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Abstract In this paper we solve an open problem concerning the charac-
terization of those measurable sets � ⊂ R

2d that, among all sets having
a prescribed Lebesgue measure, can trap the largest possible energy frac-
tion in time-frequency space, where the energy density of a generic function
f ∈ L2(Rd) is defined in terms of its Short-time Fourier transform (STFT)
V f (x, ω), with Gaussian window. More precisely, given a measurable set
� ⊂ R

2d having measure s > 0, we prove that the quantity

�� = max
{ ∫

�

|V f (x, ω)|2 dxdω : f ∈ L2(Rd), ‖ f ‖L2 = 1
}
,

is largest possible if and only if � is equivalent, up to a negligible set, to a
ball of measure s, and in this case we characterize all functions f that achieve
equality. This result leads to a sharp uncertainty principle for the “essential
support” of the STFT (when d = 1, this can be summarized by the optimal
bound�� ≤ 1− e−|�|, with equality if and only if� is a ball). Our approach,
using techniques from measure theory after suitably rephrasing the problem
in the Fock space, also leads to a local version of Lieb’s uncertainty inequality
for the STFT in L p when p ∈ [2, ∞), as well as to L p-concentration estimates
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when p ∈ [1, ∞), thus proving a related conjecture. In all cases we identify
the corresponding extremals.

Mathematics Subject Classification 49Q10 · 49Q20 · 49R05 · 42B10 ·
94A12 · 81S30

1 Introduction

The notion of energy concentration for a function f ∈ L2(R) in the time-
frequency plane is an issue of great theoretical and practical interest and can
be formalised in terms of time-frequency distributions such as the so-called
Short-time Fourier transform (STFT), defined as

V f (x, ω) =
∫

R

e−2π iyω f (y)ϕ(x − y)dy, x, ω ∈ R,

where ϕ is the “Gaussian window”

ϕ(x) = 21/4e−πx2, x ∈ R, (1.1)

normalized in suchway that ‖ϕ‖L2 = 1. It is well known thatV f is a complex-
valued, real analytic, bounded function and V : L2(R) → L2(R2) is an
isometry (see [28,34]).

The STFT represents a versatile tool in several areas of pure and applied
mathematics; it is also called Bargmann transform in PDEs [46,54] (cf. also
the closely related FBI transform [38]), coherent state transform in quantum
physics [43], Gabor transform or windowed Fourier transform in signal pro-
cessing [44]. The basic idea of localizing a function before taking its Fourier
transform turned out to be crucial in the study of the singularities of distri-
butions [38] and, in more quantitative terms, to detect the blobs of energy
of an L2-function. This provides parsimonious representations for classes of
functions, which is a fundamental paradigm of modern signal processing [44].

More precisely, it is customary to interpret |V f (x, ω)|2 as the time-
frequency energy density of f (see [34,44]). Consequently, the fraction of
energy captured by a measurable subset� ⊆ R

2 of a function f ∈ L2(R)\{0}
will be given by the Rayleigh quotient (see [2,3,18,45])

��( f ) :=
∫
�

|V f (x, ω)|2 dxdω∫
R2 |V f (x, ω)|2 dxdω

= 〈V∗1�V f, f 〉
‖ f ‖2

L2

. (1.2)

The bounded, nonnegative and self-adjoint operator V∗1�V on L2(R) is
known in the literature under several names, e.g. localization, concentration,
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The Faber–Krahn inequality 3

Anti-Wick operator, as well as time-frequency or time-varying filter. Since
its first appearance in the works by Berezin [8] and Daubechies [18], the
applications of such operators have been manifold and the related literature is
enormous: we refer to the books [9,55] and the survey [16], and the references
therein, for an account of the main results.

Now, when � has finite measure, V∗1�V is a compact (in fact, trace class)
operator. Its norm ‖V∗1�V‖L(L2), given by the quantity

�� := max
f ∈L2(R)\{0}

��( f ) = max
f ∈L2(R)\{0}

〈V∗1�V f, f 〉
‖ f ‖2

L2

,

represents the maximum fraction of energy that can in principle be trapped
by � for any signal f ∈ L2(R), and explicit upper bounds for �� are
of considerable interest. Indeed, the analysis of the spectrum of V∗1�V
was initiated in the seminal paper [18] for radially symmetric �, in which
case the operator is diagonal in the basis of Hermite functions –and con-
versely [1] if an Hermite function is an eigenfunction and � is simply
connected then � is a ball centered at 0– and the asymptotics of the
eigenvalues (Weyl’s law), in connection with the measure of �, has been
studied by many authors; again the literature is very large and we address
the interested reader to the contributions [2,3,20,45,47] and the references
therein.

The study of the time-frequency concentration of functions, in relation
to uncertainty principles and under certain additional constraints (e.g. on
subsets of prescribed measure in phase space, or under limited bandwidth
etc.) has a long history which, as recognized by Landau and Pollak [41],
dates back at least to Fuchs [30], and its relevance both to theory and
applications has been well known since the seminal works by Landau-
Pollack-Slepian, see e.g. [29,40,52], and other relevant contributions such
as those of Cowling and Price [17], Donoho and Stark [23], and Daubechies
[18].

However, in spite of the abundance of deep and unexpected results related to
this circle of ideas (see e.g. the visionary work by Fefferman [26]) the question
of characterizing the subsets � ⊂ R

2 of prescribed measure, which allow for
the maximum concentration, is still open. In this paper we provide a complete
solution to this problem proving that the optimal sets are balls in phase space,
and, in dimension one, our result can be stated as follows (see Theorem 4.1
for the same result in arbitrary dimension).
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4 F. Nicola, P. Tilli

Theorem 1.1 (Faber–Krahn inequality for the STFT) Among all measurable
subsets � ⊂ R

2 having a prescribed (finite, non zero) measure, the quantity

�� := max
f ∈L2(R)\{0}

∫
� |V f (x,ω)|2 dxdω∫
R2 |V f (x,ω)|2 dxdω

= max
f ∈L2(R)\{0}

〈V∗1�V f, f 〉
‖ f ‖2

L2
(1.3)

achieves its maximum if and only if � is equivalent, up to a set of measure
zero, to a ball.

Moreover, when � is a ball of center (x0, ω0), the only functions f that
achieve the maximum in (1.3) are the functions of the kind

f (x) = c e2π iω0xϕ(x − x0), c ∈ C\{0}, (1.4)

that is, the scalar multiples of the Gaussian window ϕ defined in (1.1), trans-
lated and modulated according to (x0, ω0).

This “Faber–Krahn inequality” (see Remark 1.3 at the end of this section)
proves, in the L2-case, a conjecture by Abreu and Speckbacher [5] (the full
conjecture is proved in Theorem 5.3), and confirms the distinguished role
played by the Gaussian (1.4), as the first eigenfunction of the operator V∗1�V
when � has radial symmetry (see [18]; see also [23] for a related conjecture
on band-limited functions, and [17, page 162] for further insight).

When � is a ball of radius r , one can see that �� = 1− e−πr2 (this follows
from the results in [18], and will also follow from our proof of Theorem 1.1).
Hence we deduce a more explicit form of our result, which leads to a sharp
form of the uncertainty principle for the STFT.

Theorem 1.2 (Sharp uncertainty principle for the STFT) For every subset
� ⊂ R

2 whose Lebesgue measure |�| is finite we have

�� ≤ 1 − e−|�| (1.5)

and, if |�| > 0, equality occurs if and only if � is a ball.
As a consequence, if for some ε ∈ (0, 1), some function f ∈ L2(R)\{0}

and some � ⊂ R
2 we have ��( f ) ≥ 1 − ε, then necessarily

|�| ≥ log(1/ε), (1.6)

with equality if and only if� is a ball and f has the form (1.4), where (x0, ω0)

is the center of the ball.
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The Faber–Krahn inequality 5

Theorem 1.2 solves the long–standing problem of the optimal lower bound
for the measure of the “essential support” of the STFT with Gaussian window.
The best result so far in this direction was obtained by Gröchenig (see [34,
Theorem 3.3.3]) as a consequence of Lieb’s uncertainly inequality [42] for the
STFT, and consists of the following (rougher, but valid for any window) lower
bound

|�| ≥ sup
p>2

(1 − ε)p/(p−2)(p/2)2/(p−2) (1.7)

(see Sect. 5 for a discussion in dimension d). Notice that the sup in (1.7) is a
bounded function of ε ∈ (0, 1), as opposite to the optimal bound in (1.6) (see
Fig. 1 in the Appendix for a graphical comparison).

