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Abstract. Recently, Instantaneous Spectral Entropy (ISE) measurements have 

been proposed for real-time damage assessment purposes in nonstationary me-

chanical systems. These include Condition Monitoring (CM) in rotating ma-

chinery as well as Structural Health Monitoring (SHM) for civil structures. 

However, several distinct entropy definitions are available in the scientific liter-

ature, each with its advantages and limitations. In the present paper, the poten-

tial of the family of Rényi entropies is evaluated. The order  is varied between 

0 (corresponding to the Hartley entropy, i.e., the Max-entropy) and  (Min-

entropy), encompassing  (Shannon-entropy) and  (Collision en-

tropy) as particular cases of special interest. The Wigner-Ville (WV), Smoothed 

Pseudo Wigner Ville (SPWV), Discrete Choi-Williams (DCW), and Continu-

ous Wavelet (CWT) transforms are all tested for the time-frequency (TF) distri-

bution of the target signal. In turn, this TF is used to compute the probability 

density function, from which the ISE is estimated. A sensitivity analysis is run 

on all the parameters for each candidate TF transform, aiming at defining the 

best settings. All studies were performed on a well-known experimental dataset, 

the three-storey aluminium frame structure developed at the Los Alamos Na-

tional Laboratories, considering the undamaged conditions as the normality 

model. The results show good potential for entropy-based real-time damage de-

tection, especially for breathing cracks. 

Keywords: Structural Health Monitoring; Damage Detection, Instantaneous 

Spectral Entropy, Rényi Entropy, Wigner-Ville Distribution.  

1 Introduction. 

Both Structural Health Monitoring (SHM) and Condition Monitoring (CM) can be 

performed for damage or fault detection with data-driven approaches. In this sense, 

the current damage diagnosis framework is based on Machine Learning (ML, [1]) 

principles, especially statistical pattern recognition and outlier detection [2]. The ra-

tionale is therefore to link any anomaly in the vibrational behaviour of a target system 

to occurring damage.  
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In this context, the Instantaneous Spectral Entropy (ISE) has been recently sug-

gested as a time-varying DSF, with applications for both SHM [3] and CM [4] in real-

time [5]. 

In this study, the family of Rényi entropies [6] is specifically evaluated. These are 

considered as a generalisation of several well-known entropy definitions, such as the 

already-cited SSE, the Collision entropy, and the Min- and Max-entropies, depending 

on the particular value assumed for the order . Four different TF distributions have 

been used for the extraction of the instantaneous Rènyi entropies: the Wigner-Ville 

(WV), Smoothed Pseudo Wigner Ville (SPWV), Discrete Choi-Williams (DCW), and 

Continuous Wavelet (CWT) transforms. To better address which TF-ISE combination 

would return the best results (i.e., the highest damage detection capabilities), all these 

candidates were tested on an experimental dataset. The parameters and settings of 

each TF candidate were varied as well to test their effects on the final results. 

The remaining of this paper is organised as follows: Section 2 briefly recalls the 

main aspects from the theory of Rényi entropies and the TF transforms applied here. 

Section 3 describes the experimental case study and Section 4 reports the results. 

Section 5 summarizes and discusses these results, while the Conclusions end this 

paper. 

2 Theoretical background. 

2.1 The Rényi family of entropies. 

Firstly introduced by Alfred Rényi in 1961 [6], the Rényi family of entropies can be 

defined in a single equation, as a function of its order : 

  (1) 

where n indicates the number of bins (in this context, frequency samples) and  is 

the probability distribution associated with the i-th sample. The generalised formula-

tion of Eq. 1 is valid under the condition that . Regardless of the specific 

order considered, any member of this family can be used as a quantitative index for 

the diversity of a system (as is always the case for any entropy measure). Therefore, 

any values of  can be considered as a potential candidate for damage 

diagnosis purposes, accordingly to the eighth axiom of SHM. In this regard, the vari-

ous Rényi entropies are all maximised for a uniform distribution. On the other hand, 

they differ in their estimates of the unpredictability for nonuniform distribution. 

Therefore, they can be compared on a benchmark dataset, to evaluate the appropriate-

ness of each option. Some of these alternatives are well-known and will be discussed 

in the next subsection. 

Some particular cases. The Rényi generalised formulation reported in Eq 1 can 

assume specific definitions for particular cases of . These include 
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  (2) 

for ,  

  (3) 

for , 

  (4) 

for , and finally 

  (5) 

for .  

