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Abstract: The present paper assessed the use of variable kinematic two-dimensional elements in
the dynamic analysis of Lamb waves propagation in an isotropic plate with piezo-patches. The
multi-field finite element model used in this work was based on the Carrera Unified Formulation
which offers a versatile application enabling the model to apply the desired order theory. The used
variable kinematic model allowed for the kinematic model to vary in space, thereby providing the
possibility to implement a classical plate model in collaboration with a refined kinematic model
in selected areas where higher order kinematics are needed. The propagation of the symmetric
(S0) and the antisymmetric (A0) fundamental lamb waves in an isotropic strip was considered in
both mechanical and piezo-elastic plate models. The convergence of the models was discussed for
different kinematics approaches, under different mesh refinement, and under different time steps.
The results were compared to the exact solution proposed in the literature in order to assess and
further determine the effects of the different parameters used when dynamically modeling a Lamb
wave propagating in such material. It was shown that the higher order kinematic models delivered a
higher accuracy of the propagating wave evaluated using the corresponding Time Of Flight (TOF).
Upon using the appropriate mesh refinement of 2000 elements and sufficient time steps of 4000 steps,
the error between the TOF obtained analytically and numerically using a high order kinematics was
found to be less than 1% for both types of fundamental Lamb waves S0 and A0. Node-dependent
kinematics models were also exploited in wave propagation to decrease the computational cost and
to study their effect on the accuracy of the obtained results. The obtained results show, in both the
mechanical and the piezo-electric models, that a reduction in the computational cost of up to 50% can
be easily attained using such models while maintaining an error inferior to 1%.

Keywords: plate models; Carrera Unified Formulation; Lamb wave; piezo-patch; node-dependent
kinematics

1. Introduction

Unlike Rayleigh waves, or surface acoustic waves that propagate close to the free
surface of a structure with a penetration of the order of the wavelength, guided waves are
a type of elastic waves that propagate in a thin plate or shell-like structure and remain
confined within the boundaries of that structure—hence the term guided. The propagation
of ultrasonic guided waves was first described in the work of the mathematician Horace
Lamb [1], after which [2,3] published an extensive theory on such waves. This type
of wave is characterized by its ability to travel over large distances with little energy
loss, highlighting their desirability and suitability to be used in non-destructive health
monitoring applications, specifically in the ultrasonic inspection of structures. Guided
waves are classified into two distinguishable types, the shear horizontal (SH) type, and the
Lamb waves which are also referred to as guided plate waves as they are guided by the
free parallel upper and lower surfaces of the plate.
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The difference between the two is in the particle motion of the propagating wave.
The SH are horizontally polarized, and the shear-particle motion is contained within the
horizontal plane (parallel to the plate surface) perpendicular to the direction of wave
propagation, whereas Lamb waves are vertically polarized, and the particle motion is
elliptical, contained in the plane determined by the direction of the propagating waves and
the normal direction of the plate [4]. Both types of waves can be classified into symmetric
and antisymmetric waves, and except for the fundamental symmetric mode of SH waves,
all other wave modes are of a dispersive nature, meaning that the group velocity depends
on the frequency of the propagating wave. In SH waves, the fundamental symmetric
mode can be found at all frequencies, and every other mode has a critical frequency Wcr
at which it appears together with the previous modes. In Lamb waves on the other hand,
and for a low frequency-thickness f .d coefficient, both fundamental modes S0 and A0
can be seen. As this coefficient increases, other modes start appearing and propagating
simultaneously, depending on the dispersion curves of the material at hand. As f .d→ ∞,
the symmetric and antisymmetric modes degenerate into Rayleigh waves, as the thickness
becomes comparable and greater than a wavelength, see Figure 1. On the other hand, as
f .d→ 0, the S0 mode vanishes to an axial or longitudinal wave, and the A0 mode vanishes
to a plate flexural wave [4]. It is of interest to carry out the study at low frequencies, due to
the lower dispersion of S0 and A0 modes at such frequencies and the lower complexity of
the problem due the ability to excite a specific mode [5].
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Figure 1. Frequency dependence of wave velocities for axial, flexural, Lamb, and Rayleigh waves in
1-mm thick aluminium plate.

