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NORM ESTIMATES FOR τ-PSEUDODIFFERENTIAL
OPERATORS IN WIENER AMALGAM AND MODULATION

SPACES

ELENA CORDERO, LORENZA D’ELIA, AND S. IVAN TRAPASSO

Abstract. We study continuity properties on modulation spaces for τ -pseudo–
differential operators Opτ (a) with symbols a in Wiener amalgam spaces. We
obtain boundedness results for τ ∈ (0, 1) whereas, in the end-points τ = 0 and
τ = 1, the corresponding operators are in general unbounded. Furthermore, for
τ ∈ (0, 1), we exhibit a function of τ which is an upper bound for the operator
norm. The continuity properties of Opτ (a), for any τ ∈ [0, 1], with symbols a in
modulation spaces are well known. Here we find an upper bound for the operator
norm which does not depend on the parameter τ ∈ [0, 1], as expected.

Key ingredients are uniform continuity estimates for τ -Wigner distributions.
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available at:
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1. Introduction

Pseudodifferential operators are mathematical tools used extensively in the the-
ory of partial differential equations, engineering and quantum mechanics. Since
their first appearance in the works by Kohn, Nirenberg [20] and Hörmander [19],
they have been widely studied in the framework of classical analysis by plenty of
authors, with privileged symbol classes being the so-called Hörmander class [19].
In this context, we also refer to the textbooks [23, 26, 28, 33].

Starting from the end of the 90’s and during the last 20 years they have been
considered in the context of time-frequency analysis. Many outcomes have been
obtained, showing in particular that operators with rough symbols (functions not
even differentiable or tempered distributions) may be bounded on L2(Rd). The
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contributions are so many that we are not able to cite them all. See, for instance,
[2, 5, 8, 10, 16, 17, 18, 21, 22, 25, 27, 29, 30, 31, 32].

Assume τ ∈ [0, 1], a ∈ S ′(R2d), then the τ -pseudodifferential operator Opτ (a)
with symbol a can be defined by

(1) Opτ (a)f(x) =

∫
Rd

∫
Rd

e2πi(x−y)ξa((1− τ)x+ τy, ξ)f(y) dydξ, f ∈ S(Rd).

If τ = 0, the corresponding operator Op0(a) is called the Kohn-Niremberg operator
and can be rewritten as

(2) Op0(a)f(x) =

∫
Rd

a(x, ξ)f̂(ξ)e2πixξdξ, f ∈ S(Rd).

For τ = 1/2, Op1/2(a) (proposed by Weyl in [34]) is called Weyl operator and takes
the form

(3) Op1/2(a)f(x) =

∫
R2d

a

(
x+ y

2
, ξ

)
f(y)e2πi(x−y)ξdydξ, f ∈ S(Rd).

In this paper we continue the study of boundedness properties of pseudodifferen-
tial operators using tools from time-frequency analysis. The main ingredients are
the time-frequency representations related to the definition of τ -pseudodifferential
operators. For τ ∈ [0, 1], the (cross-)τ -Wigner distribution (τ -WD) of signals
f, g ∈ L2(Rd) is defined by

(4) Wτ (f, g)(x, ξ) =

∫
Rd

e−2πitξf(x+ τt)g(x− (1− τ)t)dt, (x, ξ) ∈ R2d.

For f = g, Wτf := Wτ (f, f) is called the τ -Wigner distribution of f . Note that
Wτf is a quadratic time-frequency representation which is a generalization of the
well known Wigner distribution, recaptured in the case τ = 1/2:

W1/2(f, g)(x, ξ) = W (f, g)(x, ξ) =

∫
Rd

f

(
x+

t

2

)
g

(
x− t

2

)
e−2πitξ dt.

For τ = 0, W0(f, g) is named (cross-)Rihaczek distribution

(5) W0(f, g)(x, ξ) = R(f, g)(x, ξ) = e−2πix·ξf(x)ĝ(ξ);

and for τ = 1, W1(f, g) is the (cross-)conjugate Rihaczek distribution

(6) W1(f, g)(x, ξ) = R∗(f, g)(x, ξ) = R(g, f)(x, ξ) = e2πix·ξg(x)f̂(ξ).

Given a symbol a ∈ S ′(R2d), the τ -pseudodifferential operator Opτ (a) in (1) can
be defined weakly as a duality between the symbol a and the τ -WD Wτ (g, f) as
follows

⟨Opτ (a)f, g⟩ = ⟨a,Wτ (g, f)⟩, f, g ∈ S(Rd).

Inspired by the work of Boulkhemair [5], we continue his investigation considering
symbols in the new framework of Wiener amalgam spaces. Such spaces can be
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viewed as Lq(Lp)-norm of a time-frequency representation: the short-time Fourier
transform (STFT) Vgf of a signal f ∈ S ′(Rd) with respect to a window function
g ∈ S(Rd), defined by

(7) Vgf(z) = ⟨f, π(z)g⟩ = F [fTxg](ξ) =

∫
Rd

f(t) g(t− x) e−2πitξ dt,

for z = (x, ξ) ∈ Rd × Rd. For simplicity, we recall their definition in the un-
weighted case, referring to the next section for a more general definition and related
properties. A tempered distribution f ∈ S ′(Rd) is in the Wiener amalgam space
W (FLp, Lq)(Rd), 1 ≤ p, q ≤ ∞, if

∥f∥W (FLp,Lq)(Rd) :=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|p dξ
)q/p

dx

)1/q

< ∞.

Roughly speaking, a distribution f is in the space W (FLp, Lq)(Rd) if locally it
behaves like a function in FLp(Rd) and globally decays as a function in Lq(Rd).
Such spaces capture the different behaviour of functions/distributions on local and
global levels. For instance, it can be shown that the delta distribution δ is in
W (FL∞, L1)(Rd): its Fourier transformFδ = 1 belongs to L∞(Rd) and the com-
pact support guarantees whatever decay at infinity.

Modulation spaces are closely related to such Wiener spaces. Indeed the modu-
lation space Mp,q(Rd) can be defined by

Mp,q(Rd) = F−1W (FLp, Lq)(Rd),

where F−1 is the inverse Fourier transform.
Sufficient and necessary conditions for boundedness properties of pseudodiffer-

ential operators with symbols in modulation spaces and acting on the same spaces
have been found in many papers, cf. [6, 7, 31, 32] and the bibliography therein.
Here such conditions do not depend on the parameter τ ∈ [0, 1], see Section 5 for
details in this framework.

In our context we continue to study boundedness properties on modulation spaces
but the symbols are in the Wiener ones. Here the continuity properties do depend
on the parameter τ .

For 1 ≤ r1, r2 ≤ ∞, we introduce the function

(8) α(r1,r2)(τ) =
1

τ
d

(
1
r′1

+ 1
r2

)
(1− τ)

d

(
1
r1

+ 1
r′2

) , τ ∈ (0, 1).

Observe that the function α(r1,r2)(τ) is unbounded on (0, 1). Indeed, for (r1, r2) ̸∈
{(1,∞), (∞, 1)},

lim
τ→0+

α(r1,r2)(τ) = lim
τ→1−

α(r1,r2)(τ) = +∞.
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For (r1, r2) = (1,∞) we have limτ→1− α(1,∞)(τ) = +∞ whereas, for (r1, r2) =
(∞, 1), limτ→0+ α(∞,1)(τ) = +∞. An unweighted version of our main result, cf.
Theorem 4.3 below, can be read as follows:

Theorem 1.1. Suppose that 1 ≤ p, q, r1, r2 ≤ ∞ satisfy

q ≤ p′, max{r1, r2, r′1, r′2} ≤ p.

Let a be a symbol in W (FLp, Lq)(R2d). For τ ∈ (0, 1), every τ -pseudodifferential
operator Opτ (a) is a bounded operator on M r1,r2(Rd). Moreover, there exists a
constant C > 0 independent of τ such that

(9) ∥Opτ (a)f∥Mr1,r2 ≤ Cα(r1,r2)(τ)∥a∥W (FLp,Lq)∥f∥Mr1,r2 , τ ∈ (0, 1).

