approach (green cross) coincide with the reference grid search
(red circle) and are equal to ε∗

N = ε∗
D = 0.4642.

Let us now compare the computational performances. In particular, the
proposed order optimization strategy is twice as fast with respect to a standard
grid search. However, the most striking results pertain to the sub-optimal
shape parameters ε∗

N and ε∗
D, whose optimization through Algorithm 2 resulted

to be approximately 2000 times faster with respect to a grid search over a
10 × 10 grid.

A transmission line network

As a second and last example, we model the distributed transmission line
network illustrated in Figure 6.18 composed of four cascaded lossy microstrip
segments (with length li) and three internal loaded stubs (with length si). The
purely resistive loads have values Ri. The copper microstrip has fixed thickness
t = 30 µm and parameterized width w, and the dielectric substrate on which it
is placed has a variable height h, a fixed relative dielectric constant εr = 4.1 and
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Fig. 6.17 Shape parameter selection algorithm. The contour plot represents the
model-data error as a function of numerator and denominator shape parameter values
εN , εD. The green cross pinpoints the sub-optimal combination ε∗

N , ε∗
D selected by

the proposed algorithm. From [103] © 2021 IEEE

loss tangent tan δ = 0.02. We remark that, although it is structurally similar
to the one presented in Section 4.5.3, the parametric raw data are obtained
using different line models and a different solver.

The range of variation ∆ϑi of the above 10 independent parameters ϑi are
reported in Table 6.2, together with their nominal values ϑ̄i. We highlight that,
in order to ensure the total line length to be always equal to 15 mm, the line
lengths li are subject to the constraint l1 + l2 + l3 + l4 = 15 mm.

The parameterized dataset has been obtained by repeated HSPICE [112]
runs. In particular, it is composed of m̄ = 300 S-parameter frequency responses,
each containing k̄ = 401 linearly spaced samples in the band Ω = [0, 20] GHz.
The hyper-parameter estimation algorithms has been set as in the previous
example, with the exception for LN and LD that now span the intervals
[40, 41, . . . , 50] and [20, 21, . . . , 30], respectively.

The proposed algorithm automatically determined a model structure with
n̄ = 27 poles, numerator and denominator orders ℓ̄N = 40 and ℓ̄D = 27, respec-
tively, with associated shape parameter values ε∗

N = ε∗
D = 0.0599. Altogether,

the optimization of the hyper-parameters required approximately 14 minutes,
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Fig. 6.18 Illustration of the 10-dimensional transmission line network used to test
the proposed automated macromodeling framework.

Table 6.2 Transmission line network parameters. li, si: length of transmission line
and stub segments; w: conductor width; h: substrate height; Ri: stub termination
resistances.

# Parameter ϑi ϑ̄i ∆ϑi

1 l1 (mm) 10 5 %
2 l2 (mm) 10 5 %
3 l3 (mm) 10 5 %
4 l4 (mm) 10 5 %
5 s1,2,3 (mm) 3.75 2 %
6 w (µm) 150 10 %
7 h (µm) 200 10 %
8 R1 (Ω) 50 10 %
9 R2 (Ω) 50 10 %
10 R3 (Ω) 50 10 %
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Fig. 6.19 Transmission line network: validation of the parameterized model responses
(red dashed lines) through corresponding reference data (blue solid lines). From [103]
© 2021 IEEE

while it took only 30 seconds for the construction of the uniformly stable model,
whose accuracy with respect to raw validation data is 11.2 × 10−3 and its
complexity is η = 69. In Figure 6.19, we demonstrate the accuracy of the
model, with respect to a subset of validation data.

As a comparison, if the order selection had been performed following the first
“concurrent optimization” method, the extraction of a model with comparable
accuracy would have required 1.5 hours (6 times slower), whose complexity η
would have been 112 (39% larger).

6.5 Passivity for high-dimensional models

The above examples demonstrate the capability of the presented macromodeling
flow to build compact yet accurate high-dimensional models, that are guaranteed
to be uniformly stable throughout the parameter space. Therefore, high-
dimensional models of (linearized) active circuit blocks synthesized with this
approach can be reliably used as accurate surrogates in parametric time-domain
simulations, without the risk of running into unstable behaviors.

As we thoroughly illustrated in Chapter 3, behavioral modeling of passive
components requires stronger conditions: models of passive components must
reflect this property in order to ensure stable and reliable simulations. As
discussed in Chapter 4, model passivity can be enforced through post processing
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Fig. 6.20 Parameterized singular values associated with the original non-passive
models. Left panel: multi-board interconnection. Right panel: transmission line
network.

even in a high-dimensional setting. In fact, the passivity enforcement algorithm
through iterative local perturbation discussed in Section 4.4 is applicable
without modification. As a prerequisite, this algorithm requires a precise
identification of the passivity violations in the frequency-parameter space. This
characterization becomes extremely critical when the parameters exceed few
units, in which case no deterministic algorithms currently exist that are able to
identify all violations. In particular, all passivity characterizations presented in
Chapter 4 are not scalable to high dimensions.