In addition to the characteristics of the guided waves above, and due to their trans-
mission, reflection, scattering and absorption, they are used in damage detection in the
structures. Guided waves, and especially Lamb waves, were used to identify damages
of metallic structures, such as fatigue crack and corrosion, damage orientation and to
estimate the remaining useful life (RUL) [6–8]. A comprehensive review about the use of
guided waves in structural health monitoring (SHM) and damage detection of metallic
structures was performed [9]. The detection and identification of the different damages in
composite materials, fiber and matrix cracking, delamination and voids, through the use
of these waves was also studied in the literature despite the attenuation of these waves
in fiber reinforced composites. Using Lamb waves, the real-time delamination damage
detection of different damage severities was experimentally studied by [10], accompanied
by a numerical FEM model to detect different localized damages. Fatigue induced de-
lamination, transverse ply crack and hole damages were studies by [11], whereas turning
modes due to delamination were experimentally and numerically studied using A0 Lamb
mode in [12]. A novel ultrasonic-based Lamb wave technique was proposed by [13], which
could provide more information, being more sensitive to the local effects of damage in a
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material. Damage localization and identification using circular defects were experimentally
and numerically studied by [14], implementing two Matlab algorithms under different
fiber orientations. On the other hand, hole damage localization was experimentally studied
in [15], adopting the power spectral density method and Lamb wave tomography which
could be used under a high noise environment. A review on the identification of damage in
composite structures using guided waves was established by [16]. The complexity of using
Lamb waves lies in the dispersive nature, multi-modal excitation and mode conversion
which make it difficult to analyse the signals and to identify the damage [17]; thus, it is
essential to specify a frequency which identifies the problem requirements, around which
the narrowband excitation can be implemented, favouring the use of a windowed tone
burst over pulse excitation.

Guided Waves can be excited using different means, which are grouped into five
different categories of sensors/actuators [16], namely an ultrasonic probe, laser, piezoelec-
tric element, interdigital transducer (PVDF and other novel PVDF-like transducers), and
optical fiber. The use of piezoelectric transducers is most widely implemented due to the
wide range of advantages delivered, from the high performance, suitability for embedding
and integration, negligible mass and dimensions, high mechanical strength with wide
frequency response and their low price, to name a few. These transducers can be used to
excite symmetric and antisymmetric Lamb waves, when their polarization is along the
direction of the applied electric field, denoted by d13 or d33 transducers. They can also
be used to excite shear horizontal waves (SH) if they are polarized in a perpendicular
direction to the applied electric field signal, denoted by d15 transducers. The use of d13
and d33 transducers has been widely researched, however, recent studied have focused on
using shear transducers due to the higher coupling coefficients in shear excitation, and
due to the mono-excitation direction [18,19]. On the other hand, Ref. [20] studied the
antisymmetric Lamb wave excitation of a shear-deforming PZT embedded at the neutral
axis. They also carried out a parametric study to evaluate the effects of offsetting the
actuator from the neutral axis, which resulted in the actuation of both antisymmetric and
symmetric waves. Ref. [21] proposed a new d36 wafer type, and studied the generated
guided waves in comparison with the traditional d13 actuator.

The numerical modelling of propagating Lamb waves has been demonstrated in the
literature by many studies [22–26], in which commercial FEMs were extensively used (i.e.,
Ansys, Abaqus, Comsol, etc.) as a verification of the experimental results. The models
obtained have a high computational cost as it is essential to use a 3-D solid element to
model the transducers and the structures in order to obtain a good model. It is possible to
reduce the computational cost by adopting the effective material properties in a laminated
structure, or by adopting a shell model, to acquire displacements, and neglecting the
inter-laminar stresses [27]. For example, Abaqus uses 3-D shell (S4R) elements by applying
the Mindlin–Reissner plate theory. This allows for the rotation of the normal to the plate,
favouring the non- orthogonality of these normal lines to the mid-plane after deformation,
allowing for transverse shear deformation effects. In [28], the attenuation of lamb waves
in composite materials was modelled by introducing a damping coefficient, specifically
Rayleigh damping.

In order to better describe the propagating waves, higher order beam and plate theo-
ries were implemented in transient analysis [29–32]. A comparison between the different
higher order models was provided by [33], where the accuracy of each model was assessed
according to different discretization schemes. The benchmark proposed in their study was
adopted in the current work, where a similar but extensive comparison was carried out,
using plate models with different kinematics through-the-thickness, comparing the effect
of mesh density, time step, model kinematics and plate element type. The used numerical
model is the in-house MUL2 FE implicit dynamic model, based on the Carrera unified
formulation (CUF). An aluminium strip was modelled, and unidirectional wave propaga-
tion along the length of the strip was carried out. Both mechanical and electromechanical
models were used as the propagating wave was excited in two different ways, mechanically
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applying nodal forces and electrically applying an electric potential. The novelty of this
work, besides the extensive convergence analyses of the 2-D mechanical and the proposed
electro-mechanical models is that a Node-dependent Kinematics approach was considered
to study the wave propagation using reduced local kinematics models with a reduced
computational time.