Wepoint out that, although in this introduction the discussion of our results is
confined (for ease of notation and exposition) to the one dimensional case, our
results are valid in arbitrary space dimension, as discussed in Sect. 4 (Theorem
4.1 and Corollary 4.2).

While addressing the reader to [12,29,35] for a review of the numerous
uncertainty principles available for the STFT (see also [10,19,21,27]), we
observe that inequality (1.5) is nontrivial even when � has radial symmetry:
in this particular case it was proved in [33], exploiting the already mentioned
diagonal representation in the Hermite basis.

Some concentration–type estimates were recently provided in [5] as an
application of the Donoho-Logan large sieve principle [22] and the Selberg-
Bombieri inequality [11]. However, though this machinery certainly has a
broad applicability, as observed in [5] it does not seem to give sharp bounds
for the problem above. For interesting applications to signal recovery we refer
to [4,48,49,53] and the references therein.

One major difficulty in proving Theorem 1.1 is that, although optimal sets
are balls and optimal functions are radial, symmetrization and rearrangement
techniques cannot be used, since in general the rearrangement of a transform
V f is not the transform of any function in L2(R). Therefore, even though
some properties of rearrangements are used as auxiliary tools in some compu-
tations, the proofs call for new ideas and a newapproach (based on a differential
inequality) is introduced, after the problem has been reformulated as an equiv-
alent statement in the Fock space. In order to present our strategy in a clear
way and to better highlight the main ideas, we devote Sect. 3 to the proof of
our main results in dimension one, while results in arbitrary dimension (which
are more involved) are stated and proved in Sect. 4.

In Sect. 5 we discuss some extensions of the above results in different
directions, such as a local version of Lieb’s uncertainty inequality [25] for the
STFT in L p when p ∈ [2, ∞) (Theorem 5.2), and L p-concentration estimates
for the STFT when p ∈ [1, ∞) (Theorem 5.3, which proves [5, Conjecture
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6 F. Nicola, P. Tilli

1]), identifying in all cases the extremals f and �, as above. We also study
the effect of changing the window ϕ by a dilation or, more generally, by a
metaplectic operator.

We believe that the techniques used in this paper could also shed new light on
the Donoho-Stark uncertainty principle [23] and the corresponding conjecture
[23, Conjecture 1], and that also the stability of (1.5) (via a quantitative version
when the inequality is strict) can be investigated. We will address these issues
in a subsequent work, together with applications to signal recovery.

Remark 1.3 The maximization of�� among all sets� of prescribed measure
can be regarded as a shape optimization problem (see [14]) and, in this respect,
Theorem 1.1 shares many analogies with the celebrated Faber-Krahn inequal-
ity (beyond the fact that both problems have the ball as a solution). The latter
states that, among all (quasi) open sets� of given measure, the ball minimizes
the first Dirichlet eigenvalue

λ� := min
u∈H1

0 (�)\{0}

∫
�

|∇u(z)|2 dz∫
�
u(z)2 dz

.

On the other hand, if T� : H1
0 (�) → H1

0 (�) is the linear operator that
associates with every (real-valued) u ∈ H1

0 (�) the weak solution T�u ∈
H1
0 (�) of the problem −�(T�u) = u in �, integrating by parts we have

∫

�

u2 dz = −
∫

�

u�(T�u) dz =
∫

�

∇u · ∇(T�u) dz = 〈T�u, u〉H1
0
,

so that Faber-Krahn can be rephrased by claiming that

λ−1
� := max

u∈H1
0 (�)\{0}

∫
�
u(z)2 dz∫

�
|∇u(z)|2 dz = max

u∈H1
0 (�)\{0}

〈T�u, u〉H1
0

‖u‖2
H1
0

is maximized (among all open sets of given measure) by the ball. Hence the
statement of Theorem 1.1 can be regarded as a Faber-Krahn inequality for the
operator V∗1�V .

2 Rephrasing the problem in the Fock space

It turns out that the optimization problems discussed in the introduction can
be conveniently rephrased in terms of functions in the Fock space on C. We
address the reader to [34, Section 3.4] and [56] for more details on the relevant
results that we are going to review, in a self-contained form, in this section.
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The Faber–Krahn inequality 7

The Bargmann transform of a function f ∈ L2(R) is defined as

B f (z) := 21/4
∫

R

f (y)e2πyz−πy2− π
2 z

2
dy, z ∈ C.

It turns out that B f (z) is an entire holomorphic function and B is a unitary
operator from L2(R) to the Fock space F2(C) of all holomorphic functions
F : C → C such that

‖ f ‖F2 :=
( ∫

C

|F(z)|2e−π |z|2dm2(z)
)1/2

< ∞, (2.1)

where dm2(z) is the Lebesgue measure onC. In fact, B maps the orthonormal
basis of Hermite functions in R into the orthonormal basis of F2(C) given by
the monomials

ek(z) :=
(πk

k!
)1/2

zk, k = 0, 1, 2, . . . ; z ∈ C. (2.2)

In particular, for the first Hermite function ϕ(x) = 21/4e−πx2 , that is, the
window in (1.1), we have Bϕ(z) = e0(z) = 1.

The connection with the STFT is based on the following crucial formula
(see e.g. [34, Formula (3.30)]):

V f (x, −ω) = eπ i xωB f (z)e−π |z|2/2, z = x + iω, (2.3)

which allows one to rephrase the functionals in (1.2) as

��( f ) =
∫
�

|V f (x, ω)|2 dxdω

‖ f ‖2
L2

=
∫
�′ |B f (z)|2e−π |z|2 dm2(z)

‖B f ‖2F2

where �′ = {(x, ω) : (x, −ω) ∈ �}. Since B : L2(R) → F2(C) is a
unitary operator, we can safely transfer the optimization problem in Theorem
1.1 directly on F2(C), observing that

�� = max
F∈F2(C)\{0}

∫
�

|F(z)|2e−π |z|2 dm2(z)

‖F‖2F2

. (2.4)

We will adopt this point of view in Theorem 3.1 below. In the meantime, two
remarks are in order. First, we claim that the maximum in (2.4) is invariant
under translations of the set �. To see this, consider for any z0 ∈ C, the
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8 F. Nicola, P. Tilli

operator Uz0 defined as

Uz0F(z) = e−π |z0|2/2eπ zz0F(z − z0). (2.5)

The map z �→ Uz turns out to be a projective unitary representation of C on
F2(C), satisfying

|F(z − z0)|2e−π |z−z0|2 = |Uz0F(z)|2e−π |z|2, (2.6)

which proves our claim. Invariance under rotations in the plane is also imme-
diate.

Secondly, we observe that the Bargmann transform intertwines the action
of the representation Uz with the so-called “time-frequency shifts”:

BM−ωTx f = e−π i xωUzB f, z = x + iω

for every f ∈ L2(R), where Tx f (y) := f (y−x) andMω f (y) := e2π iyω f (y)
are the translation and modulation operators. This allows us to write down
easily the Bargmann transform of the maximizers appearing in Theorem 1.1,
namely cUz0e0, c ∈ C\{0}, z0 ∈ C. For future reference, we explicitly set

Fz0(z) := Uz0e0(z) = e− π
2 |z0|2eπ zz0, z, z0 ∈ C. (2.7)

The following result shows the distinguished role played by the functions Fz0
in connection with extremal problems. A proof can be found in [56, Theorem
2.7]. For the sake of completeness we present a short and elementary proof
which generalises in higher dimension.