A promising yet preliminary approach to multi-variate passivity character-
ization with good potential for improved scalability to high-dimensions has
been recently presented in [133]. This approach performs a simple tree-based
adaptive sampling in the frequency-parameter space. For this reason we do not
include additional details here referring the Reader to [133]. This algorithm was
incorporated in the proposed automated macromodeling flow; some examples
and results are discussed next.

In the following, we present results for the above multi-board interconnect
and transmission line networks examples. Figure 6.20 highlight the presence
of relevant out-of-band violations. Applying the proposed iterative passivity
enforcement procedure we obtained models of comparable accuracy (Fig. 6.21),
for which the passivity check procedure [133] does not find residual violations,
as illustrated in Figure 6.22.
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Fig. 6.21 Comparing the accuracy of candidate passive models with respect to a
randomly selected subset of validation data.

Fig. 6.22 Parameterized singular values associated with the original non-passive
models. Left panel: multi-board interconnection. Right panel: transmission line
network.
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Despite the results of Figure 6.22, however, we can not claim that the
models are passive since the verification is based on a finite number of samples
computed in the frequency-parameter space.

In conclusion, based on the theoretical and numerical results presented in
this work we see that the only major problem that still remains unsolved is
passivity verification in high-dimensional parameterized setting. This problem
will be the subject of future investigations.



Chapter 7

Conclusions

This dissertation addressed the topic of parameterized data-driven macromod-
eling. In particular, a set of algorithms have been developed for the extraction
of reduced-order models of complex linear and time-invariant structures, whose
behavior depends on possibly several external parameters. Data-driven model
order reduction has been considered, so that the models are extracted from
a limited set of frequency-domain sampled responses, available from a first-
principle description (e.g., a full-wave electromagnetic solver). Building upon
the well-established Parameterized Sanathanan Koerner (PSK) model struc-
ture and identification procedure, this thesis provides a comprehensive set of
techniques that enable automated extraction of guarantee stable and passive
parameterized behavioral models. The specific contributions are itemized below.

Multivariate extension The construction of parameterized macromodels
from sampled responses is not a difficult task in the well-established PSK
framework. The real challenge is to provide an explicit certification of stability
and passivity, which are fundamental properties that the models must have
in order to be of any use in practical design flows. These aspects are well
consolidated for non-parameterized models, but prior to this work only partial
solutions were available in a general parameterized (multivariate) case. In
particular, passivity verification was only limited to a single external parameter.

This problem has been addressed in Chapter 4, where we proposed a
theoretical framework and the associated algorithms for checking and enforcing
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both stability and passivity of general multivariate parameterized models. The
main tool is a formulation of a parameter-dependent Hamiltonian matrix, whose
properties are exploited for the precise identification of stability and passivity
violation regions in the frequency-parameter space, in view of their elimination
by iterative perturbation. The main limitation of this approach is related to the
inevitable curse of dimensionality, which prevents scalability to high dimensions
and grants applicability only up to three independent external parameters.

High-dimensional parameterization Pushing further with the number of
parameters would bring an enhanced flexibility in parametric simulations, in
which a single compact macromodel would be representative of a much broader
spectrum of design configurations and working conditions. The standard
PSK model structure demands for identification procedures that may become
exponentially more complex as the number of parameter increases. We fill
this technical gap in Chapter 5, where we introduce a novel unstructured high-
dimensional model functional form based on Radial Basis Functions (RBFs),
specifically tailored to embed a much larger number of parameters in the model.
In addition, we introduce novel uniform stability constraints, whose formulation
does not depend on the dimension of the parameter space, but only on the
complexity of the model, here defined in terms of the number of numerical
coefficients that are determined during identification. Despite the increased
degree of conservativeness of such constraints, excellent results in terms of
accuracy and scalability have been demonstrated on benchmark examples with
up to ten independent parameters.

Automation The proposed high-dimensional RBF parameterization requires
the selection of a number of hyper-parameters on which the model structure
is built. These include: dynamic order (number of poles), dimension of the
approximation spaces for the numerator and denominator of the model transfer
function, centers and shape parameters defining the individual radial basis
functions used in the approximation. Trial and error approaches, as well as
naive grid search techniques, are extremely time consuming and not compatible
with an efficient identification process. In Chapter 6, we have presented a
comprehensive set of algorithms for the automated estimation of sub-optimal
hyper-parameter configurations. This estimation does not require a large
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number of model extractions hence is very fast and effective, leading to accurate
parameterized models basically without any user interaction.