2. Refined Two-Dimensional Electro-Mechanical Model
2.1. Preliminaries

The general 4× 1 generalized unknowns vector q for an electro-mechanical model,
taking the electric potential φ as a primary variable, can be written as follows:

q = {ux, uy, uz, φ}T (1)

The 3× 1 electric field vector E can be derived as follows:

E = {Ex, Ey, Ez}T = {∂x, ∂y, ∂z}Tφ (2)

The generalized 9× 1 strain vector, ε̄, can be written as follows:

ε̄ = {εxx, εyy, εzz, εxz, εyz, εxy, Ex, Ey, Ez}T = Dq (3)

where the matrix of the differential operator D is a 9× 4 matrix given by:

D =



∂
∂x 0 0 0
0 ∂

∂y 0 0
0 0 ∂

∂z 0
∂
∂z 0 ∂

∂x 0
0 ∂

∂z
∂

∂y 0
∂

∂y
∂

∂x 0 0
0 0 0 ∂

∂x
0 0 0 ∂

∂y
0 0 0 ∂

∂z


(4)

The coupled constitutive equations (stress-charge form or e-form) can be expressed by:

σ = CEε− eTE

De = eε + χSE
(5)

where σ is the 6 × 1 mechanical stress vector, C the 6 × 6 matrix of mechanical material
coefficients, and ε is the 6 × 1 strain vector, expressed as follows:

ε = {εxx, εyy, εzz, εxz, εyz, εxy}T = Du (6)

with De being the 3 × 1 electric displacement vector, χ the 3 × 3 permittivity matrix,
and e the 3 × 6 piezoelectric coupling matrix. The superscripts E and S denote that the
corresponding quantities are evaluated under constant electric field and strain, respectively,
while the superscript T denotes the transpose of a matrix.

The general compact form of Equation (5) can be expressed as follows:

σ̄ = H̃ ε̄ (7)

which explicitly can be expressed as in Equation (8)
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σxx
σyy
σzz
σxz
σyz
σxy
Dex

Dey

Dez


=



CE
11 CE

12 CE
13 0 0 CE

16 −e11 −e21 −e31
CE

21 CE
22 CE

23 0 0 CE
26 −e12 −e22 −e32

CE
31 CE

32 CE
33 0 0 CE

36 −e13 −e23 −e33
0 0 0 CE

44 CE
45 0 −e14 −e24 −e34

0 0 0 CE
54 CE

55 0 −e15 −e25 −e35
CE

61 CE
62 CE

63 0 0 CE
66 −e16 −e26 −e36

e11 e12 e13 e14 e15 e16 χS
11 χS

12 0
e21 e22 e23 e24 e25 e26 χS

21 χS
22 0

e31 e32 e33 e34 e35 e36 0 0 χS
33





εxx
εyy
εzz
εxz
εyz
εxy
Ex
Ey
Ez


(8)

For more information about the two-dimensional electromechanical model, refer
to [34].

2.2. Plate Elements with Higher Order Kinematics

Refined two-dimensional plate electro-mechanical models are presented in this section.
The reference coordinate system is as shown in Figure 2. Plate models in the mechanical
case can be refined using the CUF by expanding a generic function Fτ(z) defined to the
thickness of the plate, resulting in the following expression:

q = Fτ(z)qτ(x, y) τ = 0, · · · , N. (9)

where N represents the number of expansion terms. q = {u, v, w, φ}T is the generalized
displacement vector, and qτ(x, y) is the planar unknown vector defined on the neutral
plane of the plate.

z

x

y

Figure 2. Geometry and reference system of a 2D plate model.

Various theories can be used when defining the through-the-thickness functions Fτ(z).
In the analysis of multi-layered structures, Equivalent Single Layer (ESL) approaches use
Taylor-like expansions, while Layer-Wise (LW) models adopt Lagrange-type expansions.
When CUF-based functions are applied to the thickness to formulate the plate elements, the
inplane solution qτ(x, y) can be approximated by the Lagrangian shape functions Ni(x, y)
as follows:

q = Ni(x, y)Fτ(z)qiτ(x, y)

τ = 0, · · · , N; i = 1, · · · , M.
(10)

where Fτ represent the node kinematics of a plate element.

