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On Cooperative Fault Management in Multi-domain
Optical Networks Using Hybrid Learning

Xiaoliang Chen, Che-Yu Liu, Roberto Proietti, Jie Yin, Zhaohui Li, S. J. Ben Yoo, Fellow, IEEE, Fellow, OSA

(Invited Paper)

Abstract—This paper presents a hybrid learning approach for
cooperative fault management in multi-domain optical networks
(MD-ONs). The proposed approach relies on a broker-based
MD-ON architecture for coordination of inter-domain service
provisioning. We first propose a self-supervised learning design
for soft failure detection. The self-supervised learning design
makes use of a clustering algorithm for extracting normal
and abnormal patterns from optical performance monitoring
data and a supervised learning-based classifier trained with the
learned patterns for online detection. To facilitate high soft failure
detection accuracy in the absence of sufficient abnormal data
for training, the proposed design estimates model uncertainties
during predictions and identifies instances associated with high
uncertainties as also soft failures. Then, we extend the self-
supervised learning design and present a federated learning
framework for the broker plane and DMs to learn cooper-
atively while complying with the privacy constraints of each
domain. Finally, a data-driven soft failure localization scheme
that operates by analyzing the patterns of data is proposed as a
complement to the existing approaches. Performance evaluations
indicate that the self-supervised learning design can achieve soft
failure detection accuracy of up to ∼ 97% with 0.01% − 0.04%
false alarm rate, while federated learning enables DMs to realize
> 90% soft failure detection rates in the cases of highly
unbalanced data distribution (two of the three domains possess
zero abnormal data for training).

Index Terms—Multi-domain optical networks (MD-ONs), soft
failure detection and localization, self-supervised learning, model
uncertainty, federated learning.

I. INTRODUCTION

AS the underlying infrastructure of the Internet, optical
networks carry traffic generated from heterogeneous ap-

plications (e.g., social networking, multimedia) at the rate
of a few hundred Gigabits up to Terabits per second per
wavelength [1], [2]. A single component failure in optical
networks can lead to severe service disruptions. Therefore,
effective fault management schemes for optical networks are
of vital importance.
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Previous studies have reported extensive designs for failure
detection and localization in optical networks targeting hard
failures (e.g., fiber cuts) [3], [4]. Unlike hard failures that
can bring down connections immediately, soft failures refer to
incidents that cause moderate and gradual performance degra-
dation, for instance, device aging, equipment malfunctioning,
misconfigurations, and physical-layer attacks [5], [6]. Prompt
detection and localization of soft failures is highly desired
as it enables optical networks to operate with lower margins
(thus, higher resource efficiency) and prevents expensive hard
failures that these soft failures may eventually evolve to.
However, effective management of soft failures is not straight-
forward because they are often covert. Traditional approaches
typically apply threshold-based policies on particular network
parameters, such as the monitored signal power of a lightpath,
which suffer from poor flexibility. In particular, determining a
proper value of threshold entails network experts investigating
the behaviors of the related parameters under a specific system
setup. As network conditions may change (due to changes
of topology, deployment of new equipment or services, etc.),
such approaches need to be constantly refined, prohibiting
the fast evolution of optical networks. Besides, some soft
failures can exhibit sophisticated patterns that cannot be easily
characterized by a simple threshold [7].

Lately, machine learning (ML) has emerged as one of the
key enabling techniques for building next-generation opti-
cal networks. ML equips network control and management
(NC&M) systems with the potential to learn network rules
or operation policies automatically from data (network traces,
past experiences, etc.), thus, largely enhancing the intelligence
of network operations [8]–[10]. In this context, researchers
have proposed a number of ML-based approaches for cognitive
fault management in optical networks [7], [11]–[19]. In [7],
the authors proposed finite state machine-based algorithms
for detecting and identifying bit-error-rate (BER) degradation
caused by four types of soft failures, namely, signal overlap,
tight filtering, gradual drift, and cyclic drift. Later in [11],
the same authors studied ML approaches for localizing these
soft failures. In [12], Shahkarami et al. conducted a perfor-
mance comparison between different ML algorithms when
applied to soft failure detection and identification in optical
networks. The authors of [13] presented a neural network-
based classifier design for detecting abnormal signal power
variations under different failure modes. In [14], the authors
developed two classification algorithms, aiming at detecting
and identifying jamming signal attacks of various intensities
in optical networks. In [17], the authors demonstrated a neural
network model taking as input the power spectrum density of
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Fig. 1. An example of soft failure caused by jamming signal attack.

a received signal and the filter tap coefficients to locate the
malfunctioning optical switch.

