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BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS
WITH SYMBOLS IN WIENER AMALGAM SPACES ON

MODULATION SPACES

LORENZA D’ELIA AND S. IVAN TRAPASSO

Abstract. This paper provides sufficient conditions for the boundedness of
Weyl operators on modulation spaces. The Weyl symbols belong to Wiener
amalgam spaces, or generalized modulation spaces, as recently renamed by their
inventor Hans Feichtinger. This is the first result which relates symbols in Wiener
amalgam spaces to operators acting on classical modulation spaces.

This is an Accepted Manuscript of an article published by Springer in Journal of
Pseudo-Differential Operators and Applications on 20 July 2017, available at:
https://link.springer.com/article/10.1007/s11868-017-0220-1,
DOI: 10.1007/s11868-017-0220-1.

1. Introduction

In this paper we investigate the boundedness properties of pseudodifferential
operators in the Weyl form. These operators arise as quantization rule proposed
by Weyl in [41]. Namely, the rule assigns an operator OpW(a) to a function a (the
so-called Weyl symbol) on the phase space R2d:

a → OpW(a).

The operator OpW(a) is called a Weyl operator or Weyl transform (cf., e.g., [42]).
From a Time-frequency Analysis perspective Weyl operators can be introduced by
means of the related time-frequency representation, the so-called (cross-)Wigner
distribution W (f, g), which for signals f, g in the Schwartz class S(Rd) is defined
by

(1) W (f, g)(x, ω) =

∫
Rd

e−2πiyωf(x+
y

2
)g(x− y

2
) dy.
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2 LORENZA D’ELIA AND S. IVAN TRAPASSO

The Weyl operator OpW(a) with symbol a in the space of tempered distribution
S ′(R2d) can be then defined by the formula

(2) ⟨OpW(a)f, g⟩ = ⟨a,W (g, f)⟩, f, g ∈ S(Rd).

The study of continuity properties for Weyl operators on different kinds of func-
tion spaces has been pursued by many authors. Depending on the properties of
the symbol a, one can infer the corresponding continuity properties of the related
operator OpW(a).

For the continuity properties of OpW(a) on Lp(Rd) spaces we refer the reader to
[13, 42].

Here we focus on Banach spaces which measure the time-frequency decay of a
function/distribution in the phase space. They are called modulation and Wiener
amalgam spaces. Indeed, we shall study the continuity properties of the operator
OpW(a) on the modulation spaces M r1,r2(Rd) 1 ≤ r1, r2 ≤ ∞ (cf. the following sec-
tion for their definition), introduced by Hans Feichtinger in [28]. The corresponding
Weyl symbol a belongs to the Wiener amalgam spaces W (FLp, Lq), 1 ≤ p, q ≤ ∞
(cf. Section 2). The latter spaces are often known in the literature as Wiener amal-
gam spaces with local component FLp and global component Lq, for 1 ≤ p, q ≤ ∞,
but nowadays their inventor Hans Feichtinger [29] is suggesting to call them simply
modulation spaces, since they arise as the Fourier transform of the classical modu-
lation spaces Mp,q introduced in [28] and can similarly be defined by means of the
short-time Fourier transform (see Section 2 for details).

Continuity properties of Weyl operators with symbols in classical modulation
spaces Mp,q have been investigated by many authors, starting from the earliest
paper [33]. The most important contributions in this framework are contained in
[1, 2, 6, 4, 5, 12, 13, 14, 24, 25, 31, 35, 38, 39, 40].

Let us also recall the many studies on the continuity properties of Fourier integral
operators (FIOs) on modulation spaces [7, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23]
which find applications principally in the study of Schrödinger equations. Pseudo-
differential operators are a special case of FIOs, having phase function Φ(x, ξ) =
2πixξ.
This study is limited to pseudodifferential operators, however a future object of

our research would be to investigate the continuity properties for FIOs.
The main result of this paper can be formulated in the un-weighted case as

follows (cf. the subsequent Theorem 3.1).