2.2.1. Taylor Expansions (TE)

Taylor series are used to build the through-the-thickness functions Fτ(z) of TE-type
kinematics, where the series are taken as zm (where m is a positive integer). For example,
the displacement field based on the third-order TE expansions can be expressed as:

u = F1u1 + F2u2 + F3u3 + F4u4

v = F1v1 + F2v2 + F3v3 + F4v4

w = F1w1 + F2w2 + F3w3 + F4w4

φ = F1φ1 + F2φ2 + F3φ3 + F4φ4

(11)
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where Fτ holds the following terms:

F1 = 1, F2 = z,

F3 = z2, F4 = z3 (12)

In this Framework, “TEn” refers to kinematics based on Taylor series, where n indicates
the highest order of the adopted polynomial. Classical Plate Theory (CPT) and First-order
Shear Deformation Theory (FSDT) can be treated as a particular case of a TE model, with
the terms n = −1 and 0, respectively.

2.2.2. Lagrange Expansions (LE)

LE-type kinematics can be constructed by using Lagrange interpolation polynomials
as the through-the-thickness functions. Taking the Lagrange interpolation polynomials on
the top and bottom points of a linear element (B2) as an example, the expansion can be
expressed as follows: 

u = F1u1 + F2u2

v = F1v1 + F2v2

w = F1w1 + F2w2

φ = F1φ1 + F2φ2

(13)

where (u1, v1, w1, φ1) and (u2, v2, w2, φ2) are the displacement components at the top and
the bottom of the plate, respectively, and F1, F2 are linear Lagrange functions expressed
as follows:

F1 =
1 + ζ

2

F2 =
1− ζ

2

(14)

where −1 < ζ < 1, and where the functions F are used in the natural thickness coordinate
of the plate. Note that the Lagrange functions have the following unique properties:

F1 = 1, F2 = 0 f or ζ = 1

F1 = 0, F2 = 1 f or ζ = −1
(15)

When using displacement-based LE models, the degrees of freedom of the FEM
models are the actual physical translational displacements of the through-the-thickness
nodes. Using LE expansions provides continuity of transverse shear stresses at the interfaces
and permits the approximation of zig-zag distribution of shear deformation. For more
details, refer to [35]. In the work of this paper, the mentioned through-the-thickness
expansion B2, B3 and B4 elements represent the linear, quadratic and cubic expansion
elements, respectively.

2.3. Node-Dependent Kinematic (NDK) for Pate Elements

As mentioned before, when using CUF plate formulation, the displacement vector
q(x, y, z) can be split into two contributions, the through-the-thickness approximation Fτ(z)
controlling the kinematics, and the in-plane solution qτ(x, y) which can be approximated
using the Lagrangian shape functions Ni(x, y). When each node has a different kinematic,
the displacement field can be written as follows:

q = Ni(x, y)Fi
τ(z)qiτ(x, y) τ = 0, · · · , N; i = 1, · · · , M. (16)

Using the FEM Lagrangian shape functions, it is possible to interpolate individually
defined nodal kinematics over the neutral plane of a plate element, obtaining elements
with variable LW/ESL capabilities from node to node, depending on the kinematics used at
each node. Figure 3 presents an example of a plate element of four nodes, Q4, formulated
with a node-dependent kinematic, where at node 1 and node 2 different TE kinematics are
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used, while at node 3 and node 4 different LE-type functions (linear, B2, and quadratic,
B3) for through-the-thickness are used. For LE Kinematics, the DOF at the nodes depends
on the order of expansion to the thickness. At node 3, the number of unknowns is 6
which corresponds to the three variables at each node of the B2 element (top and bottom),
whereas at node 4 the number of unknowns is nine. As the number of layers increases in
the model, the number of unknowns increases. In contrast, the number of unknowns in
the TE models only depends on the order of the used Taylor functions. For example, in a
mechanical problem, using TE2 and TE3 in node 1 and node 2 would result in nine and
twelve unknowns, respectively, at each corresponding node. The displacement inside the
element is a linear combination between the different nodal displacements.

Figure 3. Displacement in Q4 plate element with node- dependent kinematics.

These elements provide the connection between nodes with different kinematics,
connecting a higher order and a lower order model, thus enabling the local refinement of
the model, and thus decreasing the computational cost of a fully refined model.