Impact This dissertation provided advancements under both theoretical
and practical standpoints. In particular, the availability of an automated
parameterized macromodeling tool can be of great advantage both for industries,
who could exploit the proposed framework to generate models for improving
reliability and efficiency of the design workflows, by replacing costly full-wave or
first-principle circuit simulation with robust equivalent reduced-order surrogate
models. Also, Electronic Design Automation (EDA) software companies may
directly benefit of the proposed framework to include parameterized reduced
order models to improve the performances of their commercial tools, for instance
in all those situations where the performance of some structure needs to be
optimized by tuning geometry or material parameters, or when expensive
sensitivity or monte-carlo loops are required. Availability of parameterized
surrogate models may dramatically reduce runtime while preserving accuracy
and reliability of the results. The framework discussed in this dissertation is
ready for exploitation in such application scenarios.

Open problems

Despite the good results documented in this dissertation, several open problems
remain. The most relevant are itemized below.

High-dimensional passivity enforcement The automated macromodeling
flow presented in Chapter 6 has demonstrated to be very effective for the
synthesis of accurate and guaranteed stable high-dimensional models. However,
the lack of a uniform passivity certificate restricts its applicability to active
(linearized) devices, ruling out the extremely broad and important category of
passive structures.

In fact, although in Chapter 4 we presented a passivity verification and
enforcement scheme that extends the results of prior research works to higher-
dimensional multivariate macromodels, its applicability is still limited to small
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sized parameter spaces, due to the adopted sub-gridding technique that inher-
ently suffers from the curse of dimensionality.

Conversely, the results presented in Chapter 6 are extremely promising.
Indeed, the tree-based passivity verification algorithm presented in [133] has
natively a good potential of improved scalability in high-dimensions. When
employed in conjunction with the proposed iterative passivity enforcement
scheme, it provided encouraging results. However, these are still preliminary
and further investigations are required to assess the performances and the
reliability of this scheme.

Alternatively, instead of guaranteeing passivity through a post-processing
enforcement step, a recent research work [86] proposed a novel PSK imple-
mentation that guarantees uniform passivity by construction. Unfortunately,
despite the remarkable results, this approach relies on model forms built
upon multi-variate polynomial parameter basis functions, that poorly fit our
high-dimensional framework. Future researches will be devoted to assess the
compatibility of this innovative strategy with the proposed high-dimensional
structure.

We can thus conclude that, although this work extended the previous
results to more than one parameter, the problem of guaranteeing passivity of
high-dimensional parameterized macromodels (tens of independent parameters)
must be still regarded as an open research challenge.

Adaptive macromodeling Throughout this work, we have always assumed
to be given with a prescribed set of parametric data, that have been used to
train the parameterized macromodels. However, as pointed out in Chapter 1,
the data-generation step is extremely critical, as it demands for repeated runs
of, e.g., full-wave field solvers, that are highly demanding in terms of CPU
resources. Therefore, gathering a minimal set of data samples necessary to
build accurate models would be very helpful.

In case of very few parameters, this problem has been tackled in [46, 134] by
employing an adaptive exploration of the parameter space. These works propose
to interact with the EM solver, by iteratively collecting new data, based on some
heuristics to determine the most relevant samples which best characterize the
input/output responses of interest. However, these schemes rely on structured
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subdivisions of the parameter space and can not be successfully employed
in high-dimensional spaces due to an exponentially increasing computational
complexity.

In the considered high-dimensional setting, the problem of gathering a min-
imal set of training data is still partially unsolved. Some notable approaches
based on unstructured adaptive schemes such, for instance, Gaussian Pro-
cesses [102] or some form of Bayesian Optimization, are known to have good
potential to scale favorably in high-dimensions. Exploitation of these methods
within the parameterized macromodeling framework is therefore regarded as a
future research topic with high potential.
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Appendix A

Proof of Theorem 5

Proof. Let us first re-write the denominator D(s,ϑ) splitting the contributions
of real and complex conjugate poles, as

D(s,ϑ) =
n̄r∑

n=0

ℓ̄D∑
ℓD=1

rn,ℓ

s− qn

ξℓ(ϑ)
︸ ︷︷ ︸

Real poles

+
n̄c∑

n=0

ℓ̄D∑
ℓD=1

[
r′

n,ℓ + jr′′
n,ℓ

s− αn − jβn

+
r′

n,ℓ − jr′′
n,ℓ

s− αn + jβn

]
ξℓ(ϑ)

︸ ︷︷ ︸
Complex conjugate poles

.

(A.1)

We now consider the real and complex conjugate parts separately.