Hence we have found an upper bound for the operator norm:

∥Opτ (a)∥B(Mr1,r2 ) ≤ Cα(r1,r2)(τ)∥a∥W (FLp,Lq).

The unboundedness of the function α(r1,r2)(τ) in the end-points suggests that the
boundedness results above fail in the case of Kohn-Nirenberg operators Op0(a) and
of operators with right symbol Op1(a) (also called anti-Kohn-Nirenberg operators).
Indeed, we exhibit precise counterexamples in Proposition 4.4 below.

The paper is organized as follows. Section 2 is focused on the preliminary defini-
tions and properties of τ -Wigner distributions and the involved function spaces. In
Section 3, we study the continuity properties of Wτ (f, g) in the Wiener amalgam
spaces, obtaining uniform estimates with respect to the parameter τ . Section 4 is
devoted to the proof of the main theorem: Theorem 4.3. We also treat the cases
τ = 0 and τ = 1, showing examples of unbounded operators. Section 5 provides
some useful remarks on the continuity results of Opτ (a) with symbol in modulation
spaces.

Notation. We define the scalar product on Rd by xy = x · y. The Schwartz
class is denoted by S(Rd) and its dual, the space of tempered distributions, by
S ′(Rd). The brackets ⟨·, ·⟩ stand for the inner product on L2(Rd) or for duality
pairing between a tempered distribution in S ′ and a function in S (for convention
it is antilinear in the second argument).
We write f ≲ g to indicate f(x) ⩽ Cg(x) for every x and some constant C, and
similarly for ≳. The notation f ≍ g stands for f ≲ g and f ≳ g. We use a
normalized Fourier transform

Ff(ξ) =

∫
Rd

e−2πixξf(x) dx.

The translation operator Tx of a function f on Rd is defined as Txf(t) = f(t−x) and
the modulation operatorMξf(t) = e2πiξtf(t). For z = (x, ξ), we denote the so-called
time-frequency shift acting on a function or distribution as π(z)f(t) = MξTxf(t).
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The reflection operator is defined as If(x) = f(−x). For 1 ≤ p ≤ ∞, the conjugate
exponent p′ of p is the one that satisfies 1/p+ 1/p′ = 1.

2. Time-frequency Representations and Function Spaces

Denote by J the canonical symplectic matrix in R2d:

(10) J =

(
0d×d Id×d

−Id×d 0d×d

)
∈ Sp(2d,R),

where the symplectic group Sp(2d,R) is defined by

Sp(d,R) =
{
M ∈ GL(2d,R) : M⊤JM = J

}
.

In the sequel we shall heavily use the following symplectic matrix

(11) Aτ =

(
0d×d (1−τ

τ
)1/2Id×d

−( τ
1−τ

)1/2Id×d 0d×d

)
, τ ∈ (0, 1).

The main properties of Aτ are detailed below. Their proof is attained by easy
computations.
Lemma 2.1. For any τ ∈ (0, 1), the matrix Aτ in (11) enjoys the following
properties:

(i) Aτ ∈ Sp(d,R); in particular, A1/2 = J .
(ii) A⊤

τ = −A1−τ , A−1
τ = −Aτ .

(iii) A1−τAτ = A⊤
τ A−1

τ = I2d×2d − Bτ , where

(12) Bτ =

(
1

1−τ
Id×d 0d×d

0d×d
1
τ
Id×d

)
.

(iv)
√

τ (1− τ) (Aτ +A1−τ ) =
√

τ (1− τ)BτAτ = J .

2.1. τ-Wigner Distributions and their Short-Time Fourier Transforms.
We list now some useful features enjoyed by the τ -WD which we will use later (cf.
[3, 9]).

Proposition 2.2. For τ ∈ [0, 1], f, g, fi, gi ∈ L2(Rd), i = 1, 2, we have

(i) W1−τ (f, g) = Wτ (g, f).

(ii) Wτf(x, ξ) = W1−τ f̂(ξ,−x). Equivalently

Wτ f̂(z) = W1−τf(Jz),

where J is the canonical symplectic matrix in (10).
(iii) Moyal’s Formula for τ -WD:

(13) ⟨Wτ (f1, g1),Wτ (f2, g2)⟩ = ⟨f1, f2⟩⟨g1, g2⟩.
(iv) Covariance property for the τ -WD:

(14) Wτ (π(w)f, π(w)g)(z) = TwWτ (f, g)(z) = Wτ (f, g)(z − w), w, z ∈ R2d.
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To study continuity properties of the τ -WD on modulation and Wiener spaces,
we need to compute its Short-time Fourier transform (STFT). Recall that the
STFT of a signal f ∈ S ′(Rd) with respect a fixed window function g ∈ S(Rd) is
defined in (7). Important properties of STFT we shall use are as follows.

Proposition 2.1. For f, fi, g, gi ∈ L2(Rd), i = 1, 2, we have:
(i) Orthogonality relations for the STFT:

(15) ⟨Vg1f1, Vg2f2⟩L2(R2d) = ⟨f1, f2⟩L2(Rd)⟨g1, g2⟩L2(Rd).

(ii) STFT of time-frequency shifts:

(16) VMωTug(MωTuf)(x, ξ) = e2πi(ωx−ξu)Vgf(x, ξ), u, x, ξ, ω ∈ Rd.

(iii) For g0, g, γ ∈ S(Rd) such that ⟨γ, g⟩ ≠ 0, f ∈ S ′(Rd),

(17) |Vg0f(x, ξ)| ≤
1

|⟨γ, g⟩|
(|Vgf | ∗ |Vg0γ|)(x, ξ), (x, ξ) ∈ R2d.

(iv) Fundamental identity of time-frequency analysis:

(18) Vgf(x, ξ) = e−2πixξVĝf̂(ξ,−x), (x, ξ) ∈ R2d.

For τ ∈ (0, 1), the τ -Wigner distribution can be rephrased as a STFT, the key
ingredient is the operator Aτ below.

Definition 2.2. For τ ∈ (0, 1), we define the operator Aτ by

(19) Aτ : f(t) 7−→ If
(
1− τ

τ
t

)
.

Then (cf. [3, Lemma 6.2]):

Lemma 2.3. For τ ∈ (0, 1), f, g ∈ L2(Rd), we have

(20) Wτ (f, g)(x, ξ) =
1

τ d
e2πi

1
τ
xξVAτgf

(
1

1− τ
x,

1

τ
ξ

)
, (x, ξ) ∈ R2d.

The proof of the following lemma is a matter of computation.

Lemma 2.4. For τ ∈ (0, 1), z = (z1, z2) ∈ R2d, the operators Aτ and π(z) commute
as follows

(21) π (z)Aτ = Aτπ

(
−1− τ

τ
z1,−

τ

1− τ
z2

)
,

(22) Aτπ (z) = π

(
− τ

1− τ
z1,−

1− τ

τ
z2

)
Aτ .

In the next lemmas we calculate the STFT of Wτ (g, f), generalizing [14, Lemma
4.3.1].
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Lemma 2.5. Consider τ ∈ (0, 1). Let φ1, φ2 ∈ S(Rd), f, g ∈ S(Rd) and set
Φτ = Wτ (φ1, φ2). Then,
(23)

VΦτWτ (g, f)(z, ζ) = e−2πiz2ζ2Vφ1g(z1−τζ2, z2+(1−τ)ζ1)Vφ2f(z1 + (1− τ)ζ2, z2 − τζ1)

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d.

Proof. Using the covariance property (14) and the representation of the τ -Wigner
distribution as a STFT in (20),

VΦτWτ (g, f)(z, ζ) = ⟨Wτ (g, f),MζTzWτ (φ1, φ2)⟩
= ⟨Wτ (g, f),MζWτ (π(z)φ1, π(z)φ2)⟩

=
1

τ 2d

∫
R2d

VAτfg

(
1

1− τ
x,

1

τ
ξ

)
e−2πi(x,ξ)·(ζ1,ζ2)VAτπ(z)φ2π(z)φ1

(
1

1− τ
x,

1

τ
ξ

)
dxdξ

=
(1− τ)d

τ d

∫
R2d

VAτfg(x, ξ)e
−2πi(ζ1,ζ2)·((1−τ)x,τξ)VAτπ(z)φ2π(z)φ1(x, ξ) dxdξ.

