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Flutter analysis of laminated composite structures using

Carrera Unified Formulation

Raj B. Bharatia,b,1, M. Fillipia,2, Prashanta K. Mahatob,3,∗, E. Carreraa,4

aMUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di
Torino, Turin, Italy

bDepartment of Mechanical Engineering, Indian Institute of Technology (Indian School of
Mines), Dhanbad, India

Abstract

In present work, the flutter analysis of laminated composite structures has
been performed using the p-k method in Carrera Unified Formulation (CUF).
In the framework of CUF, a hierarchical kinematic finite element model is
used to compute the flutter condition of laminated composite plate and
box-beam structures as it is very accurate and computationally efficient.
The CUF refined theories are based on the Lagrange and Taylor-like cross-
sectional displacement fields. In CUF, the order of the expansion can be
chosen arbitrary, which is an independent parameter in the formulation. The
governing equation is based on the principle of virtual displacement and de-
fined in the form of “fundamental nuclei” using CUF. Theodorsens theory
was used to define the aerodynamics loading conditions and the p-k method
was used to compute the flutter conditions. Flutter conditions of different
types of laminated composite structures with Lagrange and Taylor expan-
sion were performed. A similar model was developed in MSC-Nastran and
computed results were compared with literature and CUF model. The re-
sults indicate that the analyzed model has good agreement with reference
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and MSC-Nastran. The study suggests that the CUF models can produce
accurate results with a low computational cost.

Keywords: Flutter, Unified Formulation, p-k method, Composites

1. Introduction1

Flutter is a dynamic instability found in a different kind of flexible struc-2

ture like air-vehicles, bridges, and blades. It can introduce the catastrophic3

failure of the structure. It is a devastating reason for failure, and most anxiety4

subject to the designer. So, the flutter should be considered and thoroughly5

analyzed during the design process of the aircraft structure. Several authors6

have analyzed the aeroelastic behavior of aircraft structure since Theodorsen7

developed a mechanism for the flutter analysis and demonstrated the flut-8

ter problem theoretically and experimentally [1, 2]. Later many methods9

have been developed to solve the flutter problem and improve the solution10

methodology such as v-g method, k -method and p-k method [3, 4].11

Now-a-days, the laminated composite structures are broadly used in the12

design process of modern air vehicles, bridges and blades, owing to their high13

structural efficiency, specific strength and potential benefits. The wings can14

be modeled as the isotropic and thin-walled composite beam [5]. It can also15

be modeled as the laminated composite beam for the finite element solu-16

tion to performed the free vibration analysis [6]. For further extension, the17

laminated composite beam can be considered as the thin- and thick-walled18

box-beam model for experimental, analytical and numerical solutions in or-19

der to determine the elastic stiffness, tailoring effect and torsional warping20

in finite element approach [7, 8, 9].21

The laminated composite structures are very much flexible and aeroelas-22

tic behavior of these flexible structures should be analyzed to avoid flutter23

failure. For the prediction of flutter condition and divergence behavior of24

these structures, the combination of strip theory with simplified structural25

box-beam models was analyzed [10]. Various parameters such as aspect ratio,26

stacking sequences and sweep angle are considered for aeroelastic tailoring27

[11]. The analytical approach has been used to find the flutter condition for28

the wing made of the composite material [12]. In the aeroelastic investiga-29

tion of a structure made with anisotropic composite, directionality property30

played a complex role in predicting the flutter and divergence behavior [13].31

The analytical approach also used for the box-beam model and aeroelas-32
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tic optimization have been studied [14, 15]. The aeroelastic characteristics of33