2.4. Dynamic Model

For a dynamic problem, the general displacement vector of Equation (16) can be
written as follows:

q = Fτ(z)qτ(x, y, t) τ = 0, · · · , N. (17)

The displacement qτ is then interpolated along the plate neutral plane, using the shape
functions in the x-y plane, as follows:

qτ(x, y, t) = Ni(x, y)qiτ(t) (18)

The general stress vector σ̄ and strain ε̄ can the be written as follows:

σ̄ = H̃DFτ Niqiτ ε̄ = DFτ Niqiτ (19)

By applying the principle of virtual displacement (PVD), the governing equations can
be derived. Substituting the constitutive equations, we obtain the following expression:

δLine + δLint = δLext (20)

where Line, Lint and Lext represent the work performed by inertia loads, internal work, and
the work performed by external forces, respectively, where δ stands for virtual variation.
Neglecting damping, the above equation can be further written as:∫

V
ρδqT q̈dV +

∫
V

δε̄Tσ̄dV =
∫

V
δqT P̄dV (21)

If the geometrical relations and shape functions in Equation (19) are substituted into
the above expression, we can obtain the following in an abbreviated form:

δqT
jsmijτsq̈iτ + δqT

jsk̃ijτsqiτ = δqT
sjP̄sj (22)
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where mijτs and k̃ijτs are the 4 × 4 fundamental nuclei of the mass stiffness matrices,
respectively, and P̄sj is a 4 × 1 load vector. In an extended format, they can be defined
as follows:

mijτs =
∫

V
ρNiF

j
s NjFi

τdV

k̃ijτs =
∫

V
NjF

j
s DT H̃DFi

τ NidV

P̄sj =
∫

V
Fj

s Nj P̄dV

(23)

Thus, the following governing equations can be obtained for a system without damping:

MQ̈ + KQ = F (24)

where M and K are the global mass and stiffness matrices, respectively, assembled from
the fundamental nuclei and Q is the unknowns vector.

For additional information regarding the components of the individual terms in the
fundamental nucleus of the stiffness matrix, refer to [34].

For Dynamic problems, the above Equation (24) needs to be discretized in time. The
used scheme is the same implicit time scheme used by [32], as the goal was to compare
the different theories, and the advantages of using an explicit dynamic model were lost
as diagonalizing the mass matrix is not always achievable. As implicit models are com-
putationally expensive, it is possible to reduce the computational time by deriving the
mass and stiffness matrices only once, as they do not change in a linear problem. The
displacement and acceleration equations adopted in the model were those proposed by the
implicit Newmark method. The velocities and accelerations at time t + ∆t are defined by:

Q̇t+∆t = Q̇t + [(1− γ)Q̈t + γQ̈t+∆t]

Qt+∆t = Qt + U̇t∆t + [(1/2− β)Q̈t + βQ̈t+∆t]∆t2 (25)

where γ and β are parameters used to control the stability of the model.

3. Mechanical Benchmark Problem

In order to model the Lamb wave propagation, a simple benchmark problem was
adopted from [33]. The described model consists of an isotropic aluminium strip. The
mechanical properties of the material used can be found in Table 1. The length of the
strip is l = 500 mm, with a thickness h = 2 mm. The assumed width was chosen to be
w = 10 mm to facilitate the unidirectional propagation of the applied signal, while limiting
the number of plate elements to the width to a unit mesh element. Figure 4 shows the
geometry and the applied boundary conditions. At y = 0, the plane of symmetry in the y
direction was imposed. Similarly, two planes of symmetry in the x direction were imposed
at the boundaries for x = 0 and x = 10 mm. The mechanical loads were applied at the top
and bottom nodes at the position y = 0, as shown. The analysis was carried out assuming
no material damping.

Figure 4. Boundary conditions and geometry of the mechanical plate model adopted for the propaga-
tion of Lamb waves, dimensions in mm.
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Table 1. Material data of aluminium.

Youngs Modulus (E) Poissons Ratio (ν) Density (ρ) Longitudinal Speed (c1) Transversal Speed (c2)

7× 1010 N/m2 0.33 2700 kg/m3 6197 m/s 3121 m/s

The applied forces F1 and F2 are time dependent. They follow a modulated sinusoidal
burst signal presented in Equation (26), where ω = 2π f represents the central frequency,
and n denotes the number of cycles within a signal.