To shorten notation, we write

cτ =
(1− τ)d

τ d
.

Using formula (16), the orthogonality relations (15) and the commutation relations
between π and Aτ in Lemma 2.4, we compute

VΦτWτ (g, f)(z, ζ)

= cτ

∫
R2d

Vπ(τζ2,−(1−τ)ζ1)Aτfπ(τζ2,−(1− τ)ζ1)gVAτπ(z)φ2π(z)φ1(x, ξ)dxdξ

= cτ ⟨π(τζ2,−(1− τ)ζ1)g, π(z1, z2)φ1⟩⟨π(τζ2,−(1− τ)ζ1)Aτf, Aτπ(z1, z2)φ2⟩
= cτe

−2πiτz2ζ2⟨g, π(z1 − τζ2, z2 + (1− τ)ζ1)φ1⟩

× ⟨Aτf, π(−τζ2, (1− τ)ζ1)Aτπ(z1, z2)φ2⟩
= cτe

−2πiτz2ζ2⟨g, π(z1 − τζ2, z2 + (1− τ)ζ1)φ1⟩

× ⟨Aτf, Aτπ((1− τ)ζ2,−τζ1)π(z1, z2)φ2⟩
= e−2πiτz2ζ2e−2πi(1−τ)z2ζ2⟨g, π(z1 − τζ2, z2 + (1− τ)ζ1)φ1⟩

× ⟨f, π(z1 + (1− τ)ζ2, z2 − τζ1)φ2⟩

= e−2πiz2ζ2Vφ1g(z1 − τζ2, z2 + (1− τ)ζ1)Vφ2f(z1 + (1− τ)ζ2, z2 − τζ1).

The claim is proved.



8 ELENA CORDERO, LORENZA D’ELIA, AND S. IVAN TRAPASSO

Formula (23) can be equivalently written as
(24)

VΦτWτ (g, f)(z, ζ) = e−2πiz2ζ2Vφ1g(z +
√

τ(1− τ)AT
τ ζ)Vφ2f(z +

√
τ(1− τ)Aτζ),

where Aτ is a symplectic matrix defined in (11).
The previous lemma does not cover the case τ = 0 and τ = 1, which are treated

below.

Lemma 2.6 (STFT of the Rihaczek distribution). Let φ1, φ2 ∈ S(Rd), f, g ∈ S(Rd)
and set Φ0 = W0(φ1, φ2). Then,

(25) VΦ0W0(g, f)(z, ζ) = e−2πiz2ζ2Vφ1g(z1, z2 + ζ1)Vφ2f(z1 + ζ2, z2),

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d.

Proof. We use the definition in (5) and formula (16) in the following computations:

VΦ0W0(g, f)(z, ζ) = ⟨W0(g, f),MζTzW0(φ1, φ2)⟩

=

∫
R2d

e−2πixξg(x)f̂(ξ)e−2πi(xζ1+ξζ2)e2πi(x−z1)(ξ−z2)φ1(x− z1)φ̂2(ξ − z2) dxdξ

= e2πiz1z2
∫
Rd

e−2πix(z2+ζ1)g(x)φ1(x− z1) dx

∫
Rd

f̂(ξ)e−2πiξ(z1+ζ2)φ̂2(ξ − z2) dξ

= e2πiz1z2Vφ1g(z1, z2 + ζ1)Vφ̂2 f̂(z2,−(z1 + ζ2))

= e2πiz1z2Vφ1g(z1, z2 + ζ1)Vφ2f(z1 + ζ2, z2)e
−2πiz2(z1+ζ2)

= e−2πiz2ζ2Vφ1g(z1, z2 + ζ1)Vφ2f(z1 + ζ2, z2),

as desired.

Corollary 2.7 (STFT of the conjugate-Rihaczek distribution). Let φ1, φ2 ∈ S(Rd),
f, g ∈ S(Rd) and set Φ1 = W1(φ1, φ2). Then,

(26) VΦ1W1(g, f)(z, ζ) = e−2πiz2ζ2Vφ1g(z1 − ζ2, z2)Vφ2f(z1, z2 − ζ1),

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d.
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Proof. Using the connection between the Rihaczek and the conjugate-Rihaczek
distribution in (6) and the result of Lemma 2.6 we can write

VΦ1W1(g, f)(z, ζ) = ⟨W1(g, f),MζTzW1(φ1, φ2)⟩

= ⟨W0(f, g),MζTzW0(φ2, φ1)⟩

= ⟨W0(f, g),M−ζTzW0(φ2, φ1)⟩

= VW0(φ2,φ1)W0(f, g)(z,−ζ)

= e2πiz2ζ2Vφ2f(z1, z2 − ζ1)Vφ1g(z1 − ζ2, z2)

= e−2πiz2ζ2Vφ1g(z1 − ζ2, z2)Vφ2f(z1, z2 − ζ1).

The proof is completed.

Remark 2.3. (i) Heuristically, formulae (25) and (26) can be inferred by putting
τ = 0 and τ = 1 respectively in the expression (23).
(ii) The STFT of a multilinear version of the Rihaczek distribution was computed
in [2, Lemma 3.3], cf. formula (3.3). However, there is a flaw in the phase fac-
tor of that formula. Indeed, the exponential e2πiu0·(u1+···+um) should be replaced by
e2πi

∑m
i=1 ui·vi, as the linear case m = 1 in (25) shows.

2.2. Generalized Gaussian Functions. In order to compute the norm of Wτ in
Wiener amalgam spaces, generalized Gaussian functions will play a crucial role.
Given a, b, c > 0, the generalized Gaussian function is defined as

(27) fa,b,c(x, ξ) = e−πax2

e−πbξ2e2πicxξ, (x, ξ) ∈ R2d.

In the sequel, we will employ the STFT of a generalized Gaussian function, com-
puted in [6, Proposition 2.2]:

Proposition 2.4. For Φ(x, ξ) = e−π(x2+ξ2), z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d, we
obtain

VΦfa,b,c(z, ζ) = C(a, b, c)e
−π

[a(b+1)+c2]z21+[(a+1)b+c2]z22+(b+1)ζ21+(a+1)ζ22−2c(z1ζ2+z2ζ1)

(a+1)(b+1)+c2

× e
− 2πi

a+1

[
z1ζ1+(cz1−(a+1)ζ2)

cζ1+(a+1)z2
(a+1)(b+1)+c2

]
,(28)

with C(a, b, c) = [(a+ 1)(b+ 1) + c2]−d/2.

The τ -Wigner distribution of the Gaussian function φ(t) = e−πt2 is in turn a
generalized Gaussian function, as showed in the next lemma.

Lemma 2.8. Consider φ1(t) = φ2(t) = φ(t) = e−πt2, t ∈ Rd, and τ ∈ [0, 1]. Then

Wτφ(x, ξ) =
1

(2τ 2 − 2τ + 1)d/2
e
−π

1
2τ2−2τ+1

x2

e
−π

1
2τ2−2τ+1

ξ2
e
2πi

2τ−1
2τ2−2τ+1

xξ
,
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for all (x, ξ) ∈ R2d.

Proof. Using the definition of the τ -WD in (4),

Wτφ(x, ξ) =

∫
Rd

e−2πiξte−π(x+τt)2e−π(x−(1−τ)t)2dt

=

∫
Rd

e−2πiξte−2πx2

e−π[(2τ2−2τ+1)t2+2(2τ−1)xt]dt

= e
−2πx2+π(

2τ−1√
2τ2−2τ+1

)2x2
∫
Rd

e−2πiξte
−π(

√
2τ2−2τ+1t+

2τ−1√
2τ2−2τ+1

x)2

dt.