Proposition 2.1 Let F ∈ F2(C). Then

|F(z)|2e−π |z|2 ≤ ‖F‖2F2 ∀z ∈ C, (2.8)

and |F(z)|2e−π |z|2 vanishes at infinity. Moreover the equality in (2.8) occurs
at some point z0 ∈ C if and only if F = cFz0 for some c ∈ C.

Proof By homogeneity we can suppose ‖F‖F2 = 1, hence F = ∑
k≥0 ckek

(cf. (2.2)), with
∑

k≥0 |ck |2 = 1. By the Cauchy-Schwarz inequality we obtain

|F(z)|2 ≤
∑
k≥0

|ek(z)|2 =
∑
k≥0

πk

k! |z|2k = eπ |z|2 ∀z ∈ C.
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The Faber–Krahn inequality 9

Equality in this estimate occurs at some point z0 ∈ C if and only if ck =
ce−π |z0|2/2ek(z0), for some c ∈ C, |c| = 1, which gives

F(z) = ce−π |z0|2/2 ∑
k≥0

πk

k! (zz0)
k = cFz0(z).

Finally, the fact that |F(z)|2e−π |z|2 vanishes at infinity is clearly true if F(z) =
zk , k ≥ 0, and therefore holds for every F ∈ F2(C) by density, because of
(2.8). ��

3 Proof of the main results in dimension 1

In this section we prove Theorems 1.1 and 1.2. In fact, by the discussion
in Sect. 2, cf. (2.4), these will follow (without further reference) from the
following result, which will be proved at the end of this section, after a few
preliminary results have been established.

Theorem 3.1 For every F ∈ F2(C)\{0} and every measurable set � ⊂ R
2

of finite measure, we have

∫
�

|F(z)|2e−π |z|2 dm2(z)

‖F‖2F2

≤ 1 − e−|�|. (3.1)

Moreover, recalling (2.7), equality occurs (for some F and for some � such
that 0 < |�| < ∞) if and only if F = cFz0 (for some z0 ∈ C and some
nonzero c ∈ C) and � is equivalent, up to a set of measure zero, to a ball
centered at z0.

Throughout the rest of this section, in view of proving (3.1), given an arbi-
trary function F ∈ F2(C)\{0} we shall investigate several properties of the
function

u(z) := |F(z)|2e−π |z|2, (3.2)

in connection with its super-level sets

At := {u > t} = {
z ∈ R

2 : u(z) > t
}
, (3.3)

its distribution function

μ(t) := |At |, 0 ≤ t ≤ max
C

u (3.4)
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10 F. Nicola, P. Tilli

(note that u is bounded due to (2.8)), and the decreasing rearrangement of u,
i.e. the function

u∗(s) := sup{t ≥ 0 : μ(t) > s} for s ≥ 0 (3.5)

(for more details on rearrangements, we refer to [7]). Since F(z) in (3.2) is
entire holomorphic, u (which letting z = x + iω can be regarded as a real-
valued function u(x, ω) onR2) has several nice properties which will simplify
our analysis. In particular, u is real analytic and hence, since u is not a constant,
every level set of u has zero measure (see e.g. [39]), i.e.

|{u = t}| = 0 ∀t ≥ 0 (3.6)

and, similarly, the set of all critical points of u has zero measure, i.e.

|{|∇u| = 0}| = 0. (3.7)

Moreover, since by Proposition 2.1 u(z) → 0 as |z| → ∞, by Sard’s Lemma
we see that for a.e. t ∈ (0,max u) the super-level set {u > t} is a bounded
open set in R2 with smooth boundary

∂{u > t} = {u = t} for a.e. t ∈ (0,max u). (3.8)

Since u(z) > 0 a.e. (in fact everywhere, except at most at isolated points),

μ(0) = lim
t→0+ μ(t) = +∞,

while the finiteness of μ(t) when t ∈ (0,max u] is entailed by the fact that
u ∈ L1(R2), according to (3.2) and (2.1) (in particular μ(max u) = 0). More-
over, by (3.6) μ(t) is continuous (and not just right-continuous) at every point
t ∈ (0,max u]. Since μ is also strictly decreasing, we see that u∗, according
to (3.5), is just the elementarly defined inverse function of μ (restricted to
(0,max u]), i.e.

u∗(s) = μ−1(s) for s ≥ 0, (3.9)

which maps [0, +∞) decreasingly and continuously onto (0,max u].
In the following we will strongly rely on the following result.

Lemma 3.2 The function μ is absolutely continuous on the compact subin-
tervals of (0,max u], and

− μ′(t) =
∫

{u=t}
|∇u|−1 dH1 for a.e. t ∈ (0,max u). (3.10)

123



The Faber–Krahn inequality 11

Similarly, the function u∗ is absolutely continuous on the compact subintervals
of [0, +∞), and

− (u∗)′(s) =
(∫

{u=u∗(s)}
|∇u|−1 dH1

)−1

for a.e. s ≥ 0. (3.11)

These properties of μ and u∗ are essentially well known to the specialists
in rearrangement theory, and follow e.g. from the general results of [6,13],
which are valid within the framework of W 1,p functions (see also [15] for the
framework of BV functions, in particular Lemmas 3.1 and 3.2). We point out,
however, that of these properties only the absolute continuity of u∗ is valid in
general, while the others strongly depend on (3.7) which, in the terminology
of [6], implies that u is coarea regular in a very strong sense, since it rules out
the possibility of a singular part in the (negative) Radon measure μ′(t) and, at
the same time, it guarantees that the density of the absolutely continuous part
is given (only) by the right-hand side of (3.10). As clearly explained in the
excellent Introduction to [6], there are several subtleties related to the structure
of the distributional derivative of μ(t) (which ultimately make the validity of
(3.11) highly nontrivial), and in fact the seminal paper [13] was motivated by
a subtle error in a previous work, whose fixing since [13] has stimulated a lot
of original and deep research (see e.g. [15,32] and references therein).

However, since unfortunately we were not able to find a ready-to-use ref-
erence for (3.11) (and, moreover, our u is very smooth but strictly speaking it
does not belong to W 1,1(R2), which would require to fix a lot of details when
referring to the general results from [6,13,15]), here we present an elemen-
tary and self-contained proof of this lemma, specializing to our case a general
argument from [13] based on the coarea formula.

Proof of Lemma 3.2 The fact that u is locally Lipschitz guarantees the validity
of the coarea formula (see e.g. [13,24]), that is, for every Borel function h :
R
2 → [0, +∞] we have

∫

R2
h(z)|∇u(z)| dm2(z) =

∫ max u

0

(∫

{u=τ }
h dH1

)
dτ,

whereH1 denotes the one-dimensional Hausdorff measure (and with the usual
convention that 0 · ∞ = 0 in the first integral). In particular, when h(z) =
χAt (z)|∇u(z)|−1 (where |∇u(z)|−1 is meant as +∞ if z is a critical point of
u), by virtue of (3.7) the function h(z)|∇u(z)| coincides with χAt (z) a.e., and
recalling (3.4) one obtains

μ(t) =
∫ max u

t

(∫

{u=τ }
|∇u|−1 dH1

)
dτ ∀t ∈ [0,max u]; (3.12)

123



12 F. Nicola, P. Tilli

thereforewe see thatμ(t) is absolutely continuous on the compact subintervals
of (0,max u], and (3.10) follows.