Eq.2 is better known as the Hartley or Max-entropy, firstly introduced in 1928 [7]; 

Eq. 3 is the already-mentioned SSE, as defined by Powell & Percival in 1979 [8], 

based on the measure of uncertainty proposed in1948 by Shannon in its seminal work 

[9]. This is, arguably, the most commonly applied measure of information. Eq. 4 is 

known as the Collision entropy, or the Rényi entropy par excellence, and can be in-

tended as the probability of two discrete i.i.d. variables to collide, i.e. to casually yield 

the same value. Finally, Eq. 5 is known as the Min-entropy, since it represents the 

limit case of the smallest entropy measure in the Rényi family, as it will be discussed 

in more details later.  

Please note that for all formulations, the base 10 logarithm was considered here. 

This does not affect directly the results; any other base can be used interchangeably. 

Moreover, all formulations can be further normalised (by dividing them to their re-

spective maximum) to have them confined in the  range. For the intent of this 

research, the -normalised Rényi definition was followed, dividing the results by the 

logarithm of the number of bins.  

For the instantaneous estimation of entropy,  must be considered as a function of 

both frequency and time. This applies to all the definitions (except for Eq. 1, the Max-

entropy, which depends only on the number of bins). Therefore, as hinted previously, 

a time-frequency transform is needed to extract the ISE. This was shown in [3] to 

greatly affect the results; therefore, several candidates were considered to this aim.  

The four candidates TF transforms are, specifically, the Wigner-Ville (WV [10]), the 

Smoothed Pseudo Wigner Ville (SPWV [11]), the Discrete Choi-Williams (DCW 

[12]), and the Continuous Wavelet (CWT [13]). For the CWT, the Generalised Morse 

Wavelet (GMW) was utilised as the default mother wavelet. Due to space limitations, 

these are not described here; the interested reader can refer to the original publica-

tions. 
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3 The experimental benchmark. 

The well-known experimental dataset comes from a three-storey structure (Figure 1), 

built at the Engineering Institute (EI) of the Los Alamos National Laboratory 

(LANL). This is intended to mimic a scaled shear-type frame structure, typical of high 

rise buildings. All the technical details regarding the test structure and the experi-

mental setup can be found in [14]. 

The response of the structures was recorded at four acquisition channels, one per 

floor (including the base) and located as indicated in Figure 1. All channels were test-

ed for this research; for brevity, only the results of channel #3 will be reported herein-

after. This was found here and in previous studies [3] to be the one most sensitive to 

structural changes and damage occurrence (at least concerning the entropy of its fre-

quency spectrum). 

The original dataset includes one unaltered and sixteen altered cases. These include 

both simulations of damage as a linear reduction of the stiffness of one or more col-

umns (according to the fully open crack model) or as a pointwise source of bilinearity 

(following the breathing crack model [15]). This latter case is mimicked by a bumper-

column mechanism, which acts as a one-sided constrain, increasing the stiffness along 

the negative x-direction. This dataset has been widely used in previous researches in 

the field of SHM [16–18], also including some entropic measurements by Donajkow-

ski et al. [19]. 

To simulate the time-varying structural changes needed to assess the algorithms 

for real-time monitoring, the acceleration time series from a subset of the 17 states 

were considered and concatenated (Figure 2), as suggested in [14]. These states corre-

spond to the #1, #3, #7, #14, #17 states of the original benchmark [14]; their charac-

teristics as enlisted in Table 1. The added masses of states #3 and #17 emulate struc-

tural changes unrelated to damage, e.g. transitional operating conditions. 

To perform quasi-real-time monitoring, the concatenated signals were framed into 

6.4 s-long (2048 timesteps) blocks. The concept, detailed in [3], is to analyse each 

data packet while the next one is recorded (as the algorithm is proved to run in less 

than 2 s [3]). This provides an uninterrupted stream of data. As it will be shown in the 

results, however, this framing affected negatively the instantaneous entropy estimates, 

due to the edge effects caused by the TF transforms.  

The ‘Normality Model’ of the structural dynamic behaviour, intended to capture 

the main statistical parameters of the vibrational response under Normal Operating 

Conditions (NOCs), was defined as follows. Considering Case #1 of the structure as 

its unaltered state, the ISE extracted from the respective vibration recorded time histo-

ries was utilised to define a time-invariant confidence interval. The upper and lower 

threshold values were set as , where  is the mean of the unaltered baseline 

and  its standard deviation. That is to say, any datapoint outside of this range has a 

95.45% probability of not belonging to the pristine structure. 
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Fig. 1. The LANL three-storey structure. The bumper-column mechanism is visible between 

the 2nd and the 3rd floor. Adapted from [14]. All measures are reported in cm. 

