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a b s t r a c t 

The flutter analysis of rotary laminated structures has been performed using Carrera Unified Formulation (CUF). 

CUF is a one-dimensional higher-order structural model, in which the displacement at the cross-section is the 

only unknown parameter. The cross-sectional displacement fields of the model are defined using the Lagrange- 

and Taylor expansion. The quasi-steady and unsteady theories (Theodorsen and Loewy) have been used to apply 

the aerodynamic force. Subsequently, the equation of motion is defined in ‘fundamental nucleus’ form using 

Hamilton’s principle. The engineering solution of the flutter condition has been obtained by using p-k method. 

The computational studies of flutter analysis have been done for various rotor hub, lamination sequence, and 

structural models. The regular, irregular plies and arbitrary fiber orientation of the orthotropic structures have 

also been considered. The present study suggests that the proposed CUF model can obtain an aeroelastic solution 

of rotary structure in a computationally and economically efficient manner. 
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. Introduction 

It is eminent that the study of flutter analysis is essential for the

eroelastic stability of fixed and rotary wing in aircraft, rotorcraft, and

pacecraft applications. Flutter appears as dynamic instability, and it

an lead to the catastrophic failure of the structure. Hence it should

e compulsorily studied by the researcher and designer during the de-

ign process. Both fixed and rotary structures are required careful study,

ut the rotary design needs more focus because of their complexity and

tructural nonlinearity. These structures require the appropriate ideal-

zation of aerodynamic theories with a proper coupling of the structural

odel to predict the flutter conditions accurately. For the fixed-wing

odel, aerodynamic theories can be categories as Theodorsen’s theory

1] and Greenberg’s theory [2] : an extension of Theodorsen’s theory

hat includes the pulsating flow velocity with a constant angle of attack.

he rotary-wing can be analyzed by Loewy’s theory [3] , which includes

he unsteady wake behind the reference wing. The failure of wings hap-

ens due to the fluid–structure interaction (FSI), and nowadays, due to

echanical and potential advantages of the laminate composite (such

s low weight to strength ratio, high specific and structural efficiency)

s being used in making wings. The flutter condition can be obtained

y analytical, experimental and numerical approach. In the past vari-
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us numerical approaches have been developed to improve the flutter

olution, namely k, p , and p-k methods [4] . 

For flutter analysis of fixed-wing, aerodynamic theories based on

he strip theory approach are simple and reliable tools [5–8] . For in-

tance, the swept composite wings have been studied to find a laminated

tructure’s aeroelastic characteristics and the author was interested to

ee the effect of bending-torsion coupling, divergence, tailoring effects,

nd investigating several aspects of the wings [9,10] . The experimen-

al demonstration study of composite and aluminum plates is available

ith variation in the sweep in the low-speed wind tunnel for aeroelastic

ailoring, divergence, and to compare analytical data with experimen-

al data [11] . The past studies show that the directional property and

on-classical effects can influence the aeroelastic instability of struc-

ure made of composite materials, and these parameters play a very

omplex and significant role in flutter and divergence analysis [12,13] .

oreover, many kinds of work have been done in the past few years,

here various parameters of wings are considered to analyze the flut-

er and divergence by wind tunnel tests and computational studies. The

vidence found from past tests indicated that structural and aeroelastic

on-linearity could influence the flutter condition [14] . Other parame-

ers, such as fiber angle, sweep angle, and density, are also responsible

or controlling the flutter conditions [15] . 
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Flutter analysis of the rotary-wing is more complicated due to the

ing’s geometrical nonlinearity, and this nonlinearity must need to

e including in terms associated with the structure and aerodynamic.

heodorsen [1] developed the theory for 2-D fixed-wing, based on the

ssumptions of simple harmonic motion of airfoil in incompressible flow

y assuming a planner wake behind the wing; however, it has been fre-

uently used for rotary-wing. Later Loewy [3] developed the theory for

scillating rotary-wing, in which approximation of returning wake be-

ind the wing has been taken into account. Loewy’s aerodynamics model

an be coupled with strip theory to predict the flutter conditions. In the

ast several studies have been using the v-g method to demonstrate the

ynamic instability of isotropic rotary-wings, where the flag-torsional

oupling was also included and found that Loewy’s theory can capture

he wake associated with the wings [16,17] . The structural model of ro-

ary wings can be modeled as a laminated composite, and many works

ave been done to predict the flutter conditions for these kinds of struc-

ural models. The aeroelastic instability analysis for a thin-walled com-

osite rotary wing has also been performed in [18] considering struc-

ural coupling due to different ply angles. The nonclassical effects (i.e.,

ransverse and warping) also have been considered in [19] to studied

he structural coupling influence on the dynamic instability. The mate-

ial uncertainty has also been considered in [20] to predict the flutter

ondition of composite structures. However, small rotor blades and wind

urbine blades are inherently different from wings, but some studies of

eroelastic instability are available with different unsteady theories and

olving approaches [21–23] . It is observed that limited works have been

one on the rotary laminated composite wing with the coupling of dif-

erent aerodynamic theories and advanced structural models. The aeroe-

astic analysis of rotary laminated composite wing using p-k method is

lso limited. 

This work intends to propose a finite element model (FEM) in Car-

era Unified Formulation (CUF) using Lagrange-like expansion and pre-

ict flutter conditions of wings (i.e., fixed and rotary) by the p-k method.

n flutter analysis, the central phenomenon is the interaction between

uid and structures; hence the structural model required the appropri-

te description of kinematic fields. The structures can be modeled as

 plate/beam, and CUF can provide the proper and accurate kinemat-

cs fields of plate/beam structures [24] ; the initial development of CUF

as for plates and shells [25,26] . At present, it has a variety of analy-

es and applications such as plate, shells, beams, laminated composite,

andwich, thin-walled, and geometrically nonlinear [27–30] . In CUF,

oth Lagrange- and Taylor-like expansion can be used to interpolate

isplacement between the beam elements, and the solution obtained by

agrange and Taylor-like expansion can be improved by increasing the

umber of nodes and increasing the order of expansion, respectively.

ince CUF is a hierarchical formulation, it gives the freedom to choose

he order of expansion as the input, and the solution can be improved

ithout changing anything in the formulation. It is also suitable and

apable of providing an accurate solution for aeroelastic analysis appli-

ations for fixed composite wings using vortex lattice method [31] , dou-

let lattice method [32] , piston theory [33] , and strip theory [34,35] .

ithin this work, Taylor- and Lagrange-like expansions have been used

o describe the structural model’s displacement field in CUF framework.

he structural models have been coupled with the aeroelastic model to

btain the motion equation based on Hamilton’s principle. The flutter

onditions of fixed and rotary wings has been obtained by implementing

he p-k method within CUF framework. 