All of the above works apply supervised learning ap-
proaches, which demand for large sets of labeled data for
successful training. A major factor that limits the applicability
of these approaches is the scarcity of abnormal data since
real optical networks operate under normal states most of the
time. Moreover, the trained supervised learning models can
only recognize soft failures having been identified by human
experts, i.e., related features and labels must be provided in
the training sets. To overcome this issue, our previous work
in [15] devised a hybrid unsupervised and supervised learning
approach working directly on unlabeled data. The rationale
is that abnormal behaviors typically show unique patterns
deviating from those of normal ones [20], and therefore, by
analyzing the patterns of data through data clustering (unsuper-
vised learning), arbitrary type of soft failures can potentially
be detected. Then, a supervised learning-based classifier is
trained with the patterns learned by unsupervised learning to
facilitate online detection with low time complexity. Fig. 1
shows an example of soft failure caused by a jamming signal
attack launched at node D [6]. By examining the power of λ1
along the routing path, we can observe a pattern that differs
from a normal fluctuation (profiled by the dashed line) despite
that the power values may still locate within normal ranges.
Following a similar idea, the authors of [16] proposed a dual-
stage approach, which makes use of only BER and signal
power information at the first stage while exploiting a more
comprehensive digital spectrum features at the second stage
if a soft failure is detected. More recent works also made
attempts to detect soft failures by learning a mapping from
original data to a space where normal and abnormal data can
be more easily distinguished [18], [19].

Nevertheless, existing works only considered single-domain
scenarios where network administrators possess full domain
visibility. It is known that the Internet infrastructure is com-
posed of multiple autonomous systems/domains and assur-
ing high quality and availability of inter-domain services is
indispensable [21]. Based on domain privacy considerations,
domain managers (DM) tend to advertise only limited intra-
domain information, making effective fault management in
multi-domain optical networks (MD-ONs) a non-trivial task.

In this work, we propose to realize cooperative fault
management in MD-ONs with a hybrid ML approach. The
proposed design takes advantage of a broker-based MD-ON
architecture for coordination of inter-domain service provi-
sioning. We first refine our previous work in [15] to present

a self-supervised learning approach for soft failure detection.
Our approach incorporates estimations of model uncertainty
during inferences to facilitate high soft failure detection rate
even in the absence of sufficient abnormal data for training.
Then, a federated learning framework is proposed to enable
cooperative learning between the broker plane and DMs while
complying with the domain privacy constraint. Finally, we
present a data-driven soft failure localization scheme that
operates by analyzing the patterns of data. Performance evalua-
tions conduced with data collected using the VPItransmission-
Maker™ Optical Systems simulator verify the effectiveness of
the proposed design.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the cooperative fault management
architecture. In Sections III and IV, we detail the hybrid
learning design and show the corresponding performance
evaluations. Finally, Section V summaries the key paper con-
tributions.

II. NETWORK ARCHITECTURE

Optimizing service provisioning in MD-ONs entails a pow-
erful NC&M system that can well coordinate the operations of
multiple domains while complying with the domain autonomy
constraints [21]. Thanks to the unprecedented network pro-
grammability offered by software-defined networking (SDN)
and the recent breakthroughs in ML, previous works have
demonstrated a broker-based MD-ON architecture facilitating
cognitive inter-domain networking [8], [22]. This work ex-
ploits such an architecture and develops a cooperative fault
management framework.

