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The flutter analysis of rotary laminated structures has been performed using Carrera Unified Formulation (CUF).
CUF is a one-dimensional higher-order structural model, in which the displacement at the cross-section is the
only unknown parameter. The cross-sectional displacement fields of the model are defined using the Lagrange-
and Taylor expansion. The quasi-steady and unsteady theories (Theodorsen and Loewy) have been used to apply
the aerodynamic force. Subsequently, the equation of motion is defined in ‘fundamental nucleus’ form using

Hamilton’s principle. The engineering solution of the flutter condition has been obtained by using p-k method.
The computational studies of flutter analysis have been done for various rotor hub, lamination sequence, and
structural models. The regular, irregular plies and arbitrary fiber orientation of the orthotropic structures have
also been considered. The present study suggests that the proposed CUF model can obtain an aeroelastic solution
of rotary structure in a computationally and economically efficient manner.

1. Introduction

It is eminent that the study of flutter analysis is essential for the
aeroelastic stability of fixed and rotary wing in aircraft, rotorcraft, and
spacecraft applications. Flutter appears as dynamic instability, and it
can lead to the catastrophic failure of the structure. Hence it should
be compulsorily studied by the researcher and designer during the de-
sign process. Both fixed and rotary structures are required careful study,
but the rotary design needs more focus because of their complexity and
structural nonlinearity. These structures require the appropriate ideal-
ization of aerodynamic theories with a proper coupling of the structural
model to predict the flutter conditions accurately. For the fixed-wing
model, aerodynamic theories can be categories as Theodorsen’s theory
[1] and Greenberg’s theory [2]: an extension of Theodorsen’s theory
that includes the pulsating flow velocity with a constant angle of attack.
The rotary-wing can be analyzed by Loewy’s theory [3], which includes
the unsteady wake behind the reference wing. The failure of wings hap-
pens due to the fluid—structure interaction (FSI), and nowadays, due to
mechanical and potential advantages of the laminate composite (such
as low weight to strength ratio, high specific and structural efficiency)
is being used in making wings. The flutter condition can be obtained
by analytical, experimental and numerical approach. In the past vari-
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ous numerical approaches have been developed to improve the flutter
solution, namely k, p, and p-k methods [4].

For flutter analysis of fixed-wing, aerodynamic theories based on
the strip theory approach are simple and reliable tools [5-8]. For in-
stance, the swept composite wings have been studied to find a laminated
structure’s aeroelastic characteristics and the author was interested to
see the effect of bending-torsion coupling, divergence, tailoring effects,
and investigating several aspects of the wings [9,10]. The experimen-
tal demonstration study of composite and aluminum plates is available
with variation in the sweep in the low-speed wind tunnel for aeroelastic
tailoring, divergence, and to compare analytical data with experimen-
tal data [11]. The past studies show that the directional property and
non-classical effects can influence the aeroelastic instability of struc-
ture made of composite materials, and these parameters play a very
complex and significant role in flutter and divergence analysis [12,13].
Moreover, many kinds of work have been done in the past few years,
where various parameters of wings are considered to analyze the flut-
ter and divergence by wind tunnel tests and computational studies. The
evidence found from past tests indicated that structural and aeroelastic
non-linearity could influence the flutter condition [14]. Other parame-
ters, such as fiber angle, sweep angle, and density, are also responsible
for controlling the flutter conditions [15].
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Flutter analysis of the rotary-wing is more complicated due to the
wing’s geometrical nonlinearity, and this nonlinearity must need to
be including in terms associated with the structure and aerodynamic.
Theodorsen [1] developed the theory for 2-D fixed-wing, based on the
assumptions of simple harmonic motion of airfoil in incompressible flow
by assuming a planner wake behind the wing; however, it has been fre-
quently used for rotary-wing. Later Loewy [3] developed the theory for
oscillating rotary-wing, in which approximation of returning wake be-
hind the wing has been taken into account. Loewy’s aerodynamics model
can be coupled with strip theory to predict the flutter conditions. In the
past several studies have been using the v-g method to demonstrate the
dynamic instability of isotropic rotary-wings, where the flag-torsional
coupling was also included and found that Loewy’s theory can capture
the wake associated with the wings [16,17]. The structural model of ro-
tary wings can be modeled as a laminated composite, and many works
have been done to predict the flutter conditions for these kinds of struc-
tural models. The aeroelastic instability analysis for a thin-walled com-
posite rotary wing has also been performed in [18] considering struc-
tural coupling due to different ply angles. The nonclassical effects (i.e.,
transverse and warping) also have been considered in [19] to studied
the structural coupling influence on the dynamic instability. The mate-
rial uncertainty has also been considered in [20] to predict the flutter
condition of composite structures. However, small rotor blades and wind
turbine blades are inherently different from wings, but some studies of
aeroelastic instability are available with different unsteady theories and
solving approaches [21-23]. It is observed that limited works have been
done on the rotary laminated composite wing with the coupling of dif-
ferent aerodynamic theories and advanced structural models. The aeroe-
lastic analysis of rotary laminated composite wing using p-k method is
also limited.