. 1-D structural model in CUF framework 

A one-dimensional finite element model has been formulated within

he Carrera Unified Formulation (CUF) framework, in which the dis-

lacement field 𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) states as a combination of cross-section func-

ion 𝐹 𝜏 ( 𝑥, 𝑧 ) and displacement vector 𝑢 𝜏 ( 𝑦 ) : 

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝐹 𝜏 ( 𝑥, 𝑧 ) 𝑢 𝜏 ( 𝑦 ) = 𝐹 𝜏 ( 𝑥, 𝑧 ) 𝑁 𝑖 ( 𝑦 ) 𝑞 𝜏𝑖 ( 𝑡 ) , 𝜏 = 1 , 2 , ...., 𝑇 , 
 𝜏𝑖 ( 𝑡 ) = { 𝑞 𝑢 𝑥 𝜏𝑖 𝑞 𝑢 𝑦 

𝑞 𝑢 𝑧 𝜏𝑖 
} (1) 
𝜏𝑖 

2 
here 𝑇 , 𝑁 𝑖 ( 𝑦 ) , subscript 𝜏 and 𝑞 𝜏𝑖 ( 𝑡 ) stands for number of terms of

xpansion, shape function, Einstein generalized notation of summa-

ion and nodal displacement vector, respectively. In this present work,

q. 1 contains the Lagrange- and Taylor-like expansion, and structural

odel has been created using the cross-sectional and beam elements see

ig. 1 . The capabilities and details of these expansions can be found in

iterature [36] ; for example displacement field of Lagrange quadratic

lements (L9) is: 

 𝑥 = 𝐹 1 𝑢 𝑥 1 + 𝐹 2 𝑢 𝑥 2 + 𝐹 3 𝑢 𝑥 3 + 𝐹 4 𝑢 𝑥 4 + ........ + 𝐹 9 𝑢 𝑥 9 
 𝑦 = 𝐹 1 𝑢 𝑦 1 + 𝐹 2 𝑢 𝑦 2 + 𝐹 3 𝑢 𝑦 3 + 𝐹 4 𝑢 𝑦 4 + ........ + 𝐹 9 𝑢 𝑦 9 
 𝑧 = 𝐹 1 𝑢 𝑧 1 + 𝐹 2 𝑢 𝑧 2 + 𝐹 3 𝑢 𝑧 3 + 𝐹 4 𝑢 𝑧 4 + ........ + 𝐹 9 𝑢 𝑧 9 

(2) 

nd the compact form and displacement field of Taylor-like expansion

or order ‘N’ is: 

𝑇 = ( 𝑁 + 1 ) ( 𝑁 + 2 ) ∕2 

 𝜏 = 

{
𝐹 ( 𝑁+1 ) ( 𝑁+2 ) ∕2 = 𝑥 𝑁 , 𝐹 ( 𝑁+1 ) ( 𝑁+2 ) ∕2 = 𝑧 𝑁 

}
(3) 

or order N = 2 

 𝜏 = { 𝐹 1 = 1 , 𝐹 2 = 𝑥, 𝐹 3 = 𝑧, 𝐹 4 = 𝑥 2 , 𝐹 5 = 𝑥𝑧, 𝐹 6 = 𝑧 2 } (4) 

isplacement field: 

 𝑥 = 𝑢 𝑥 1 
+ 𝑥 𝑢 𝑥 2 

+ 𝑧 𝑢 𝑥 3 
+ 𝑥 2 𝑢 𝑥 4 + 𝑥𝑧 𝑢 𝑥 5 

+ 𝑧 2 𝑢 𝑥 6 
 𝑦 = 𝑢 𝑦 1 

+ 𝑥 𝑢 𝑦 2 
+ 𝑧 𝑢 𝑦 3 

+ 𝑥 2 𝑢 𝑦 4 + 𝑥𝑧 𝑢 𝑦 5 
+ 𝑧 2 𝑢 𝑦 6 

 𝑧 = 𝑢 𝑧 1 
+ 𝑥 𝑢 𝑧 2 

+ 𝑧 𝑢 𝑧 3 
+ 𝑥 2 𝑢 𝑧 4 + 𝑥𝑧 𝑢 𝑧 5 

+ 𝑧 2 𝑢 𝑧 6 

(5) 

. Aeroelastic model 

.1. Theodorsen’s thoery 

This theory is mainly used for the fixed-wing analysis, but also it can

e used for unsteady aerodynamic analysis of the rotary-wing. This ap-

roach gives the solution of 2-D harmonic oscillations associated with

ncompressible fluid with assumptions of small disturbance. The lift dis-

ribution function was obtained assuming the wing is a flat plate that

an rotate about an axis (at distance 𝑥 = 𝑏 𝑐 𝑎 ), and the rotation angle is

ubjected to the angle of attack Λ( 𝑡 ) , and vertical movement is denoted

y ℎ ( 𝑡 ) . The lift function expressed as [37] : 

 𝑎 = 𝜋𝜌𝑎 𝑏 
2 
𝑐 

[
ℎ̈ + 𝑉 ∞𝛼̇ − 𝑏 𝑐 𝑎 ̈𝛼

]
+ 2 𝜋𝜌𝑎 𝑏 𝑐 𝐶( 𝑘 ) 𝑉 ∞

[
ℎ̇ + 𝑉 ∞𝛼 + 𝑏 𝑐 

(1 
2 
− 𝑎 

)
𝛼̇

]
(6) 

here 𝜌𝑎 , 𝑏 𝑐 , 𝑉 ∞, 𝑎, 𝐶( 𝑘 ) and 𝑘 = 

𝜔𝑏 𝑐 

𝑉 ∞
represents the air density, semi-

hord, free-stream velocity, pitch axis location, Theodorsen’s function ,

nd reduced frequency respectively. The above equation contains a non-

irculatory (first term) and circulatory terms. Theodorsen’s function 𝐶( 𝑘 )
s equal to 1 and complex function for quasi-steady and unsteady ap-

roaches. For unsteady approach 𝐶( 𝑘 ) can be expressed in terms of the

ankel function, simplified expression by Jones [38] is: 