F(t) = F̃sin(ωt)sin2(
ωt
2n

) (26)

The value of n determines the width of the excited frequency band around the central
frequency. In this study, n = 32 was chosen to be rather high, to ensure the frequency width
was narrow-banded around the central frequency. The choice of the central frequency is
influenced by the dispersion curves of the material, see Figure 5. The aim was to excite the
mono-modal symmetric (S0) and antisymmetric (A0) fundamental modes, without exciting
the other higher order modes. This is achievable when the frequency-thickness coefficient
f d < 1.5 MHzmm. The central frequency f = 477.5 kHz was chosen as the dispersion
effect is relatively low for both models at this frequency. The shape of the force modulation
can be seen in Figure 6. Both forces applied were of the same magnitude in time. The
direction of the applied forces determines which kind of wave is generated. If the forces
are opposite to one another, S0 waves are generated. In contrast, if they have the same
direction, the A0 mode is generated.
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Figure 5. Dispersion curves of 2 mm thickness aluminium plate plotted using DC v2.0. The phase
velocity curves are plotted to the left, whereas the group velocity curves are plotted on the right.
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3.1. Evaluation Criteria

In order to adopt a uniform technique for the evaluation of the quality of the different
models under different assumptions and changing parameters, a methodology needed to
be proposed. The used methodology is the one mentioned in the above reference. The
propagation of the wave was monitored between the two points of A and B, and the time-
of-flight between the two points was used. The numerical value, tnum, was compared to
the analytical time, tana. In this study, the analytical time was computed form the group
velocity of the propagating waves given by [32] extracted from the analytical solution of
the dispersion curves, see Equation (27). Then, the propagating wave was shifted by a time
corresponding to the above calculated analytical group velocity multiplied by the distance
covered. Figure 7 shows the tana for the propagating S0 waves between points A and B.

tan(β d
2 )

tan(α d
2 )

=

[
4αβk2

(k2 − β2)2

]a

(27)

where a = +1 or −1 to obtain the symmetric or antisymmetric mode, respectively,
α2 = ω2

c2
1
− k2, β2 = ω2

c2
2
− k2, with ω being the angular frequency and k being the wave

number. These equations can be solved to provide

cp =
ω

k
and cg = c2

p(cp −ω
∂cp

∂ω
) (28)

As the group velocities of S0 and A0 modes are different, see Table 2, tana is different
in each of the studied cases. In order to extract this time, the envelope of the wave has to be
plotted. Thus, Hilbert transformation, Equation (29), was carried out on the time signal of
the displacement uz(t) at points A and B, respectively,

HA,B(uz(t)) =
1
π

∫ +∞

−∞
uA,B(τ).

1
t− τ

dτ (29)

Table 2. Analytical phase and group velocities calculated at f = 477.5 kHz and d = 2 mm [32].

cpS0 ' 5316 cpA0 ' 2298
cgS0 ' 5130 cgA0 ' 3126
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Figure 7. Analytical time-of-flight tana of S0 wave propagating between A and B.

Using the Hilbert transform function, with the time-dependent displacement signal
uz(t), the envelope of the signal eA,B was constructed at each of the points, according to
Equation (30):

eA,B(t) =
√

HA,B(uz(t))2 + uA,B(t)2 (30)
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For this purpose, MATLAB R2021a was used as it provides the function which imple-
ments the previous equations and calculates the envelope of the input signal. Afterwards,
the centroid of the envelope was calculated at the two points. The simple subtraction of the
two centroids t = tB − tA provides the time needed for the wave to propagate between A
and B. The centroid was calculated using Equation (31):

tA,B =

∫ t f
0 eA,B . t dt∫ t f

0 eA,B dt
(31)

3.2. Model Parameters

As the aluminium strip modelled is slender, the number of mesh elements to the
width was limited and fixed to a single mesh element. It was mentioned in [36] that it is
sufficient to use 3 to 5 nodal points at a half wavelength for dynamic harmonic problems
along the propagation direction. In [26], it was stated that element size Lmax must be less
than one-tenth the wavelength (λ) for A0 mode, with a time step (∆t), such that

∆t < 1/(20 fmax) , Lmin 6 λ/10 (32)

On the other hand, [32] specified the time step using the Courant–Friedrich–Levy
condition, which states