Fig. 2 illustrates the layout of the proposed framework. We
consider an MD-ON of three hierarchies, namely, data, DM,
and broker planes. The data plane carries aggregated client
traffic with lightpaths established by proper configuration of
optical transmission equipment, i.e., transponders, wavelength-
selective switches, etc. Each DM adopts the SDN paradigm
to operate its data plane. Specifically, a centralized SDN
controller is employed to interact with the data plane equip-
ment for collecting network state information and distributing
configuration instructions. For instance, making use of network
telemetry techniques [23], the SDN controller of DM-2 can
actively surveil the status (e.g., signal power, noise level, chan-
nel utilization) of lightpaths LP-A and LP-B that traverse its
domain. Above the SDN controller, each DM deploys various
NC&M and service provisioning applications [24]–[27], such
as fault management and routing and spectrum assignment, for
generating operation policies for the related tasks. When ML
is incorporated in the design of these applications, observe-
analyze-act cycle-based cognitive networking can be realized:
i) observe network state, ii) perform data analytics, iii) take
actions leveraging the knowledge acquired. Lying in the top
hierarchy, the newly introduced broker plane coordinates inter-
domain service provisioning operations. It works with DMs
according to mutual service level agreements (SLAs) rather
than a dictate-comply principle. In particular, based on the
specifications defined in the SLAs, DMs can report different
degrees of abstracted domain data [e.g., several available
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Fig. 2. Cooperative fault management framework in broker-based MD-ONs. DM: domain manager.

wavelengths on a virtual link (intra-domain path segment)
between two border nodes] to the broker plane, which in turn,
recommends the service schemes to be used. This way, domain
confidentiality can be preserved.

Benefiting from the broker-DM synergy, we devise a hy-
brid learning approach for fault management, particularly,
soft failure detection and localization, in MD-ONs. Within
each domain, the fault management application (FMA) first
preprocesses and extracts relevant features from the raw optical
performance monitoring (OPM) data with the feature engineer-
ing module. Then, the FMA performs pattern analysis on the
obtained features using unsupervised learning (i.e., clustering)
approaches. Because abnormal network states exhibit patterns
dissimilar to those of normal observations and only occur
occasionally, data clustering enables to detect soft failures
by identifying outlying instances that cannot form clusters.
Hence, applying unsupervised learning eliminates the need
for prior knowledge about abnormal network behaviors and
potentially allows to detect unseen soft failures. On the other
hand, such an approach can suffer from scalability issues as it
requires revisiting the whole data set every time a new received
instance is to be processed. In this context, we introduce a self-
supervised learning mechanism that further trains a supervised
learning model (e.g., a neural network-based classifier) with
the patterns learned by unsupervised learning. Once trained,
the supervised learning model can perform online soft failure
detection, while its complexity only relates to the model
attributes (e.g., scale). Therefore, scalability concerns can be

mitigated. Upon detecting a soft failure, the FMA triggers
the soft failure localization and reasoning functionalities and
meanwhile raises an alarm to alert the SDN controller. The
broker plane employs an FMA similar to that of a DM for fault
management of inter-domain services. The broker plane FMA
can work with the received abstracted domain features by
itself or initiate cooperative learning procedures with domain
FMAs when the possessed data are inadequate for certain tasks
or when DMs are willing to share knowledge for improved
performance. As for the latter case, the broker plane and
domain-level supervised learning models exchange coopera-
tive learning signals, for instance, gradients in a federated
learning scheme, which will be detailed in the next section. In
the case when a soft failure associated with an inter-domain
service is detected and localized by the broker plane, it informs
related DMs to conduct further inspections and works with
them to reconfigure the service if necessary.

III. HYBRID LEARNING DESIGN

This section elaborates on the hybrid learning approach,
including the self-supervised learning design for soft failure
detection, the application of federated learning for broker-DM
synergy, and a data-driven soft failure localization design.

A. Soft Failure Detection by Self-supervised Learning

Unsupervised Learning: We apply the density-based clus-
tering algorithm (dubbed DBSCAN) proposed in [28]. The
rationale is that DBSCAN is able to detect clusters of arbitrary
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(nonspherical) shapes and does not require the number of clus-
ters to be specified as in other clustering algorithms (e.g., K-
means). DBSCAN involves three key elements: distance met-
ric dist(·), ε, and MinPts. Distance metric (e.g., Euclidean
distance) evaluates the similarity between data instances. ε
sets the distance threshold for two instances to be regarded
as neighbors, while MinPts defines the minimum number
of neighboring nodes for an instance to be counted as a core
node. Algorithm 1 shows the procedures of DBSCAN. The
idea is to iteratively form clusters by repeating the following
steps: i) starting with a random and unvisited core node (Lines
4-5), and ii) continually expanding the cluster until all the
neighbors of the core nodes in the cluster have been included
(Lines 6-11). Finally, instances that cannot be clustered are
detected as outliers/soft failures (Line 15). More details about
the procedures of DBSCAN can be found in [28].