laminated plate have been observed for various lamination parameters, aspect34

ratio, material properties and sweep angle and found different aeroelastic pa-35

rameters (flutter/divergence) at the same speed of air (free stream) [16]. The36

Theodorsen theory can be used for quasi-steady and unsteady aerodynamics37

to compute the flutter. Several authors predicted the flutter condition using38

the Theodorsen theory along with various approaches (such as strip theory39

and panel method) [17, 18, 19, 20]. To improve the flutter solution, Hassig40

[4] proposed the p-k method that can provide better approximation than the41

other methods [21]. This method also can be used for the smart laminated42

plate in hygrothermal environment [22].43

The aim of this work is to develop a finite element model of laminated44

composite structures (plate and box-beam) using Carrera Unified Formula-45

tion (CUF) and to perform flutter analysis by the p-k method. The dif-46

ferent kinds of complex laminated composite structural models have been47

considered and those types of the model required proper description of the48

kinematics, which are defined accurately and computationally efficient man-49

ner in CUF. Initially, CUF was developed to deal with a plate and shells50

[23, 24, 25] later, it was extended and to deal with the beam model [26, 27].51

The CUF has a unique capability such as the order of Taylor expansion can52

be chosen arbitrarily to define the cross-sectional displacement fields. These53

capabilities give us freedom to choose the order of structural models with-54

out making changes in matrices or equations and without the need of any55

ad hoc formulation, it can deal with arbitrary geometry, different material56

characteristics, and boundary conditions. This present approach is compu-57

tationally efficient for different kinds of structures such as thin-walled [28],58

laminated and sandwich structure [29]. It can be used for rotating blades59

[30] and spinning blades [31] in the rotor dynamics fields. In the field of fluid60

interaction, CUF has been used for vortex [32, 33, 34] and double lattice61

method [35, 36], and piston theory [37, 38] for supersonic flows. Recently,62

[39] the coupling of CUF with the Theodorsen theory has been done to pre-63

dict the flutter condition by the v-g method. In this work, the p-k method64

has been implemented in CUF framework to analyze the flutter condition.65

2. Structural Model: Carrera Unified Formulation66

The present structural model formulated within the popular Carrera Uni-67

fied Formulation (CUF) framework [40, 41, 42, 43, 44]. In accordance with68
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CUF, u is defined as the displacement fields which can be stated as a com-69

bination of the Fτ (x, z) (function of cross-section) and uτ (y) displacement70

vector (generalized ), and can unify as:71

u(x, y, z, t) = Fτ (x, z)uτ (y), τ = 1, 2, ...., T (1)72

where subscript τ and T stands for summation (i.e. Einstein notation) and73

the number of terms in the expansion, respectively. The details of Taylor74

expansion (TE) and displacement fields are given in Table 1.75

Table 1: Compact form and displacement fields of Taylor expansion.

Order T Fτ Displacement fields
0 1 F1 = 1 Second-order (TE2)
1 3 F2 = x F3 = z ux = ux1

+ x ux2
+ z ux3

+ x2 ux4
+ xz ux5

+ z2 ux6

2 6 F4 = x2 F5 = xz F6 = z2 uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3 uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6
...

...
...

N (N+1) (N+2) / 2 F(N+1)(N+2)/2 = xN F(N+1)(N+2)/2 = zN

Two types of CUF models are used in this present work: Taylor expansion76

(TE) and Lagrange expansion (LE). The TE model is refined by increasing77

the order of expansion from second-order (TE2) to fourth-order (TE4). Sim-78

ilarly, LE is refined by adding the elements in the cross-section, i.e., one79

nine-noded (1L9) and two nine-noded (2L9) along the chord. The details80

of the displacement fields of the LE model can be found in literature [44].81

Cross-sectional elements are extended along the y-axis with four-noded beam82

elements (B4) to create the structure (Figure 1).83

3. Aeroelastic Model: Steady and Unsteady Theories84

A complete solution of a thin airfoil in the incompressible fluid, which is85

associated with the harmonic oscillations laterally, Theodorsen’s presented86

the lift distribution function by going beyond the quasi-steady model. He87

considered a control surface of a plate that was assumed as flat, which can88

rotate with regard to an axis at distance x = bca via the angle of attack Λ(t)89

and move vertically h(t). Theodorsen’s unsteady lift prediction expression is90
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Figure 1: Four- and nine-nodes Lagrange elements and four-nodes beam element.