This work intends to propose a finite element model (FEM) in Car-
rera Unified Formulation (CUF) using Lagrange-like expansion and pre-
dict flutter conditions of wings (i.e., fixed and rotary) by the p-k method.
In flutter analysis, the central phenomenon is the interaction between
fluid and structures; hence the structural model required the appropri-
ate description of kinematic fields. The structures can be modeled as
a plate/beam, and CUF can provide the proper and accurate kinemat-
ics fields of plate/beam structures [24]; the initial development of CUF
was for plates and shells [25,26]. At present, it has a variety of analy-
ses and applications such as plate, shells, beams, laminated composite,
sandwich, thin-walled, and geometrically nonlinear [27-30]. In CUF,
both Lagrange- and Taylor-like expansion can be used to interpolate
displacement between the beam elements, and the solution obtained by
Lagrange and Taylor-like expansion can be improved by increasing the
number of nodes and increasing the order of expansion, respectively.
Since CUF is a hierarchical formulation, it gives the freedom to choose
the order of expansion as the input, and the solution can be improved
without changing anything in the formulation. It is also suitable and
capable of providing an accurate solution for aeroelastic analysis appli-
cations for fixed composite wings using vortex lattice method [31], dou-
blet lattice method [32], piston theory [33], and strip theory [34,35].
Within this work, Taylor- and Lagrange-like expansions have been used
to describe the structural model’s displacement field in CUF framework.
The structural models have been coupled with the aeroelastic model to
obtain the motion equation based on Hamilton’s principle. The flutter
conditions of fixed and rotary wings has been obtained by implementing
the p-k method within CUF framework.

2. 1-D structural model in CUF framework

A one-dimensional finite element model has been formulated within
the Carrera Unified Formulation (CUF) framework, in which the dis-
placement field u(x, y, z, t) states as a combination of cross-section func-
tion F,(x, z) and displacement vector u_(y):

u(x, y,z,1) = F(x, 2)u (y) = F (x, 2)N;(y)q;(1),
qri(t) = {quxﬂ qu qu“_i}

r=12,..,T,
QY]

Yri
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where T, N,(y), subscript = and ¢,(¢) stands for number of terms of
expansion, shape function, Einstein generalized notation of summa-
tion and nodal displacement vector, respectively. In this present work,
Eq. 1 contains the Lagrange- and Taylor-like expansion, and structural
model has been created using the cross-sectional and beam elements see
Fig. 1. The capabilities and details of these expansions can be found in
literature [36]; for example displacement field of Lagrange quadratic
elements (L9) is:

u=Fou, +FHu, +Fu, +Fu, +... + Fyuy,
uy=Fruy, +Fu, +Fu, +Fu, +... + Fy uy, 2)
up=Fru, +Fu, +Fyu, +Fpu, +... + Fy uy,

and the compact form and displacement field of Taylor-like expansion
for order ‘N’ is:

T =(N+1)(N+2)/2

Fr = {Fivanwvayn = XN Fovenvea = 24 ) €)
for order N=2

F,={F =1,F=x,F; =z F, =x% Fs = xz, Fg = 2%} )
displacement field:

2 2
Uy =ty XUy +Z U+ X7 U FXZ U+ 27 U
— 2 2
Uy =u, + XUy, +zu, +x°u, +x2u, +2°u, )
u, =u

g =Ug XU, +Zug, +x? Uy, + X2 Uy +z2 Uz
3. Aeroelastic model
3.1. Theodorsen’s thoery

This theory is mainly used for the fixed-wing analysis, but also it can
be used for unsteady aerodynamic analysis of the rotary-wing. This ap-
proach gives the solution of 2-D harmonic oscillations associated with
incompressible fluid with assumptions of small disturbance. The lift dis-
tribution function was obtained assuming the wing is a flat plate that
can rotate about an axis (at distance x = b,a), and the rotation angle is
subjected to the angle of attack A(¢), and vertical movement is denoted
by A(t). The lift function expressed as [37]:

L, = np b2 [h+ Viit — boaid| +21p,b.C(K)V,y, [h + Voot b‘,(% - a)d]
(6)

where p,, b., V,, a, C(k) and k = T/i represents the air density, semi-
chord, free-stream velocity, pitch ao;(is location, Theodorsen’s function,
and reduced frequency respectively. The above equation contains a non-
circulatory (first term) and circulatory terms. Theodorsen’s function C(k)
is equal to 1 and complex function for quasi-steady and unsteady ap-
proaches. For unsteady approach C(k) can be expressed in terms of the
Hankel function, simplified expression by Jones [38] is:

0165 0335
() ()

Since mass properties is absent, first term of Eq. (6) can be neglected
and simplified as:

Cky=1-

()

L, =27p,Veob C(K) [+ Voa] ®)

The correction of Sectional lift (C;) associated with the aspect ratio
(AR,,) and sweep angle (A) has been done by using Diederich’s approx-
imation:

dc; AR,
Cla = da  7A R, + Ciypcos(N) Claocos(A) ©
where, aspect ratio is equal to 2 L (wing length)/ ¢ (mean chord), Fig. 2.
The lift slope curve is C,,, = 2z and quantity b,z which is slightly in-
clined and uncamberd has been approximated for pressure distribution
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4 3 7 6 5 Fig. 1. Structural model in CUF framework.
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10)

2m AR, cos(A) b [b, —x .
L,= dx p,V ,C(k)[n+ V a] (11)
n AR, +2mcos(A) J_p | b+ x

3.2. Loewy’s thoery

(on top of thin airfoil) by the fjj dx, Egs. (6) and (8) becomes,

The generalized lift function of a rotary wing expressed as [39]:

dL,
dy

2 ~2 h a a
=ﬂpach [&+§—bca§]

2| A 1_,\&
+ 27p,b.C(k)Q [Q +yoc+bc(2 a)Q] (12)

Eq. 12 obtained by modifying the Theodorsen formulation [1] for
the rotary-wing and lift-deficiency function C(k) is assumed based on
the Loewy formulation [3]. In Theodorsen’s 2-D thin airfoil approach,
the wake is convected to downstream to infinity, but in rotor-craft work
vorticity from the blades and returning wake should be encountered.
Loewy acknowledged this fact, and he made a historical and successful
attempt to modeled a complex 2-D wing model with the returning wake.
This returning wake is modeled as the series of layers with the equal ver-
tical separation (#,) that depends on a few parameters like the number of
blades, semi-chord, and induced velocity (u). Loewy represents the lift
deficiency function by replacing the Theodorsen’s function, expressed
as:

HP (k) + 20, (W (k. m. hy)

(@) 2) a3
HP (k) + iHP (k) + 200, (k) + iJo()IW (k. m, hy)

C/(k, m, h/) =

where C’(k), W, Jn(k) and Hn(k) represents Loewy function, wake
weighting function, first kind of Bessel and second kind of Hankel
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Fig. 2. Reference system for rotary wing

functions, respectively. The value of k and W for a rotor including the
’Q’ number of blades is given by
1+ ZQ(ekh,QeiZﬂm)queiQDq

_ 2wc _ q
k= 0R’ Wk, m, h) = ki gizem _ | (14)
where, R, m, ® denoted as rotor radius, frequency ratio = «/Q
(oscillatory-rotational) and phase angle (between refence to ¢'* blades),
respectively. Eq. 14 can be written for a single blade with modification
ofm—mand h — h

27
(®/rQ’

Wkih=—Lt  a= 2 =

) Ay = \/Cr /2
ekhQ pi2min _ | QO 0 v/

15)

where, Ay, Cr, r and stands for inflow ratio, thrust coefficient and generic
radial distance respectively.