We perform the following change of variables

√
2τ 2 − 2τ + 1t+

2τ − 1√
2τ 2 − 2τ + 1

x = y,

so that, naming c(τ) = 2τ 2 − 2τ + 1 > 0,

Wτφ(x, ξ) =
1

c(τ)
d
2

e
−π

(
2−

(2τ−1)2

c(τ)

)
x2
∫
Rd

e
−2πiξ

y√
c(τ) e

2πi
2τ−1
c(τ)

ξx
e−πy2dy

=
1

c(τ)
d
2

e
−π

1
c(τ)

x2

e
2πi

2τ−1
c(τ)

ξx
e
−π

1
c(τ)

ξ2

,

as desired.

2.3. Weights and Function Spaces. In time-frequency analysis, weight func-
tions play an important role, since they describe the growth and the decay of a
signal f on the time-frequency plane R2d. For a complete survey on weights, we
refer to [15]. A weight function is a positive, locally integrable function on R2d. In
the sequel, we will need the following types of weight functions.

Definition 2.5. Let v and m be positive functions on R2d.

(i) A weight v is called submultiplicative if

v(z1 + z2) ≤ v(z1)v(z2), ∀z1, z2 ∈ R2d.

(ii) Let v be a submultiplicative weight, a positive function m on R2d is called a
v-moderate weight, if there exists a constant C > 0, such that

m(z1 + z2) ≤ Cv(z1)m(z2), ∀z1, z2 ∈ R2d.

Let Mv(R2d) be the space of all v-moderate weights. An important feature of
submultiplicative weights is that they have at most an exponential growth, cf. [15,
Lemma 4.2]):



NORM ESTIMATES FOR τ -PSEUDODIFFERENTIAL OPERATORS 11

Lemma 2.9. If v is submultiplicative and even weight, then there exist constants
C, a > 0 such that

v(x) ≤ Cea|x|, ∀x ∈ R2d.

From now on, we assume that v is a continuous, positive, even, submultiplicative
weight, i.e., v(0) = 1, v(z) = v(−z) and v(z1+z2) ≤ v(z1)v(z2), for all z1, z2 ∈ R2d.
In what follows, we will use weight 1/v, which is a v-moderate weight:

v(x) = v(x+ y − y) ≤ v(x+ y)v(y) ⇒ 1

v(x+ y)
≤ v(y)

1

v(x)
.

Weight functions occur in the definition of general modulation spaces and Wiener
amalgam spaces, where they offer a good device to measure a joint time-frequency
concentration of a function or distribution. The definition of these function spaces
relies on imposing a suitable norm on the short-time Fourier transform, defined in
(7). For their basic properties we refer to [11, 12, 13] and the textbooks [9, 14].
Given a non-zero window g ∈ S(Rd), a v-moderate weight function m on R2d,
1 ≤ p, q ≤ ∞, the modulation space Mp,q

m (Rd) consists of all tempered distributions
f ∈ S ′(Rd) such that Vgf ∈ Lp,q

m (R2d) (weighted mixed-norm spaces). The norm
on Mp,q

m (Rd) is defined by

∥f∥Mp,q
m

= ∥Vgf∥Lp,q
m

=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|pm(x, ξ)p dx

)q/p

dξ

)1/q

(obvious modifications for p = ∞ or q = ∞). If p = q, we write Mp
m(Rd) instead

of Mp,p
m (Rd), and if m(z) ≡ 1 on R2d, then we write Mp,q(Rd) and Mp(Rd) for

Mp,q
m (Rd) and Mp,p

m (Rd).
The space Mp,q

m (Rd) is a Banach space whose definition is independent of the
choice of the window g, in the sense that different non-zero window functions yield
equivalent norms. The modulation space M∞,1(R2d) is also called the Sjöstrand’s
class [24]. We recall the inclusion properties of modulation spaces. Suppose m1,m2

weight functions with m2 ≲ m1. Then, for 1 ≤ p1, p2, q1, q2 ≤ ∞, with p1 ≤ p2,
q1 ≤ q2,

(29) S(Rd) ⊆ Mp1,q1
m1

(Rd) ⊆ Mp2,q2
m2

(Rd) ⊆ S ′(Rd).

Note that for any p, q ∈ [1,∞] and any m ∈ Mv(R2d), the inner product ⟨·, ·⟩ on
S(Rd)×S(Rd) extends to a continuous sesquilinear mapMp,q

m (Rd)×Mp′,q′

1/m (Rd) → C.
Given even weigh functions u,w on Rd, the Wiener amalgam spaceW (FLp

u, L
q
w)(Rd)

consist of all distributions f ∈ S ′(Rd) such that

∥f∥W (FLp
u,L

q
w)(Rd) :=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|pup(ξ) dξ

)q/p

wq(x)dx

)1/q

< ∞
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where if p = ∞ or q = ∞, then we use the supremum norm.
The Wiener amalgam spaces W (FLp

u, L
q
w)(Rd) are the image of modulation spaces

Mp,q
m (Rd) under the Fourier transform

(30) F(Mp,q
u⊗w)(Rd) = W (FLp

u, L
q
w)(Rd).

Indeed, using Parseval identity in (7) and the fundamental identity (18), we can

write |Vgf(x, ξ)| = |Vĝf̂(ξ,−x)| = |F(f̂ Tξĝ)(−x)| and (recall u(x) = u(−x))

∥f∥Mp,q
u⊗w

=

(∫
Rd

∥f̂ Tξĝ∥qFLp
u
wq(ξ) dξ

)1/q

= ∥f̂∥W (FLp
u,L

q
w).

Hence Wiener amalgam spaces are Banach spaces and their definition is indepen-
dent of the choice of g.
Modulation and Wiener amalgam space norms of signals are weighted mixed-norm
spaces of their short-time Fourier transforms. Hence their properties are based
on those of the spaces Lp,q

m . Let us recall the convolution product of mixed-norm
spaces [1]:

Lemma 2.10. For 1 ≤ pi, qi, r, s ≤ ∞, i = 1, 2, m ∈ Mv(R2d), F ∈ Lp1,q1
v (R2d),

G ∈ Lp2,q2
m (R2d), we have F ∗G ∈ Lr,s

m (R2d), with 1/p1+1/p2 = 1+1/r, 1/q1+1/q2 =
1 + 1/s and

(31) ∥F ∗G∥Lr,s
m

≤ ∥F∥Lp1,q1
v

∥G∥Lp2,q2
m

.

We say that a measurable function f on R4d is in the space L∞
z (L1

ζ,m)(R4d), with

m weight function on R2d, if

(32) ∥f∥L∞
z (L1

ζ,m) = sup
z∈R2d

∫
R2d

|f(z, ζ)|m(ζ)dζ < ∞.

When working on the STFT of τ -WD, we will use the following Young-type in-
equality:

Lemma 2.11. If m ∈ Mv(R2d), f ∈ L1
1⊗v(R4d) and g ∈ L∞

z (L1
ζ,m)(R4d), then

f ∗ g ∈ L∞
z (L1

ζ,m)(R4d), with

∥f ∗ g∥L∞
z (L1

ζ,m) ≤ ∥f∥L1
1⊗v

∥g∥L∞
z (L1

ζ,m).
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Proof. Using the definition of L∞
z (L1

ζ,m)-norm in (32),

I := ∥f ∗ g∥L∞
z (L1

ζ,m) = sup
z∈R2d

∫
R2d

|f ∗ g|(z, ζ)m(ζ)dζ

= sup
z∈R2d

∫
R2d

∣∣∣∣∫
R4d

f(y, η)g(z − y, ζ − η)dydη

∣∣∣∣m(ζ)dζ

≤ sup
z∈R2d

∫
R2d

∫
R2d

(∫
R2d

|f |(y, η)|g|(z − y, ζ − η)dη

)
m(ζ)dydζ

= sup
z∈R2d

∫
R2d

∫
R2d

(|f |(y, ·) ∗ |g|(z − y, ·))(ζ)m(ζ)dydζ.