∆t 6 le/cg (33)

where le denotes the finite element mesh size and cg denotes the group velocity of the
propagating wave. Similar time step and element size values were mentioned in [27] while
using an explicit dynamic model to ensure convergence criteria. In this study, mesh density
was altered along the direction of wave propagation (y-direction) in order to determine
the number of elements where the model reaches the numerical convergence. The meshes
were refined gradually, starting from a course mesh of 100 elements along the length,
and reaching an extremely refined mesh of 2000 elements. In some models where the
computation cost is low and the convergence is slow, this number reaches 4000 elements.
Aside from the in-plane mesh density, the type of plate element used was also altered.
Linear 4 node plate elements (Q4), quadratic 9 node plate elements (Q9), and cubic (Q16)
plate elements were investigated. The time step of the implicit dynamic problem also
varied. For S0 and A0 wave propagation, the model time was 120 and 150 µs, respectively.
This time was divided by a total number of time steps N. In this study, four values of N
were used, namely 500, 1000, 2000, and 4000. Afterwards, the model kinematics (through-
the-thickness expansion) were studied under a fixed plate element type and under a fixed
number of time steps. As the wavelength of S0 and A0 modes are different, due to their
different phase velocities, another parameter χ is adopted, which is defined as the number
of degrees-of-freedom (DOF) in each wavelength, expressed as

χS0,A0 =
NDOF

l
λS0,A0 =

NDOF · cpS0,A0

l · f
(34)

where NDOF, λ, cp and l denote the total number of DOF, the wavelength, the phase velocity
and the length of the strip, respectively. The error was calculated as the relative difference
between the analytical and numerical time to flight t between points A and B.

Error [%] =
tana − tnum

tana
× 100 (35)

3.3. Numerical Results and Discussion

The results of symmetric (S0) wave propagation were first plotted in a linear scale in
Figure 8 in order to provide an idea about the progression of the values of the error and the
corresponding convergences obtained. Figure 8a shows the error obtained for a fixed time



Sensors 2022, 22, 6168 12 of 24

step number (2000 TS) and for a fixed through-the-thickness Lagrange LE B4 expansion.
The convergence behaviour for the three element types can be noticed as the value of χS0
increases, without any major differentiation between the tree types aside from that the error
values at lower χS0 are much higher when Q4 plate elements are used. Figure 8b shows the
error for different t-the-thickness expansions under a fixed time step number (2000 TS) and
for a fixed plate element type (Q9). It is shown that different expansions may produce a
different numerical conversion. Figure 8c shows the effect of the choice of the time step
(number of time steps) on the convergence of the error, under a fixed plate element type
and expansion, (Q9) and (LE B4), respectively. It is shown that the more time steps, the less
the error in convergence, however, on the expense of a longer dynamic numerical model
analysis. In the present problem the results suggest that a value of 2000 time steps (2000 TS)
or more is considered appropriate for obtaining good convergence results.
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Figure 8. Error in (%) for (a) different plate element types, (b) different expansions through-the-
thickness, and (c) different time step number as a function of χS0.

For a better representation of the results in Figure 8a,b, the graphs were re-plotted by
adopting a log-log scale. As some of the models converged to a negative value, the absolute
value of the error, denoted by absolute error, was calculated in the graphs as shown in
Figure 9 to permit the use of the log scale. This is the reason behind the sudden increase in
the values after their descent, as in a linear scale the error crossed below the x-axis. The
results are plotted in Figure 9a,b, respectively, showing the convergence behaviour under
the effect of the plate element used and the through-the-thickness expansion, where the
negative values are plotted in a different line plot. The assessment was always carried out
while successively refining the mesh size, expressed in χ. In Figure 9a, it can be noticed
that plate elements with higher nodes converge faster, for a lower value of χS0. This shows
that to achieve the accuracy produced by higher order plate elements, a much-refined mesh
of a lower plate element type in needed. Using the same mesh refinement for different
elements produces structures with different stiffness, where the lower the plate order is,
the stiffer the structure becomes. This is shown by the higher error in the low order plate
elements (Q4). Keeping in mind that χ depends on the DOF of the system, for the same
mesh number we obtained a higher DOF for higher order elements, and thus higher χ.
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Figure 9. Absolute Error in (%) for (a) different plate element types and (b) different expansions
through-the-thickness, in a log-log scale, as a function of χS0.

On the other hand, in Figure 9b, it can be seen that the higher the order of expansion
through-the-thickness, the more the solution converges to the analytical solution. Keeping
in mind that the results were plotted for a fixed time step of 2000 TS, it is understandable
why some lower order graphs seemed to converge to a lower error. This is in fact explained
due to the cumulative error between the number of time steps used in the numerical model,
which is negative, and that of the expansion, which is positive, as given that they are in
the proper order, they cancel each other out. The reassuring result is that the higher order
expansions (LE 2B4, TE4, . . . ) converge to the same value under the imposed conditions.
The higher the order, the more costly the problem is, hence a higher DOF and a higher
value of χS0. It can also be shown that the TE1 and LE B2 expansions give the same results.
The same can be said for TE2 and LE B2 and for TE3 and LE B4. This is explained by the fact
that for a single layered structure, the first order Taylor and linear Lagrange polynomials
provide the same formulation with the same number of DOF. The only difference is that
it is much easier to impose the displacement boundary conditions for Lagrange elements
as the unknowns of the problem are directly the displacements at the nodes. The same
explanation can be adopted for the concatenating results of second and third order Taylor
with the quadratic and cubic Lagrange, respectively.