4. Equation of motion (EoM)

The Hamilton’s principle states that for any time interval the summa-
tion of energy (i.e. kinetic and potential) and variation of work exerted
by non conservative forces must be equal to zero. It can be expressed
as:

t 151
/]6(T—(U+U60))dt+/ 8L, dt =0 (16)

To 1o

where, 6, T, U + U, and L,,, stands for variation of function, total ki-
netic, potential energy (internal and external forces) and external loads,
respectively. The kinetic and potential (internal and external) energy
can be expressed as:

T = % / @i+ 2u” Qi + u" QT Qu + 24T Qr + 2u” QT Qr)dV 17)
|4

-1 / " DT CDuydv 18)
2 )y

1 1
Uy, = /V (og e)dV = /V (@R, R+ SR = Ryror*De,ndv (19)

where,
0 -Q o0

Q= 0 0 (20)
0 0 0
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where, matrix D, matrix C, matrix Q, p, r and R, stands for linear differ-
ential operator, material coefficient, rotational speed, density, distance
(from neutral axis) and rotor hub radius, respectively.

The external loads can be expressed as:

0L, = //5uz(x, Vs Ziop) Lo (X, ¥, 240,)d xd y 21
yJIx

where, L, and z,, are the lift force and cross-sectional upper z-
coordinate. According to Eq. (6) and (12), the Eq. (21) can written for
Theodorsen’s and Loewy as:

Lex,:cost[// IL a+u’ IL x
n uTb(l - a) 1y, | dxd 22)
2 b. +x k y
L,y = cost[// TQy ILu+uT92 2 ILu dxdy
/ u'Qy IL a 7 dxdy:| (23)
where, h=u, a=% =u, _a=a,., cost = ZAROW 101y and

z,x°

z dx z,X 7 AR+27 cos(N) Pa

0 0 0
=0 o ol
0 0 1

5. EoM in CUF framework

The kinetic, potential energy and external loads can be derived in
the CUF framework (i.e. Fundamental nucleus form). The EoM for the
Theodorsen’s and Loewy lift function can be expressed as:

il
T ijTs - T T i
[ (8q7, MU g, + 547, D’T;S/ o Gsj ¥ 04 T’;j o Gsj + 64y By rdi =
0

(24

where, MY™ and F/* are stands for mass matrix and force vector.
Whereas subscript ‘TT’ and ‘LT’ of D% and K*/** are Theodorsen’s and
Loewy function including the structural and aerodynamic contributions.
The terms associated with subscript ‘TT” and ‘LT’ of Eq. 24 can be
expressed as:
ijrs _ ijTs ijTs
DTT - DuT + DmT
ijts _ ijts ijts
Kpp =K/ +K (25)
ijrs _ ijTs ijTs ijts
DLT - DaL + DmL + DQ
ijts _ yprijts ijts ijts ijTs
K/ =K%+ KaL + KQ + KGU (26)
where, subscript ‘a..” and ‘m..” are aerodynamic contributions. All param-
eteres of EoM are written below in the form of fundamental nucleus:

MU =) / (F,pIF)dA @7
A
Fi = I,’y QF,pr>QTQ (28)
K™ = 1’/ <D! »(Fr Diek oo Dp(F I+ & D, (FI)]
T
+ D] (F, ek D,(F,I)+ &, D,,(F,D] >
+I]’<1[DT(FI)+DT(FI) kS Dy,
+ 1 IT < F[e},D,(F, 1) + &, D, (F, D] >
+1}’y1T<F5" F,> 29

T"npn= S
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b,
L . c b. —x
DU = cost I)/ /b bc +fo(x, Zeop) 11, Fy(x, 240) dx
b, \/ .

b,
s .. 1 c
ijTs ij
D, =cost] b(i —a)/

.+
KT — ij be b, —x
o =costl \ mFm(x, Ziop) 11 Fy(X, 24p) dX (30)
b, .

b,
. orbe [po—x
Dy = cost Q) / , b e 2i0p) I Fil(xs 210p) dx
5\ D
ijs ij (1 be b, —x
DY = cost Q Ilyb(5 =a) [ Feno ) Lo Filx )
s, \ b

DT = 20 l;j/(FTpIFS)dA
A

F,(x, z,gp) 1; Fy(x, zmp) dx

Q

. L. bL‘
K™ = cost Q2 II”2 /
y -

oL FT’X(x, zmp) I, Fy(x, z,ap) dx

KI” =aTQ I;j/(FTpIFS)dA
A
KI™ = Qo Ijggj’y / (F,pIF,)dA @31)
A

where, <..>= [, ...dA
ij i J J ij Ij Js
([ [ y I.V I)’ Y,Il , 12711;’ y) /(NNj’NiNj.y’Ni,yNj’NivyNj*y7
2
yNiNj,y NiNj’O'ONi,yNj,y) dy
(32)
The EoM can be written in quadratic eigenvalue problem by assuming
a periodic solution g = ge'":
MG+ Drrjrr 4+ Krryir ¢ =0 (33