1. Real poles: We first consider the contribution of the n-th pole evaluated
for s = jω, which we re-define as

Dr
n(jω,ϑ) = rn(ϑ)

jω − qn

, (A.2)

with qn ∈ R and qn < 0, and where

rn(ϑ) =
ℓ̄∑

ℓ=1
rn,ℓξℓ(ϑ). (A.3)

Since both ξℓ(ϑ) and rn,ℓ are real-valued, it holds that

ℜ {Dr
n(jω,ϑ)} = rn(ϑ) · −qn

q2
n + ω2 . (A.4)
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Since ξℓ(ϑ) ≥ 0, enforcing the first row in constraints (5.11), for all
ℓ = 1, . . . , ℓ̄, implies that rn(ϑ) > 0. In turn, since qn < 0, this implies

ℜ {Dr
n(jω,ϑ)} > 0 ∀ω, ∀ϑ. (A.5)

2. Complex conjugate poles: Let us now consider the n-th complex conjugate
pair in (A.1), restricted to the imaginary axis s = jω, which we re-define
as

Dc
n(jω,ϑ) =

ℓ̄∑
ℓ=1

dc
n,ℓ ξℓ(ϑ), (A.6)

where
dc

n,ℓ =
r′

n,ℓ + jr′′
n,ℓ

jω − αn − jβn

+
r′

n,ℓ − jr′′
n,ℓ

jω − αn + jβn

(A.7)

and where αn < 0. Therefore, we have

ℜ{Dc
n(jω,ϑ)} = 1

2

ℓ̄∑
ℓ=1

[
dc

n,ℓ + (dc
n,ℓ)∗

]
ξℓ(ϑ) (A.8)

which is nonnegative if

dc
n,ℓ + (dc

n,ℓ)∗ > 0. (A.9)

Plugging the definition (A.7) in (A.9) leads to the following equivalent
condition

(α2
n + β2

n)(−r′
n,ℓαn + r′′

n,ℓβn) + ω2(−r′
n,ℓαn − r′′

n,ℓβn) > 0 (A.10)

which is verified when the second row in (5.11) holds.

3. Superposition Now that we derived positivity conditions on both the real
and imaginary parts, combining the individual constraints through (A.1),
implies that

ℜ {D(jω,ϑ)} > 0 ∀ω, ∀ϑ (A.11)

since obtained as superposition of nonnegative terms. If we now apply the
minimum principle of analytic functions [135], we see that ℜ{D(s,ϑ)} > 0
for ℜ{s} ≥ 0, since the minimum real part is attained along s = jω, which
is a boundary of the considered domain.
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Appendix B

Proof of Theorem 6

B.1 Euclidean Distance Matrices

Let us begin with two preliminary results about Euclidean Distance Matrices
(EDM), which form a basis for the main developments. The following Lemma
states useful results [136] on rank and column space of square EDMs.

Lemma 4. Consider a set of known vectors {ϑm ∈ Rρ, m = 1 . . . , m̄}, and
define the square Euclidean Distance Matrix D̄ ∈ Rm̄×m̄ whose (i, j)-th element
is ∥ϑi − ϑj∥2. Then,

1. there exists a unique vector p ∈ Rm̄ such that

D̄ p = 1m̄ (B.1)

2. rank
(
D̄
)

≤ ρ+ 2.

Proof. See [136].

The following extends the result of Lemma 4 to non-square EDMs.

Lemma 5. Consider a set of known vectors {ϑm ∈ Rρ, m = 1, . . . , m̄} and
assume ρ + 2 < ℓ̄ < m̄. Define the rectangular Euclidean Distance Matrix
D1 ∈ Rm̄×ℓ̄, whose (m, ℓ)-th element is ∥ϑm − ϑℓ∥2. Then,

1. rank (D1) ≤ ρ+ 2.
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2. denoting as V1 the null space of D1, it holds that V1 ̸= ∅ and V1 ⊥ 1ℓ̄.

Proof. Let us consider a square EDM D̄ ∈ Rm̄×m̄ generated by vectors ϑm.
From Lemma 4 we know that rank

(
D̄
)

≤ ρ+ 2. A “tall and thin” rectangular
matrix D1 ∈ Rm̄×ℓ̄ is obtained from D̄ by deleting m̄− ℓ̄ columns. Therefore,
we conclude that its rank cannot exceed the rank of D̄. Hence, we conclude
that

rank (D1) ≤ ρ+ 2 (B.2)

which proves 1).

Under the assumption that ℓ̄ > ρ + 2, the columns of D1 are linearly
dependent. Therefore, its null space V1 is non-empty and

dim V1 ≥ ℓ̄− ρ− 2. (B.3)

If we apply Lemma 4 to D̄ and we delete the last m̄− ℓ̄ rows from (B.1), we
prove that there exists a vector p ∈ Rm̄ such that DT

1 p = 1ℓ̄. Hence, the
Fundamental Theorem of Linear Algebra [137] states that

V1 ⊥ 1ℓ̄ (B.4)

which proves 2).