[45]:91

La = πρab
2
c

[

ḧ+ V∞α̇− bcaα̈
]

+ 2πρabcC(k)V∞

[

ḣ+ V∞α + bc

(

1

2
− a

)

α̇

]

(2)92

where ρa is air density, bc is semi-chord, V∞ is free-stream velocity and93

Theodorsen function C(k) is the relating the reduced frequency k =
ωbc
V∞

.94

The position of the axis of rotation with regard to the center of section de-95

noted as a, which depends on the load applied, used lamination scheme and96

support condition. The first term of equation (2) is the non-circulatory (i.e.,97

added mass term), whereas the second term is the circulatory. The second98

term is called “quasi-steady” model when Theodorsen function {C(k) = 1}99

and “unsteady aerodynamics” when Theodorsen function is a complex func-100

tion C(k) = F (k) + iG(k). The simplified expression of C(k) has been pre-101

sented by Jones [46] by considering the solution of Wagners indicial (1925),102

which was concerned to exponential approximation:103

C(k) ≡ 1−
0.165

1−

(

0.0455

k

)

i

−
0.335

1−

(

0.3

k

)

i

(3)104

The first term of equation (2) can be neglected due to mass properties of the105

structure are small and it is related to single and double differentiated terms106

and can be written as:107

La ≡ 2πρaV∞bc

[

ḣ+ V∞α
]

(4)108
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For correcting the coefficient of CL (sectional lift) associated with an aspect109

ratio of the wing (ARw) and sweep angle (Λ) effects, by using Diederich’s110

approximation, the expression becomes:111

Clα =
dCL

dα
=

πARw

πARw + Clα0cos(Λ)
Clα0cos(Λ) (5)112

where, (ARw) =
2 Lw

cm
, (Lw = wing length and Cm =mean chord) [Figure 2],113

and Clα0 is stated as slope of lift-curve ( ≈ 2π). In order to reproduce the114

pressure distribution on atop of airfoil, which is thin, slightly inclined and115

uncambered. For capturing the effect of pressure distribution on concerned116

geometry of the wing model, the quantity of bcπ has been approximated by117

∫ bc
−bc

√

bc − x

bc + x
dx, and equations (2) and (4) can be rewritten as:118

La =
2π ARw cos(Λ)

π ARw + 2π cos(Λ)

∫ bc

−bc

√

bc − x

bc + x
dxρaV∞c(k)

[

ḣ+ V∞α + bc

(

1

2
− a

)

α̇

]

(6)119120

La ≡
2π ARw cos(Λ)

π ARw + 2π cos(Λ)

∫ bc

−bc

√

bc − x

bc + x
dx ρaV∞c(k) [ḣ+ V∞α] (7)121

L

z

y

Figure 2: Sketch of beam model and coordinates reference system.

122
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4. Formulation of equation of motion: CUF framework123

The equation of motion for aeroelastic model has been derived using the124

principle of virtual displacement (PVD), stated as below:125

δLint = δLext + δLine (8)126

where δLint (internal work), δLext (external work), δLine (inertial work) and127

δ stands for virtual variation.128

The strain and kinetic energy can be write in the form of fundamental nuclei129

as follow:130

δLint = δqTτi K
ijτs
s qsj, (9)131

132

δLine = δqTτi M
ijτs
s q̈sj (10)133

where Kijτs
s and M ijτs

s defined as a fundamental nucleus for the stiffness and134

mass matrix, respectively and components are found in literature [47].135

The generalized form of the work produced by the lift is:136

δLext =

∫

y

∫

x

δuz(x, y, ztop)La(x, y, ztop)dxdy (11)137

where ztop is associated with upper coordinate of a cross-section in z and138

L is lift given in equation (7). In Carrera Unified Formulation framework,139

external work can be written as:140

δLext = δqTτi D
ijτs
L q̇sj + δqTτi K

ijτs
L qsj (12)141

where Dijτs
L (damping) and Kijτs

L (stiffness) are contributions due to the142

aerodynamic force, which are defined in fundamental nuclei form:143

Dijτs
L = cost I ijl

∫ bc

−bc

√

bc − x

bc + x
Fτ (x, ztop) IL Fs(x, ztop) dx

Kijτs
L = cost I ijl

∫ bc

−bc

√

bc − x

bc + x
Fτ,x(x, ztop) IL Fs(x, ztop) dx

(13)144

where145

cost =
2π ARw cos(Λ)