Table 1. Altered and unaltered scenarios for the experimental structure. The cases used for this 

research are highlighted in bold. 

Tract 
Original 

ID [14] 
Description 

I #1 Linear baseline. 

II #3 Linear, added mass of 1.2 kg at the first floor. 

III #7 Linear, 87.5% stiffness reduction in two columns of the second interstorey. 

IV #14 Nonlinear, distance between bumper and column tip 0.05 mm. 

V #17 Nonlinear, bumper 0.10 mm from column tip, 1.2 kg added on the first floor. 

 

 
Fig. 2. The concatenated signals, for all the four output channels. The 25th realisation 

of the unaltered case #1 is shown. The dashed red lines demarcate the five states (1st, 

3rd, 7th, 14th, and 17th, in this order). 

4 Results. 

Seven values of  have been considered: 0.1,  (i.e. SSE), 2 (i.e. the Collision 

entropy), 3, 5, 10, and 100. In particular, 100 was considered as indicative of any 

larger value (up to ) since further tests proved that no substantial difference oc-

curred by increasing ; thus, it can be considered equivalent to the Min-
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entropy. The Max-entropy was discarded a priori, being it – by definition ( Eq(2) ) – a 

constant value only related to the number of bins. However, 0.1 was nevertheless 

tested as a very small order, approaching zero. 

The specific results for each TF candidate are reported here below. In all plots, the 

solid vertical lines indicate the end of the concatenated signals (states #1, #3, #7, #14, 

and #17) and the dashed lines the end of the single frames (four for each state). The 

grey area represents the 95.45% confidence interval. The green lines represent the 

ISE. Due to the high volatility of this index, a moving average was used, computed 

over  timesteps. This is indicated by the thick black curves. 

4.1 SPWV and WV. 

While supposedly more robust than standard WV (for the motivations explained in 

[3]), the SPWV performed comparably to the WV for all Rényi orders. By way of 

example, Figure 3 reports the results for  tending to +1 (i.e. for the SSE). On the one 

hand, the SPWV average was more sensitive to the insertion of the nonlinear mecha-

nism (states #14 and #17). On the other hand, it was characterised by a higher varia-

bility, which also returned a larger confidence interval. 

 

 
Fig. 3. ISE as extracted from (a) the WV and (b) the SPWV distributions. Rényi en-

tropy of order 1 (SSE), 3rd output channel, 25th realisation. 

4.2 DCW. 

The sensitivity to the selectivity parameter was tested by varying the value of  from 

0.1 to 1.0 in steps of 0.1. Overall, the sensitivity to damage increased with  from 0.1 

to 0.6 and then inverted its trend, starting to decrease. This seems to suggest that, at 

least for this application, the value , commonly suggested as the default value, 

is the most viable option, even if by a relatively small margin. 

However, in all cases, the DCW was overperformed by both the standard defini-

tion of WV and the SPWV. This is visible in the two examples of Figure 4, for  

(SSE) and  (Collision entropy).  is reported by way of example; the 

same aspects described here were encountered for other values of this parameter as 

well. In fact, in comparison to SPWV and WV, the DCW has slightly better damage 

detection capabilities; yet these small improvements are overwhelmed by a much 

higher variability and sensitivity to the detrimental effects of framing. These cause 
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some false positives in states where the damage (both linear or nonlinear) is not in-

serted in the system (see e.g. Figure 4.b, second tract, which corresponds to case #3). 

 
Fig. 4. ISE as extracted from the DCW transform ( ). (a) Rényi entropy of 

order 1 (SSE), (b) Rényi entropy of order 2 (Collision entropy). 3rd output channel, 

25th realisation. 

4.3 CWT. 

The sensitivity to the two GMW parameters  and  was tested, following the anal-

yses performed in [4] for an application to rotating machinery. Specifically,  was 

varied from a minimum value of 2 to a maximum of 40 in steps of 2, while  was set 

to 1, 2, 3, or 4, for a total of 140 /  combinations.  

For all values of , it was found that increasing  returned better results, even if 

the difference for any value  is relatively small. This corresponds to a positive 

skewness of the GMW, for which it becomes more symmetric as  increases.  