Theorem 1.1. Assume that 1 ≤ p, q, r1, r2 ≤ ∞ satisfy

q ≤ p′

and

max{r1, r2, r′1, r′2} ≤ p.
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Then every Weyl operator OpW(a) having symbol a ∈ W (FLp, Lq), from S(Rd) to
S ′(Rd), extends uniquely to a bounded operator on M r1,r2(Rd), with the estimate

∥OpW(a)f∥Mr1,r2 ≲ ∥a∥W (FLp,Lq)∥f∥Mr1,r2 .

To our knowledge, this is the first result in the literature which links symbols in
Wiener amalgam spaces to operators acting on modulation spaces.

Boundedness results for Weyl operators with symbols in modulation spaces still
hold for the other forms of pseudodifferential operators, the so-called τ -operators.
These operators can be either defined as a quatization rule or by means of the
related time-frequency representation (cf. [3]). Here we simply recall the latter.
For τ ∈ [0, 1], the (cross-)τ -Wigner distributions is given by

(3) Wτ (f, g)(x, ω) =

∫
Rd

e−2πiyζf(x+ τy)g(x− (1− τ)y) dy f, g ∈ S(Rd),

whereas the τ -pseudodifferential operators is

(4) ⟨Opτ (a)f, g⟩ = ⟨a,Wτ (g, f)⟩ f, g ∈ S(Rd).

For τ = 1/2 we recapture the Weyl operator, if τ = 0 the operator is called the
Kohn-Nirenberg operator OpKN. A Kohn-Nirenberg operator OpKN and a Weyl
operator OpW are related by the formula

OpKN(a) = OpW(U−1a)

where

(5) U−1 = F−1NCF ,

F is the Fourier transform, NCf(z) = e−πiz·Czf(z), z ∈ R2d, and

C =

(
0 1/2I

1/2I 0

)
.

An easy computation (cf. [32, Corollary 14.5.5]) shows that

|VΦ(U−1a)(z, ζ)| = |VUΦa(z − Cζ, ζ)|
from which we conclude thatMp,q is invariant under the action of U−1 and therefore,
results for Kohn-Nirenberg pseudodifferential operators with symbols in Mp,q still
hold for Weyl operators and viceversa.

More generally, for τ -pseudodifferential operator it was proved in [34] and in [39,
Remark 1.5] that for every choice τ1, τ2 ∈ [0, 1], a1, a2 ∈ S ′(R2d),

(6) Opτ1(a1) = Opτ2(a2) ⇔ â2(ξ1, ξ2) = e−2πi(τ2−τ1)ξ1ξ2 â1(ξ1, ξ2).

For t > 0 consider Ht(x, ξ) = e2πitxξ and observe that

(7) FHt(ζ1, ζ2) =
1

td
e−2πi 1

t
ζ1ζ2 .
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So, for τ1 ̸= τ2, by (7),

(8) a2(x, ξ) =
1

|τ1 − τ2|d
e2πi(τ2−τ1)Φ ∗ a1(x, ξ),

where Φ(x, ξ) = xξ. The mapping a 7→ TΦa = e2πiΦ ∗ a is a homeomorphism on
Mp,q(R2d), 1 ≤ p, q ≤ ∞, [39, Proposition 1.2 (5)].

Coming back to Wiener amalgam spaces W (FLp, Lq), we first observe that they
are not invariant under the action of the operator U = F−1N−CF . This is proved
in [13, Proposition 6.4]. So that boundedness results for Weyl operators do not
extend automatically to Kohn-Niremberg ones and vice-versa. This result easily
extends to the case of any τ -pseudodifferential operator. Indeed, for any τ > 0, the
same arguments as in the proof of Proposition 6.4 of [13] apply to the metaplectic
operator Uτ := F−1N−τCF . This is the reason why our main result can be stated
only for Weyl operators.

We shall pursue the study of boundedness properties of τ -pseudodifferential op-
erators in a subsequent paper.