Algorithm 1: Procedures of DBSCAN.

Input: Data set S, ε, MinPts

Output: Cluster set C, outlier set U
1 initialize C as an empty set;
2 calculate dist(x, x′),∀x, x′ ∈ S;
3 for each x ∈ S do
4 if x is an unvisited core node then
5 set x as the first node of the new cluster;
6 store the neighboring nodes of x in Λ;
7 while Λ is not empty do
8 expand the new cluster with Λ;
9 overwrite Λ with the neighboring nodes of

the instances in Λ;
10 remove from Λ the instances having been

clustered;
11 end
12 end
13 store the new cluster in C;
14 end
15 store the remaining instances in U ;

Supervised Learning: We design the supervised learning
module with a neural network-based classifier that predicts
whether each data instance is abnormal or not. Note that,
the distribution of OPM data can be highly biased, i.e., the
vast majority of data represent normal network states. Lacking
abnormal data for training can result in poor soft failure
detection accuracy when a regular neural network model is
employed. Unlike regular neural networks whose weights θ
are deterministic variables, a Bayesian neural network (BNN)
[29] models the posterior distribution of θ given an observation
of data S, i.e., p(θ|S). Based on the Bayes rule, we have,

p(θ|S) =
p(S|θ)p(θ)∫
p(S|θ)p(θ)dθ

, (1)

where p(θ) is the prior belief about the distribution of θ
and p(S|θ) is the conditional distribution of S given θ.
BNNs allow us to measure model uncertainty in predictions,

which can assist in meeting the aforementioned challenge.
More specifically, BNNs facilitate detecting abnormal data
instances that are rarely seen in the training sets as they
typically correspond to higher model uncertainties compared
with normal instances.

Inferring p(θ|S) with Eq. 1 is often intractable because we
need to enumerate all possible θ. A practical implementation
of BNNs is Monte-Carlo (MC) dropout [30]. To realize MC
dropout, we simply introduce dropout layers to the neural
network-based classifier to enable deactivation of a certain
portion of neurons (with a probability, e.g., 0.1) during both
training and inference phases. The prediction for each instance
x can be obtained by performing a large number of MC sim-
ulations (each time a neural network model f(θi) is sampled)
and estimating the expectation of inference, i.e.,

p(y = c) =
1

N

∑
i∈[1,N ]

p(y = c|x; θi),

y = arg max
c∈C
{p(y = c)} ,

(2)

where C is the set of classes. In the meantime, we can evaluate
the model uncertainty by calculating the mutual information
[30] by,

I =−
∑
c∈C

p(y = c) log p(y = c)+

1

N

∑
c∈C

∑
i∈[1,N ]

p(y = c|x; θi) log p(y = c|x; θi).
(3)

Finally, the proposed approach detects an instance x as ab-
normal if the prediction result y corresponds to the abnormal
class or the measured uncertainty is higher than a threshold
Uth. We will describe the method to decide a proper setting
for Uth in Section IV. Note that, applying the MC dropout
technique for estimating classification uncertainties would
introduce additional computational overheads. Such overheads
can be mitigated by parallelizing the feed-forward calculations
during each inference. Alternatively, one can switch to a
different uncertainty estimation technique that does not rely on
sampling of models, for instance, by training a deterministic
neural network that directly learns the distributions of class
probabilities [31]. The application of such techniques in soft
failure detection will be left as one of our future studies.