B.2 Least Singular Values of Gaussian Kernel
Matrices

Using now Lemma 5, we can prove that the least singular value of a non-square
Gaussian kernel matrix K(ε) (without loss of generality, we will drop the
subscripts (N,D) when referring to K(ε)) decays as an integer power of ε as
the shape parameter approaches 0. This is the first main step to provide a
theoretical ground to the proposed Algorithm 2. We have the following

Theorem 7. Consider a Gaussian Kernel Matrix K(ε) as defined in (5.9), with
m̄ > ℓ̄ > ρ+ 2. For ε → 0, the least singular value σK(ε) decays asymptotically
as

σK(ε) = O(εν) as ε → 0, ν ∈ N, ν ≥ 4. (B.5)
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Proof. Let us consider the EDM D1 ∈ Rm̄×ℓ̄, whose (m, ℓ)-th element is
∥ϑm − ϑℓ∥2. The kernel matrix K(ε) defined in (5.9) is obtained from D1

by multiplying each element by −ε2 and taking the exponential. To better
explore the asymptotic limit ε → 0, we form the elementwise MacLaurin series
expansion, as

K(ε) =
∞∑

p=0

(−1)p

p! ε2pDp (B.6)

where Dp denotes the p-th Hadamard power of D1, i.e. (Dp)m,ℓ = ∥ϑm − ϑℓ∥2p.

Following its variational characterization, the least singular value σK(ε) of
K(ε) is defined as

σK(ε) = min
∥z∥=1

∥K(ε)z∥ . (B.7)

Now, plugging (B.6) in (B.7) we have

σK(ε) = min
∥z∥=1

∥∥∥∥∥∥
∞∑

p=0

(−1)p

p! ε2pDpz

∥∥∥∥∥∥ , (B.8)

Hence, the leading power ν of σK(ε) for ε → 0 equals the first term ν = 2p
in (B.8) for which the matrix-vector product Dpz does not vanish identically,
independently on the choice of the vector z. To better characterize this
information, let us analyze the null spaces Vp of matrices Dp for increasing p.

• p = 0. The null space V0 can be easily characterized noting that D0 =
1m̄×ℓ̄ is the matrix of all ones. Therefore, the null space V0 contains all
the vectors z ∈ Rℓ̄ that are orthogonal to 1ℓ̄, i.e.

V0 = {z ∈ Rℓ̄ : zT · 1ℓ̄ = 0}. (B.9)

For any z ∈ V0, ∥z∥ = 1, it holds that Dpz = 0, proving that the least
singular value σK(ε) → 0 for ε → 0 with a leading power at least ν = 2.

• p = 1. By assumption ℓ̄ > ρ + 2, thus Lemma 5 ensures that the null
space V1 of D1 is non-empty and has dimension larger than ℓ̄ − ρ − 2.
In addition, Lemma 5 states that V1 is orthogonal to the vector 1ℓ̄.
Recalling the definition (B.9) of V0, we can conclude that V1 ⊆ V0 and
that V1 ∩ V0 = V1 ̸= ∅. Thus, it always exists a non-vanishing vector
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z ∈ V1 that cancels both the terms D1z and D0z in (B.8). This proves
that the leading power of σK(ε) for ε → 0 is at least ν = 4.

• p = 2. Unfortunately, an explicit characterization of the null space V2

of matrix D2 is not available. So, we can not proceed further with our
analysis.

We conclude that the scaling power for the least singular value σK(ε) for ε → 0
is at least ν ≥ 4.

B.3 From Kernel to Regressor Matrices

Given the results of Theorem 7, we now prove that the same scaling power
propagates to all the PSK matrices.

We proceed in steps, following a constructive approach based on the defini-
tions of Section 5.2.

First, we consider the matrix X(ε), defined as in 5.8. A standard result
states that the singular value spectrum of the Kronecker product Φ ⊗ K(ε) is
obtained as the product of all the individual singular value spectra product of
the two matrices Φ and K(ε). Thus, the least singular value σX(ε) = σΦ⊗K(ε)
is the product of the least singular values of both matrices

σΦ⊗K(ε) = σK(ε) · σΦ (B.10)

where σΦ is does not depend on ε. In turn, this implies that

σΦ⊗K(ε) = O(εν) as ε → 0, (B.11)

with the same ν ≥ 4 that holds for σK(ε).

We can now proceed with matrices Γµ(ε) and Ξµ
(i,j)(ε). These matrices

share the same basic structure, addressed in the following

Lemma 6. Let Φ and K(ε) be defined as in (2.28) and (5.9). Assuming ∆
to be a generic real-valued non-singular square matrix of compatible size, for
ε → 0 the least singular value of ∆ · (Φ ⊗ K(ε)) decays as εν, ν ∈ N, ν ≥ 4.
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Proof. For any fixed instance of ε, we denote the SVD of Φ ⊗ K(ε) as
U(ε)Σ(ε)VT(ε). In addition, we denote the singular values, collected in de-
scending order along the diagonal of matrix Σ(ε), as σt(ε), t = 1, . . . , t̄, and
UT(ε)U(ε) = I, VT(ε)V(ε) = I. From (B.11) we know that σt̄(ε) = σΦ⊗K(ε)
decays as O(εν), with ν ≥ 4, for ε → 0.