Since matrices of aerodynamic contributions have dependency on the
reduced frequency hence an iterative approach is required to calcu-
late the flutter condition. Incorporating the iterative approach Hassig
[40] proposed the p-k methed to solve the flutter problem. The general
and simplified [41] forms of p-k are given below

m

Vo \’ 2 1 .2
<C;'°> [M]lp +[Ks]—§PVm[A(P)] {g} =0 (34)

2 1 (0,1 L 2R
[(M]p” + [Bs]_ © g P+[Ks]—§PVOO[Qa] {a}=0 (35
where, [A(p)] [Qé 1 and [Qf] are aerodynamic contribution, imaginary
and real part respectively. The value of reduced frequncy (k) is differ
for Theodorsen’s and Loewy theory.

6. Results and discussion

A Fortran-based FEM code has been developed to obtain the flut-
ter conditions of rotary composite structures. Firstly, isotropic and or-
thotropic rotary structures were considered for free vibration analysis,
and comparison studies performed with available literature. The flut-
ter analysis of the fixed beam structures has also been performed to
verify the proposed model. Theodorsen’s aerodynamic lift function is
used to apply the aerodynamic forces on the structure. The engineering
solution has been obtained using the p-k method. After analyzing the
fixed beam model, the rotary beam model has also been analyzed using
quasi-steady, Theodorsen’s theory, and Lowey’s theory. The Lagrange-
and Taylor-like expansion is used to define the kinematics fields of a
laminated structural model. Moreover, different rotor hub radius and ar-
bitrary lamination sequences are considered for the rotary beam model
to compute the flutter conditions.

Composites Part C: Open Access 4 (2021) 100100

Table 1
Geometrical and material properties for rectangular beams.
Beam 1 Beam 2 Beam 3  Beam 4
Isotropic  6-layer  8-layer 6-layer
Dimensions (mm) chord (c) 254 76.2 76.2 76.2
thickness () 1.6002 0.804*  0.804* 0.804*
length (1) 4445 305 305 402
rotor hub (R,) 63.5 R,** 0 0
Material Properties E; 68.9 98 144.8 144.8
(GPa, Kg/m?) Ep = Ey 7.9 9.65 9.65
vy 03 028 03 03
Vis = Vay 028 03 03
Gy, 56 3.45 345
G =Gy 56 414 414
p 2713 1520 1389.23 1389.23
Note: * total thickness of all layers, ** variable parameter
or + 119
TE3 AOOO
60! Truong et al. 2013 DDDD
Y PR R LRt Ll
500 -
g AOODD
b pooodd®
g g 5000 A 0ooM OEOMOOOA
=
g 300
bl
&= ©oOMDODD
sosedessodbesclessl30eaccon
c00ch0000dO0
S600MDD0OMDODD
c000hd000RDOOD
4+ p00OCHADOOOMDOOD
0 250 500 750 1000 1250 1500

Q (rpm)

Fig. 3. Comparisons of frequencies of rotating Beam 1.

Table 2

Natural frequencies (H z) for Beam 2 (6-layers) with lamination [45/90/0],.
Model S, S, S, S, S Sag S, Sng
TE2 478 29.59 64.41 83.04 164.33 196.62 277.46 341.60
TE3 476 29.51 5691 82.80 162.94 173.24 270.69 298.45
TE4 476 29.42 56.74 8234 161.75 172.08 268.72 294.29

LE (1L9) 4.77 29.53 5691 8287 163.03 17329 270.79 298.56
LE (2L9) 4.76 2945 56.77 82.48 162.10 172.14 269.31 294.46
LE (2L9) 4.76 2943 56.70 8239 161.88 171.94 268.93 294.02