π ARw + 2π cos(Λ)
ρaV∞c(k) (14)146
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147

IL =







0 0 0

0 0 0

0 0 1






(15)148

149

I ijl =

∫

l

NiNj dy (16)150

After assembly of global finite element matrices by assuming the periodic151

solution aq = āqe
iωt in the form of quadratic eigenvalue problem (QEP) and152

transforming into classical liner system of 2×R can we write as:153

{

[Ms]äq + [DL]ȧq + ([Ks] + [KL])aq = 0

−ȧq + ȧq = 0
(17)154

and by presenting:155

a =

{

aq
ȧq

}

, ȧ =

{

ȧq
äq

}

(18)156

equation of motion assumed in the following form:157

R

T
−

1

iω
I = 0, (19)158

where159

I−1R =

[

(K +KL)
−1DL (K +KL)

−1M

−I 0

]

(20)160

An iterative procedure was required to calculate the flutter condition because161

of aerodynamic contribution matrices, which have a dependency on the re-162

duced frequency (k). The p-k method proposed by Hassig [4] is used for163

solving the flutter problem. The General form of a proposed equation given164

as:165
[

(

V∞

cm

)2

[Ms]p
2 + [Ks]−

1

2
ρV 2

∞
[A(p)]

]

{aq} = 0 (21)166

where, [A(p)] = unsteady aerodynamic forces. The Simplified fundamental167

equation for modal flutter analysis presented in [48]:168

[

[[Ms] p
2 +

(

[Bs]−
1

4
ρcV∞

[QI
a]

k

)

p+ [Ks]−
1

2
ρV 2

∞
[QR

a ]

]

{aq} = 0 (22)169
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where, [QI
a],[Q

R
a ] are imaginary and real part of aerodynamic force matrix, c170

is reference length, p is eigenvalue, k reduced frequency and [Bs] = 0 because171

structural damping is not considered here. The circular frequency ω and172

reduced frequency k are not independent since k =
ωbc
V∞

,173

k =
b

V∞

im(p) (23)174

and175

p = γω + iω (24)176

where, γ is transient decay rate coefficient (2γ = g).177

5. Results And Discussion178

Based on the above formulation, a FORTRAN finite element model is179

developed to analyze the flutter condition of laminated composite structures180

(plate and box-beam) model. Carrera Unified Formulation (CUF) has a181

hierarchical finite element model, which is very accurate and economically182

efficient. In CUF, we can choose any order of Taylor’s expansion with-183

out changing in the formulation. Plate elements (CQUAD4) based on the184

Mindlin-Reissner shell theory are used to develop the MSC-Nastran model185

(i.e., isotropic, orthotropic and box-beam) for the comparison of results ob-186

tained by CUF. Numerical examples of isotropic and laminated composite187

structures are presented in subsequent sections. The flutter condition of both188

models is computed by using the p-k method and flutter condition (flutter ve-189

locity) is defined at the point where the real part of the eigenvalue (damping)190

is null.191

5.1. Isotropic plate192

The first numerical example is based on the work of Petrolo [49]. Where193

a cantilever straight plate with the geometrical data: length L = 0.305 m,194

thickness t = 0.001 m, and chord c = 0.076 m, having isotropic material prop-195

erties: E = 73.8 GPa, ν = 0.3 and ρ = 2768 Kg/m3 has been analyzed. The196

flutter analysis of the plate model using CUF based finite element method197

(FEM) and MSC-Nastran model with sweep angle λ= 0◦ has been performed.198

The different orders of Taylor expansion (TE) and Lagrange expansion (LE)199

with nine-noded (L9) cross-sectional elements have been considered for CUF200
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model to compute the results. The first five modes (i.e., bending and tor-201

sion) of natural frequency (fn), flutter velocity (VF ), and flutter frequency202

(fF ) of CUF and MSC-Nastran model are reported in Table 2. MSC-Nastran203

model was created using the plate elements (CQUAD4) with 8x20 grids. The204

computed flutter velocity and frequency using the p-k method are compared205

with MSC-Nastran and results obtained using the doubled-lattice method of206

literature. It is observed that the modal frequencies are matching well with207

MSC-Nastran. Also, observed that modal frequencies and flutter conditions208

of third-order Taylor expansion (TE3), fourth-order (TE4), and two nine-209

noded LE model are more accurate for the present isotropic plate and the210

desired result is achieved with a very low computational cost.