By Young’s inequality (31),

I = sup
z∈R2d

∫
R2d

∥|f |(y, ·)∥L1
v
∥|g|(z − y, ·)∥L1

m
dy

≤
∫
R2d

∥|f |(y, ·)∥L1
v
sup
z∈Rd

∥|g|(z − y, ·)∥L1
m
dy

= ∥g∥L∞
z (L1

ζ,m)∥f∥L1
1⊗v

,

as claimed.

A particular case of Lemma 2.10 gives:

Lemma 2.12. Suppose m ∈ Mv(R2d), f ∈ L1
1⊗v(R4d) and g ∈ L2

1⊗m(R4d). Then
f ∗ g ∈ L2

1⊗m(R4d), with

∥f ∗ g∥L2
1⊗m

≤ ∥f∥L1
1⊗v

∥g∥L2
1⊗m

.

3. Boundedness properties of τ-Wigner Distributions

This section is devoted to investigate the continuity properties of τ -Wigner dis-
tributions in the realm of Wiener and modulation spaces. For a submultiplicative
weight v, we set

(33) vJ(z) = v(Jz),

where J denotes the canonical symplectic matrix (10).

Lemma 3.1. Assume that m ∈ Mv(R2d), 1 ≤ p1, p2 ≤ ∞, f ∈ Mp1,p2
m (Rd),

g ∈ M
p′1,p

′
2

1/m (Rd). Then for every τ ∈ (0, 1), the τ -Wigner distribution Wτ (g, f) is

in W (FL1
1/vJ

, L∞)(R2d) , with

(34) ∥Wτ (g, f)∥W (FL1
1/vJ

,L∞) ≤ Cα(p1,p2)(τ)∥f∥Mp1,p2
m

∥g∥
M

p′1,p
′
2

1/m

,

where the function α(p1,p2)(τ) is defined in (8) and C > 0 is independent of τ .
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Proof. We compute the STFT of Wτ (g, f) with respect to the window function
Φτ ∈ S(R2d) defined in Lemma 2.5. Using that lemma and the properties of the

matrixAτ in Lemma 2.1, by performing the change of variables
√
τ(1− τ)Aτζ = η,

we deduce∫
R2d

|VΦτWτ (g, f)|(z, ζ)
1

v(Jζ)
dζ

=

∫
R2d

|Vφ1g(z +
√

τ(1− τ)AT
τ ζ)||Vφ2f(z +

√
τ(1− τ)Aτζ)|

1

v(
√
τ(1− τ)BτAτζ)

dζ

=
1

[τ(1− τ)]d

∫
R2d

|Vφ1g(z +A1−τAτη)||Vφ2f(z + η)| 1

v(Bτη)
dη.

Since m is a v-moderate weight, we can find a positive constant C, independent of
τ , such that

(35)
1

v(Bτη)
≤ C

m(z + η)

m(z +A1−τAτη)
,

so that∫
R2d

|VΦτWτ (g, f)|(z, ζ)
1

v(Jζ)
dζ

≤ C
1

[τ(1− τ)]d

∫
R2d

|Vφ1g(z +A1−τAτη)||Vφ2f(z + η)| m(z + η)

m(z +A1−τAτη)
dη.

Consequently,

∥Wτ (g, f)∥W (FL1
1/vJ

,L∞)

≍ sup
z∈R2d

∫
R2d

|Vφ1g(z +
√

τ(1− τ)AT
τ ζ)||Vφ2f(z +

√
τ(1− τ)Aτζ)|

1

v(
√
τ(1− τ)BτAτζ)

dζ

≤ C
1

[τ(1− τ)]d
sup
z∈R2d

∫
R2d

|Vφ1g(z +A1−τAτη)||Vφ2f(z + η)| m(z + η)

m(z +A1−τAτη)
dη

≤ C
1

[τ(1− τ)]d
∥Vφ1fm∥Lp1,p2∥Vφ2g

1

m
(z +A1−τAτ ·)∥Lp′1,p

′
2

≲
1

[τ(1− τ)]d

(
1− τ

τ

)d
(

1
p2

− 1
p1

)
∥f∥Mp1,p2

m
∥g∥

M
p′1,p

′
2

1/m

.

The claim is proved.

The previous estimate is not uniform with respect to τ , in the sense that the
W (FL1

1/vJ
, L∞)-norm of the τ -WDhas been calculated by using a window func-

tion Φτ depending on τ . The next goal is to find an upper bound of this norm
independent of τ . We will need the following result.
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Lemma 3.2. Consider Φ(x, ξ) = e−π(x2+ξ2), (x, ξ) ∈ R2d, and Φτ = Wτ (φ, φ),

where φ(t) = e−πt2, t ∈ Rd. Then, for vJ in (33), there exists a constant C > 0
such that

(36) ∥VΦΦτ∥L1
1⊗vJ

≤ C, ∀τ ∈ [0, 1].

Consequently,

(37) ∥Φτ∥M1
1⊗vJ

≤ C, ∀τ ∈ [0, 1].

Proof. Using Lemma 2.8 and formula (28), with z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d, we
compute

|VΦΦτ |(z, ζ) =
1

(2τ 2 − 2τ + 1)d/2
(2τ 2 − 2τ + 1)d/2

(2τ 2 − 2τ + 5)d/2

× e

−π

3
2τ2−2τ+1

(z21+z22)+
2τ2−2τ+2
2τ2−2τ+1

(ζ21+ζ22)−2
2τ−1

2τ2−2τ+1
(z1ζ2+z2ζ1)

2τ2−2τ+5
2τ2−2τ+1

=
1

(2τ 2 − 2τ + 5)d/2
e
−π

3(z21+z22)+(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 .

Observing that

1

(2τ 2 − 2τ + 5)d/2
≤ max

τ∈(0,1)

1

(2τ 2 − 2τ + 5)d/2
=

(
2

9

)d/2

,

by Lemma 2.9, we have,

∥VΦΦτ∥L1
1⊗vJ

≤
(
2

9

)d/2

×
∫
R2d

∫
R2d

e
−π

3(z21+z22)+(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 vJ(ζ)dζ1dζ2dz1dz2

≤ C

∫
R2d

∫
R2d

e
−π

3(z21+z22)+(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 ea|Jζ|dζ1dζ2dz1dz2

= C

∫
R2d

e
−π

3(z21+z22)

2τ2−2τ+5 I1dz1dz2,

where

I1 :=

∫
R2d

e
−π

(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 ea|Jζ|dζ1dζ2.
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The integral I1 can be computed as follows

I1 =

∫
R2d

e
−π

(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 ea|Jζ|dζ1dζ2

≤
∫
R2d

e
−π

(2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1ζ2+z2ζ1)

2τ2−2τ+5 ea(|ζ1|+|ζ2|)dζ1dζ2

=

(∫
Rd

e
−π

(2τ2−2τ+2)ζ21+(2−4τ)z2ζ1
2τ2−2τ+5 ea|ζ1|dζ1

)(∫
Rd

e
−π

(2τ2−2τ+2)ζ22+(2−4τ)z1ζ2
2τ2−2τ+5 ea|ζ2|dζ2

)
.

We calculate the integral with respect to the variable ζ1 (the other integral is
analogous):

∫
Rd

e
−π

(2τ2−2τ+2)ζ21+(2−4τ)z2ζ1
2τ2−2τ+5 ea|ζ1|dζ1 =

∫
Rd

e
−π

(2τ2−2τ+2)ζ21+(2−4τ)z2ζ1+
(1−2τ)2z22
2τ2−2τ+2

−
(1−2τ)2z22
2τ2−2τ+2

2τ2−2τ+5 ea|ζ1|dζ1

= e
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

×
∫
Rd

e
−π

(
√

2τ2−2τ+2ζ1+
1−2τ√

2τ2−2τ+2
z2)

2

2τ2−2τ+5 ea|ζ1|dζ1

= e
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

∫
Rd

e
−π

((2τ2−2τ+2)ζ1+(1−2τ)z2)
2

(2τ2−2τ+5)(2τ2−2τ+2) ea|ζ1|dζ1︸ ︷︷ ︸
:=I3

.