Notation. We define t2 = t · t, for t ∈ Rd, and xy = x ·y is the scalar product on
Rd. The Schwartz class is denoted by S(Rd), the space of tempered distributions
by S ′(Rd). We use the brackets ⟨f, g⟩ to denote the extension to S(Rd) × S ′(Rd)

of the inner product ⟨f, g⟩ =
∫
f(t)g(t)dt on L2(Rd). The Fourier transform of a

function f on Rd is normalized as

Ff(ξ) =

∫
Rd

e−2πixξf(x) dx.

2. Preliminaries

2.1. Modulation and Wiener amalgam spaces. Modulation andWiener amal-
gam space norms are a measure of the joint time-frequency distribution of f ∈ S ′.
For their basic properties we refer to [27, 28, 29] and the textbooks [26, 32].

Let f ∈ S ′(Rd). We define the short-time Fourier transform of f as

(9) Vgf(z) = F [fTxg](ξ) =

∫
Rd

f(y) g(y − x) e−2πiyξ dy

for z = (x, ξ) ∈ Rd × Rd.
For description of decay properties, we use weight functions on the time-frequency

plane. In the sequel v will always be a continuous, positive, even, submultiplicative
weight function (i.e. a submultiplicative weight), i.e., v(0) = 1, v(z) = v(−z), and
v(z1 + z2) ≤ v(z1)v(z2), for all z, z1, z2 ∈ R2d. A positive, even weight function m
on R2d is called v-moderate if m(z1 + z2) ≤ Cv(z1)m(z2) for all z1, z2 ∈ R2d. Let us
denote by Mv(R2d) the space of v-moderate weights.
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Given g ∈ S(Rd) \ {0}, a v-moderate weight function m on R2d, 1 ≤ p, q ≤ ∞,
the modulation space Mp,q

m (Rd) consists of all tempered distributions f ∈ S ′(Rd)
such that Vgf ∈ Lp,q

m (R2d) (weighted mixed-norm spaces). The norm on Mp,q
m is

∥f∥Mp,q
m

= ∥Vgf∥Lp,q
m

=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|pm(x, ξ)p dx

)q/p

dξ

)1/q

(obvious modifications for p = ∞ or q = ∞). If p = q, we write Mp
m instead of

Mp,p
m , and if m(z) ≡ 1 on R2d, then we write Mp,q and Mp for Mp,q

m and Mp,p
m .

The space Mp,q
m (Rd) is a Banach space whose definition is independent of the

choice of the window g, in the sense that different non-zero window functions yield
equivalent norms. The modulation space M∞,1 is also called Sjöstrand’s class [37].

For any p, q ∈ [1,∞] and any m ∈ Mv(R2d), the inner product ⟨·, ·⟩ on S(Rd)×
S(Rd) extends to a continuous sesquilinear map Mp,q

m (Rd)×Mp′,q′

1/m (Rd) → C.
Here and elsewhere the conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p +

1/p′ = 1. For any even weight functions u,w on Rd, the Wiener amalgam spaces
W (FLp

u, L
q
w)(Rd) are given by the distributions f ∈ S ′(Rd) such that

∥f∥W (FLp
u,L

q
w)(Rd) :=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|pup(ξ) dξ

)q/p

wq(x)dx

)1/q

< ∞

(obvious modifications for p = ∞ or q = ∞). Using Parseval identity in (9), we
can write the so-called fundamental identity of time-frequency analysis Vgf(x, ξ) =

e−2πixξVĝf̂(ξ,−x), so that

|Vgf(x, ξ)| = |Vĝf̂(ξ,−x)| = |F(f̂ Tξĝ)(−x)|

and (recall u(x) = u(−x))

∥f∥Mp,q
u⊗w

=

(∫
Rd

∥f̂ Tξĝ∥qFLp
u
wq(ξ) dξ

)1/q

= ∥f̂∥W (FLp
u,L

q
w).

Hence Wiener amalgam spaces are simply the image under Fourier transform of
modulation spaces:

(10) F(Mp,q
u⊗w) = W (FLp

u, L
q
w).

