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Variable-kinematic finite beam elements for geometrically nonlinear

dynamic analyses

R. Azzara1∗, M. Filippi1†, A. Pagani1‡

1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: This paper investigates the dynamic nonlinear response of three-dimensional structures

using variable-kinematics finite beam elements obtained with the Carrera Unified Formulation. The

formalism enables one to consider the three-dimensional form of displacement-strain relations and

constitutive law. The deformation mechanisms and the associated couplings are described consistently

with the selected kinematic model. The Hilbert-Hughes-Taylor method and the iterative Newton-

Raphson scheme are adopted to solve the motion equations derived in a total Lagrangian scenario.

Various models have been obtained by using Taylor- and Lagrange-like expansions. The capabilities

of the beam elements are assessed considering isotropic, homogeneous structures with compact and

thin-walled sections.

Keywords: Nonlinear structural dynamics; Carrera Unified Formulation; One-dimensional (1D)
beammodel; Geometrical nonlinearity; Implicit time integration; Newmark method; HHT-αmethod.

1 Introduction

Beam formulations are practical tools for idealizing various structures such as airplane wings, he-
licopter and wind turbine blades, flexible parts of spacecraft and satellites, robot arms, bridges,
and high-rise buildings. The one-dimensional approach is adopted to perform strength and dynamic
analyses to predict the structure’s behavior under specific working conditions. Among the various
applications where these models are used, the study of transient responses of deformable and slender
components that exhibit large displacements and rotations has gained, over the years, significant
interest [1].
One of the most prominent approaches used to solve geometrically nonlinear one-dimensional (1D)
problems was the development of the so-called geometrically exact theories, whose first examples can
be found in the pioneering works by Reissner [2] and Antman [3]. These theories are being defined
exact because the kinetic and kinematic relations are consistently derived from the three-dimensional
(3D) theory. Among others, Simo and Vu-Quoc provided influential contributions in this context.
First, Simo [4] derived the deformation map of a beam with respect to a fixed reference system by
utilizing a position vector and an orthogonal tensor as a measure of the cross-section rotation. Then,
Simo and Vu-Quoc [5, 6] developed the associated finite element (FE) formulation and an update
procedure for calculating the (infinitesimal) rotational changes along the beam axis. The quaternion
parameters were introduced to describe the section rotation and avoid singularities. Later, different
parametrizations of the rotational field were proposed by Cardona and Geradin [7], Ibrahimbegović
et al. [8], Jelenić et al. [9, 10], and Ritto-Corrêa and Camotin [11].
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An alternative approach for formulating geometrically nonlinear beam theories is the corotational
method. The basic idea is to describe the nonlinear deformation as a combination of two contribu-
tions: the first due to a pure rigid body motion and the second due to small elastic deformations
measured with respect to a local corotated reference system. Belytschko et al. [12, 13] were among
the first to adopt the corotational strategy within the FE framework to perform static and transient
analyses. Many other contributions have been then proposed, especially for the computational effi-
ciency of the method, e.g., [14, 15, 16]. Felippa and Haugen provided a comprehensive overview on
derivation aspects of corotational finite elements in Ref. [17].
A central issue in developing nonlinear 3D beam formulations concerns the treatment of the rotational
field because of its noncommutative nature. Shabana [18, 19, 20] developed finite elements based
on the so-called absolute nodal coordinate formulation. The method does not require independent
interpolations of displacements and rotations since it allows the description of the beam element
configuration by using the position and slope vectors of elemental nodes. The main advantage is
that the inertial forces are merely given by the product between a constant mass matrix and the
acceleration vector; therefore, no additional matrices are required to trace the rigid body motion.
Nevertheless, detailed studies [21, 22] revealed that beam elements based on the absolute nodal
coordinate formulation are computationally more intensive and less accurate than those obtained
with the geometrically exact approach.
From the proposed literature review, although not comprehensive (see, for more details, Ref. [23]),
we can infer that the derivation of nonlinear 1D formulations is not a simple task. Most models rely
on simplified constitutive relations and assume rigid cross-sections to lessen the problem complexity.
Furthermore, the extension of nonlinear theories to either thin-walled or composite structures is not
straightforward as in the geometrically linear case [24, 25, 16].
The present work investigates the nonlinear dynamic response of beam-like structures through vari-
able kinematics one-dimensional finite elements. The Carrera Unified Formulation (CUF) is adopted
to derive the equations of motion associated with arbitrary structural theories in a total Lagrangian
scenario. The strain-displacement relations and the linear constitutive model are three-dimensional
regardless of which kinematics is adopted. Thus, the Green-Lagrange strain tensor and the elastic
coefficients matrix encompass all terms. The nonlinear CUF-based beam elements have been previ-
ously assessed for static/stability [26, 27, 28] and vibration [29, 30, 31] problems. The solution of
nonlinear equations is computed with a Newton-Raphson iterative strategy and integrated in time
with the Hilber-Hughes-Taylor (HHT)-α method. The work is organized as follows: (i) first, CUF
is briefly introduced in Section 2, focusing the interest on the geometrically nonlinear formulation;
(ii) then, Section 3 describes the nonlinear dynamic formulation, illustrating the solving scheme;
(iii) next, Section 4 presents some numerical results, comparing them with solutions available in the
literature or obtained with commercial FE codes; (iv) finally, the main conclusions are reported in
Section 5.