Now let D ⊆ (0,max u) denote the set where μ′(t) exists and coincides
with the integral in (3.10), and let D0 = (0,max u]\D. By (3.10) and the
absolute continuity of μ, and since the integral in (3.10) is strictly positive for
every t ∈ (0,max u) (note that H1({u = t}) > 0 for every t ∈ (0,max u),
otherwise we would have that |{u > t}| = 0 by the isoperimetric inequality),
we infer that |D0| = 0, so that letting D̂ = μ(D) and D̂0 = μ(D0), one has
|D̂0| = 0 by the absolute continuity of μ, and D̂ = [0, +∞)\D̂0 since μ is
invertible. On the other hand, by (3.9) and elementary calculus, we see that
(u∗)′(s) exists for every s ∈ D̂ and

−(u∗)′(s) = −1

μ′(μ−1(s))
=

(∫

{u=u∗(s)}
|∇u|−1 dH1

)−1

∀s ∈ D̂,

which implies (3.11) since |D̂0| = 0. Finally, since u∗ is differentiable every-
where on D̂, it is well known that u∗ maps every negligible set N ⊂ D̂ into a
negligible set. Since D̂ ∪ D̂0 = [0, +∞), and moreover u∗(D̂0) = D0 where
|D0| = 0, we see that u∗ maps negligible sets into negligible sets, hence it is
absolutely continuous on every compact interval [0, a]. ��

The following estimate for the integral in (3.11), which can be of some
interest in itself, will be the main ingredient in the proof of Theorem 3.1.

Proposition 3.3 We have

(∫

{u=u∗(s)}
|∇u|−1 dH1

)−1

≤ u∗(s) for a.e. s > 0, (3.13)

and hence

(u∗)′(s) + u∗(s) ≥ 0 for a.e. s ≥ 0. (3.14)

Proof Letting for simplicity t = u∗(s) and recalling that, for a.e. t ∈
(0,max u) (or, equivalently, for a.e. s > 0, since u∗ and its inverse μ are
absolutely continuous on compact sets) the super-level set At in (3.3) has a
smooth boundary as in (3.8), we can combine the Cauchy-Schwarz inequality

H1({u = t})2 ≤
(∫

{u=t}
|∇u|−1 dH1

) ∫

{u=t}
|∇u| dH1 (3.15)

with the isoperimetric inequality in the plane

4π |{u > t}| ≤ H1({u = t})2 (3.16)
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The Faber–Krahn inequality 13

to obtain, after division by t ,

t−1
(∫

{u=t}
|∇u|−1 dH1

)−1

≤
∫
{u=t}

|∇u|
t dH1

4π |{u > t}| . (3.17)

The reason for dividing by t is that, in this form, the right-hand side turns out
to be (quite surprisingly, at least to us) independent of t . Indeed, since along
∂At = {u = t} we have |∇u| = −∇u · ν where ν is the outer normal to
∂At , along {u = t} we can interpret the quotient |∇u|/t as −(∇ log u) · ν, and
hence
∫

{u=t}
|∇u|
t

dH1 = −
∫

∂At

(∇ log u) · ν dH1 = −
∫

At

� log u(z) dm2(z).

But by (3.2), since log |F(z)| is a harmonic function, we obtain

�(log u(z)) = �(log |F(z)|2 + log e−π |z|2) = �(−π |z|2) = −4π, (3.18)

so that the last integral equals 4π |At |. Plugging this into (3.17), one obtains that
the quotient on the right equals 1, and (3.13) follows. Finally, (3.14) follows
on combining (3.11) with (3.13). ��

The following lemma establishes a link between the integrals of u on its
super-level sets (which will play a major role in our main argument) and the
function u∗.

Lemma 3.4 The function

I (s) =
∫

{u>u∗(s)}
u(z) dm2(z), s ∈ [0, +∞), (3.19)

i.e. the integral of u on its (unique) super-level set of measure s, is of class C1

on [0, +∞), and

I ′(s) = u∗(s) ∀s ≥ 0. (3.20)

Moreover, I ′ is (locally) absolutely continuous, and

I ′′(s) + I ′(s) ≥ 0 for a.e. s ≥ 0. (3.21)

Proof We have for every h > 0 and every s ≥ 0

I (s + h) − I (s) =
∫

{u∗(s+h)<u≤u∗(s)}
u(z) dm2(z)
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14 F. Nicola, P. Tilli

and, since by (3.9) and (3.4) |Au∗(σ )| = σ ,

∣∣{u∗(s + h) < u ≤ u∗(s)}∣∣ = |Au∗(s+h)| − |Au∗(s)| = (s + h) − s = h,

we obtain

u∗(s + h) ≤ I (s + h) − I (s)

h
≤ u∗(s).

Moreover, it is easy to see that the same inequality is true also when h < 0
(provided s + h > 0), now using the reverse set inclusion Au∗(s+h) ⊂ Au∗(s)
according to the fact that u∗ is decreasing. Since u∗ is continuous, (3.20)
follows letting h → 0 when s > 0, and letting h → 0+ when s = 0.

Finally, by Lemma 3.2, I ′ = u∗ is absolutely continuous on [0, a] for every
a ≥ 0, I ′′ = (u∗)′, and (3.21) follows from (3.14). ��

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 By homogeneity we can assume ‖F‖F2 = 1 so that,
defining u as in (3.2), (3.1) is equivalent to

∫

�

u(z) dm2(z) ≤ 1 − e−s (3.22)

for every s ≥ 0 and every � ⊂ R
2 such that |�| = s. It is clear that, for

any fixed measure s ≥ 0, the integral on the left is maximized when � is
the (unique by (3.6)) super-level set At = {u > t} such that |At | = s (i.e.
μ(t) = s), and by (3.9) we see that the proper cut level is given by t = u∗(s).
In other words, if |�| = s then

∫

�

u(z) dm2(z) ≤
∫

Au∗(s)

u(z) dm2(z), (3.23)

with strict inequality unless � coincides –up to a negligible set– with Au∗(s)
(to see this, it suffices to let E := � ∩ Au∗(s) and observe that, if |�\E | > 0,
then the integral of u on �\E , where u ≤ u∗(s), is strictly smaller than the
integral of u on Au∗(s)\E , where u > u∗(s)). Thus, to prove (3.1) it suffices
to prove (3.22) when � = Au∗(s), that is, recalling (3.19), prove that

I (s) ≤ 1 − e−s ∀s ≥ 0 (3.24)

or, equivalently, letting s = − log σ , that

G(σ ) := I (− log σ) ≤ 1 − σ ∀σ ∈ (0, 1]. (3.25)
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The Faber–Krahn inequality 15

Note that

G(1) = I (0) =
∫

{u>u∗(0)}
u(z) dm2(z) =

∫

{u>max u}
u(z) dm2(z) = 0,

(3.26)

while by monotone convergence, since lims→+∞ u∗(s) = 0,

lim
σ→0+ G(σ ) = lim

s→+∞ I (s) =
∫

{u>0}
u(z) dm2(z)

=
∫

R2
|F(z)|2e−π |z|2 dm2(z) = 1, (3.27)

becausewe assumed F is normalized. Thus,G extends to a continuous function
on [0, 1] that coincides with 1 − σ at the endpoints, and (3.25) will follow
by proving that G is convex. Indeed, by (3.21), the function es I ′(s) is non
decreasing, and since G ′(e−s) = −es I ′(s), this means that G ′(σ ) is non
decreasing as well, i.e. G is convex as claimed.

Summing up, via (3.23) and (3.24), we have proved that for every s ≥ 0

∫

�

|F(z)|2e−π |z|2 dm2(z) =
∫

�

u(z) dm2(z)

≤
∫

Au∗(s)

u(z) dm2(z) = I (s) ≤ 1 − e−s
(3.28)

for every F such that ‖F‖F2 = 1.
Now assume that equality occurs in (3.1), for some F (we may still assume

‖F‖F2 = 1) and for some set � of measure s0 > 0: then, when s = s0,
equality occurs everywhere in (3.28), i.e. in (3.23), whence � coincides with
Au∗(s0) up to a set of measure zero, and in (3.24), whence I (s0) = 1 − e−s0 .
But then G(σ0) = 1 − σ0 in (3.25), where σ0 = e−s0 ∈ (0, 1): since G is
convex on [0, 1], and coincides with 1 − σ at the endpoints, we infer that
G(σ ) = 1 − σ for every σ ∈ [0, 1], or, equivalently, that I (s) = 1 − e−s for
every s ≥ 0. In particular, I ′(0) = 1; on the other hand, choosing s = 0 in
(3.20) gives

I ′(0) = u∗(0) = max u,

so that max u = 1. But then by (2.8)

1 = max u = max |F(z)|2e−π |z|2 ≤ ‖F‖2F2 = 1 (3.29)
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16 F. Nicola, P. Tilli

and, since equality is attained, by Proposition 2.1 we infer that F = cFz0 for
some z0, c ∈ C. We have already proved that � = Au∗(s0) (up to a negligible
set) and, since by (2.7)

u(z) = |cFz0(z)|2e−π |z|2 = |c|2e−π |z0|2e2π Re(zz0)e−π |z|2 = |c|2e−π |z−z0|2

(3.30)

has radial symmetry about z0 and is radially decreasing, � is (equivalent to)
a ball centered at z0. This proves the “only if part” of the final claim being
proved.