Table 2: Natural frequencies (Hz) and flutter conditions.

Model Mesh DOFs fn1
fn2

fn3
fn4

fn5
VF fF

(m/s) (Hz)

Reference [49] TE4 20B4 72.75 59.77

Present TE2 12B4 666 9.40 58.84 74.21 165.10 230.81 75.70 42.05

TE3 12B4 1110 9.14 57.19 73.71 160.60 227.94 71.60 39.63

TE4 12B4 1665 9.14 57.16 73.70 160.52 227.77 69.80 39.15

LE (1L9) 12B4 999 9.14 57.17 73.72 160.54 227.97 74.90 40.47

LE (2L9) 12B4 1665 9.14 57.17 73.70 160.53 227.74 70.70 39.41

MSC-Nastran 8x20 945 9.09 56.74 72.12 158.95 222.07 66.51 39.52

211

5.2. Orthotropic plate212

A six-layered laminated composite plate is considered in this section with213

symmetric laminate [302/0]s. The cantilever plate with length (L = 0.305214

m), chord (c = 0.0762 m) and thickness (t = 0.000804 m) having material215

properties EL = 98.00 GPa, ET = 7.90 GPa, GLT = 5.60 GPa, ν = 0.280, and216

ρ = 1520.00 kg/m3 has been analyzed to find flutter conditions. The different217

orders of Taylor expansions, e.g., second-order (TE2), third-order (TE3) and218

fourth-order (TE4) used to describe the cross-section of a plate. Similarly,219

two types of Lagrange elements, one nine-noded (1L9) and two nine-noded220

(2L9), along with the chord used to defined the cross-section of a single layer.221

The first five modes of natural frequency and flutter condition for the [302/0]s222

plate are reported in Table 3. The mode shapes of bending and torsion for223

LE (2L9) model are shown in Figure 3. Computed results indicate that TE3,224
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TE4 and 2L9 produce more accurate results as compared to TE2 and 1L9.225

The first five modes of frequencies and damping with respect to functions226

of speed for the present CUF (TE3) and MSC-Nastran model are plots in227

Figure 4. The various stacking sequence [02/90]s, [45/−45/0]s and [452/0]s228

are used to compute flutter conditions for TE3 and 2L9 models, which are229

reported in Table 4. Here results show that different stacking sequences can230

influence both natural frequency and flutter conditions.

Table 3: Natural frequencies (Hz) and flutter conditions for a laminated plate (6-layers)
[302/0]s.

Model Mesh DOFs fn1
fn2

fn3
fn4

fn5
VF fF

(m/s) (Hz)

Reference [36] TE4 15B4 2070 6.05 35.91 56.51 100.03 172.23 25.86 26.66

Present TE2 10B4 558 6.34 37.91 69.43 107.43 213.96 31.90 28.38

TE3 10B4 930 6.31 37.49 57.73 104.65 178.90 27.80 27.90

TE4 10B4 1395 6.21 37.25 56.94 103.76 173.82 27.60 27.22

LE (1L9) 10B4 3627 6.31 37.52 57.77 104.72 179.11 29.50 27.59

LE (2L9) 10B4 6045 6.30 37.33 57.11 104.04 174.68 28.10 27.10

MSC-Nastran 10x30 1705 6.26 37.05 55.97 103.15 170.42 25.40 27.39

231

Mode 1  (1st Bending) Mode 2  (2nd Bending) Mode 3 (1st Torsion)

Mode 4  (3rd Bending) Mode 5  (2nd Torsion) Mode 6 (4th Bending)

Figure 3: Mode shapes of six-layer plate [302/0]s for LE (2L9) model using CUF.