In I3 we perform the following change of variables

(2τ 2 − 2τ + 2)ζ1 + (1− 2τ)z2 = η1,

so that,

I3 =
1

(2τ 2 − 2τ + 2)d

∫
Rd

e
−π

η21
(2τ2−2τ+5)(2τ2−2τ+2) e

a
2τ2−2τ+2

|η1−(1−2τ)z2|dη1

≤ Cd
1e

a|1−2τ |
2τ2−2τ+2

|z2|
∫
Rd

e−πC2η21eaC1|η1|dη1,

where

C1 = max
τ∈[0,1]

1

(2τ 2 − 2τ + 2)
=

2

3
, C2 = min

τ∈[0,1]

1

(2τ 2 − 2τ + 5)(2τ 2 − 2τ + 2)
=

1

10
.



NORM ESTIMATES FOR τ -PSEUDODIFFERENTIAL OPERATORS 17

Using lim|η1|→∞ e−π
C1
2
η21eaC2|η1| = 0, for every ϵ > 0 there exists R > 0 such that

e−π
C1
2
η21eaC2|η1| ≤ ϵ, for all |η1| with |η1| > R. Hence

I3 ≤ Cd
1e

a|1−2τ |
2τ2−2τ+2

|z2|
∫
Rd

e−πC2η21eaC1|η1|dη1

= Cd
1e

a|1−2τ |
2τ2−2τ+2

|z2|
(∫

{η1∈Rd:|η1|≤R}
e−πC2η21eaC1|η1|dη1 +

∫
{η1∈Rd:|η1|>R}

e−πC2η21eaC1|η1|dη1

)
≤ Cd

1e
a|1−2τ |

2τ2−2τ+2
|z2|
(
eaC1R

∫
Rd

e−πC2η21dη1 + ϵ

∫
Rd

e−π
C2
2
η21dη1

)
= C̃e

a|1−2τ |
2τ2−2τ+2

|z2| < ∞,

where C̃ is a constant independent of τ. In conclusion, the integral I1 can be
majorized as

I1 ≤ 2C̃e
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ |

2τ2−2τ+2
|z2|e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z1|.

Thus, there exists a constant M1 > 0 independent of τ such that

∥VΦΦτ∥L1
1⊗vJ

≤ M1

∫
Rd

e
−π

3z21
2τ2−2τ+5 e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z1|
dz1

×
∫
Rd

e
−π

3z22
2τ2−2τ+5 e

π
(1−2τ)2z22

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z2|
dz2

= 2M1

∫
Rd

e
−π

3z21
2τ2−2τ+5 e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z1|
dz1.

The integral with respect the variable z1 is computed analogously to the one for ζ1
above. The estimate (37) follows by

∥Φτ∥M1
1⊗vJ

≍ ∥VΦΦτ∥L1
1⊗vJ

≤ C,

as desired.

Proposition 3.1. Under the assumptions of Lemma 3.1, there exists a constant
C > 0 independent of τ such that

(38) ∥Wτ (g, f)∥W (FL1
1/vJ

,L∞) ≤ Cα(p1,p2)(τ)∥f∥Mp1,p2
m

∥g∥
M

p′1,p
′
2

1/m

, τ ∈ (0, 1).
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Proof. Changing window in the computation of the STFT as in (17), using Lemmas
2.11, 3.2 and Moyal’s formula (13), we have

∥VΦWτ (g, f)∥L∞
z (L1

ζ,1/vJ
) ≤

1

|⟨Φτ ,Φτ ⟩|
∥|VΦτWτ (g, f)| ∗ |VΦΦτ |∥L∞

z (L1
ζ,1/vJ

)

≤ 1

∥φ∥2∥φ∥2
∥VΦτWτ (g, f)∥L∞

z (L1
ζ,1/vJ

)∥VΦΦτ∥L1
1⊗vJ

≤ Cα(p1,p2)(τ)∥f∥Mp1,p2
m

∥g∥
M

p′1,p
′
2

1/m

.

This completes the proof.

Repeating the pattern of Lemma 3.1 and Proposition 3.1 in the Wiener amalgam
space W (FL2

1/vJ
, L2)(R2d), we can state the following.

Proposition 3.2. Let m ∈ Mv(R2d), f ∈ M2
m(Rd) and g ∈ M2

1/m(Rd). For

τ ∈ (0, 1), the τ -WD Wτ (g, f) is in W (FL2
1/vJ

, L2)(R2d), with the uniform estimate

(39) ∥Wτ (g, f)∥W (FL2
1/vJ

,L2) ≤ C∥f∥M2
m
∥g∥M2

1/m
,

where the positive constant C is independent of τ .

Proof. First Step. We use Lemma 2.5, Young’s Inequality L1 ∗ L1 ⊂ L1 and the
change of variables Bτη → η, to compute

∥Wτ (g, f)∥W (FL2
1/vJ

,L2)

≍
(∫

R2d

∫
R2d

|Vφ1g(z +
√

τ(1− τ)AT
τ ζ)|2|Vφ2f(z +

√
τ(1− τ)Aτζ)|2

1

v2(Jζ)
dζdz

) 1
2

≤ C
1

[τ(1− τ)]d

(∫
R2d

∫
R2d

|Vφ1g(z + η − Bτη)|2|Vφ2f(z + η)|2 m2(z + η)

m2(z + η − Bτη)
dηdz

) 1
2

= C
1

[τ(1− τ)]d

(∫
R2d

(|Vφ2f |2m2) ∗ (|Vφ1g|2
1

m2
)(Bτη) dη

) 1
2

≲ ∥|Vφf |2m2∥1∥|Vφg|2
1

m2
∥1

≲ ∥f∥M2
m
∥g∥M2

1/m
.

Second Step. Consider now Φ ∈ S(R2d). Then the same pattern as in the proof
of Proposition 3.1, with Lemma 2.11 replaced by Lemma 2.12, gives the uniform
estimate (39).

The previous issue can be rephrased in terms of modulation spaces as follows
(cf. (30)).
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Corollary 3.3. For τ ∈ (0, 1), m ∈ Mv(R2d), f ∈ M2
m(Rd), g ∈ M2

1/m(Rd), the

τ -WD belongs to M2
1/vJ⊗1(R2d) with

∥Wτ (g, f)∥M2
1/vJ⊗1

≤ C∥f∥M2
m
∥g∥M2

1/m
,

with C > 0 independent of τ .

4. Main result

This section is devoted to the proof of Theorem 4.3. We will start with two pre-
liminary results about τ -pseudodifferential operators acting on modulation spaces
and having symbols in W (FL1

1/vJ
, L∞)(R2d) and W (FL2

1/vJ
, L2)(R2d), respectively.

Then, by means of complex interpolation between Wiener amalgam spaces, we shall
reach our goal.

Proposition 4.1. Suppose that m ∈ Mv(R2d) and consider a symbol function
a ∈ W (FL∞

vJ
, L1)(R2d). Then for every τ ∈ (0, 1), the τ -pseudodifferential operator

Opτ (a) is bounded on Mp1,p2
m (Rd), for every 1 ≤ p1, p2 ≤ ∞, with

(40) ∥Opτ (a)f∥Mp1,p2
m

≤ Cα(p1,p2)(τ)∥a∥W (FL∞
vJ

,L1)∥f∥Mp1,p2
m

(C > 0 does not depend on τ).

Proof. For every f ∈ Mp1,p2
m (Rd) and g ∈ M

p′1,p
′
2

1/m (Rd), we can write

|⟨Opτ (a)f, g⟩| = |⟨a,Wτ (g, f)⟩| ≤ ∥VΦa∥L1
z(L

∞
vJ ,ζ)

∥VΦWτ (g, f)∥L∞
z (L1

1/vJ ,ζ
).

Observing that

∥Wτ (g, f)∥W (FL1
1/vJ

,L∞) ≍ ∥VΦWτ (g, f)∥L∞
z (L1

1/vJ ,ζ
)

and using Proposition 3.1, we conclude the proof.