The “if part” follows by a direct computation. For, assume that F = cFz0
and � is equivalent to a ball of radius r > 0 centered at z0. Then using (3.30)
we can compute, using polar coordinates

∫

�

u(z) dm2(z) = |c|2
∫

{|z|<r}
e−π |z|2 dm2(z) = 2π |c|2

∫ ρ

0
ρe−πρ2

dρ

= |c|2(1 − e−πr2),

and equality occurs in (3.1) because ‖cFz0‖2F2 = |c|2. ��
Remark 3.5 The “only if part” in the final claim of Theorem 3.1, once one has
established that I (s) = 1 − e−s for every s ≥ 0, instead of using (3.29), can
also be proved observing that there must be equality, for a.e. t ∈ (0,max u),
both in (3.15) and in (3.16) (otherwise there would be a strict inequality in
(3.14), hence also in (3.24), on a set of positive measure). But then, for at least
one value (in fact, for infinitely many values) of t we would have that At is
a ball B(z0, r) (by the equality in the isoperimetric estimate (3.16)) and that
|∇u| is constant along ∂At = {u = t} (by the equality in (3.15)).

By applying the “translation” Uz0 (cf. (2.5) and (2.6)) we can suppose that
the super-level set At = B(z0, r) is centred at the origin, i.e. that z0 = 0, and
in that case we have to prove that F is constant (so that, translating back to z0,
one obtains that the original F had the form cFz0). Since now both u and e−|z|2

are constant along ∂At = ∂B(0, r), also |F | is constant there (and does not
vanish inside B(0, r), since u ≥ t > 0 there). Hence log |F | is constant along
∂B(0, r), and is harmonic inside B(0, r) since F is holomorphic: therefore
log |F | is constant in B(0, r), which implies that F is constant over C.

Note that the constancy of |∇u| along ∂At has not been used. However,
also this property alone (even ignoring that At is a ball) is enough to conclude.
Letting w = log u, one can use that both w and |∇w| are constant along
∂At , and moreover �w = −4π as shown in (3.18): hence every connected
component of At must be a ball, by a celebrated result of Serrin [50]. Then
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The Faber–Krahn inequality 17

the previous argument can be applied to just one connected component of At ,
which is a ball, to conclude that F is constant.

4 The multidimensional case

In this section we prove Theorem 4.1, which extends Theorem 3.1 (hence
Theorems 1.1 and 1.2) to arbitrary dimension d ≥ 1. Comparing the right
hand sides of (4.5) and (1.5), we see that the former is given in terms of the γ

function defined in (4.3): of course, when d = 1 these two quantitites coincide,
but the explicit form in (1.5) is certainly more pleasant.

The STFT of a function f ∈ L2(Rd), with a given window g ∈ L2(Rd), is
defined as

Vg f (x, ω) :=
∫

Rd
e−2π iy·ω f (y)g(y − x) dy, x, ω ∈ R

d . (4.1)

Consider now the Gaussian function

ϕ(x) = 2−d/4e−π |x |2 x ∈ R
d , (4.2)

and the corresponding STFT in (4.1) with window g = ϕ; let us write shortly
V = Vϕ . Let ω2d be the measure of the unit ball in R

2d . Recall also the
definition of the (lower) incomplete γ function as

γ (k, s) :=
∫ s

0
τ k−1e−τ dτ (4.3)

where k ≥ 1 is an integer and s ≥ 0, so that

γ (k, s)

(k − 1)! = 1 − e−s
k−1∑
j=0

s j

j ! . (4.4)

Theorem 4.1 (Faber–Krahn inequality for theSTFT indimensiond)For every
measurable subset � ⊂ R

2d of finite measure and for every f ∈ L2(Rd)\{0}
there holds

∫
�

|V f (x, ω)|2 dxdω

‖ f ‖2
L2

≤ γ (d, c�)

(d − 1)! , (4.5)

where c� := π(|�|/ω2d)
1/d is the symplectic capacity of the ball in R

2d

having the same volume as �.
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18 F. Nicola, P. Tilli

Moreover, equality occurs (for some f and for some� such that 0 < |�| <

∞) if and only if� is equivalent, up to a set of measure zero, to a ball centered
at some (x0, ω0) ∈ R

2d , and

f (x) = ce2π i x ·ω0ϕ(x − x0), c ∈ C\{0}, (4.6)

where ϕ is the Gaussian in (4.2).

We recall that the symplectic capacity of a ball of radius r in phase space is
πr2 in every dimension and represents the natural measure of the size of the
ball from the point of view of the symplectic geometry [19,36,37].

Proof of Theorem 4.1 The definition of the Fock space F2(C) extends essen-
tially verbatim to C

d , with the monomials (π |α|/α!)1/2zα , z ∈ C
d , α ∈ N

d

(multi-index notation) as orthonormal basis. The same holds for the definition
of the functions Fz0 in (2.7), now with z, z0 ∈ C

d , and Proposition 2.1 extends
in the obvious way too. Again one can rewrite the optimization problem in
the Fock spaceF2(Cd), the formula (2.3) continuing to hold, with x, ω ∈ R

d .
Hence we have to prove that

∫
�

|F(z)|2e−π |z|2 dm2d(z)

‖F‖2F2

≤ γ (d, c�)

(d − 1)! (4.7)

for F ∈ F2(Cd)\{0} and � ⊂ C
d of finite measure, where dm2d(z) denotes

the Lebesgue measure onCd , and that equality occurs if and only if F = cFz0
and � is equivalent, up to a set of measure zero, to a ball centered at z0.

To this end, for F ∈ F2(Cd)\{0}, ‖F‖F2 = 1, we set u(z) =
|F(z)|2e−π |z|2 , z ∈ C

d , exactly as in (3.2) when d = 1, and define At , μ(t)
and u∗(s) as in Sect. 3, replacing R2 with R2d where necessary, now denoting
by |E | the 2d-dimensional Lebesgue measure of a set E ⊂ R

2d , in place of
the 2-dimensional measure. Note that, now regarding u as a function of 2d real
variables in R

2d , properties (3.6), (3.7) etc. are still valid, as well as formu-
las (3.10), (3.11) etc., provided one replaces every occurrence of H1 with the
(2d − 1)-dimensional Hausdorff measureH2d−1. Following the same pattern
as in Proposition 3.3, now using the isoperimetric inequality in R

2d (see e.g.
[31] for an updated account)

H2d−1({u = t})2 ≥ (2d)2ω
1/d
2d |{u > t}|(2d−1)/d
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The Faber–Krahn inequality 19

and the fact that � log u = −4πd on {u > 0}, we see that now u∗ satisfies the
inequality

(∫

{u=u∗(s)}
|∇u|−1 dH2d−1

)−1

≤ πd−1ω
−1/d
2d s−1+1/du∗(s) for a.e. s > 0

in place of (3.13), and hence (3.14) is to be replaced with

(u∗)′(s) + πd−1ω
−1/d
2d s−1+1/du∗(s) ≥ 0 for a.e. s > 0.

Therefore, with the notation of Lemma 3.4, I ′(t) is locally absolutely contin-
uous on [0, +∞) and now satisfies

I ′′(s) + πd−1ω
−1/d
2d s−1+1/d I ′(s) ≥ 0 for a.e. s > 0.

This implies that the function eπω
−1/d
2d s1/d I ′(s) is non decreasing on [0, +∞).