B. Broker-DM Synergy by Federated Learning

To realize cooperative learning between the broker plane
and DMs without the need for data sharing, we extend the
design discussed in Section III-A by applying a federated
learning mechanism. Table I summarizes the procedures of the
proposed design. Each of the broker plane and DMs employs
a neural network classifier of the same architecture. Let θG
and θd(d ∈ D) denote the sets of model weights of the broker
plane and domain d, respectively. The learning process starts
with the broker plane randomly initializing θG and consists of
K training iterations (Steps 2-4). In each iteration, DMs first
synchronizes their models with θG copied from the broker
plane (Step 2). In Step 3, each DM performs independent
training of M epochs on the local data set Sd using a standard
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TABLE I
PROCEDURES OF THE FEDERATED LEARNING DESIGN.

Step 1: the broker plane randomly initializes θG.

Step 2: each DM downloads θG and assigns θG → θd.

Step 3: each DM trains its classifer with Sd and submits

the encrypted gradients Oθd to the broker plane.

Step 4: the broker plane aggregates the received gradients

and update θG accordingly.

Step 5: execute Steps 2-4 for K times.

training algorithm (e.g., Adam [32]) at learning rate ηd. Then,
DMs submit the encrypted gradients Oθd to the broker plane.
Finally, in Step 4, the broker plane aggregates the received
gradients by,

OG =
1∑

d∈D |Sd|
∑
d∈D

|Sd|Oθd , (4)

where |Sd| represents the number of data instances in Sd, and
updates θG with learning rate ηG.

C. Data-driven Soft Failure Localization

Traditional correlation-based failure localization schemes
require the routing information from multiple lightpaths [33],
which can be difficult to obtain in MD-ONs. While recent stud-
ies have investigated several ML-assisted cognitive approaches
[34], these approaches rely on large sets of data related to
different failure scenarios for training, leading to restricted
practicability. In this work, we exploit the results from data
clustering and propose a data-driven soft failures localization
approach as a complement to the existing designs. The idea
of the proposed approach is to look into the patterns of data
and attempt to localize positions where deviations of pattern
originate. For the sake of clarity, we reuse S to denote the set
of data composed of OPM information from different locations
of lightpaths, for instance, readings of signal power at domain
border nodes for inter-domain lightpaths. In other words, S
convey spatial characteristics of lightpaths. For each abnormal
instance x detected, we pick an instance s∗ ∈ S that has
the minimum distance to x. If s∗ is an abnormal instance,
we presume that x falls into the pattern same as that of s.
Otherwise, we calculate the distance between x and s∗ in each
dimension, which can be represented as,

h(x, s∗) = [h1(x, s∗), · · ·, hJ(x, s∗)]. (5)

where J is the number of dimensions of each data instance.
We also obtain the gradient of h(x, s∗) as,

Oh(x, s∗) =[h1(x, s∗), h2(x, s∗)− h1(x, s∗), · · ·,
hJ(x, s∗)− hJ−1(x, s∗)].

(6)

Then, we infer the location where the pattern of x deviates
from that of s∗ [i.e., the location of soft failure, which can be
a node (for intra-domain cases) or a domain (for inter-domain
cases)] by computing,

j∗ = arg max
j

{
hj(x, s∗) + Ojh(x, s∗)

}
. (7)

TABLE II
LIST OF SYSTEM PARAMETER CONFIGURATIONS.

Modulation Symbol Rate Launch Power (mWatt)

Format (Gbauds) Co-Tx ID Range

4 QAM 23− 28

1 1.3− 3.6

2 2.2− 2.5

3 0.22− 0.25

QPSK 23− 28

1 1.4− 3.3

2 2.2− 2.4

3 0.22− 0.24

8 PSK 9− 10

1 0.8− 1.2

2 1.5− 1.6

3 1.5− 1.6

Recall the example in Fig. 1, it is obvious that we get j∗ = 4
and thus, successfully localize the attack at node D. For an
inter-domain case, the broker plane informs the related DM to
conduct further localization operations.

IV. PERFORMANCE EVALUATION

We valuated the performance of the proposed design with
data collected using the VPItransmissionMaker™ Optical
Systems simulator. Fig. 3 shows the system setup with the
simulator for data generation. We set up lightpaths consisting
of five nodes (from node A to E). The three I/Q modulator
blocks, each fed by eight wavelength division multiplexing
(WDM) lasers, were used to generate signals of interest (λ2)
as well as to inject background signals. Each Co-Tx operated
at 224 Gbaud and adopted one of {4QAM, QPSK, 8PSK}
as the modulation format1. Each node was connected to its
neighboring nodes by standard single-mode fibers of 100
km. We compensated the fiber loss between two nodes by
using gain-controlled amplifiers with a noise figure of 4 dB.
The optical spectrum analyzers placed along the lightpaths
monitored the power of signals continuously.