( 𝑘 ) ≡ 1 − 

0 . 165 

1 − 

(
0 . 0455 

𝑘 

)
𝑖 

− 

0 . 335 

1 − 

(
0 . 3 
𝑘 

)
𝑖 

(7)

Since mass properties is absent, first term of Eq. (6) can be neglected

nd simplified as: 

 𝑎 ≡ 2 𝜋𝜌𝑎 𝑉 ∞𝑏 𝑐 𝐶( 𝑘 ) 
[
ℎ̇ + 𝑉 ∞𝛼

]
(8)

The correction of Sectional lift ( 𝐶 𝐿 ) associated with the aspect ratio

 𝐴𝑅 𝑤 ) and sweep angle ( Λ) has been done by using Diederich’s approx-

mation: 

 𝑙𝛼 = 

𝑑𝐶 𝐿 

𝑑𝛼
= 

𝜋𝐴𝑅 𝑤 

𝜋𝐴𝑅 𝑤 + 𝐶 𝑙𝛼0 𝑐 𝑜𝑠 (Λ) 
𝐶 𝑙𝛼0 𝑐𝑜𝑠 (Λ) (9)

here, aspect ratio is equal to 2 𝐿 (wing length)/ 𝑐 (mean chord), Fig. 2 .

he lift slope curve is 𝐶 𝑙𝛼0 = 2 𝜋 and quantity 𝑏 𝑐 𝜋 which is slightly in-

lined and uncamberd has been approximated for pressure distribution
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Fig. 1. Structural model in CUF framework. 
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on top of thin airfoil) by the ∫ 𝑏 𝑐 
− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 
𝑏 𝑐 + 𝑥 

𝑑𝑥, Eqs. (6) and (8) becomes,

 𝑎 = 

2 𝜋 𝐴𝑅 𝑤 𝑐𝑜𝑠 (Λ) 
𝜋 𝐴𝑅 𝑤 + 2 𝜋 𝑐𝑜𝑠 (Λ) ∫

𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝑑𝑥 𝜌𝑎 𝑉 ∞𝐶( 𝑘 ) 

[
ℎ̇ + 𝑉 ∞𝛼 + 𝑏 𝑐 

( 1 
2 
− 𝑎 

)
𝛼̇

]
(10) 

 𝑎 ≡ 2 𝜋 𝐴𝑅 𝑤 𝑐𝑜𝑠 (Λ) 
𝜋 𝐴𝑅 𝑤 + 2 𝜋 𝑐𝑜𝑠 (Λ) ∫

𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝑑𝑥 𝜌𝑎 𝑉 ∞𝐶( 𝑘 ) [ ̇ℎ + 𝑉 ∞𝛼] (11)

.2. Loewy’s thoery 

The generalized lift function of a rotary wing expressed as [39] : 

𝑑𝐿 𝑎 

𝑑𝑦 
= 𝜋 𝜌𝑎 𝑏 

2 
𝑐 
Ω2 

[
ℎ̈ 

Ω2 + 

𝛼̈

Ω
− 𝑏 𝑐 𝑎 

𝛼̈

Ω

]
+ 2 𝜋𝜌𝑎 𝑏 𝑐 𝐶( 𝑘 )Ω2 

[ 
ℎ̇ 

Ω
+ 𝑦𝛼 + 𝑏 𝑐 

(1 
2 
− 𝑎 

)
𝛼̇

Ω

] 
(12) 
3 
Eq. 12 obtained by modifying the Theodorsen formulation [1] for

he rotary-wing and lift-deficiency function 𝐶( 𝑘 ) is assumed based on

he Loewy formulation [3] . In Theodorsen’s 2-D thin airfoil approach,

he wake is convected to downstream to infinity, but in rotor-craft work

orticity from the blades and returning wake should be encountered.

oewy acknowledged this fact, and he made a historical and successful

ttempt to modeled a complex 2-D wing model with the returning wake.

his returning wake is modeled as the series of layers with the equal ver-

ical separation ( ℎ 𝑙 ) that depends on a few parameters like the number of

lades, semi-chord, and induced velocity ( 𝑢 ) . Loewy represents the lift

eficiency function by replacing the Theodorsen’s function, expressed

s: 

 

′( 𝑘, 𝑚, ℎ 𝑙 ) = 

𝐻 

(2) 
1 ( 𝑘 ) + 2 𝐽 1 ( 𝑘 ) 𝑊 ( 𝑘, 𝑚, ℎ 𝑙 ) 

𝐻 

(2) 
1 ( 𝑘 ) + 𝑖𝐻 

(2) 
0 ( 𝑘 ) + 2[ 𝐽 1 ( 𝑘 ) + 𝑖𝐽 0 ( 𝑘 )] 𝑊 ( 𝑘, 𝑚, ℎ 𝑙 ) 

(13)

here C’(k), W, 𝐽𝑛 ( 𝑘 ) and 𝐻𝑛 ( 𝑘 ) represents Loewy function, wake

eighting function, first kind of Bessel and second kind of Hankel
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Fig. 2. Reference system for rotary wing 
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unctions, respectively. The value of k and W for a rotor including the