2 Unified formulation of geometrically nonlinear beam theory

According to the unified formulation and considering a Cartesian reference system (x, y, z), the
three-dimensional displacement field u of a generic point belonging to a structure with the cross-
section lying on the x − z plane and the longitudinal axis aligned with the y-direction is written
as

u(x, y, z; t) = Fτ (x, z) uτ (y; t) τ = 1, ...,M (1)

where Fτ are arbitrary functions of x− z coordinates, uτ is the vector of generalized displacements
dependent on time t and the y-coordinate, M is the number of functions Fτ included into the
kinematic expansion, and the repeated index τ denotes summation. If the finite element method
is employed to approximate the generalized coordinates through the shape functions Ni(y) and the
vector of the generalized nodal coordinates q(t), the resulting equation becomes
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u(x, y, z; t) = Fτ (x, z) Ni(y)qτi(t) i = 1, ..., nnel τ = 1, ...,M (2)

The subscript i varies from 1 to the number of structural nodes of a single finite element nnel. Linear,
quadratic, and cubic finite beam element formulations are obtained with two (B2), three (B3), and
four nodes (B4), respectively (see Ref. [32]). The number and type of cross-section functions are
free parameters of the analysis; therefore, various structural theories can be conceived by selecting
them properly. In this work, Lagrange- and Taylor-type expansions are utilized to approximate
the displacement field over the structure’s cross-section. The Lagrange structural models are ob-
tained by discretizing the section into an arbitrary number of two-dimensional domains (also called
Lagrange-type elements) delimited by some points (also called section nodes). The number of these
points determines the order of kinematic (Lagrangian) functions (Fτ ) of the element. Bi-linear (L4),
bi-quadratic (L9), and bi-cubic (L16) elements are obtained with four, nine, and sixteen points,
respectively. For each point, the generalized coordinate vector consists of three terms representing
the translations of the sectional node itself. Instead, when the Taylor-type approach is used, the dis-
placement components are written as an arbitrary-order power series of the cross-section coordinates
( x − z). The first-order Taylor-like expansion (TE1), for example, consists of nine terms. Three
of them (one for each displacement component) represent the rigid translations of the structural
node, and the remaining six are related to the slopes of the displacement components with respect
to the x and z directions. Thus, one of the main differences between the two types of expansions
is the nature of the generalized coordinates. Likewise 3D FE models, the beam formulations based
on the Lagrange kinematics allow the description of the structure’s motion through the displace-
ments of some nodes. The Taylor-based kinematics enables the structure deformation to be obtained
by interpolating the generalized nodal coordinates (translations, rotations, and higher-order terms)
within each element. This feature presents similarities with the absolute nodal coordinate concept.
The geometrically nonlinear FE governing equations are obtained according to a total Lagrangian
formulation by including all components of the Green-Lagrangian strain tensor. Through the use of
the linear and nonlinear differential operators, bl and bnl, and the stiffness matrix for linear elastic
materials,C, the strain-displacement relation, and the constitutive law are

ǫ = ǫl + ǫnl = (bl + bnl)u
σ = Cǫ

(3)