Then, arguing as in the proof of Theorem 3.1, we are led to prove the inequality

I (s) ≤ γ (d, π(s/ω2d)
1/d)

(d − 1)! , s ≥ 0

in place of (3.24). This, with the substitution

γ (d, π(s/ω2d)
1/d)/(d − 1)! = 1 − σ, σ ∈ (0, 1]

(recall (4.4)), turns into

G(σ ) := I (s) ≤ 1 − σ ∀σ ∈ (0, 1].
AgainG extends to a continuous function on [0, 1], withG(0) = 1,G(1) = 0.
At this point one observes that, regarding σ as a function of s,

G ′(σ (s)) = −d!π−dω2de
π(s/ω2d )

1/d
I ′(s).

Since the function eπ(s/ω2d )
1/d

I ′(s) is non decreasing, we see that G ′ is non
increasing on (0, 1], hence G is convex on [0, 1] and one concludes as in the
proof of Theorem 3.1. Finally, the “if part” follows from a direct computation,
similar to that at the end of the proof of Theorem 3.1, now integrating on a
ball in dimension 2d, and using (4.3) to evaluate the resulting integral. ��
As a consequence of Theorem 4.1 we deduce a sharp form of the uncertainty
principle for the STFT, which generalises Theorem 1.2 to arbitrary dimension.
To replace the function log(1/ε) in (1.6) (arising as the inverse function of e−s
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20 F. Nicola, P. Tilli

in the right-hand side of (1.5)), we now denote by ψd(ε), 0 < ε ≤ 1, the
inverse function of

s �→ 1 − γ (d, s)

(d − 1)! = e−s
d−1∑
j=0

s j

j ! , s ≥ 0

(cf. (4.4)).

Corollary 4.2 If for some ε ∈ (0, 1), some f ∈ L2(Rd)\{0}, and some � ⊂
R
2d we have

∫
�

|V f (x, ω)|2 dxdω ≥ (1 − ε)‖ f ‖2
L2 , then

|�| ≥ ω2dπ
−dψd(ε)

d , (4.8)

with equality if and only if� is a ball and f has the form (4.6), where (x0, ω0)

is the center of the ball.

So far, the state-of-the-art in this connection has been represented by the lower
bound

|�| ≥ sup
p>2

(1 − ε)p/(p−2)(p/2)2d/(p−2) (4.9)

(which reduces to (1.7) when d = 1, see [34, Theorem 3.3.3]). See Fig. 1
in the Appendix for a graphical comparison with (4.8) in dimension d = 2.
Figure 2 in the Appendix illustrates Theorem 4.1 and Corollary 4.2.

Remark Notice thatψ1(ε) = log(1/ε), andψd(ε) is increasing with d. More-
over, it is easy to check that

ψd(ε) ∼ (d!)1/d(1 − ε)1/d , ε → 1−

ψd(ε) ∼ log(1/ε), ε → 0+.

On the contrary, the right-hand side of (4.9) is bounded by ed ; see Fig. 1 in the
Appendix.

5 Local Lieb’s uncertainty inequality and other generalizations

In this section we discuss some generalizations in several directions.
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The Faber–Krahn inequality 21

5.1 Local Lieb’s uncertainty inequality for the STFT

An interesting variation on the theme is given by the optimization problem

sup
f ∈L2(R)\{0}

∫
�

|V f (x, ω)|p dxdω

‖ f ‖p
L2

, (5.1)

where� ⊂ R
2 is measurable subset of finite measure and 2 ≤ p < ∞. Again,

we look for the subsets �, of prescribed measure, which maximize the above
supremum.

Observe, first of all, that by the Cauchy-Schwarz inequality, ‖V f ‖L∞ ≤
‖ f ‖L2 , so that the supremum in (5.1) is finite and, in fact, it is attained.

Proposition 5.1 The supremum in (5.1) is attained.

Proof The desired conclusion follows easily by the direct method of the cal-
culus of variations. We first rewrite the problem in the complex domain via
(2.3), as we did in Sect. 2, now ending up with the Rayleigh quotient

∫
�

|F(z)|pe−pπ |z|2/2 dm2(z)

‖F‖p
F2

with F ∈ F2(C)\{0}. It is easy to see that this expression attains a max-
imum at some F ∈ F2(C)\{0}. In fact, let Fn ∈ F2(C), ‖Fn‖F2 =
1, be a maximizing sequence, and let un(z) = |Fn(z)|pe−pπ |z|2/2. Since
un(z) = (|Fn(z)|2e−π |z|2)p/2 ≤ ‖Fn‖p

F2 = 1 by Proposition 2.1, we see
that the sequence Fn is equibounded on the compact subsets of C. Hence
there is a subsequence, that we continue to call Fn , uniformly converging
on the compact subsets to a holomorphic function F . By the Fatou theorem,
F ∈ F2(C) and ‖F‖F2 ≤ 1. Now, since � has finite measure, for every
ε > 0 there exists a compact subset K ⊂ C such that |�\K | < ε, so that∫
�\K un(z) dm2(z) < ε and

∫
�\K |F(z)|pe−pπ |z|2/2 dm2(z) < ε. Together

with the already mentioned convergence on the compact subsets, this implies
that

∫
�
un(z) dm2(z) → ∫

�
|F(z)|pe−pπ |z|2/2 dm2(z). As a consequence,

F �= 0 and, since ‖F‖F2 ≤ 1 = ‖Fn‖F2 ,

lim
n→∞

∫
�

|Fn(z)|pe−pπ |z|2/2 dm2(z)

‖Fn‖p
F2

≤
∫
�

|F(z)|pe−pπ |z|2/2 dm2(z)

‖F‖p
F2

.

The reverse inequality is obvious, because Fn is a maximizing sequence. ��
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Theorem 5.2 (Local Lieb’s uncertainty inequality for the STFT) Let 2 ≤
p < ∞. For every measurable subset � ⊂ R

2 of finite measure, and every
f ∈ L2(R)\{0},

∫
�

|V f (x, ω)|p dxdω

‖ f ‖p
L2

≤ 2

p

(
1 − e−p|�|/2). (5.2)

Moreover, equality occurs (for some f and for some� such that 0 < |�| < ∞)
if and only if � is equivalent, up to a set of measure zero, to a ball centered at
some (x0, ω0) ∈ R

2, and

f (x) = ce2π i xω0ϕ(x − x0), c ∈ C\{0},
where ϕ is the Gaussian in (1.1).

Observe that when p = 2 this result reduces to Theorem 1.1. Moreover, by
monotone convergence, from (5.2) we obtain

∫

R2
|V f (x, ω)|p dxdω ≤ 2

p
‖ f ‖p

L2, f ∈ L2(R), (5.3)

which is Lieb’s inequality for the STFT with a Gaussian window [25] (see
also [42] and [34, Theorem 3.3.2]). Actually, (5.3) will be an ingredient of the
proof of Theorem 5.2.

Proof of Theorem 5.2 Transfering the problem in the Fock space F2(C), it is
equivalent to prove that

∫
�

|F(z)|pe−pπ |z|2/2 dm2(z)

‖F‖p
F2

≤ 2

p

(
1 − e−p|�|/2) (5.4)

for F ∈ F2(C)\{0}, 0 < |�| < ∞, and that the extremals are given by the
functions F = cFz0 in (2.7), together with the balls � of center z0. We give
only a sketch of the proof, since the argument is similar to the proof of Theorem
3.1. Assuming ‖F‖F2 = 1 and setting u(z) = |F(z)|pe−pπ |z|2/2, arguing as
in the proof of Proposition 3.3 we obtain that

(∫

{u=u∗(s)}
|∇u|−1 dH1

)−1

≤ p

2
u∗(s) for a.e. s > 0,

which implies (u∗)′(s) + p
2 u

∗(s) ≥ 0 for a.e. s ≥ 0. With the notation of
Lemma 3.4 we obtain I ′′(s) + p

2 I
′(s) ≥ 0 for a.e. s ≥ 0, i.e. esp/2 I ′(s)

is non decreasing on [0, +∞). Arguing as in the proof of Theorem 3.1 we
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reduce ourselves to study the inequality I (s) ≤ 2
p (1−e−ps/2) or equivalently,

changing variable s = − 2
p log σ , σ ∈ (0, 1],

G(σ ) := I
(

− 2

p
log σ

)
≤ 2

p
(1 − σ) ∀σ ∈ (0, 1]. (5.5)

We can prove this inequality and discuss the case of strict inequality as
in the proof of Theorem 3.1, the only difference being that now G(0) :=
limσ→0+ G(σ ) = ∫

R2 u(z) dm2(z) ≤ 2/p by (5.3) (hence, at σ = 0 strict
inequality may occur in (5.5), but this is enough) and, when in (5.5) the equal-
ity occurs for some (and hence for every) σ ∈ [0, 1], in place of (3.29) we will
have

1 = max u = max |F(z)|pe−pπ |z|2/2 = (max |F(z)|2e−π |z|2)p/2

≤ ‖F‖p
F2 = 1.