We start considering the following identity

∆ · (Φ ⊗ K(ε)) = ∆ · U(ε)Σ(ε)VT(ε) (B.12)

and we compute the QR decomposition ∆ ·U(ε) = Q(ε)R(ε), where the matrix
R(ε) ∈ Rt̄×t̄ is upper triangular and QT(ε)Q(ε) = I. We thus have

∆ · (Φ ⊗ K(ε)) = Q(ε)R(ε)Σ(ε)V(ε)T. (B.13)

Let us additionally denote the columns of R(ε) as rt, i.e. R(ε) =
(
r1 · · · rt̄

)
.

By noting that ∆ is non-singular and that the columns of U(ε) are mutually
orthogonal, we can conclude that that R(ε) is square and invertible and its
columns rt are linearly independent.

Now, we evaluate the SVD of the product R(ε)Σ(ε) = Û(ε)Σ̂(ε)V̂T(ε),
whose singular values are defined as σ̂t(ε), for t = 1, . . . , t̄ and ÛT(ε)Û(ε) = I,
V̂T(ε)V̂(ε) = I. Plugging this result in (B.13) leads to

∆ · (Φ ⊗ K(ε)) = Ũ(ε)Σ̂(ε)ṼT(ε) (B.14)

where the columns of matrices Ũ(ε) = Q(ε)Û(ε) and Ṽ(ε) = V(ε)V̂(ε) are
orthogonal by definition. We immediately notice that (B.14) provides a
singular value decomposition for our initial product ∆ · (Φ ⊗ K(ε)), that is
unique up to permutations of the singular values that, as usual, are assumed
to be sorted in descending order.

From (B.14) we notice that R(ε)Σ(ε) and ∆ · (Φ ⊗ K(ε)) share the same
singular values. There, we can infer the asymptotic behavior of the least
singular value of ∆ · (Φ ⊗ K(ε)) by looking at the least singular value σ̂t̄(ε) of
R(ε)Σ(ε), characterized in a variational form as

σ̂t̄(ε) = min
∥w∥=1

∥R(ε)Σ(ε)w∥ . (B.15)
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We now define the vector wt̄ = (0, · · · , 0, 1)T, so that any unit norm vector
w can be written as

w = αwt̄ + βv, v ⊥ wt̄, ∥v∥ = 1, α2 + β2 = 1. (B.16)

The matrix product R(ε)Σ(ε)w thus reads

R(ε)Σ(ε)w = αR(ε)Σ(ε)wt̄ + βR(ε)Σ(ε)v (B.17)

Since by assumption R(ε)Σ(ε)wt̄ = σt̄(ε)rt̄(ε), we write

∥R(ε)Σ(ε)w∥ =
∥∥∥∥∥∥ασt̄(ε)rt̄ + β

∑
t<t̄

rtσt(ε)vt

∥∥∥∥∥∥ (B.18)

where vt is the t-th component of vector v. We know from (B.11) that, for
ε → 0, the least singular value σt̄(ε) decays as O(εν), ν ≥ 4; in addition, any
other singular value σt(ε) for t < t̄ cannot decay faster than σt̄(ε). We have
only two possible cases

1. σt(ε) = O(εν), ∀t
In this case, we have that ∥R(ε)Σ(ε)w∥ = O(εν) for any w defined as
in (B.16), since all the terms in (B.18) share the same scaling power for
ε → 0.

2. σt(ε) = O(εγ), with γ < ν for some t
In this case, instead, there exists wt for which ηt(ε) = ∥R(ε)Σ(ε)wt∥ =
O(εγ) (Which can be easily found as an all-zero vector with a single unit
entry at component t). For such a vector, the term ηt(ε) = ∥R(ε)Σ(ε)wt∥
decays slower than ηt̄(ε) = ∥R(ε)Σ(ε)wt̄∥ for ε → 0. However, although
for some ε it may happen that ηt(ε) < ηt̄(ε), there exists ε∗ so that
ηt̄(ε) < ηt(ε) for ε < ε∗. We can conclude that, for ε → 0, the vector
w = wt̄ leads to the smallest value of η(ε).

These considerations lead us to conclude that

min
∥w∥=1

∥R(ε)Σ(ε)w∥ = σ{∆ · (Φ ⊗ K(ε))} = O(εν) (B.19)

with ν ≥ 4.
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Finally, we recall that the PSK matrices Γµ(ε) and Ξµ
(i,j)(ε) in (5.7) are

built from the kernel matrices KN(ε) and KD(ε) respectively, which may be
different depending on the selected model orders. Thus, assuming that for
ε → 0 the associated least singular values decay as σKN

(ε) = O(ενN ) and
σKD

(ε) = O(ενN ), Lemma 6 ensures that

σΓ(ε) = O(ενN ), σΞ(i,j)
(ε) = O(ενD) (B.20)

as ε → 0, with νD ≥ 4, νN ≥ 4.