We emulated various network configurations by setting up
lightpaths with different: i) modulation formats, ii) symbol
rates, and iii) launch power. Table II summarizes the configu-
ration of the system parameters. To emulate evolving network
conditions, we created time-varying link loads (by changing
the number of background signals inserted) and meanwhile
introduced a 0.3 dB or 0.6 dB reduced gain to the amplifier in
node C. We picked 15 out of these configurations to further
create abnormal network states. Specifically, we followed a
common practice in literature and applied one of the five soft
failure cases to each of the configurations: Case 1) amplifier
malfunctioning [12], [16] (emulated by introducing 10 dB
attenuation to the amplifier in node D), Case 2) high-power
jamming attacks [6], [14] (emulated by injecting a signal of

1Despite that 4QAM and QPSK are identical in their most known forms,
the simulator modulates symbols with different sets of amplitudes and phases
for the two modulation formats, leading to slightly different transmission
characteristics.
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3 mWatt on λ3 in node D), Case 3) misconfiguration [7]
(emulated by activating simultaneously the laser working on
λ2 in Co-Tx 2), Case 4) laser central frequency drift [7],
[16] [emulated by drifting the laser central frequency over a
distance (half of channel spacing)], and Case 5) tight filtering
[7], [16] (emulated by narrowing the bandwidth of the lowpass
filter at the receiver side by 0.2×).

We collected the signal power monitored at each node and
the BER values measured at the receiver side, and processed
these information to generate two data sets, namely, temporal-
characteristic and spatial-characteristic data sets. Each instance
of the temporal-characteristic data set is composed of the
BER values of a lightpath monitored at five continuous time
points, describing the temporal behaviors of the lightpath. The
spatial-characteristic data set conveys the spatial behaviors of
lightpaths, i.e., each instance is a concatenation of the power
monitored along a lightpath and the BER value at a specific
system time. Overall, 3000 and 2880 normal instances were
generated for two data sets, respectively, while both contain
15 abnormal instances.

A. Soft Failure Detection

1) Self-supervised Learning: We first assessed the perfor-
mance of the self-supervised learning approach in soft failure
detection, assuming that the whole data sets are possessed by
a single entity (the broker plane or a DM). For data clustering,
we implemented the DBSCAN algorithm with the Euclidean
distance metric. We fixed MinPts = 4 and decided the
setup for ε with the approach in [15] other than by trial
and error that is typically used in training supervised learning
models. Specifically, based on the distribution of the measured
distances for a given data set, we set a range of ε and evaluate
the evolution of the ratio of outliers detected as a function of
ε. The dash-dot curves in Fig. 4 show the related results for
the two data sets. When ε takes a relatively small value, most
of the instances are detected as outliers as they can hardly be
identified as neighbors and thereby form clusters. As ε keeps
increasing, the ratios of outliers first decrease sharply and then
turn stable from certain points. These inflection points reflect
the correct setups of ε which allow normal instances in the
majority to be clustered while leaving the abnormal instances
outlied. That is, the reflection points indicate the marginal
distances between normal instances. Such an approach is
data-driven and can be executed automatically without human
intervention. For the two data sets, we determined the setup

0.001

0.0007

(a)

(b)

𝜖 =0.02

𝜖 =2.29

Fig. 4. Results of false positive rate, false negative rate, and ratio of outliers
detected as functions of ε with (a) the temporal-characteristic and (b) the
spatial-characteristic data sets.

of ε to be 2.29 and 0.02, respectively. We also plot the results
of false positive and false negative rates in Fig. 4. It can be
seen that with the setup of ε determined, the algorithm can
achieve 100% soft failure detection rate (zero false negative
rate) with negligible false positive (false alarm) rates, i.e.,
0.1% and 0.07%. Note that, the results are presented in the
logarithmic scale and therefore, break offs of curve represents
zero values.