The “if part” follows by a direct computation. ��
Similarly, arguing as in the proof of Theorem 4.1 one obtains, in dimension d
and for 2 ≤ p < ∞,

∫
�

|V f (x, ω)|p dxdω

‖ f ‖p
L2

≤
( 2

p

)d γ (d, pc�/2)

(d − 1)! ,

where � ⊂ R
2d and c� := π(|�|/ω2d)

1/d is the symplectic capacity of the
ball in R2d having the same volume as � (the function γ is defined in (4.3)).

We also observe that we do not expect similar results for p < 2. Indeed, on
the one hand, we know from [42] that the global estimate (5.3) holds reversed,
in that case. However, the local estimate (5.4) continues to hold as it is when
s = |�| is small (depending on F), because the right-hand side is ∼ s as
s → 0+, whereas if ‖F‖F2 = 1 and � is the super-level set of measure s of
u(z) = |F(z)|pe−pπ |z|2/2, the left-hand side is ∼ smaxz∈C u(z), by (3.20),
and such a maximum is strictly less than 1 if F is not one of the functions in
(2.7).

5.2 L p-concentration estimates for the STFT

We consider now the problem of the concentration in the time-frequency plane
in the L p sense, which has interesting applications to signal recovery (see e.g.
[4]). More precisely, Theorem 5.3 below proves a conjecture of Abreu and
Speckbacher [5, Conjecture 1] (note that when p = 2 one obtains Theorem
1.1).
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Let S ′(R) be the space of temperate distributions and, for p ≥ 1, consider
the subspace (called modulation space in the literature [34])

Mp(R) := { f ∈ S ′(R) : ‖ f ‖Mp := ‖V f ‖L p(R2) < ∞}.

In fact, the definition of STFT (with Gaussian or more generally Schwartz
window) and theBargmann transformB extend (in an obviousway) to injective
operators on S ′(R). It is clear that V : Mp(R) → L p(R2) is an isometry, and
it can be proved that B is a surjective isometry from Mp(R) onto the space
F p(C) of holomorphic functions F(z) satisfying

‖F‖F p :=
( ∫

C

|F(z)|pe−pπ |z|2/2 dm2(z)
)1/p

< ∞,

see e.g. [51] for a comprehensive discussion. Moreover the formula (2.3) con-
tinues to hold for f ∈ S ′(R).

Theorem 5.3 (L p-concentration estimates for the STFT)Let 1 ≤ p < ∞. For
everymeasurable subset� ⊂ R

2 of finitemeasure and every f ∈ Mp(R)\{0},
∫
�

|V f (x, ω)|p dxdω∫
R2 |V f (x, ω)|p dxdω

≤ 1 − e−p|�|/2. (5.6)

Moreover, equality occurs (for some f and for some� such that 0 < |�| < ∞)
if and only if � is equivalent, up to a set of measure zero, to a ball centered at
some (x0, ω0) ∈ R

2, and

f (x) = ce2π i xω0ϕ(x − x0), c ∈ C\{0}, (5.7)

where ϕ is the Gaussian in (1.1).

We omit the proof, that is very similar to that of Theorem 3.1. We just observe
that (2.8) extends to any p ∈ [1, ∞) as

|F(z)|pe−pπ |z|2/2 ≤ p

2
‖F‖p

F p

and again the equality occurs at some point z0 ∈ C if and only if F = cFz0 ,
for some c ∈ C (in particular, ‖Fz0‖p

F p = 2/p); see e.g. [56, Theorem 2.7].
As a consequence we obtain at once the following sharp uncertainty prin-

ciple for the STFT.

Corollary 5.4 Let 1 ≤ p < ∞. If for some ε ∈ (0, 1), some function
f ∈ Mp(R)\{0} and some � ⊂ R

2 we have
∫
�

|V f (x, ω)|p dxdω ≥

123



The Faber–Krahn inequality 25

(1 − ε)‖ f ‖p
M p , then necessarily

|�| ≥ 2

p
log(1/ε), (5.8)

with equality if and only if � is a ball and f has the form (5.7), where ϕ is the
Gaussian in (1.1) and (x0, ω0) is the center of the ball.

We point out that, in the case p = 1, the following rougher –but valid for any
window in M1(R)\{0}– lower bound

|�| ≥ 4(1 − ε)2

was obtained in [35, Proposition 2.5.2]. Arguing as in Sect. 4 it would not
be difficult to suitably generalise Theorem 5.3 and Corollary 5.4 in arbitrary
dimension.

5.3 Changing window

Theorem4.1 canbe suitably reformulatedwhen theGaussianwindowϕ in (4.2)
is dilated or, more generally, replaced by μ(A)ϕ, where μ(A) is a metaplectic
operator associated with a symplectic matrix A ∈ Sp(d,R) (recall that, in
dimension 1, Sp(1,R) = SL(2,R) is the special linear group of 2 × 2 real
matrices with determinant 1).

We address to [35, Section 9.4] for a detailed introduction to the meta-
plectic representation. Roughly speaking one associates, with any matrix
A ∈ Sp(d,R), a unitary operator μ(A) on L2(Rd) defined up to a phase
factor, providing a projective unitary representation of Sp(d,R) on L2(Rd).
In more concrete terms, we know that Sp(d,R) is generated by matrices of
the type (in block-matrix notation)

A1 =
(

0 I
−I 0

)
A2 =

(
A 0
0 A∗−1

)
A3 =

(
I 0
C I

)

where A ∈ GL(d,R), and C is real and symmetric (I denoting the iden-
tity matrix). The corresponding operators are then given by μ(A1) = F
(Fourier transform), μ(A2) f (x) = |det A|−1/2 f (A−1x) and μ(A3) f (x) =
eπ iCx ·x f (x) (up to a phase factor). Now, the relevant property of the STFT is
its symplectic covariance (see [34, Lemma 9.4.3]):

|Vμ(A)ϕ(μ(A) f )(x, ω)| = |Vϕ( f )(A−1(x, ω))|.
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As a consequence, if we define, for g, f ∈ L2(Rd)\{0}, the quotients

��,g( f ) :=
∫
�

|Vg f (x, ω)|2 dxdω∫
R2d |Vg f (x, ω)|2 dxdω

,

we obtain (since detA = 1)

��,μ(A)ϕ(μ(A) f ) = �A−1(�),ϕ( f ).