Another plate model was considered from the Kameyama et al. [16] work232

having eight-layer symmetric laminates [-22.5/67.5/22.5/-67.5]s with a total233

thickness of the laminate 0.804 mm. The thicknesses of the plies were 0.037,234

11
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Figure 4: Flutter diagram of orthotropic six-layer plate [302/0]s.
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Table 4: Natural frequencies (Hz) and flutter conditions for 6-layers plate.

Present Reference

Lamination Model fn1
fn2

fn3
fn4

fn5
VF fF [16] [50]

(m/s) (Hz) (CLT) (Exp)

[02/90]s TE3 11.04 39.55 69.16 133.08 193.62 23.20 27.33 23.0 25

LE (2L9) 11.04 39.51 69.16 132.50 193.62 22.90 27.23

[45/−45/0]s TE3 4.88 30.22 50.74 84.59 157.83 47.30 31.48 40.1 >32

LE (2L9) 4.88 30.10 49.93 84.09 152.84 46.80 31.44

[452/0]s TE3 5.78 36.60 69.08 103.38 207.51 29.60 25.04 27.5 28

LE (2L9) 5.78 35.89 68.98 102.78 206.20 29.00 24.93

[302/0]s TE3 6.31 37.49 57.73 104.65 178.90 27.60 27.22 27.1 27

LE (2L9) 6.30 37.33 57.11 104.04 174.68 28.10 27.10

0.048, 0.064 and 0.253 mm, respectively. The first five modes associated235

with bending and torsion of natural frequency and flutter velocities for CUF236

model and MSC-Nastran are reported in Table 5. The present results have237

a good agreement with reference. Similar trends observed like the previous238

6-layer plate models. All the TE2, TE3, TE4, 1L9, and 2L9 are suitable, but239

TE4 and 2L9 are most accurate. Flutter velocity has been found in order240

with reference results obtained by the generic algorithm for flutter solution,241

whereas in the present analysis p-k method has been used.

Table 5: Natural frequencies (Hz) and flutter condition (velocity [m/s]) for 8-layers plate.

Model Mesh DOFs fn1
fn2

fn3
fn4

fn5
Vf

(m/s)

Reference [16] CLT 7.2 45.4 59.1 127.7 182.3 38.8

Present TE2 10B4 558 7.3 46.2 59.1 129.8 182.7 38.60

TE3 10B4 930 7.2 45.1 59.0 126.8 182.5 37.20

TE4 10B4 1395 7.2 45.1 59.0 126.7 182.3 36.30

LE (1L9) 10B4 4743 7.2 45.1 59.0 126.8 182.5 38.90

LE (2L9) 10B4 7905 7.2 45.1 59.0 126.8 182.2 36.80

MSC-Nastran 10x30 1705 7.2 45.0 58.1 126.2 179.0 35.01

242

5.3. Box-beam structure243

A prismatic thin-walled beam wing model considered for flutter anal-244

ysis as the main frame of the wing was a box-type structure. A similar245
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type of analysis on the box-beam was discussed in the introduction section.246

The dimensions and material properties associated with the composite beam247

(box-beam) structure are listed in Table 6. The box-beam configuration is248

shown in Figure 2, where the lamination sequence of four walls, i.e., bottom249

wall, right wall, top wall and left wall are defined as [θbb/θrb/θtb/θlb]. The250

arbitrary lamination sequence [θ/0.1θ/2θ/10θ] of the walls is considered to251

avoid the bending-torsion coupling of the structure. In previous sections, it252

is already observed that TE4 and 2L9 are the more accurate model and the253

same model in general, is taken here for flutter analysis. In the first case254

θ = 30◦ is considered and the flutter conditions have been computed using255

CUF and MSC-Nastran model. The first five modes of natural frequencies256

and flutter conditions (frequency and velocity) are reported in Table 7. The257

present TE4 and 8L9 results are matching well with the MSC-Nastran. First258

four modes of frequencies and damping with respect to the function of speed259

for present TE4 and MSC-Nastran models are shown in Figure 5. The fre-260

quency and damping variation with velocity also matching well but with a261

low computational cost. So, it can be commented that the present models262

are efficient and accurate and CUF models can be used for flutter analysis263

of laminated composite box-beam structure. Now, the detailed flutter anal-264

ysis of various composite box-beam model has been performed by the p-k265

method. Flutter velocities are computed with variations in θ for different266

cross-sectional elements and are listed in Table 8. The polar plot for these267

models is also shown in Figure 6. The polar plot shows that the flutter veloc-268