Based on the results from data clustering, we labeled the
data sets and trained classifiers implemented by neural net-
works (NNs) of four layers, i.e., [5, 10, 10, 2] and [6, 10, 10, 2]
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Fig. 5. Distribution of uncertainty for the temporal-characteristic data set.

for the two data sets, respectively. The hidden layers make
use of ELU as the activation function while the output layers
employ the Softmax function. For the proposed uncertainty-
aided approach, we introduced a dropout rate of 0.1 for the
hidden layers and conducted 100 feed-forward calculations to
obtain the prediction for each instance (after the NNs had been
trained). Fig. 5 shows the distribution of uncertainty for the
temporal-characteristic data set when performing inference on
a testing set (20% out of the entire data set). There exists an
obvious trade-off in the choice of the uncertainty threshold
Uth as a lower threshold facilitates soft failure detection but
can lead to excessive false alarms. Similar to the method used
for deciding the setup of ε, we can set Uth a value from
which the uncertainty distribution curve flattens so that only
a small number of inferences are with uncertainties higher
than Uth (e.g., less that 3% in Fig. 5). In particular, we chose
Uth = 0.05, which also applies to the spatial-characteristic
data set. We compared the proposed approach with a baseline
relying on purely the predictions from regular NNs without
dropout. Table III summarizes the results of false negative
and false positive rates for the temporal-characteristic data
set with different proportions (denoted by γ) of data used
for training. For γ = 0.2, 0.4, 0.6 and 0.8, the numbers of
abnormal instances used for training and testing are (3, 12),
(6, 9), (9, 6), and (12, 3), respectively. Each result is obtained
by averaging the outcomes of 100 independent experiments.
We can see that the proposed approach can achieve almost
90% soft failure detection rate when only 20% of the data are
used for training, whereas the accuracy from the baseline is
only ∼ 64% in this setting. Such a performance gain only leads
to a 0.3% raise in false positive rate. With 80% of data used
for training, the false negative rate from the proposed approach
decreases to 3.5%, while that from its counterpart is 15.7%.
The resultant raise in false positive rate is still as low as 0.4%.
Table IV shows the results for the spatial-characteristic data
set, where similar observations can be drawn. With only 20%
of data used for training, the proposed approach realizes a soft
failure detection rate of 94% while introducing an addition of
0.01% to the false positive rate.

2) Federated Learning: Having demonstrated the effec-
tiveness of the self-supervised learning approach, we next

TABLE III
COMPARISON BETWEEN THE UNCERTAINTY-AIDED APPROACH AND THE

BASELINE FOR THE TEMPORAL-CHARACTERISTIC DATA SET.

γ 0.2 0.4 0.6 0.8

fn
Regular NN 0.359 0.260 0.195 0.157

Uncertainty-Aided 0.101 0.067 0.047 0.035

fp
Regular NN 0 0 0 0

Uncertainty-Aided 0.003 0.003 0.003 0.004

TABLE IV
COMPARISON BETWEEN THE UNCERTAINTY-AIDED APPROACH AND THE

BASELINE FOR THE SPATIAL-CHARACTERISTIC DATA SET.