6.1. Free vibration analysis

The rectangular beam models given in Table 1 are considered for
the free vibration analysis. Beam 1 is made of isotropic (aluminum) and
Beam 2 made of 6-layers orthotropic materials with lamination sequence
[45/90/0],. Various Lagrange elements (1L9, 2L9 etc.) and different or-
der of Taylor-expansion (TE2, TE4, etc.) used to compute the natural
frequency of structural models and cross-sectional elements are shown
in Fig. 1. The results obtained for Beam 1 are compared with the 3D
beam model [42] and the first 8-modes of frequencies are shown in
Fig. 3 with respect to rotational speed. The convergence study has been
done for both models; Taylor expansion (TE) was refined by increas-
ing the order of expansion and Lagrange expansion (LE) by increase the
number of elements (along the chord). It is observed that third-order of
Taylor expansion (TE3) and one nine-noded Lagrange elements (1L9)
structural models are best-suited results with the reference. The natural
frequencies for the orthotropic beam with the structural model (TE and
LE) are reported in Table 2. The first 8-modes of natural frequencies of
the TE model are shown in Fig. 4a. It is observed that TE4 is the best-
suited model among the other TE models. Moreover, the LE model is
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Fig. 4. Frequencies vs rotational speed for Beam 2 with lamination [45/90/0];.

compared with the TE4 in Fig. 4b and the comparison shows that the
3L9 model enables to compute the natural frequencies as a higher-order
model of TE4.

6.2. Flutter analysis

Initially, isotropic (Beam 1) and orthotropic (Beam 2) rectangular
fixed beams are considered for the flutter analysis. The geometrical and
material properties are given in Table 1. The flutter condition computed
using the p-k method in the CUF framework. Theodorsen’s aerodynamic
model was used with structural models (LE and TE) for predicting flut-
ter conditions. Structural models are considered based on the conver-
gence studies performed for free vibration analysis. Various lamination
sequences [30, /01, [45,/0], [30/60/90],, and [45/90/0], are considered
for Beam 2. The flutter velocity for the both isotropic and orthotropic
model are reported in Table 3. The results obtained for lamination se-
quence [30,/0],, and [45,/0], are compared with the analytical and ex-
perimental results [43], and good agreement is observed. After verifying
the proposed CUF model for the free vibration analysis of the rotating
beam and flutter analysis of the fixed beam model, the authors assume
that the proposed CUF model can predict flutter conditions accurately
for the rotary beam model.
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Table 3
Flutter velocities (m/s) for fixed beam model.

Present Refrence [43]
Beam Lamination 3L9 TE4 Ana. Exp.
1 124.5 125.7
2 [30,/0], 275 26.8 27.8 27
[45, /0], 28.2 273 27.8 28

[30/60/90],  27.2 26.2
[45/90/00], 304 293
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Fig. 5. Flutter diagram for Beam 3 (3L9, R, =45.75 mm) with lamination
[45/90/00];.

The flutter analysis of rotary structure is performed for Beam 2,
which has 6-layers symmetric laminate [45/90/0],. The Lagrange expan-
sion (LE) and Taylor expansion (TE) used to define the kinematic fields
of the structure. The flutter conditions for both structural models are ob-
tained using quasi-steady (ST), Theodorsen’s theory (TT), and Loewy’s
theory (LT). For LT analysis, the number of blades and the inflow ra-
tio (4,) has been assumed equal to 4 and 0.05, respectively. Different
radius values considered for rotor hub (R,,) to compute the flutter veloc-
ities (Q) and flutter frequencies (f), results are reported in Table 4.
The flutter diagram (rotational velocity vs. frequency and damping) for
the 3L9 model using ST is shown in Fig. 5. It is observed that flutter
conditions vary with the radius of the rotor hub and LT is best suited
among all aerodynamic models. Also, observed that TE4 and 3L9 are the
most accurate among all structural models.
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Table 4
Flutter velocity (rpm) and frequencies (Hz) for Beam 3 with lamination [45/90/0];,.
2L9 3L9 TE3 TE4
Ry, (mm) Theory Qp fr Qp e Qp fr Qp fr
0 ST 14114 43.50 1379.9 42.84 1430.5 43.88 13923 43.10
TT 1437.2 42.70 1403.7 42.04 1457.2 43.09 1420.9 42.25
LT 1152.6 48.50 1144.0 47.99 1162.1 48.83 1146.9 48.18
45.75 ST 1426.7 44.33 13741 43.26 1411.4 43.50 1388.5 43.54
TT 14314 43.12 1398.0 42.54 1451.5 43.65 14123 42.83
LT 1303.5 46.92 1279.6 46.27 1320.7 47.29 1290.1 46.56
91.5 ST 1401.8 44.50 1370.3 43.83 1422.8 44.92 1384.6 44.12
TT 1426.7 43.84 1394.2 43.15 1447.7 44.28 1408.5 43.45
LT 1294.9 47.07 1271.0 46.44 13111 47.46 1281.5 46.72
3L9 LT Fig. 6. Polar plot of flutter velocity (rpm) for
90 - 920 e Beam 5 with arbitrary lamination [6/26/0],.
—A—sT —A—3L9
——1TT 60 —O—TE4 60
—+—LT
45 45
30 30
15 15
0 A&
800 1000 200 400 600 800 1000

(a) LE Model

Table 5

Flutter velocity (rpm) and frequency (Hz) for Beam 4 (8-layers) with
lamination [-22.5/67.5/22.5/ — 67.5],.