Hence, since A is measure preserving and μ(A) is a unitary operator, we
deduce at once from Theorem 4.1 that for every measurable subset � ⊂ R

2d

of finite measure and every f ∈ L2(Rd)\{0},
∫
�

|Vμ(A)ϕ f (x, ω)|2 dxdω

‖ f ‖2
L2

≤ γ (d, c�)

(d − 1)!

with c� = π(|�|/ω2d)
1/d . Moreover, the equality occurs if and only if f =

μ(A)Mω0Tx0ϕ (recall (4.2)) and� is equivalent, up to a set of measure zero, to
A(B) for some ball B ⊂ R

2d centered at (x0, ω0), where Tx0 f (x) = f (x−x0)
and Mω0 f (x) = e2π i x ·ω0 f (x).
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Appendix

Fig. 1 Left: in dimension 1, assuming that � ⊂ R
2 captures a fraction 1 − ε of the energy

of some function f ∈ L2(R), comparison between the lower bound for |�| in (1.7) (state-of-
the-art), the sharp lower bound log(1/ε) in (1.6) and the so-called weak uncertainty principle
|�| ≥ 1 − ε [34, Proposition 3.3.1] (which follows at once from the elementary estimate
‖V f ‖L∞ ≤ ‖ f ‖L2 ). Right: the same comparison in dimension d = 2. Here the state-of-the-
art is represented by (4.9), whereas the sharp bound |�| ≥ ω4π

−2ψ2(ε)
2 is given in (4.8)

(ω4 = π2/2)

Fig. 2 Left: The upper bound γ (d, c�)/(d − 1)! in (4.5), for d = 1, 2, 3, as a function of
c� = π(|�|/ω2d )1/d . Right: The lower bound ψd (ε) for c� in (4.8), for d = 1, 2, 3. Recall,
ψd (ε) is the inverse function of 1 − γ (d, s)/(d − 1)!, in particular ψ1(ε) = log(1/ε)

123



28 F. Nicola, P. Tilli

References

1. Abreu, L.D., Dörfler, M.: An inverse problem for localization operators. Inverse Prob.
28(11), 115001 (2012)

2. Abreu, L.D., Gröchenig, K., Romero, J.L.: On accumulated spectrograms. Trans. Am.
Math. Soc. 368(5), 3629–3649 (2016)

3. Abreu, L.D., Pereira, J.A.M., Romero, J.L.: Sharp rates of convergence for accumulated
spectrograms. Inverse Prob. 33(11), 115008 (2017)

4. Abreu, L.D., Speckbacher, M.: Deterministic guarantees for L1-reconstruction: a large
sieve approach with geometric flexibility. In: IEEE Proceedings SampTA (2019)

5. Abreu, L.D., Speckbacher, M.: Donoho-Logan large sieve principles for modulation and
polyanalytic Fock spaces. Bull. Sci. Math. 171, 103032 (2021)

6. Almgren, F.J., Jr., Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continu-
ous. J. Am. Math. Soc. 2(4), 683–773 (1989)

7. Baernstein, A.: II. Symmetrization in analysis, Volume 36 of New Mathematical Mono-
graphs. Cambridge University Press, Cambridge. With David Drasin and Richard S.
Laugesen, with a foreword by Walter Hayman (2019)

8. Berezin, F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.) 86(128), 578–610
(1971)

9. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation, Volume 66 of Mathematics and
its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991)
[Translated from the 1983Russian edition byYu.Rajabov,D.A. Leı̆tes andN.A. Sakharova
and revised by Shubin. With contributions by G. L. Litvinov and Leı̆tes]

10. Boggiatto, P., Carypis, E., Oliaro, A.: Two aspects of the Donoho–Stark uncertainty prin-
ciple. J. Math. Anal. Appl. 434(2), 1489–1503 (2016)

11. Bombieri, E.: A note on the large sieve. Acta Arith. 18, 401–404 (1971)
12. Bonami, A., Demange, B.: A survey on uncertainty principles related to quadratic forms.

Collect. Math. 1–36 (2006)
13. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine

Angew. Math. 384, 153–179 (1988)
14. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. In: Progress

in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser Boston Inc,
Boston (2005)

15. Cianchi, A., Fusco, N.: Functions of bounded variation and rearrangements. Arch. Ration.
Mech. Anal. 165(1), 1–40 (2002)

16. Cordero,E.,Rodino,L.,Gröchenig,K.:Localizationoperators and time-frequency analysis.
In: Harmonic Wavelet and p-adic Analysis, pp. 83–110. World Sci. Publ, Hackensack
(2007)

17. Cowling, M.G., Price, J.F.: Bandwidth versus time concentration: the Heisenberg–Pauli–
Weyl inequality. SIAM J. Math. Anal. 15(1), 151–165 (1984)

18. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach.
IEEE Trans. Inform. Theory 34(4), 605–612 (1988)

19. de Gosson,M.A.: The symplectic camel and the uncertainty principle: the tip of an iceberg?
Found. Phys. 39(2), 194–214 (2009)

20. De Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for time-
frequency localization operators. J. Lond. Math. Soc. (2) 65(3), 720–732 (2002)

21. Demange, B.: Uncertainty principles for the ambiguity function. J. Lond. Math. Soc. (2)
72(3), 717–730 (2005)

22. Donoho, D.L., Logan, B.F.: Signal recovery and the large sieve. SIAM J. Appl.Math. 52(2),
577–591 (1992)

23. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl.Math.
49(3), 906–931 (1989)

123



The Faber–Krahn inequality 29

24. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks
in Mathematics, revised CRC Press, Boca Raton (2015)

25. Elliott, H., Lieb (1978) Proof of an entropy conjecture of Wehrl. Commun. Math. Phys.
62(1), 35–41. https://doi.org/10.1007/BF01940328

26. Fefferman, C.L.: The uncertainty principle. Bull. Am. Math. Soc. (N.S.) 9(2), 129–206
(1983)

27. Fernández, C., Galbis, A.: Annihilating sets for the short time Fourier transform. Adv.
Math. 224(5), 1904–1926 (2010)

28. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol.
122. Princeton University Press, Princeton (1989)

29. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier
Anal. Appl. 3(3), 207–238 (1997)

30. Fuchs, W.H.J.: On the magnitude of Fourier transforms. In: Proceedings of the Interna-
tional Congress of Mathematicians, Vol. II, pp. 106–107. North-Holland Publishing C.O.,
Amsterdam (1954)

31. Fusco, N.: The quantitative isoperimetric inequality and related topics. Bull. Math. Sci.
5(3), 517–607 (2015)

32. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann.
Math. (2) 168(3), 941–980 (2008)

33. Galbis, A.: Norm estimates for selfadjoint Toeplitz operators on the Fock space. Complex
Anal. Oper. Theory 16(1), 15 (2022)

34. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Har-
monic Analysis, Birkhäuser Boston Inc, Boston, MA (2001)

35. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Advances
in Gabor Analysis, Applied and Numerical Harmonic Analysis, pp. 11–30. Birkhäuser
Boston, Boston (2003)

36. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2),
307–347 (1985)

37. Hofer, H., Zehnder, E.: Symplectic invariants and Hamiltonian dynamics. Modern
Birkhäuser Classics. Birkhäuser Verlag, Basel (2011). (Reprint of the 1994 edition)

38. Hörmander, L.: The analysis of linear partial differential operators. I. Classics inMathemat-
ics (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition.
Springer, Berlin

39. Krantz, S.G., Parks, H.R.: A primer of real analytic functions. Birkhäuser Advanced Texts:
Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston,
Inc., Boston, MA, second edition (2002)

40. Landau, H.J.: An overview of time and frequency limiting. In: Fourier Techniques and
Applications (Kensington, 1983), pp. 201–220. Plenum, New York (1985)

41. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncer-
tainty II. Bell Syst. Tech. J. 40, 65–84 (1961)

42. Lieb, E.H.: Integral bounds for radar ambiguity functions andWigner distributions. J.Math.
Phys. 31(3), 594–599 (1990)

43. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. Amer-
ican Mathematical Society, Providence (2001)

44. Mallat, S.: A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. Elsevier, Ams-
terdam. (With contributions from Gabriel Peyré) (2009)

45. Marceca, F., Romero, J.L.: Spectral deviation of concentration operators for the short-time
Fourier transform. arXiv:2104.06150

46. Muscalu, C., Schlag,W.: Classical andMultilinear Harmonic Analysis. Cambridge Studies
in Advanced Mathematics, vol. 1, 137th edn. Cambridge University Press, Cambridge
(2013)

123

https://doi.org/10.1007/BF01940328
http://arxiv.org/abs/2104.06150


30 F. Nicola, P. Tilli
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