It should be underlined that the extension to nonlinear constitutive models is straighforward [33, 34].
The substitution of Eqs. 2 and 3 into the principle of virtual work enables the virtual variations of
both strain energy (δLint) and works done by inertial forces (δLine) and external loads (δLext) to
be expressed in the CUF formalism

δLint = δqT
sjKs

ijτsqτi

δLine = δqT
sjM

ijτsq̈τi

δLext = δqT
sjF

sj

(4)

The 3-by-3 matrices Ks

ijτs and Mijτs and the 3-by-1 vector Fsj are the so-called fundamental nuclei

of the secant stiffness matrix, the mass matrix, and the loading vector, respectively. The expressions
of their components are invariant, and they can be computed by permuting the indexes τ , i,s, and j.
The latter two are used for the displacements’ virtual variations and have the same bounds of τ and
i. Removing the indexes for the assembled matrices and vector, the resulting nonlinear equations of
motion are

Mq̈(t) +Ks(q)q(t) = F(t) (5)

The Newton-Raphson method and an implicit step-by-step time integration scheme are used in this
work to solve Eq. 5. Omitting the second-order terms and taking into account that the mass matrix
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is constant, the tangent stiffness matrix deriving from the linearization of the residual nodal forces
for a dynamic problem has the following form

δ(δLint + δLine − δLext) = δqT
sj(K

ijτs
0 +K

ijτs
T1

)δqτi + δqT
sjK

ijτs
σ δqτi + δqT

sjM
ijτsδq̈τi

= δqT
sjK

ijτs
T δqτi + δqT

sjM
ijτsδq̈τi = 0

(6)

The fundamental nucleus of matrixK
ijτs
T can be found in Ref. [27]. Moreover, it should be underlined

that the external loads are considered conservative; therefore the linearization of the virtual variation
of external work is null.

3 The iterative solution algorithm

The Newmark method with β = 0.25 and γ = 0.5 (i.e. trapezoidal rule) can be employed to calculate
the time response of structures undergoing large displacements and rotations. This algorithm is not
dissipative and, therefore, does not determine an amplitude decay of the response. However, the
trapezoidal rule, known to be unconditionally stable in the linear analysis, may become unstable in
nonlinear dynamic analyses, especially when significantly large deformations and long-time responses
are investigated. A strategy for preventing these instabilities is the development of solving algorithms
with some numerical damping to suppress any spurious growth of high-frequency responses. In this
work, the HHT-α method [35] is adopted mainly for the following two reasons: 1) the implementation
is straightforward, and 2) one can modulate the dissipation property of the algorithm by selecting
the time step and the value of the parameter α opportunely. Moreover, it should be highlighted
that if α = 0, the HHT-α scheme reduces to the Newmark algorithm. For completeness, the solving
procedure is reported below.

1. Form stiffness Ks and mass matrix M;

2. Set the initial conditions;

3. For each time-step:

(a) Starting conditions:

q̈t+∆t = 0

qt+∆t = qt + q̇t∆t+ [(1/2 − β)q̈t + βq̈t+∆t]∆t2

q̇t+∆t = q̇t + [(1 − γ)q̈t + γq̈t+∆t]∆t

(b) Form residual load vector Rt+∆t:

Rt+∆t = (1 + α)Ft+∆t − αFt − (1 + α)rt+∆t + αrt −Mq̈t+∆t

in which r represents the internal force.

(c) Newton-Raphson iteration convergence:

i. while ||Rt+∆t|| ≥ Tol do

ii. Calculate tangent stiffness matrix KT ;

iii. Solve for incremental acceleration ∆q̈t+∆t:

[(M+KTβ∆t2(1 + α)]∆q̈t+∆t = Rt+∆t
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iv. Calculate new acceleration, velocity and displacement vectors:

q̈t+∆t = q̈t+∆t +∆q̈t+∆t

q̇t+∆t = q̇t+∆t +∆q̈t+∆tγ∆t

qt+∆t = qt+∆t +∆q̈t+∆tβ∆t2

v. Calculate new residual load vector.

Rt+∆t = (1 + α)Ft+∆t − αFt − (1 + α)rt+∆t + αrt −Mq̈t+∆t

vi. end while

(d) Next time step.