Proposition 4.2. Let m ∈ Mv(R2d), a ∈ W (FL2
vJ
, L2)(R2d) and τ ∈ (0, 1). Then

the operator Opτ (a) is bounded on M2
m with

(41) ∥Opτ (a)f∥M2
m
≤ C∥a∥W (FL2

vJ
,L2)∥f∥M2

m
,

where the constant C > 0 is independent of τ .

Proof. The proof is similar to the one of Proposition 4.1, where Proposition 3.1 is
replaced by 3.2.

Propositions 4.1 and 4.2 are the main ingredients in the proof of Theorem 4.3,
which generalizes [10, Theorem 3.1] in the case of τ -pseudodifferential operators.
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Theorem 4.3. Suppose that 1 ≤ p, q, r1, r2 ≤ ∞ satisfy

(42) q ≤ p′

and

(43) max{r1, r2, r′1, r′2} ≤ p.

Let m ∈ Mv(R2d) and a ∈ W (FLp
vJ
, Lq)(R2d) . For τ ∈ (0, 1), every τ -pseudodifferential

operator Opτ (a) is a bounded operator on M r1,r2
m (Rd). Moreover, there exists a con-

stant C > 0 independent of τ such that

(44) ∥Opτ (a)f∥Mr1,r2
m

≤ Cα(r1,r2)(τ)∥a∥W (FLp
vJ

,Lq)∥f∥Mr1,r2
m

, τ ∈ (0, 1).

Proof. The key tool is the complex interpolation between Wiener amalgam and
modulation spaces. We regard Opτ as the bilinear map (a, f) 7→ Opτ (a)f . Proposi-
tion 4.1 and Proposition 4.2 give the continuity of the τ -pseudodifferential operator
Opτ on the following function spaces

W (FL∞
vJ
, L1)(R2d)×Mp1,p2

m (Rd) → Mp1,p2
m (Rd),

W (FL2
vJ
, L2)(R2d)×M2

m(Rd) → M2
m(Rd),

for 1 ≤ p1, p2 ≤ ∞. Using the complex interpolation between Wiener amalgam
and modulation spaces [12], for θ ∈ [0, 1], we have

[W (FL∞
vJ
, L1),W (FL2

vJ
, L2)]θ = W (FLp

vJ
, Lp′),

with 2 ≤ p ≤ ∞, and [Mp1,p2
m ,M2

m]θ = M r1,r2
m , with

(45)
1

r1
=

1− θ

p1
+

θ

2
=

1− θ

p1
+

1

p

and

(46)
1

r2
=

1− θ

p2
+

θ

2
=

1− θ

p2
+

1

p

so that r1, r2 ≤ p. Similarly, we obtain r′1, r
′
2 ≤ p, and thus the relation (43).

Due to inclusion relations for Wiener amalgam spaces, we relax the assumptions
on symbols, so that the symbol a may belong to W (FLp

vJ
, Lq)(R2d), with q ≤ p′,
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which gives (42). Finally, the norm is provided by

∥Opτ ∥B(W (FLp
vJ

,Lq)×M
r1,r2
m ,M

r1,r2
m ) ≤ ∥Opτ ∥1−θ

B(W (FL∞
vJ

,L1)×M
p1,p2
m ,M

p1,p2
m )

× ∥Opτ ∥θB(W (FL2
vJ

,L2)×M2
m,M2

m)

≤ C
1

τ
d(1−θ)

(
1− 1

p1
+

1
p2

)
(1− τ)

d(1−θ)
(
1+

1
p1

− 1
p2

)

≤ C
1

τ
d
(
1− 1

p1
+

1
p2

)
(1− τ)

d
(
1+

1
p1

− 1
p2

) ,
since 1− θ ≤ 1. This concludes the proof.

We finally consider the end-points τ = 0 and τ = 1, for which the boundedness
results stated above do not hold in general. We remark that the modulation space
M2(Rd) is simply the Lebesgue space L2(Rd). The following example generalizes a
1-dimensional example exhibited by Boulkhemair in [5].

Proposition 4.4. There exists a symbol a ∈ W (FL∞, L1)(R2d) such that the cor-
responding Kohn-Nirenberg Op0(a) and anti-Kohn-Nirenberg Op1(a) operators are
not bounded on L2(Rd).

Proof. Consider the symbol function

(47) a(x1, . . . , xd, ξ1, . . . , ξd) = x
−1/2
1 . . . x

−1/2
d χ(0,1](x1) . . . χ(0,1](xd)e

−πξ2 ,

with ξ2 = ξ21 + · · · + ξ2d. An easy computation shows that a ∈ L1(R2d) =
W (L1, L1)(R2d) ⊂ W (FL∞, L1)(R2d). Let us show that the Kohn-Niremberg

Op0(a) is unbounded on L2(Rd). Consider the Gaussian function f(t) = eπt
2 ∈

L2(Rd), then Op0(a)f /∈ L2(Rd). Indeed, by a tensor product argument, we reduce
to compute the following one-dimensional integral:∫

R
e2πixξx−1/2χ(0,1](x)e

−πξ2e−πξ2dξ =
1√
2
x−1/2χ(0,1](x)e

−π
x2

2 ,

whose result is a function that does not belong to L2(R).
To prove that the anti-Kohn-Nirenberg operator Op1(a), where a is defined in

(47), is unbounded on L2(Rd), it is sufficient to observe that its adjoint operator is
the Kohn-Niremberg one: (Op1(a))

∗ = Op0(a), as detailed below:

⟨Op1(a)f, g⟩ = ⟨a,R∗(g, f)⟩ = ⟨a,R(f, g)⟩ = ⟨R(f, g), a⟩ = ⟨f,Op0(a)g⟩.

This proves our claim.
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5. Remarks on boundedness results for symbols in modulation
spaces

We address this section to study the boundedness results for τ -pseudodifferential
operators with symbols in weighted modulation spaces. Recall (cf. [19] and [31,
Remark 1.5]) that for every choice τ1, τ2 ∈ [0, 1], a1, a2 ∈ S ′(R2d),

(48) Opτ1(a1) = Opτ2(a2) ⇔ â2(ξ1, ξ2) = e−2πi(τ2−τ1)ξ1ξ2 â1(ξ1, ξ2).

For t > 0 define Ht(x, ξ) = e2πitxξ and observe that

(49) FHt(ζ1, ζ2) =
1

td
e−2πi 1

t
ζ1ζ2 .

So, for τ1 ̸= τ2, by (49),

(50) a2(x, ξ) =
1

|τ1 − τ2|d
e2πi(τ2−τ1)Ψ ∗ a1(x, ξ),

where Ψ(x, ξ) = xξ. Toft in [31, Proposition 1.2 (5)] proved that the mapping
a 7→ TΦa = e2πiΦ ∗a is a homeomorphism on Mp,q(R2d), 1 ≤ p, q ≤ ∞. This implies
that results for Weyl operators with symbols in modulation spaces are still true for
any τ -operator. The main goal of this section is to show uniform estimates for τ -
operators with symbol in weighted modulation spaces. Following the pattern of the
previous section, we first compute the norm of the τ -WD in weighted modulation
spaces.

The next Proposition extends the sufficient conditions of [6, Theorem 1.1] in the
case of τ -Wigner distributions.

Proposition 5.1. Assume that p1, p2, q1, q2, p, q ∈ [0, 1] satisfy

(51) pi, qi ≤ q, i = 1, 2,

and

(52)
1

p1
+

1

p2
≥ 1

p
+

1

q
,

1

q1
+

1

q2
≥ 1

p
+

1

q
.

Consider m ∈ Mv, f ∈ Mp1,q1
m (Rd) and g ∈ Mp2,q2

1/m (Rd). Then, for any τ ∈ [0, 1],

Wτ (g, f) ∈ Mp,q
1⊗1/vJ

(R2d). Furthermore, there exists a constant C > 0, independent

of τ ∈ [0, 1], such that

∥Wτ (g, f)∥Mp,q
1⊗1/vJ

≤ C∥f∥Mp1,q1
m

∥g∥Mp2,q2
1/m

, ∀τ ∈ [0, 1].