B.4 Assembling regressor matrices

Now we are ready to derive an asymptotic estimate for the singular value σΨ(ε)
of the regressor Ψµ(ε) in (5.6). To this end, let us define two auxiliary matrices

Ψµ
L(ε) =


Γµ(ε)

. . .
Γµ(ε)

 , Ψµ
R(ε) =


Ξµ

(1,1)(ε)
...

Ξµ
(P,P )(ε)

 (B.21)

so that
Ψµ(ε) =

(
Ψµ

L(ε) Ψµ
R(ε)

)
(B.22)

and let us study Ψµ
L(ε) and Ψµ

R(ε) separately.

First, it is trivial to see that the singular values of Ψµ
L(ε) are the same of

Γµ(ε), replicated P 2 times. Hence, it is also easy to see that σΨL
(ε) = O(ενN )

as ε → 0.

In case of matrix Ψµ
R(ε), we can prove the following result

Lemma 7. Let Ψµ
R(ε) be defined as in (B.21). Assuming that for all i, j =

1, . . . , P the least singular value of each block σΞ(i,j)(ε) = O(ενD) as ε → 0, then
also

σΨR
(ε) = O(ενD), ε → 0. (B.23)

Proof. We recall that

Ξ(i,j)(ε) = −H̆(i,j)Wµ−1XD(ε) (B.24)
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For the further developments, let us denote the SVD of XD(ε) as U(ε)Σ(ε)VT(ε).
We denote the singular values (collected in descending order along the diagonal
of Σ(ε)) as σt(ε), t = 1, . . . , t̄, and the following relations hold UT(ε)U(ε) = I,
VT(ε)V(ε) = I. We thus write

Ψµ
R(ε) =


−H̆(1,1)Wµ−1U(ε)

...
−H̆(P,P )Wµ−1U(ε)


︸ ︷︷ ︸

L(ε)

Σ(ε)VT(ε) (B.25)

which shares with (B.12) the same structure, obtained replacing ∆ · U(ε) with
L(ε).

Following the same procedure as in the proof of Lemma 6 we conclude that

σΨR
(ε) = O(ενD) (B.26)

as ε → 0.

We can state our final result

Theorem 8. Let Ψµ(ε) be defined as in (B.22). If for ε → 0 it holds that
σΨL

(ε) = O(ενN ) and σΨR
(ε) = O(ενD), then

σΨ(ε) = O(ετ ), τ = max {νN , νD}. (B.27)

Proof. As usual, we characterize the least singular value as

σΨ(ε) = min
∥w∥=1

∥Ψµ(ε)w∥ . (B.28)

Moreover, we split the vector w as

w =
αwL

βwR

 (B.29)

where ∥wL∥ = ∥wR∥ = 1 and α2 + β2 = 1 to ensure ∥w∥ = 1.
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Defining the following SVDs

Ψµ
L(ε) = UL(ε)ΣL(ε)VT

L(ε)
Ψµ

R(ε) = UR(ε)ΣR(ε)VT
R(ε) (B.30)

it holds that

Ψµ(ε)w = αUL(ε)ΣL(ε)VT
L(ε)wL

+ βUR(ε)ΣR(ε)VT
R(ε)wR (B.31)

For any fixed instance of ε, we consider the first summation term of (B.31),
and we pick wL = vL, where vL is defined as the last column of VL(ε). Hence,
it trivially follows that VT

L(ε)vL = (0, . . . , 1)T. We proceed recalling that the
matrix ΣL(ε) stores the singular values of Ψµ

L(ε) sorted in descending order,
thus ΣL(ε)VT

L(ε)vL = (0, . . . , σΨL
(ε))T and the first summation term in (B.31)

reduces to
αUL(ε)ΣL(ε)VT

L(ε)vL = αuLσΨL
(ε) (B.32)

where uL denotes the last column of UL(ε).

We repeat the same procedure on the second term of (B.31), choosing the
vector wR = vR as the last column of VR(ε), obtaining

βUR(ε)ΣR(ε)VT
R(ε)vR = βuRσΨR

(ε) (B.33)

where uR is the last column of UR(ε).

For this choice of w we thus have

w =
αvL

βvR

 → Ψµ(ε)w = αuLσΨL
(ε) + βuRσΨR

(ε) (B.34)

where all vectors w, vL,R, uL,R have unit length and the least singular values
σΨL,R

(ε) scale as O(ενN,D) for ε → 0, by assumption. When w is chosen as
in (B.34), we therefore have

min
∥w∥=1

∥∥∥αuLσΨL
(ε) + βuRσΨR

(ε)
∥∥∥ = O(ετ ) (B.35)
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with τ = max {νN , νD}, which is attained by selecting α = 1, 0 and β = 0, 1
respectively.

Following similar arguments as in the proof of Lemma 6, we prove that w
as defined in (B.34) the largest scaling exponent τ for ε → 0.

Hence, the minimum is achieved by (B.35) and we can conclude that

σΨ(ε) = min
∥w∥=1

∥Ψµ(ε)w∥ = O(ετ ) (B.36)

with τ = max {νN , νD}.
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Proof of Proposition 1

In the following, we are going to prove Proposition 1 of Section 6.2.2.