For completeness, let us recall the inclusion properties of modulation spaces. Sup-
pose m1,m2 ∈ Mv(R2d). Then

(11)
S(Rd) ⊆ Mp1,q1

m1
(Rd) ⊆ Mp2,q2

m2
(Rd) ⊆ S ′(Rd),

p1 ≤ p2, q1 ≤ q2, m2 ≲ m1.
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We denote by J the symplectic matrix

(12) J =

(
0d×d Id×d

−Id×d 0d×d

)
.

3. Symbols in Wiener amalgam spaces

We need first to investigate the properties of the Wigner distribution in terms
of Wiener amalgam spaces. From now on we set vJ(z) = v(Jz), where J is the
symplectic matrix in (12). We obtain the following results.

Lemma 3.1. Consider m ∈ Mv(R2d), 1 ≤ p1, p2 ≤ ∞, f ∈ Mp1,p2
m , g ∈ M

p′1,p
′
2

1/m ,

then the Wigner distribution W (g, f) ∈ W (FL1
1/vJ

, L∞), with

(13) ∥W (g, f)∥W (FL1
1/vJ

,L∞) ≲ ∥f∥Mp1,p2
m

∥g∥
M

p′1,p
′
2

1/m

.

Proof. If ζ = (ζ1, ζ2) ∈ R2d, then [32, Lemma 14.5.1] says that

|VΦ(W (g, f))(z, ζ)| = |Vφf(z +
Jζ
2
)| |Vφg(z − Jζ

2
)| .

Consequently

(14) ∥W (g, f)∥W (FL1
1/vJ

,L∞) ≍ sup
z∈R2d

∫
R2d

|Vφf(z +
Jζ
2
)| |Vφg(z − Jζ

2
)| 1

v(Jζ)
dζ.

Making the change of variables u = Jζ and observing that

1

v(u)
≤ C

m(z + u
2
)

m(z − u
2
)
,

∥W (g, f)∥W (FL1
1/vJ

,L∞) ≤ C sup
z∈R2d

∫
R2d

|Vφf(z +
u

2
)| |Vφg(z −

u

2
)|
m(z + u

2
)

m(z − u
2
)
du

= 22dC sup
z∈R2d

∫
R2d

|Vφf(z + u)| |Vφg(z − u)|m(z + u)

m(z − u)
du

≤ C̃∥Vφfm∥Lp1,p2∥Vφg
1

m
∥
Lp′1,p

′
2

≲ ∥f∥Mp1,p2
m

∥g∥
M

p′1,p
′
2

1/m

.

The claim is proved.

Lemma 3.2. Consider m ∈ Mv(R2d), f ∈ M2
m, g ∈ M2

1/m, then the Wigner

distribution W (g, f) ∈ W (FL2
1/vJ

, L2), with

(15) ∥W (g, f)∥W (FL2
1/vJ

,L2) ≲ ∥f∥M2
m
∥g∥M2

1/m
.
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Proof. The technique is similar to the one in Lemma 3.1. Using (14) and the change
of variables w = z + Jζ/2, u = Jζ, we can write

∥W (g, f)∥W (FL2
1/vJ

,L2) ≍
(∫

R2d

∫
R2d

|Vφf(z +
Jζ

2
)|2 |Vφg(z −

Jζ

2
)|2 1

v2(Jζ)
dζ dz

) 1
2

=

(∫
R2d

∫
R2d

|Vφf(w)|2 |Vφg(w − u)|2 1

v2(u)
dudw

) 1
2

≤ C̃

(∫
R2d

(|Vφf |2m2) ∗ (|Vφg|2
1

m2
) du

) 1
2

≲ ∥|Vφf |2m2∥1∥|Vφg|2
1

m2
∥1

≲ ∥f∥M2
m
∥g∥M2

1/m
,

where we have used Young’s Inequality L1 ∗ L1 ⊂ L1. This concludes the proof.

3.1. Main result. We address this section to the study of pseudodifferential oper-
ators acting on modulation spaces and having symbols in weightedWiener amalgam
spaces.

Here is our main result.

Theorem 3.1. Assume that 1 ≤ p, q, r1, r2 ≤ ∞ satisfy

(16) q ≤ p′

and

(17) max{r1, r2, r′1, r′2} ≤ p.