Q’ number of blades is given by 

 = 

2 𝜔𝑐 
3Ω𝑅 

, 𝑊 ( 𝑘, 𝑚, ℎ ) = 

1 + 

∑𝑄 

𝑞 
( 𝑒 𝑘ℎ 𝑙 𝑄 𝑒 𝑖 2 𝜋𝑚 ) 𝑄 − 𝑞 𝑒 𝑖 Φ𝑞 

𝑒 𝑘ℎ𝑄 𝑒 𝑖 2 𝜋𝑚 − 1 
(14)

here, R, m, Φ denoted as rotor radius, frequency ratio = 𝜔 ∕Ω
oscillatory-rotational) and phase angle (between refence to 𝑞 𝑡ℎ blades),

espectively. Eq. 14 can be written for a single blade with modification

f 𝑚 → 𝑚̂ and ℎ → ℎ̂ 

 ( 𝑘, 𝑚̂ , ̂ℎ ) = 

1 
𝑒 𝑘 ̂ℎ 𝑄 𝑒 𝑖 2 𝜋𝑚̂ − 1 

, 𝑚̂ = 

𝜔 

Ω𝑄 

, ℎ̂ = 

2 𝜋𝜆0 
( 𝑏 ∕ 𝑟 ) 𝑄 

, 𝜆0 ≃
√

𝐶 𝑇 ∕2 

(15) 

here, 𝜆0 , 𝐶 𝑇 , 𝑟 and stands for inflow ratio, thrust coefficient and generic

adial distance respectively. 

. Equation of motion (EoM) 

The Hamilton’s principle states that for any time interval the summa-

ion of energy (i.e. kinetic and potential) and variation of work exerted

y non conservative forces must be equal to zero. It can be expressed

s: 

𝑡 1 

𝑡 0 

𝛿( 𝑇 − ( 𝑈 + 𝑈 𝜎0 
)) 𝑑𝑡 + ∫

𝑡 1 

𝑡 0 

𝛿𝐿 𝑒𝑥𝑡 𝑑𝑡 = 0 (16)

here, 𝛿, 𝑇 , 𝑈 + 𝑈 𝜎0 
and 𝐿 𝑒𝑥𝑡 stands for variation of function, total ki-

etic, potential energy (internal and external forces) and external loads,

espectively. The kinetic and potential (internal and external) energy

an be expressed as: 

 = 

1 
2 ∫𝑉 

𝜌( ̇𝑢 𝑇 𝑢̇ + 2 𝑢 𝑇 Ω𝑇 𝑢̇ + 𝑢 𝑇 Ω𝑇 Ω𝑢 + 2 ̇𝑢 𝑇 Ω𝑟 + 2 𝑢 𝑇 Ω𝑇 Ω𝑟 ) 𝑑𝑉 (17)

 = 

1 
2 ∫𝑉 

( 𝑢 𝑇 𝐷 

𝑇 𝐶𝐷𝑢 ) 𝑑𝑉 (18)

 𝜎0 
= ∫𝑉 

( 𝜎𝑇 
0 𝜖𝑛𝑙 ) 𝑑𝑉 = ∫𝑉 

((Ω2 𝜌[ 𝑅 ℎ 𝑅 + 

1 
2 
𝑅 

2 − 𝑅 ℎ 𝑟 
1 
2 
𝑟 2 ]) 𝑇 𝜖𝑛𝑙 ) 𝑑𝑉 (19)

here, 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 −Ω 0 

Ω 0 0 

0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(20)
4 
here, matrix 𝐷, matrix 𝐶, matrix Ω, 𝜌, 𝑟 and 𝑅 ℎ stands for linear differ-

ntial operator, material coefficient, rotational speed, density, distance

from neutral axis) and rotor hub radius, respectively. 

The external loads can be expressed as: 

𝐿 𝑒𝑥𝑡 = ∫𝑦 ∫𝑥 

𝛿𝑢 𝑧 ( 𝑥, 𝑦, 𝑧 𝑡𝑜𝑝 ) 𝐿 𝑎 ( 𝑥, 𝑦, 𝑧 𝑡𝑜𝑝 ) 𝑑 𝑥𝑑 𝑦 (21)

here, 𝐿 𝑎 and 𝑧 𝑡𝑜𝑝 are the lift force and cross-sectional upper 𝑧 -

oordinate. According to Eq. (6) and (12) , the Eq. (21) can written for

heodorsen’s and Loewy as: 

 𝑒𝑥𝑡 = 𝑐𝑜𝑠𝑡 

[ 

∫𝑦 ∫𝑥 

𝑢 𝑇 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 ̇𝑢 + 𝑢 𝑇 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 𝑢 ,𝑥 

+ 𝑢 𝑇 𝑏 

( 1 
2 
− 𝑎 

)√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 ̇𝑢 ,𝑥 

] 

𝑑 𝑥𝑑 𝑦 (22) 

 𝑒𝑥𝑡 = 𝑐𝑜𝑠𝑡 

[ 

∫𝑦 ∫𝑥 

𝑢 𝑇 Ω𝑦 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 ̇𝑢 + 𝑢 𝑇 Ω2 𝑦 2 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 𝑢 ,𝑥 𝑑 𝑥𝑑 𝑦 

+ ∫𝑦 ∫𝑥 

𝑢 𝑇 Ω𝑦 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐼 𝐿 𝑏 

( 1 
2 
− 𝑎 

)
𝑢̇ ,𝑥 𝑑 𝑥𝑑 𝑦 

] 

(23) 

here, ℎ̇ = 𝑢̇ 𝑧 𝛼 = 

𝑑𝑢 𝑧 

𝑑𝑥 
= 𝑢 𝑧,𝑥 𝛼̇ = 𝑢̇ 𝑧,𝑥 , 𝑐 𝑜𝑠𝑡 = 

2 𝜋 𝐴𝑅 𝑐𝑜𝑠 (Λ) 
𝜋 𝐴𝑅 +2 𝜋 𝑐𝑜𝑠 (Λ) 𝜌𝑎 𝑈𝑐 ( 𝑘 ) and

 𝐿 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 0 0 

0 0 0 

0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. 