ity is increasing between θ = 0◦ to θ = 30◦ for LE but in TE model case up269

to θ = 60◦. The flutter velocities are reaching a minimum for all the models270

at θ = 90◦. The lower order TE models (i.e., TE2 and TE3) are less effec-271

tive in predicting flutter conditions comparedto the LE models.In addition,272

the variations in the computed flutter velocity of theTE model indicate that273

the higher-order model (TE4) is more effective than lower-order models in274

determining flutter conditions. It can be observedfrom results that the TE4275

and 8L9 models predict the most accurate flutter conditions as compared to276

other models.277

6. Conclusion278

Flutter condition of plates and box-beam structures made of isotropic and279

orthotropic materials has been analyzed in this work. Carrera Unified Formu-280

lation (CUF) has been used to define the structural model, one-dimensional281
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Table 6: Material and dimensional parameter for composite box beam structure.

Material Properties GPa, kg/m3

E11 206.8
E22 5.17
G23 = G31 2.55
G12 3.10
ν12 0.25
ρ 1528.5
Dimensions m
chord (c) 0.5
height (h) c / 15
thickness of wall (t) c / 150
length (L) 3.5

Table 7: Natural frequencies (Hz) and flutter conditions for box-beam (θ = 30◦).

Model Mesh DOFs fn1
fn2

fn3
fn4

fn5
VF fF

(m/s) (Hz)

TE4 10B4 1395 1.80 11.16 23.84 28.46 30.83 105.09 17.52

LE (8L9) 10B4 4464 1.75 10.62 21.55 25.40 28.81 109.10 15.84

MSC-Nastran 5x30(Flange) 2480 1.74 10.41 20.73 24.38 26.03 95.09 14.82

3x30(Web)

Table 8: Flutter condition {velocity (m/s)} for box-beam model.

Model DOFs θ=0◦ θ=30◦ θ=60◦ θ=90◦ θ=120◦ θ=150◦ θ=180◦

TE2 558 105.4 120.3 122.8 98.9 121.8 118.9 104.5

TE3 930 100.6 114.7 116.2 89.4 105.0 113.0 100.7

TE4 1395 93.0 105.0 109.9 90.2 106.6 110.7 96.6

LE (4L9) 1584 109.5 115.6 110.8 90.8 112.3 114.8 111.0

LE (8L9) 4464 95.4 109.1 100.2 91.9 95.9 106.1 100.5
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Figure 5: Flutter diagram of box-beam with θ = 30◦.
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Figure 6: Polar plot of flutter velocities for angle ply of box-beam.

models exploit with Lagrange- and Taylor-like expansions to describe the282

displacement field of cross-section accurately. The order of Taylor expansion283

can be chosen arbitrarily in input; it is an independent parameter of the284

formulation. The governing equation is derived using the principle of virtual285

displacement and aerodynamic loading conditions are defined in the form of286

fundamental nuclei in CUF. Furthermore, the p-k method has been imple-287

mented and flutter conditions are computed for the unsteady aerodynamics288

in CUF framework and results have been compared with literature and MSC-289

Nastran; they are in good agreement. The computed results indicate that for290

isotropic case, all the TE and LE model can produce good results. Similarly,291

for the orthotropic plate the TE3, TE4, and 2L9 are preferable to find the292

flutter conditions. For the composite box-beam, TE4 and 8L9 are the most293

accurate models. It is also observed that the present TE and LE aeroelastic294

1D models are very accurate, efficient with a low computational cost. In295

the future investigation, aeroelastic analysis of the fixed and rotating-beam296

models with a quasi-steady and unsteady aerodynamics and gust analysis297

can be performed in the CUF framework.298
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