Consider m ∈ Mv(R2d). Then every Weyl operator OpW(a) having symbol a ∈
W (FLp

vJ
, Lq), from S(Rd) to S ′(Rd), extends uniquely to a bounded operator on

M r1,r2
m (Rd), with the estimate

(18) ∥OpW(a)f∥Mr1,r2
m

≲ ∥a∥W (FLp
vJ

,Lq)∥f∥Mr1,r2
m

.

The proof uses complex interpolation betweenWiener amalgam spacesW (FL∞
vJ
, L1)

and W (FL2
vJ
, L2), for which we first show the corresponding boundedness results.

Proposition 3.2. Consider m ∈ Mv(R2d) and a ∈ W (FL∞
vJ
, L1). Then the oper-

ator OpW(a) is bounded on M r1,r2
m , for every 1 ≤ r1, r2 ≤ ∞, with

(19) ∥OpW(a)f∥Mr1,r2
m

≲ ∥a∥W (FL∞
vJ

,L1)∥f∥Mr1,r2
m

.
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Proof. For every f ∈ M r1,r2
m and g ∈ M

r′1,r
′
2

1/m , we can write, for any fixed Φ ∈
S(R2d) \ {0},

|⟨OpW(a)f, g⟩| = |⟨a,W (g, f)⟩| ≤ ∥VΦa∥L1
z(L

∞
vJ ,ζ)

∥VΦW (g, f)∥L∞
z (L1

1/vJ ,ζ
).

Observe that

∥W (g, f)∥W (FL1
vJ

,L∞) ≍ ∥VΦW (g, f)∥L∞
z (L1

1/vJ ,ζ
) ≲ ∥f∥Mr1,r2

m
∥g∥

M
r′1,r

′
2

1/m

,

by Lemma 3.1. This concludes the proof.

Proposition 3.3. Consider m ∈ Mv(R2d) and a ∈ W (FL2
vJ
, L2). Then the oper-

ator OpW(a) is bounded on M2
m with

(20) ∥OpW(a)f∥M2
m
≲ ∥a∥W (FL2

vJ
,L2)∥f∥M2

m
.

Proof. The arguments are the same as Proposition 3.2, with Lemma 3.1 replaced
by 3.2. We leave the details to the interested reader.

Remark 3.4. (i) Observe that by (10), W (FL2
vJ
, L2) = FM2

vJ⊗1 and a straight-
forward modification of [32, Theorem 11.3.5 (c)] gives

FM2
vJ⊗1 = M2

1⊗vJ−1
= M2

1⊗vJ

since by assumption v(−z) = v(z).
(ii) Since v(−z) = v(z), the weight vJ is even and the conclusion of the previous

step (i) also follows by [29, Theorem 6], in the case p = 2.
(iii) Using (i) or (ii) we derive that the Wiener amalgam space W (FL2

vJ
, L2)

coincides with the modulation space M2
1⊗vJ

. Then the conclusion of Proposition 3.3
also follows from [40, Theorem 4.3].

Proof of Theorem 3.1. Wemake use of complex interpolation betweenWiener amal-
gam and modulation spaces, using the boundedness results of Propositions 3.2 and
3.3. For θ ∈ [0, 1], we have

[W (FL∞
vJ
, L1),W (FL2

vJ
, L2)]θ = W (FLp

vJ
, Lp′),

with 2 ≤ p ≤ ∞. As far as modulation spaces concern, [M s1,s2
m M2

m]θ = M r1,r2
m , with

1

r1
=

1− θ

s1
+

θ

2
=

1− θ

s1
+

1

p

and
1

r2
=

1− θ

s2
+

θ

2
=

1− θ

s2
+

1

p
hence r1, r2 ≤ p. Similarly we obtain r′1, r

′
2 ≤ p, and the (17) follows. Fi-

nally, inclusion relations for Wiener amalgam spaces allow to consider symbols
a ∈ W (FLp

vJ
, Lq), with q ≤ p′, which gives (16) and concludes the proof.
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Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123
Torino, Italy
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