. EoM in CUF framework 

The kinetic, potential energy and external loads can be derived in

he CUF framework (i.e. Fundamental nucleus form). The EoM for the

heodorsen’s and Loewy lift function can be expressed as: 

𝑡 1 

𝑡 0 

( 𝛿𝑞 𝑇 
𝜏𝑖 
𝑀 

𝑖𝑗𝜏𝑠 
𝑠 

𝑞 𝑠𝑗 + 𝛿𝑞 𝑇 
𝜏𝑖 
𝐷 

𝑖𝑗𝜏𝑠 

𝑇 𝑇 ∕ 𝐿𝑇 
𝑞̇ 𝑠𝑗 + 𝛿𝑞 𝑇 

𝜏𝑖 
𝐾 

𝑖𝑗𝜏𝑠 

𝑇 𝑇 ∕ 𝐿𝑇 
𝑞 𝑠𝑗 + 𝛿𝑞 𝑇 

𝜏𝑖 
𝐹 𝑖𝜏Ω 𝑟 ) 𝑑𝑡 = 0 

(24) 

here, 𝑀 

𝑖𝑗𝜏𝑠 
𝑠 and 𝐹 𝑖𝜏Ω are stands for mass matrix and force vector.

hereas subscript ‘ 𝑇 𝑇 ’ and ‘ 𝐿𝑇 ’ of 𝐷 

𝑖𝑗𝜏𝑠 and 𝐾 

𝑖𝑗𝜏𝑠 are Theodorsen’s and

oewy function including the structural and aerodynamic contributions.

The terms associated with subscript ‘ 𝑇 𝑇 ’ and ‘ 𝐿𝑇 ’ of Eq. 24 can be

xpressed as: 

𝐷 

𝑖𝑗𝜏𝑠 

𝑇𝑇 
= 𝐷 

𝑖𝑗𝜏𝑠 

𝑎𝑇 
+ 𝐷 

𝑖𝑗𝜏𝑠 

𝑚𝑇 

 

𝑖𝑗𝜏𝑠 

𝑇𝑇 
= 𝐾 

𝑖𝑗𝜏𝑠 
𝑠 

+ 𝐾 

𝑖𝑗𝜏𝑠 

𝑎𝑇 
(25) 

𝐷 

𝑖𝑗𝜏𝑠 

𝐿𝑇 
= 𝐷 

𝑖𝑗𝜏𝑠 

𝑎𝐿 
+ 𝐷 

𝑖𝑗𝜏𝑠 

𝑚𝐿 
+ 𝐷 

𝑖𝑗𝜏𝑠 

Ω

 

𝑖𝑗𝜏𝑠 

𝐿𝑇 
= 𝐾 

𝑖𝑗𝜏𝑠 
𝑠 

+ 𝐾 

𝑖𝑗𝜏𝑠 

𝑎𝐿 
+ 𝐾 

𝑖𝑗𝜏𝑠 

Ω + 𝐾 

𝑖𝑗𝜏𝑠 
𝜎0 

(26) 

here, subscript ‘ 𝑎.. ’ and ‘ 𝑚.. ’ are aerodynamic contributions. All param-

teres of EoM are written below in the form of fundamental nucleus: 

 

𝑖𝑗𝜏𝑠 
𝑠 

= 𝐼 
𝑖𝑗 

𝑙 ∫𝐴 

( 𝐹 𝜏𝜌𝐼𝐹 𝑠 ) 𝑑𝐴 (27)

 

𝑖𝜏
Ω = 𝐼 𝑖 

𝑙 𝑦 
⊲ 𝐹 𝜏𝜌𝑟 ⊳Ω𝑇 Ω (28)

 

𝑖𝑗𝜏𝑠 
𝑠 

= 𝐼 
𝑖𝑗 

𝑙 
⊲𝐷 

𝑇 
𝑛𝑝 
( 𝐹 𝜏𝐼 )[ ̃𝑐 𝑘 𝑛𝑝 𝐷 𝑝 ( 𝐹 𝑠 𝐼 ) + 𝑐 𝑘 

𝑛𝑛 
𝐷 𝑛𝑝 ( 𝐹 𝑠 𝐼 )] 

+ 𝐷 

𝑇 
𝑝 
( 𝐹 𝜏𝐼 )[ ̃𝑐 𝑘 𝑝𝑝 𝐷 𝑝 ( 𝐹 𝑠 𝐼 ) + 𝑐 𝑘 

𝑛𝑝 
𝐷 𝑛𝑝 ( 𝐹 𝑠 𝐼)] ⊳

+ 𝐼 
𝑖𝑗, 𝑦 

𝑙 
⊲ [ 𝐷 

𝑇 
𝑛𝑝 
( 𝐹 𝜏𝐼) + 𝐷 

𝑇 
𝑝 
( 𝐹 𝜏𝐼) ̃𝑐 𝑘 𝑝𝑛 ] 𝑓 𝑠 ⊳ + 𝐼 𝐴𝑦 

+ 𝐼 
𝑖, 𝑦 𝑗 

𝑙 
𝐼 𝑇 
𝐴𝑦 

⊲ 𝐹 𝜏 [ ̃𝑐 𝑘 𝑛𝑝 𝐷 𝑝 ( 𝐹 𝑠 𝐼) + 𝑐 𝑘 
𝑛𝑛 
𝐷 𝑛𝑝 ( 𝐹 𝑠 𝐼)] ⊳

+ 𝐼 
𝑖, 𝑦 𝑗, 𝑦 

𝑙 
𝐼 𝑇 
𝐴𝑦 

⊲ 𝐹 𝜏 𝑐 
𝑘 
𝑛𝑝𝑛 

𝐹 𝑠 ⊳ (29) 
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Table 1 

Geometrical and material properties for rectangular beams. 

Beam 1 Beam 2 Beam 3 Beam 4 

Isotropic 6-layer 8-layer 6-layer 

Dimensions (mm) chord ( 𝑐) 25.4 76.2 76.2 76.2 

thickness ( 𝑡 ) 1.6002 0.804 ∗ 0.804 ∗ 0.804 ∗ 

length ( 𝑙) 444.5 305 305 402 

rotor hub ( 𝑅 ℎ ) 63.5 𝑅 ℎ 
∗ ∗ 0 0 

Material Properties 

(GPa, Kg/m 

3 ) 

𝐸 11 68.9 98 144.8 144.8 

𝐸 22 = 𝐸 33 7.9 9.65 9.65 

𝜈12 0.3 0.28 0.3 0.3 

𝜈13 = 𝜈23 0.28 0.3 0.3 

𝐺 23 5.6 3.45 3.45 

𝐺 12 = 𝐺 13 5.6 4.14 4.14 

𝜌 2713 1520 1389.23 1389.23 

Note: ∗ total thickness of all layers, ∗ ∗ variable parameter 

Fig. 3. Comparisons of frequencies of rotating Beam 1. 