The parameters α, β = (1− α)2/4 and γ = (1− 2α)/2 control the accuracy, stability and numerical
dissipation characteristics. As pointed out in Ref. [35], a value of −1/3 ≤ α ≤ 0 is suggested to
avoid unacceptable damping of low-frequency modes of the structural response.

4 Results

The first simulations concerned two cantilever square cross-section beams, whose dimensions, mate-
rial properties, boundary and loading conditions are shown in Fig. 1. The length-to-thickness ratios
(L/h) were 100 and 10 for Case I and Case II, respectively. The adopted mathematical models
consisted of ten 4-node finite beam elements over the y-axis for both cases.
Figure 2 shows the deflections at the structure’s mid-span calculated with the first-order shear
deformation theory (TE1) and the Lagrange quadratic theory (1-L9). Moreover, two reference
solutions obtained with the Nastran FE software are reported for comparison purposes. The 1D
and 3D reference models consisted of 30 finite beam elements and 4×30×4 8-node brick elements,
respectively. The time-step and the control parameter used in the analyses have been selected equal
to ∆t = 0.004 seconds and α = -0.05.
The comparison revealed a significant agreement between the 1D-CUF solutions and the 3D reference
curve in the considered time interval. Instead, after roughly 5 seconds, we can observe a moderate
lag in the 1D reference curve and slight discrepancies in peaks amplitude. It should be highlighted
that the 1D reference solution was convergent, although the corresponding number of degrees of
freedom (d.o.f.) was the lowest. Nevertheless, the TE1 and the 1-L9 theories determined reductions
of approximately 80% and 28% in the unknowns number compared to the 3D model.
For Case II, the dynamic response at the beam’s tip with ∆t = 0.05 seconds and α = -0.05 was
calculated by adopting linear (TE1 and 1-L4), quadratic (TE2 and 1-L9), and cubic (TE3) kinematic
theories. The related curves are shown in Fig. 3, together with the results presented in Ref. [36]
and a 3D FE solution. Contrary to what we observed for the previous configuration, the approaches
led to different solutions due to the reduced slenderness ratio of the structure. First, linear and
quadratic models have predicted consistent transient responses in the first 50 seconds, while the
TE3 solution differs in the peaks’ number and amplitude. Second, as time increases, the dynamic
responses related to low-order expansions (TE1 and 1-L4) agree with the Nastran solution obtained
with 2×30×2 8-node hexahedral elements, whilst the higher-order theories have provided larger
deflections. Furthermore, we observed a difference in the oscillation period predicted by the TE3
expansion and those related to the other approaches in the first 100 seconds and a substantial
agreement in the remaining interval. Lastly, the result presented by Boujelben and Ibrahimbegovic
in Ref. [36] obtained with an advanced solid FE formulation slightly underestimated the amplitude
oscillations. This mismatch can be ascribed to the coarse mesh and the different time-step used for
the analysis.
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Next, we investigated the dynamics of two deformable pendulums subjected to the gravity force
(Pz =

∫
V
dPz dV ). Figure 4 shows the dimensions and mechanical properties of the configurations,