For constant  and , increasing the compactness parameter returned smaller con-

fidence intervals while emphasizing the effects of damage, thus resulting in more 

effective damage detection. This was particularly evident for . Therefore, the 

optimal range of values , , experimentally defined in [4] for data collect-

ed from a wind turbine in operating conditions and using SSE, is confirmed here for 

this different application and for all the entropies derived from the Rényi generalised 

definition. Figure 5 reports two examples with  and  for  and 

 (Figure 5.a and 5.b respectively).  

However, it must be remarked that (i) even with optimised parameters, the results 

obtained by applying the GMW were less effective than the ones obtained with the 

Bump wavelet in [3] (especially for SSE; for , the optimised GMW is almost on 

par with the Bump wavelet); (ii) as evidenced in [3], all wavelet-based approaches are 

largely affected by edge effects and thus by the signal framing. Therefore, they are all 

less robust than WV and similar approaches.  
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Fig. 5. ISE as extracted from the CWT with GMW as its mother wavelet (  and 

). (a) Rényi entropy of order 1 (SSE), (b) Rényi entropy of order 2 (Collision 

entropy). 3rd output channel, 25th realisation. 

5 Discussion. 

As discussed in previous works on the same benchmark dataset [3], the ISE measures 

proved to be much more sensitive to the added nonlinearity than to the reduced linear 

stiffness or increased mass. Therefore, the analysis of the results will focus on the 

capabilities of the different orders of  to capture the occurrence of nonlinear damage. 

For all the TF transforms investigated here, it was found that increasing  made 

the ISE measures more sensitive to the occurrence of damage but also to the detri-

mental effects of framing. It was already noticed in [3] that the SSE and the Collision 

entropy performed similarly, which is understandable since they represent very close 

orders in the Rényi formulations (both were also shown to overperform the Wiener 

entropy).  

For CWT (with GMW parameters set as  and ), the beneficial addi-

tional sensitivity to damage always outweighs the negative additional sensitivity to 

framing; therefore, the best results were obtained for any value , up to .  

For WV, a trade-off was reached in between , i.e. for orders larger 

than the Collision entropy but lower than the Min-entropy. After this global optima, 

the negative framing effects overcome the positive increase in the damage sensitivity.  

For DCW (with any ), the same trend was encountered for the sensibility to the 

occurrence of nonlinearity. Instead, the sensibility to stiffness reduction decreased 

monotonically for increasing . This particular behaviour (reported as well previously 

in Figure 4) was found only with the DCW. 

The same happened at very low orders for the SPWV, where  (SSE) can be 

seen as the best option. 

These effects of increasing  can be explained by the properties of Eq. 1. One can 

notice that  is non-increasing in  for any given distribution of probability ; that 

is to say, 

  (6) 
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By recalling the definitions provided in Eq 2 – 5, this can be easily proven for all 

the particular cases of interest here since  

  (7) 

The main consequence is that, when  approaches , the Rényi generalised defi-

nition becomes increasingly determined by the events with the highest probability. 

This makes  the most conservative approach to measure the unpredictability of a 

set of outcomes for a discrete random variable. This is also clearly understandable 

from its definition in Eq. 5 as the negative logarithm of the probability of the most 

likely outcome. It is most probably thanks to this property that  performed better 

than other options for CWT and that, in general, increasing the order  returned more 

sensitive measurements (with all the related advantages and disadvantages).  

Regarding the parameter settings for the specific TF transforms, summarizing the 

results of this and other previous works, one can say that: 

•  For the CWT with GMW as its mother wavelet, the best results (for all or-

ders) were achieved with   and ; however, these were all 

outperformed by all the other candidate distributions. 

•  For the DCW, the best results (for all orders) were achieved for ; 

however, it was outperformed by both SPWV and WV. 

•  The SPWV performed better than the DCW but not on par with the WV, de-

spite its supposed improvements with respect to the standard definition. 

•  Thus, the best overall results were achieved with WV with orders slightly 

larger than 2, specifically around . 

6 Conclusions. 

The research described here thoroughly investigated the effects of selecting one 

member of the Rényi family for entropy-based damage detection. In particular, this 

was applied for real-time SHM, considering the normalised Instantaneous Spectral 

Entropy (ISE) values. The candidates (which included as special cases the Shannon 

Spectral, Collision, Hartley, and Min- Entropies) were tested considering different TF 

distributions, all set with optimised parameters. Overall, no clear best candidate 

emerged; increasing  returned more damage-sensitive but less stable results. The 

exact optimum point depends on the specific TF distribution utilised to extract the 

ISE. Ideally, in absence of edge effects (i.e. if performed without framing), increasing 

 could increase the sensitivity to damage with no (or limited) adverse effects. 