Table 2 

Natural frequencies ( 𝐻𝑧 ) for Beam 2 (6-layers) with lamination [45∕90∕0] 𝑠 . 

Model 𝑓 𝑛 1 𝑓 𝑛 2 𝑓 𝑛 3 𝑓 𝑛 4 𝑓 𝑛 5 𝑓 𝑛 6 𝑓 𝑛 7 𝑓 𝑛 8 

TE2 4.78 29.59 64.41 83.04 164.33 196.62 277.46 341.60 

TE3 4.76 29.51 56.91 82.80 162.94 173.24 270.69 298.45 

TE4 4.76 29.42 56.74 82.34 161.75 172.08 268.72 294.29 

LE (1L9) 4.77 29.53 56.91 82.87 163.03 173.29 270.79 298.56 

LE (2L9) 4.76 29.45 56.77 82.48 162.10 172.14 269.31 294.46 

LE (2L9) 4.76 29.43 56.70 82.39 161.88 171.94 268.93 294.02 
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𝐷 

𝑖𝑗𝜏𝑠 

𝑎𝑇 
= 𝑐𝑜𝑠𝑡 𝐼 

𝑖𝑗 

𝑙 ∫
𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 

𝐷 

𝑖𝑗𝜏𝑠 

𝑚𝑇 
= 𝑐𝑜𝑠𝑡 𝐼 

𝑖𝑗 

𝑙 
𝑏 

(1 
2 
− 𝑎 

)
∫

𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏,𝑥 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 

 

𝑖𝑗𝜏𝑠 

𝑎𝑇 
= 𝑐𝑜𝑠𝑡 𝐼 

𝑖𝑗 

𝑙 ∫
𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏,𝑥 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 (30) 

𝐷 

𝑖𝑗𝜏𝑠 

𝑎𝐿 
= 𝑐𝑜𝑠𝑡 Ω 𝐼 

𝑖𝑗 

𝑙 𝑦 ∫
𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 

𝐷 

𝑖𝑗𝜏𝑠 

𝑚𝐿 
= 𝑐𝑜𝑠𝑡 Ω 𝐼 

𝑖𝑗 

𝑙 𝑦 
𝑏 

(1 
2 
− 𝑎 

)
∫

𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏,𝑥 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 

𝐷 

𝑖𝑗𝜏𝑠 

Ω = 2Ω 𝐼 
𝑖𝑗 

𝑙 ∫𝐴 

( 𝐹 𝜏𝜌𝐼𝐹 𝑠 ) 𝑑𝐴 

 

𝑖𝑗𝜏𝑠 

𝑎𝐿 
= 𝑐𝑜𝑠𝑡 Ω2 𝐼 𝑖𝑗 

𝑙 
𝑦 2 ∫

𝑏 𝑐 

− 𝑏 𝑐 

√ 

𝑏 𝑐 − 𝑥 

𝑏 𝑐 + 𝑥 
𝐹 𝜏,𝑥 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝐼 𝐿 𝐹 𝑠 ( 𝑥, 𝑧 𝑡𝑜𝑝 ) 𝑑𝑥 

 

𝑖𝑗𝜏𝑠 

Ω = Ω𝑇 Ω 𝐼 
𝑖𝑗 

𝑙 ∫𝐴 

( 𝐹 𝜏𝜌𝐼𝐹 𝑠 ) 𝑑𝐴 

 

𝑖𝑗𝜏𝑠 
𝜎0 

= Ω𝑇 Ω 𝐼 
𝑖, 𝑦 𝑗, 𝑦 

𝑙𝜎0 ∫𝐴 

( 𝐹 𝜏𝜌𝐼𝐹 𝑠 ) 𝑑𝐴 (31) 

here, ⊲.... ⊳ = ∫
𝐴 
.... 𝑑𝐴 

 𝐼 
𝑖𝑗 

𝑙 
, 𝐼 

𝑖𝑗, 𝑦 

𝑙 
, 𝐼 

𝑖, 𝑦 𝑗 

𝑙 
, 𝐼 

𝑖, 𝑦 𝑗, 𝑦 

𝑙 
, 𝐼 

𝑖𝑗 

𝑙 𝑦 
, 𝐼 

𝑖𝑗 

𝑙 
𝑦 2 
, 𝐼 

𝑖, 𝑦 𝑗, 𝑦 

𝑙𝜎0 
) = ∫𝑙 

( 𝑁 𝑖 𝑁 𝑗 , 𝑁 𝑖 𝑁 𝑗, 𝑦 
, 𝑁 𝑖, 𝑦 

𝑁 𝑗 , 𝑁 𝑖, 𝑦 
𝑁 𝑗, 𝑦 

, 

𝑦𝑁 𝑖 𝑁 𝑗 , 𝑦 
2 𝑁 𝑖 𝑁 𝑗 , 𝜎0 𝑁 𝑖, 𝑦 

𝑁 𝑗, 𝑦 
) 𝑑𝑦 

(32) 

he EoM can be written in quadratic eigenvalue problem by assuming

 periodic solution 𝑞 = 𝑞 𝑒 𝑖𝜔𝑡 : 

 ̈𝑞 + 𝐷 𝑇 𝑇 ∕ 𝐿𝑇 𝑞̇ + 𝐾 𝑇 𝑇 ∕ 𝐿𝑇 𝑞 = 0 (33) 

ince matrices of aerodynamic contributions have dependency on the

educed frequency hence an iterative approach is required to calcu-

ate the flutter condition. Incorporating the iterative approach Hassig

40] proposed the p-k methed to solve the flutter problem. The general

nd simplified [41] forms of p-k are given below 

 ( 

𝑉 ∞
𝑐 𝑚 

) 2 
[ 𝑀 𝑠 ] 𝑝 2 + [ 𝐾 𝑠 ] − 

1 
2 
𝜌𝑉 2 ∞[ 𝐴 ( 𝑝 )] 

] 

{ 𝑞} = 0 (34)

 

[ 𝑀 𝑠 ] 𝑝 2 + 

( 

[ 𝐵 𝑠 ] − 

1 
4 
𝜌𝑐𝑉 ∞

[ 𝑄 

𝐼 
𝑎 
] 

𝑘 

) 

𝑝 + [ 𝐾 𝑠 ] − 

1 
2 
𝜌𝑉 2 ∞[ 𝑄 

𝑅 
𝑎 
] 

] 

{ 𝑞} = 0 (35)

here, [ 𝐴 ( 𝑝 )] [ 𝑄 

𝐼 
𝑎 
] and [ 𝑄 

𝑅 
𝑎 
] are aerodynamic contribution, imaginary

nd real part respectively. The value of reduced frequncy ( 𝑘 ) is differ

or Theodorsen’s and Loewy theory. 