Proof. Consider the Gaussian Kernel Matrix K(ε) defined in (5.9), and let us
re-write it in terms of its column components, as

K(ε) = [k1(ε), . . . ,kℓ̄(ε)], (C.1)

where
kℓ(ε) =

[
e−ε2∥ϑ1−ϑℓ∥2

, . . . , e−ε2∥ϑm̄−ϑℓ∥2]T
(C.2)

For the further developments, it is worth noting that each element of kℓ is
bounded in the interval [0, 1] for 0 ≤ ε ≤ ∞. In addition, under the assumption
that the RBFs are centered on the available training samples, there exists
unique ϑm = ϑℓ, ℓ = 1, . . . , ℓ̄. Therefore, independently of ε, each vector kℓ(ε)
includes a single element which is equal to 1.

For ε ∈ {R+ ∪ ∞}, the vectors kℓ(ε) thus range from the unitary vector
1 = [1, 1, . . . , 1]T (for ε → 0) to the canonical basis eℓ = [0, . . . , 1, . . . , 0]T (for
ε → ∞). We can conclude that

∥kℓ(ε)∥2 ∈
[
1,

√
m̄
]
. (C.3)

and
∥K(ε)∥ ∈

[
1,
√
m̄ℓ̄
]

(C.4)

In our proof, we will consider the upper and lower bounds separately.
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C.1 Proving the upper bound

Following its variational definition, the leading singular value σ̄K(ε) reads

σ̄K(ε) = sup
∥z∥=1

∥K(ε)z∥ . (C.5)

In order to prove that σ̄K(ε) ≤
√
m̄ℓ̄, ∀ε, let us write

∥K(ε)z∥ = ∥k1(ε)z1 + . . .+ kℓ̄(ε)zℓ̄∥ (C.6)

where the scalars zℓ are the components of the unit-norm vector z. Applying
the triangle inequality to (C.6), we have

∥K(ε)z∥ = ∥k1(ε)z1 + . . .+ kℓ̄(ε)zℓ̄∥ ≤ (C.7)
≤ ∥k1(ε)z1∥ + . . . ∥kℓ̄(ε)zℓ̄∥ =
= ∥k1(ε)∥ |z1| + . . . ∥kℓ̄(ε)∥ |zℓ̄| ≤
≤

√
m̄ (|z1| + . . .+ |zℓ̄|)

where the last inequality stems from (C.3). In the term (|z1| + . . .+ |zℓ̄|), we
recognize the 1-norm of vector z. A well-known result is that ∥z∥1 ≤

√
ℓ̄ ∥z∥2

thus, recalling that ∥z∥2 = 1, we have ∥z∥1 ≤ (ℓ̄)1/2. Hence, from (C.7) we
have

∥K(ε)z∥ ≤
√
m̄ (|z1| + . . .+ |zℓ̄|) ≤

√
m̄ℓ̄ (C.8)

All the above steps are valid independently of the choice of ε and z, we can
thus conclude that

σ̄K(ε) ≤
√
m̄ℓ̄, ∀ε. (C.9)

C.2 Proving the lower bound

Let us now prove that
inf

ε
σ̄K(ε) ≥ 1 (C.10)
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Based on (C.5), the above is equivalent to

inf
ε

sup
∥z∥2=1

∥K(ε)z∥ ≥ 1. (C.11)

First, exploiting the min-max inequality [138] we have the that

inf
ε

sup
∥z∥2=1

∥K(ε)z∥ ≥ sup
∥z∥2=1

inf
ε

∥K(ε)z∥ (C.12)

Focusing on the right-hand-side term, let us analyze the innermost minimization
problem infε ∥K(ε)z∥. By definition we have

inf
ε

∥K(ε)z∥ ≤ inf
ε

∥K(ε)∥ ∥z∥ (C.13)

and, following (C.4), the minimum is attained at ε → ∞ where ∥K(ε)∥ = 1.
We conclude that,

inf
ε

∥K(ε)z∥ ≤ ∥K(∞)∥ ∥z∥ = ∥z∥ (C.14)

therefore
sup

∥z∥2=1
inf

ε
∥K(ε)z∥ ≤ ∥z∥2 = 1 (C.15)

The above (C.15) holds with equality. This can be easily proven recalling that,
for ε → ∞, the columns of K(ε) coincide with the canonical basis vectors
eℓ (see Equation (6.3)). Taking z∗ = eℓ, for some ℓ = 1, . . . , ℓ̄ we have that
∥K(∞)z∗∥ = 1. We can thus conclude that

sup
∥z∥2=1

inf
ε

∥K(ε)z∥ = 1 (C.16)

Finally, plugging (C.16) in (C.12) leads to

inf
ε

sup
∥z∥2=1

∥K(ε)z∥ ≥ 1 (C.17)

that concludes our proof.
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