ST TT LT
Model Qg fr Qp Ir Qp Ir
219 1671.1 54.61 1712.2 53.70 1497.3 58.52
3L9 1632.9 53.94 1673.0 53.00 1469.6 57.90
TE3 1692.1 55.01 1734.2 54.11 1511.7 58.91
TE4 1650.1 54.25 1691.2 53.31 1482.1 58.20

In addition, flutter analysis is performed for rotary Beam 3 with irreg-
ular plies. The structure assumed have an 8-layers symmetric laminate
[-22.5/67.5/22.5/ — 67.5];, with irregular plies thickness 0.037, 0.048,
0.064 and 0.253 mm respectively. The flutter conditions obtained for
structural models (LE and TE) using quasi-steady and unsteady theories
are reported in Table 5. It is observed that TE4 and 3L9 structural mod-
els prove to be best suited to predict the flutter conditions, while LT is
best suited among all aerodynamic models.

Moreover, the arbitrary value of 6 considered to analyze the flut-
ter conditions for Beam 4, which has 6-layers symmetric laminate
[6/26/0];. The flutter velocities have been computed using quasi-steady
and unsteady theories for refined TE and LE models, which are taken
based on the previous analysis. Firstly, the variation range of 6 has been
considered between 0° to 90° to compute the flutter velocities for both
TE and LE models. The flutter velocities are reported in Table 6, and the
polar plot for both quasi-steady and unsteady theories for the LE model

(b) Lowey’s Theory

Table 6
Flutter velocity (rpm) for Beam 5 (6-layers) with lamination [6/26/0];.

0
Theory = Model 0° 15° 30° 45° 60° 75° 90°
ST 3L9 439.2 681.8 801.1 7849 961.6 784.0 421.1
TE4 4488 6894 8088 790.6 970.2 792.5 4249
T 3L9 4516 6923 813.6 803.1 995.0 7715 4325
TE4 4555 7009 821.2 809.7 10046 7744 4373
LT 3L9 406.8 6503 7228 751.5 8823 580.6 386.7
TE4 409.6 656.9 7257 757.2 889.9 592.0 389.6

is shown in Fig. 6a. For a given range of 6, LT results are best suited re-
sults compared to others. The comparison between the LE and TE model
for LT is shown in Fig. 6b. Where results obtained from both TE and LE
models are close to each other. The variation range of 6 has been ex-
tended from 90° to 180° to compute the flutter velocities for TE4. The
flutter velocities obtained using the quasi-steady and unsteady theories,
and the polar plot for the range of 0° to 180° is shown in Fig. 7. The ob-
tained results indicate that the LT could predict good flutter conditions
in comparison to the others.

7. Conclusion

Flutter analysis of rotary wings has been analyzed using unsteady
aerodynamics theories and refined beam theories based on Carrera
Unified Formulation (CUF). The p-k method was implemented in the
CUF framework to obtain the engineering solution of flutter conditions.
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Fig. 7. Polar plot of flutter velocity (rpm) for Beam 5 (TE4) with arbitrary lam-
ination [6/260/0],.

Lagrange elements have also been considered for cross-section dis-
cretization in CUF. The numerical simulation and convergence stud-
ies have been performed for the proposed model. The model was also
verified through the free vibration analysis of rotary-beam and flutter
analysis of Fixed-beam. It is found that the present results have a good
agreement with the literature. The flutter analysis of rotary-wing was
performed considering the various rotor hub, lamination sequence,s and
different structural models in CUF using the quasi-steady, Theodorsen,
and Loewy theories. The obtained results indicated that the lamina-
tion sequence and rotor hub could influence the flutter condition. The
present study suggests that the proposed CUF models are enabled to pre-
dict the accurate flutter condition as a 3D solution in a computationally
and economically efficient manner. In future work, CUF can be used for
aerodynamic analysis of swept-wing and forward-flight with complex
structural and nonlinearities.
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