. Results and discussion 

A Fortran-based FEM code has been developed to obtain the flut-

er conditions of rotary composite structures. Firstly, isotropic and or-

hotropic rotary structures were considered for free vibration analysis,

nd comparison studies performed with available literature. The flut-

er analysis of the fixed beam structures has also been performed to

erify the proposed model. Theodorsen’s aerodynamic lift function is

sed to apply the aerodynamic forces on the structure. The engineering

olution has been obtained using the p-k method. After analyzing the

xed beam model, the rotary beam model has also been analyzed using

uasi-steady, Theodorsen’s theory, and Lowey’s theory. The Lagrange-

nd Taylor-like expansion is used to define the kinematics fields of a

aminated structural model. Moreover, different rotor hub radius and ar-

itrary lamination sequences are considered for the rotary beam model

o compute the flutter conditions. 
5 
.1. Free vibration analysis 

The rectangular beam models given in Table 1 are considered for

he free vibration analysis. Beam 1 is made of isotropic (aluminum) and

eam 2 made of 6-layers orthotropic materials with lamination sequence

45∕90∕0] 𝑠 . Various Lagrange elements (1L9, 2L9 etc.) and different or-

er of Taylor-expansion (TE2, TE4, etc.) used to compute the natural

requency of structural models and cross-sectional elements are shown

n Fig. 1 . The results obtained for Beam 1 are compared with the 3D

eam model [42] and the first 8-modes of frequencies are shown in

ig. 3 with respect to rotational speed. The convergence study has been

one for both models; Taylor expansion (TE) was refined by increas-

ng the order of expansion and Lagrange expansion (LE) by increase the

umber of elements (along the chord). It is observed that third-order of

aylor expansion (TE3) and one nine-noded Lagrange elements (1L9)

tructural models are best-suited results with the reference. The natural

requencies for the orthotropic beam with the structural model (TE and

E) are reported in Table 2 . The first 8-modes of natural frequencies of

he TE model are shown in Fig. 4 a. It is observed that TE4 is the best-

uited model among the other TE models. Moreover, the LE model is
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Fig. 4. Frequencies vs rotational speed for Beam 2 with lamination [45∕90∕0] 𝑠 . 
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Table 3 

Flutter velocities (m/s) for fixed beam model. 

Present Refrence [43] 

Beam Lamination 3L9 TE4 Ana. Exp. 

1 124.5 125.7 

2 [30 2 ∕0] 𝑠 27.5 26.8 27.8 27 

[45 2 ∕0] 𝑠 28.2 27.3 27.8 28 

[30∕60∕90] 𝑠 27.2 26.2 

[45∕90∕00] 𝑠 30.4 29.3 

Fig. 5. Flutter diagram for Beam 3 (3L9, 𝑅 ℎ = 45 . 75 𝑚𝑚 ) with lamination 

[45∕90∕00] 𝑠 . 
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ompared with the TE4 in Fig. 4 b and the comparison shows that the

L9 model enables to compute the natural frequencies as a higher-order

odel of TE4. 

.2. Flutter analysis 

Initially, isotropic (Beam 1) and orthotropic (Beam 2) rectangular

xed beams are considered for the flutter analysis. The geometrical and

aterial properties are given in Table 1 . The flutter condition computed

sing the p-k method in the CUF framework. Theodorsen’s aerodynamic

odel was used with structural models (LE and TE) for predicting flut-

er conditions. Structural models are considered based on the conver-

ence studies performed for free vibration analysis. Various lamination

equences [30 2 ∕0] 𝑠 , [45 2 ∕0] 𝑠 [30∕60∕90] 𝑠 , and [45∕90∕0] 𝑠 are considered

or Beam 2. The flutter velocity for the both isotropic and orthotropic

odel are reported in Table 3 . The results obtained for lamination se-

uence [30 2 ∕0] 𝑠 , and [45 2 ∕0] 𝑠 are compared with the analytical and ex-

erimental results [43] , and good agreement is observed. After verifying

he proposed CUF model for the free vibration analysis of the rotating

eam and flutter analysis of the fixed beam model, the authors assume

hat the proposed CUF model can predict flutter conditions accurately

or the rotary beam model. 
6 
The flutter analysis of rotary structure is performed for Beam 2,

hich has 6-layers symmetric laminate [45∕90∕0] 𝑠 . The Lagrange expan-

ion (LE) and Taylor expansion (TE) used to define the kinematic fields

f the structure. The flutter conditions for both structural models are ob-

ained using quasi-steady (ST), Theodorsen’s theory (TT), and Loewy’s

heory (LT). For LT analysis, the number of blades and the inflow ra-

io ( 𝜆0 ) has been assumed equal to 4 and 0.05, respectively. Different

adius values considered for rotor hub ( 𝑅 ℎ ) to compute the flutter veloc-

ties ( Ω𝐹 ) and flutter frequencies ( 𝑓 𝐹 ), results are reported in Table 4 .

he flutter diagram (rotational velocity vs. frequency and damping) for

he 3L9 model using ST is shown in Fig. 5 . It is observed that flutter

onditions vary with the radius of the rotor hub and LT is best suited

mong all aerodynamic models. Also, observed that TE4 and 3L9 are the

ost accurate among all structural models. 
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Table 4 

Flutter velocity (rpm) and frequencies (Hz) for Beam 3 with lamination [45∕90∕0] 𝑠 . 