Proof. We separate the proof in three cases: τ ∈ (0, 1), τ = 0 and τ = 1.
Case τ ∈ (0, 1). Assume p ≤ q < ∞. Making the change of variables z +



NORM ESTIMATES FOR τ -PSEUDODIFFERENTIAL OPERATORS 23√
τ(1− τ)Aτζ = y and using item (iv) of Lemma 2.1, the integral with respect the

variable z becomes

∥Wτ (g, f)∥Mp,q
1⊗1/vJ

=

(∫
R2d

(∫
R2d

|Vφ1g(z +
√

τ(1− τ)AT
τ ζ)|p|Vφ2f(z +

√
τ(1− τ)Aτζ)|pdz

) q
p 1

vq(Jζ)
dζ

) 1
q

=

(∫
R2d

(∫
R2d

|Vφ1g(y − Jζ)|p|Vφ2f(y)|p
1

vp(Jζ)
dy

) q
p

dζ

) 1
q

≤ C

(∫
R2d

(∫
R2d

|Vφ1g(y − Jζ)|p|Vφ2f(y)|p
mp(y)

mp(y − Jζ)
dy

) q
p

dζ

) 1
q

= C

(∫
R2d

(
(|IVφ1g|p

1

mp
) ∗ (|Vφ2f |pmp)(Jζ)

) q
p

dζ

) 1
q

= C∥|(IVφ1g|p
1

mp
) ∗ (|Vφ2f |pmp)∥1/p

Lq/p ,

where I is the reflection operator. The rest goes exactly as in the proof of Theorem
3.1 in [6], obtaining the estimate

∥Wτ (g, f)∥pMp,q
1⊗1/vJ

≲ ∥f∥Mp1,q1
m

∥f∥Mp2,q2
1/m

.

Using Lemma 3.2, there exists a positive constant C independent of τ ∈ (0, 1) such
that

∥Wτ (g, f)∥Mp,q
1⊗1/vJ

≤ 1

|⟨Φτ ,Φτ ⟩|
∥VΦτWτ (g, f) ∗ VΦΦτ∥Lp,q

1⊗1/vJ

≤ C∥f∥Mp1,q1
m

∥g∥Mp2,q2
1/m

,

concluding the proof for τ ∈ (0, 1), p ≤ q < ∞.
Assume p = q = ∞. We have
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∥Wτ (g, f)∥M∞
1⊗1/vJ

= sup
z,ζ∈R2d

|Vφ1g(z +
√
τ(1− τ)AT

τ ζ)||Vφ2f(z +
√

τ(1− τ)Aτζ)|
1

v(Jζ)

= sup
ζ∈R2d

sup
z∈R2d

|Vφ1g(z − Jζ)||Vφ2f(z)|
1

v(Jζ)
,

≤ C sup
ζ∈R2d

sup
z∈R2d

|Vφ1g(z − Jζ)||Vφ2f(z)|
m(z)

m(z − Jζ)
,

= C sup
z∈R2d

|Vφ2f(z)|m(z)

(
sup
ζ∈R2d

|Vφ1g(z − Jζ)| 1

m(z − Jζ)

)
,

= C∥|Vφ2f |m∥L∞∥|Vφ2g|
1

m
∥L∞

= ∥f∥M∞
1/v

∥g∥M∞
v

≤ ∥f∥Mp1,q1
1/v

∥g∥Mp2,q2
v

,

for every 1 ≤ pi, qi ≤ ∞. The conclusion follows again by Lemma 3.2 and Young’s
inequality.
Assume p > q. Using the inclusion relations for modulation spaces, we majorize

∥Wτ (g, f)∥Mp,q
1⊗1/vJ

≤ ∥Wτ (g, f)∥Mq,q
1⊗1/vJ

≤ C∥f∥Mp1,q1
m

∥g∥Mp2,q2
1/m

,

for every 1 ≤ pi, qi ≤ q, i = 1, 2.
Case τ = 0. In this case, we obtain at once a uniform estimate. Indeed, using
Lemma 2.6,

∥W0(g, f)∥Mp,q
1⊗1/vJ

=

(∫
Rd

(∫
Rd

|Vφ1g(z1, z2 + ζ1)|p|Vφ2f(z1 + ζ2, z2)|pdz1dz2
)q/p

1

vqJ(ζ)
dζ1dζ2

)1/q

=

(∫
Rd

(∫
Rd

|Vφ1g(z1 − ζ2, z2 + ζ1)|p|Vφ2f(z1, z2)|p
1

vp(Jζ)
dz1dz2

)q/p

dζ1dζ2

)1/q

≤ C

(∫
Rd

(∫
Rd

|Vφ1g(z − Jζ)|p|Vφ2f(z)|p
mp(z)

mp(x− Jζ)
dz

)q/p

dζ

)1/q

= C∥(|Vφ1g|p(1/mp)) ∗ (|Vφ2f |pmp)∥Lq/p .

Then we proceed as in Case τ ∈ (0, 1).
Case τ = 1. The proof is analogous to the one of Case τ = 0. We are done.

The boundedness results for τ -WDs transfer to τ -pseudodifferential operators as
follows.
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Theorem 5.1. Let 1 ≤ p1, p2, q1, q2, p ≤ ∞ be indices such that

(53) p1, p
′
2, q1, q

′
2 ≤ q′,

and

(54)
1

p1
+

1

p′2
≥ 1

p′
+

1

q′
,

1

q1
+

1

q′2
≥ 1

p′
+

1

q′
.

Let m ∈ Mv(R2d). For every τ ∈ [0, 1], the τ -pseudodifferential operator Opτ (a),
with symbol a ∈ Mp,q

1⊗vJ
(R2d), is a bounded operator from Mp1,q1

m (Rd) to Mp2,q2
m (Rd),

with

∥Opτ (a)f∥Mp2,q2
m

≤ C∥a∥Mp,q
1⊗vJ

∥f∥Mp1,q1
m

,

and C > 0 is independent of τ .

Proof. If f ∈ Mp1,q1
m (Rd) and g ∈ M

p′2,q
′
2

1/m (Rd), then Wτ (g, f) ∈ Mp′,q′

1⊗ 1
vJ

(R2d), by

Proposition 5.1, provided that (53) and (54) hold. Thereby there exists a positive
constant C such that for any τ ∈ [0, 1],

|⟨Opτ (a)f, g⟩| = |⟨a,Wτ (g, f)|
≤ C∥a∥Mp,q

1⊗vJ
∥f∥Mp1,q1

m
∥g∥

M
p′2,q

′
2

1/m

,

as desired.
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Basel AG, Basel, 2011.



26 ELENA CORDERO, LORENZA D’ELIA, AND S. IVAN TRAPASSO

[10] L. D’Elia and S. I. Trapasso. Boundedness of pseudodifferential operators with symbols in
wiener amalgam spaces on modulation spaces. Journal of Pseudo-Differential Operators and
Applications, 1–10, 2017.

[11] H. G. Feichtinger. Banach convolution algebras of Wiener type. In Functions, series, op-
erators, Vol. I, II (Budapest, 1980), volume 35 of Colloq. Math. Soc. János Bolyai, pages
509–524. North-Holland, Amsterdam, 1983.

[12] H. G. Feichtinger. Banach spaces of distributions of Wiener’s type and interpolation. In
Functional analysis and approximation (Oberwolfach, 1980), volume 60 of Internat. Ser.
Numer. Math., pages 153–165. Birkhäuser, Basel-Boston, Mass., 1981.
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[33] F. Trèves. Introduction to pseudodifferential and Fourier integral operators. Vol. 2. Plenum
Press, New York-London, 1980. Fourier integral operators, The University Series in Mathe-
matics.

[34] M. W. Wong. Weyl transforms. Universitext. Springer-Verlag, New York, 1998.
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