The main outcome of this and previous researches is that ISE measurement can be 

applied to detect nonlinearities in a nonstationary system. However, for uses as a 

time-varying damage-sensitive feature, any entropy definition is highly affected by 

the specific TF distribution given as input. Different TF transforms can lead to very 

different results, hampering or nullifying the procedure capabilities to detect damage. 

Thus, the definition of the most proper TF transform is the subject of current and 

future researches. The uncertainty of the ISE estimates will be investigated as well. 



10 

References 

1.  Farrar CR, Worden K (2013) Structural Health Monitoring: A Machine Learning 

Perspective 

2.  Farrar CR, Doebling SW, Nix DA (2001) Vibration–based structural damage 

identification. Philos Trans R Soc London Ser A Math Phys Eng Sci 359:131–149 . 

https://doi.org/10.1098/rsta.2000.0717 

3.  Civera M, Surace C (2022) Instantaneous Spectral Entropy: An application for the 

Online Monitoring of Multi-Storey Frame Structures. Buildings 12: . 

https://doi.org/10.3390/buildings12030310 

4.  Civera M, Surace C (2022) An Application of Instantaneous Spectral Entropy for the 

Condition Monitoring of Wind Turbines. Appl Sci 2022, Vol 12, Page 1059 12:1059 . 

https://doi.org/10.3390/APP12031059 

5.  Bhowmik B, Krishnan M, Hazra B, Pakrashi V (2019) Real-time unified single- and 

multi-channel structural damage detection using recursive singular spectrum analysis. 

Struct Heal Monit 18:563–589 . https://doi.org/10.1177/1475921718760483 

6.  Rényi A (1961) On measure of entropy and information. Proc Fourth Berkeley Symp 

Math Stat Probab Vol 1 Contrib to Theory Stat 1:547–561 

7.  Hartley RVL (1928) Transmission of Information. Bell Syst Tech J 7:535–563 . 

https://doi.org/10.1002/J.1538-7305.1928.TB01236.X 

8.  Powell GE, Percival IC (1979) A spectral entropy method for distinguishing regular 

and irregular motion of Hamiltonian systems. J Phys A Gen Phys 12:2053–2071 . 

https://doi.org/10.1088/0305-4470/12/11/017 

9.  Shannon CE (1948) A Mathematical Theory of Communication. Bell Syst Tech J 

27:379–423 . https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

10.  Ville J (1948) Théorie et application de la notion de signal analytique. Cables Transm 

2:61–74 

11.  Yan YS, Poon CCY, Zhang YT (2005) Reduction of motion artifact in pulse oximetry 

by smoothed pseudo Wigner-Ville distribution. J Neuroeng Rehabil 2:1–9 . 

https://doi.org/10.1186/1743-0003-2-3/FIGURES/5 

12.  Choi HI, Williams WJ (1989) Improved Time-Frequency Representation of 

Multicomponent Signals Using Exponential Kernels. IEEE Trans Acoust 37:862–871 . 

https://doi.org/10.1109/ASSP.1989.28057 

13.  Daubechies I, Ingrid (1992) Ten lectures on wavelets. Society for Industrial and 

Applied Mathematics 

14.  Figueiredo E, Park G, Figueiras J (2009) Structural Health Monitoring Algorithm 

Comparisons Using Standard Data Sets. Los Alamos National Lab. (LANL) 

15.  Bovsunovsky A, Surace C (2015) Non-linearities in the vibrations of elastic structures 

with a closing crack: A state of the art review. Mech Syst Signal Process 62–63:129–

148 . https://doi.org/10.1016/j.ymssp.2015.01.021 

16.  Civera M, Ferraris M, Ceravolo R, Surace C, Betti R (2019) The Teager-Kaiser 

Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool. Appl 

Sci 9:5064 . https://doi.org/10.3390/app9235064 

17.  Civera M, Surace C (2021) A Comparative Analysis of Signal Decomposition 

Techniques for Structural Health Monitoring on an Experimental Benchmark. Sensors 

21:1825 . https://doi.org/10.3390/s21051825 

18.  Martucci D, Civera M, Surace C (2021) The Extreme Function Theory for Damage 

Detection: An Application to Civil and Aerospace Structures. Appl Sci 11:1716 . 

https://doi.org/10.3390/app11041716 

19.  Donajkowski H, Leyasi S, Mellos G, Farrar CR, Scheinker A, Pei J-S, Lieven NAJ 

(2020) Comparison of Complexity Measures for Structural Health Monitoring. 

Springer, Cham, pp 27–39 