γ 0.2 0.4 0.6 0.8

fn
Regular NN 0.190 0.137 0.095 0.072

Uncertainty-Aided 0.060 0.042 0.029 0.023

fp
Regular NN 0 0 0 0

Uncertainty-Aided 0.0001 0.0002 0.0001 0.0001

evaluated the benefit of cooperative learning between the
broker plane and DMs in a multi-domain setting (an MD-ON
of three domains). We considered two data division schemes,
namely, uniform and nonuniform. In the uniform scheme, we
evenly distributed the normal and abnormal data instances
to the three DMs. Whereas in the nonuniform scheme, we
created a biased distribution of abnormal data by assigning all
the abnormal instances to DM-1. We compared the federated
learning approach with an independent learning mechanism,
where each DM trains its models independently with the local
data sets. The federated learning models were implemented by
the ‘TensorFlow Federated’ package, with M = 10 and K =
30. The uncertainty threshold was set to be 0.005 and 0.05
for federated learning and independently learning, respectively,
according to the method discussed in the previous section.
Again, we performed 100 experiments for each approach and
data division scheme and obtained the averaged results. In
all the experiments, 80% of the normal data and 60% of the
abnormal data (i.e., nine instances) were used for training, and
the rest were used for evaluation. Table V shows the results
for the temporal-characteristic data set. Under uniform data
distribution when DM possess independently and identically
distributed (i.i.d.) data, federated learning does not dominate
its counterpart. Federated learning leads to 3.5%− 6% higher
false negative rates but also more than 10× lower false positive
rates, which is mainly caused by the different choices of the
uncertainty threshold. However, the advantage of federated
learning becomes evident when nonuniform data distribution
was applied. Without abnormal data used for training, DM-2
and DM-3 can hardly detect soft failures (33.5% and 36.5%,
respectively). By exploiting knowledge from data of multiple
domains, federated learning enables DMs to achieve false
negative and false positive rates comparable to those under
uniform data distribution. Table VI shows the results for the
spatial-characteristic data set. We can observe similar trends
for the two approaches. Overall, the results verify the benefit
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TABLE V
COMPARISON BETWEEN FEDERATED LEARNING AND INDEPENDENT LEARNING FOR THE TEMPORAL-CHARACTERISTIC DATA SET.

Uniform Data Distribution Nonuniform Data Distribution

Domain ID 1 2 3 1 2 3

fn
Independent Learning 0.055 0.045 0.020 0.005 0.665 0.635

Federated Learning 0.090 0.105 0.070 0.070 0.090 0.100

fp
Independent Learning 0.044 0.036 0.049 0.066 0.003 0.002

Federated Learning 0.003 0.003 0.004 0.0004 0.0006 0.0005

TABLE VI
COMPARISON BETWEEN FEDERATED LEARNING AND INDEPENDENT LEARNING FOR THE SPATIAL-CHARACTERISTIC DATA SET.

Uniform Data Distribution Nonuniform Data Distribution

Domain ID 1 2 3 1 2 3

fn
Independent Learning 0 0 0 0 0.145 0.10

Federated Learning 0.015 0.010 0.015 0 0.005 0

fp
Independent Learning 0.058 0.053 0.067 0.049 0.002 0.001

Federated Learning 0.0001 0.0001 0 0 0.0001 0.0001

TABLE VII
LOCALIZATION ACCURACY FOR EACH SOFT FAILURE CASE.

Case ID 1 2 3 4 5

Accuracy 3/3 3/3 2/3 1/3 0/3

of cooperative learning in MD-ONs.

B. Soft Failure Localization

Finally, we assessed the performance of the proposed data-
driven soft failure localization approach using the spatial-
characteristic data set. The accuracy results are presented
in Table VII. We can see that the proposed approach can
successfully localize amplifier malfunctioning (Case 1) and
high-power jamming attack (Case 2) as they lead to variations
of signal power which can be captured by analyzing the
patterns of data. Two of the three misconfigurations (Case
3) are correctly localized, as overlapping of signals also
influences signal power but less notably compared with the
first two cases. Whereas for Case 4 and Case 5, the proposed
approach can hardly localize the positions where soft failures
are introduced. The reason is that frequency drift and tight
filtering have negligible impact on signal power [7], neces-
sitating data sets representing more features than just signal
power. We will leave this as one of our future works.

V. CONCLUSION

In this paper, we demonstrated a hybrid learning approach
for cooperative fault management in MD-ONs. We first pre-
sented a self-supervised learning design for soft failure de-
tection. The self-supervised learning design makes use of a
clustering algorithm for extracting normal and abnormal pat-
terns from data and a supervised learning-based classifier aided

by model uncertainty analysis for online detection. Then, we
proposed a federated learning framework for cooperative learn-
ing between the broker plane and DMs. Finally, a data-driven
soft failure localization scheme was presented. Performance
evaluations show that the proposed self-supervised learning
design can achieve high soft failure detection accuracy when
only a few abnormal data instances are used for training and
that federated learning enables effective knowledge sharing
between DMs under highly unbalanced data distributions. A
potential future research work could be investigating more
comprehensive soft failure localization approaches exploiting
the latest advances in ML, such as graph neural networks.
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