2L9 3L9 TE3 TE4 

𝑅 ℎ ( 𝑚𝑚 ) Theory Ω𝐹 𝑓 𝐹 Ω𝐹 𝑓 𝐹 Ω𝐹 𝑓 𝐹 Ω𝐹 𝑓 𝐹 

0 ST 1411.4 43.50 1379.9 42.84 1430.5 43.88 1392.3 43.10 

TT 1437.2 42.70 1403.7 42.04 1457.2 43.09 1420.9 42.25 

LT 1152.6 48.50 1144.0 47.99 1162.1 48.83 1146.9 48.18 

45.75 ST 1426.7 44.33 1374.1 43.26 1411.4 43.50 1388.5 43.54 

TT 1431.4 43.12 1398.0 42.54 1451.5 43.65 1412.3 42.83 

LT 1303.5 46.92 1279.6 46.27 1320.7 47.29 1290.1 46.56 

91.5 ST 1401.8 44.50 1370.3 43.83 1422.8 44.92 1384.6 44.12 

TT 1426.7 43.84 1394.2 43.15 1447.7 44.28 1408.5 43.45 

LT 1294.9 47.07 1271.0 46.44 1311.1 47.46 1281.5 46.72 

Fig. 6. Polar plot of flutter velocity (rpm) for 

Beam 5 with arbitrary lamination [ 𝜃∕2 𝜃∕0] 𝑠 . 

Table 5 

Flutter velocity (rpm) and frequency (Hz) for Beam 4 (8-layers) with 

lamination [−22 . 5∕67 . 5∕22 . 5∕ − 67 . 5] 𝑠 . 

ST TT LT 

Model Ω𝐹 𝑓 𝐹 Ω𝐹 𝑓 𝐹 Ω𝐹 𝑓 𝐹 

2L9 1671.1 54.61 1712.2 53.70 1497.3 58.52 

3L9 1632.9 53.94 1673.0 53.00 1469.6 57.90 

TE3 1692.1 55.01 1734.2 54.11 1511.7 58.91 

TE4 1650.1 54.25 1691.2 53.31 1482.1 58.20 
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Table 6 

Flutter velocity (rpm) for Beam 5 (6-layers) with lamination [ 𝜃∕2 𝜃∕0] 𝑠 . 

𝜃

Theory Model 0 ◦ 15 ◦ 30 ◦ 45 ◦ 60 ◦ 75 ◦ 90 ◦

ST 3L9 439.2 681.8 801.1 784.9 961.6 784.0 421.1 

TE4 448.8 689.4 808.8 790.6 970.2 792.5 424.9 

TT 3L9 451.6 692.3 813.6 803.1 995.0 771.5 432.5 

TE4 455.5 700.9 821.2 809.7 1004.6 774.4 437.3 

LT 3L9 406.8 650.3 722.8 751.5 882.3 580.6 386.7 

TE4 409.6 656.9 725.7 757.2 889.9 592.0 389.6 
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In addition, flutter analysis is performed for rotary Beam 3 with irreg-

lar plies. The structure assumed have an 8-layers symmetric laminate

−22 . 5∕67 . 5∕22 . 5∕ − 67 . 5] 𝑠 with irregular plies thickness 0.037, 0.048,

.064 and 0.253 mm respectively. The flutter conditions obtained for

tructural models (LE and TE) using quasi-steady and unsteady theories

re reported in Table 5 . It is observed that TE4 and 3L9 structural mod-

ls prove to be best suited to predict the flutter conditions, while LT is

est suited among all aerodynamic models. 

Moreover, the arbitrary value of 𝜃 considered to analyze the flut-

er conditions for Beam 4, which has 6-layers symmetric laminate

 𝜃∕2 𝜃∕0] 𝑠 . The flutter velocities have been computed using quasi-steady

nd unsteady theories for refined TE and LE models, which are taken

ased on the previous analysis. Firstly, the variation range of 𝜃 has been

onsidered between 0 ◦ to 90 ◦ to compute the flutter velocities for both

E and LE models. The flutter velocities are reported in Table 6 , and the

olar plot for both quasi-steady and unsteady theories for the LE model
7 
s shown in Fig. 6 a. For a given range of 𝜃, LT results are best suited re-

ults compared to others. The comparison between the LE and TE model

or LT is shown in Fig. 6 b. Where results obtained from both TE and LE

odels are close to each other. The variation range of 𝜃 has been ex-

ended from 90 ◦ to 180 ◦ to compute the flutter velocities for TE4. The

utter velocities obtained using the quasi-steady and unsteady theories,

nd the polar plot for the range of 0 ◦ to 180 ◦ is shown in Fig. 7 . The ob-

ained results indicate that the LT could predict good flutter conditions

n comparison to the others. 

. Conclusion 

Flutter analysis of rotary wings has been analyzed using unsteady

erodynamics theories and refined beam theories based on Carrera

nified Formulation (CUF). The p-k method was implemented in the

UF framework to obtain the engineering solution of flutter conditions.
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Fig. 7. Polar plot of flutter velocity (rpm) for Beam 5 (TE4) with arbitrary lam- 

ination [ 𝜃∕2 𝜃∕0] 𝑠 . 
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agrange elements have also been considered for cross-section dis-

retization in CUF. The numerical simulation and convergence stud-

es have been performed for the proposed model. The model was also

erified through the free vibration analysis of rotary-beam and flutter

nalysis of Fixed-beam. It is found that the present results have a good

greement with the literature. The flutter analysis of rotary-wing was

erformed considering the various rotor hub, lamination sequence,s and

ifferent structural models in CUF using the quasi-steady, Theodorsen,

nd Loewy theories. The obtained results indicated that the lamina-

ion sequence and rotor hub could influence the flutter condition. The

resent study suggests that the proposed CUF models are enabled to pre-

ict the accurate flutter condition as a 3D solution in a computationally

nd economically efficient manner. In future work, CUF can be used for

erodynamic analysis of swept-wing and forward-flight with complex

tructural and nonlinearities. 
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