named ”Pendulum I” and ”Pendulum II”. The structures, modelled with ten 4-node beam elements,
can elastically deform and rigidly rotate since they were hinged at one end. For all simulations,
the used time-step was ∆t = 0.001 seconds, while the value of the control parameter α remained
unchanged with respect to the previous analyses (α = -0.05). Figure 5 shows the positions of the
central point at the free-ends. For Pendulum I, the various 1D-CUF models provided the same
results, accurately reproducing the reference solution obtained with a nonlinear beam element based
on the Euler-Bernoulli model proposed in Ref. [37]. Instead, it is possible to observe discrepancies
between the models for the second configuration because of its higher flexibility. As the theory’s order
increases, the cross-section deformations due to the inertial effects were detected. These deformation
mechanisms significantly affected the dynamic responses over time, as demonstrated in Fig. 6.
Eventually, the dynamic response of the cantilever thin-walled rectangular beam illustrated in Fig. 7
was examined. The structure was subjected to a vertical force (Pz0 = 50 kN) distributed on the top
surface and constant in time. We reported the results obtained with the second-order Taylor-type
kinematics (TE2) and a Lagrange model consisting of ten 9-node elements (10-L9), three for the
top and bottom surface, respectively, and two for each lateral edge. Moreover, the finite element
mesh consisted of fifteen 4-node elements along the span for all analyses. Figure 8 compares the
geometrically linear and nonlinear dynamic responses calculated with the two kinematic models at
the beam’s tip.
The 10-L9 nonlinear solution significantly differs from the other results in both oscillation amplitude
and period. These discrepancies were due to local instabilities occurring at the clamped root that
determined a reduction of the structural stiffness. Such a softening effect can be detected if the
kinematic model enables cross-sectional deformations to be described accurately. Figure 9 compares
the nonlinear equilibrium curves with the linear ones at various locations along the beam’s span.
According to the 10-L9 solution, the top panel near the fixed end suddenly buckles when the load
is approximately 15 kN. On the contrary, the nonlinear solution obtained with the second-order
Taylor-type model strongly agreed with the linear predictions; indeed, no stiffness variation has
been revealed in the considered load range. Figure 10 shows the deformed configurations and the
axial stress distributions at t = 0.33̄ sec. and L = 1.33̄ m obtained with the nonlinear and linear
formulations. The nonlinear solution shows that the bottom edge significantly deforms, and the top
surface is subjected to a compressive-tensile stress state, contrary to what predicted by the linear
result.

5 Conclusions

This paper explored the capabilities of variable-kinematic finite beam elements for the dynamic
analysis of 3D structures undergoing large displacements and rotations. The equation of motion
was derived in a total Lagrangian scenario using all terms of the Green-Lagrange strain tensor and
the linear constitutive’s law in a three-dimensional form. Taylor- and Lagrange-type expansions
of various orders were adopted to define the displacement field of the finite elements. Regardless
of which structural model was selected, the dynamic equilibrium of the structure was obtained by
incrementing the generalized coordinate vector and the associated temporal derivatives by adopt-
ing an iterative Newton-Raphson procedure and the HHT-α method. The current approach was
validated by considering results available in the literature and obtained with commercial software.
As far as compact beam-like structures were concerned, the low-order 1D-CUF elements provided
similar results to classical beam formulations with comparable computational efforts. Instead, when
the dynamic response of highly-deformable structures was considered, the possibility of selecting the
kinematic assumptions represented a valuable feature for detecting the cross-section deformations
and local instabilities.
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Figure 1: Geometry and loading conditions of the cantilever beam structures.

−0.4

−0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8

u
z/

L

Time, sec

Nastran 1D (180 d.o.f.)
Nastran 3D (2325 d.o.f.)

TE1 (279 d.o.f.)
1-L9 (837 d.o.f.)

Figure 2: Transverse displacement vs. time at point (0, L/2, 0) computed with various FE models.
Case I of Fig. 1 with Pz0= -25000 N, ω = 7 rad/s.

11



−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200

u
z/

L

TE2 (558 d.o.f.)
TE3 (930 d.o.f.)

1-L9 (837 d.o.f.)
Nastran 3D (837 d.o.f.)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u
z/

L

TE1 (279 d.o.f.)
1-L4 (372 d.o.f.)

Boujelben et al. (264 d.o.f.)
Nastran 3D (837 d.o.f.)

(b)

(a)

Time, sec

Figure 3: Transverse displacement vs. time at point (0, L, 0) computed with various FE models.
Case II of Fig. 1 with Pz0= 2 N.
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Figure 4: Geometry and loading conditions of the pendulums subjected to the gravity load.
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Figure 5: Positions of points at (0,L,0) calculated with various beam formulations.
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Figure 6: Motion of Pendulum II computed with two kinematic models.
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Figure 7: Geometry and material properties of the cantilever thin-walled beam.
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Figure 8: Geometrically linear and nonlinear transient responses of the thin-walled beam (see Fig.
7) calculated at (0, L, h/2). Time step ∆t = 0.0033̄, α = -0.05.
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Figure 9: Linear and nonlinear equilibrium curves calculated at three locations along the thin-walled
beam span (0, y, h/2) of Fig. 7. Results obtained with the (a) TE2 and (b) 10-L9 models.
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Figure 10: Axial stress distributions calculated with the 10-L9 model at t = 0.33̄ sec. and L = 1.33̄
m. (a): Nonlinear and (b) linear solutions.
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