Consequently, the same analysis was performed for the propagating A0 Lamb wave,
however, the analysis was deemed similar to the previous one in terms of the plate element
type and the number of time steps used. Thus, the model was limited to the study of
convergence under different model kinematics, with different in-plane mesh refinements
under an increased fixed predetermined time-step of 4000 steps in a model time of 150 µs
and with a nine-node plate element mesh type (Q9). The results were plotted in Figure 10,
as the error was computed and plotted as a function of χA0. As the results of [31–33]
suggest, it was expected that the higher order expansion to the thickness would produce a
lower error, as the convergence values decrease for an increased order of expansion. It can
also be seen that the convergence in the A0 case was slower than that of the S0 case, where
increased mesh refinement was needed to reach convergence. In the graph, the results were
plotted as a function of χA0, which is lower than that of χS0 for the same mesh number due
to the lower phase velocity of the antisymmetric wave. It is also noticeable that there were
no negative error values in this study, as the number of time steps was high, producing a
very refined time step (∆t), thereby minimizing the error resulting from the choice of ∆t.
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Figure 10. Error in (%) of A0 wave propagation for different expansions through-the-thickness, in a
log-log scale, as a function of χA0.

3.4. Impact of the Kinematic Model

Accordingly, and in order to compare the implementation of the different orders of
transverse expansion, for both S0 and A0, a refined mesh model was implemented with
a fixed in-plane mesh of 3000 nine-node (Q9) plate elements for the length. This was to
ensure numerical convergence of the obtained results. Furthermore, in order to properly
compare the numerical model with the analytical model, a refined time step was adopted.
To achieve this, 4000 time steps were implemented for the S0 problem in a model time of
120 µs, and 5000 steps were implemented for the A0 problem for a model time of 150 µs,
obtaining the same time step ∆t for both problems. Under these parameters, the error
was calculated and the different through-the-thickness expansion models were compared.
Figure 11 shows the results of the assessment. Admitting a 1% error or less as an acceptable
result, it can be noticed that the A0 propagation certainly requires higher order through-the-
thickness expansions in order to reach the allowed limit. For Taylor expansion, a third order
expansion TE3 or more is needed for the A0 problem, whereas Taylor to the second order
is sufficient for the S0 problem. Note that the classical theories were obtained from the
first order Taylor expansion TE1 by applying some constraints. This is the reason behind
the observation of the same DOF for these theories with the TE1. Unlike the A0 problem,
where the wave propagation occurs due to the shear strain, modelling the S0 problem using
the classical theories does not generate any results as displacements to the thickness are
constant in these models. The same can be said about Lagrange expansion models, where
higher order models are needed with one or more B4 elements to the thickness to model
A0 wave propagation; conversely, a much lower number of expansions are sufficient for S0
wave propagation. It can also be observed that the use of one higher order element through-
the-thickness (B4, B3) generates better results than the use of two lower order elements
(2B3, 2B2), even though the DOF of the latter is greater than (or sometimes equal to) that of
the former. For example, 2B2 splits the thickness in half and produces linear displacements
in each half, whereas B3 describes the quadratic behaviour of the displacement through the
thickness, which cannot be described by two linear elements. These results are in contrast
to those obtained by [31,32], with the major difference that the authors in the literature
applied the higher order models for wave propagation in a 1D beam model, whereas a
plate model was used in our study.
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Figure 11. Assessment of the symmetric S0 and the antisymmetric A0 Lamb wave propagation under
different through-the-thickness orders of expansion, in both (a) Taylor and (b) Lagrange models.

3.5. Node-Dependent Kinematics Models

The implementation of NDK is introduced in this section in order to study the re-
duction in the computational cost of the dynamic wave propagation model and the effect
on the accuracy of the model. The case adopted was the simple mechanical benchmark
described in previous sections. The strip was divided into 2000 Q9 mesh elements in length,
and the dynamic analysis was performed in a fixed 4000 time steps in a model time of
150 µs for both S0 and A0 problems.

As shown in Figure 12, fixed TE5 kinematics were adopted in the first 100 mm of the
strip, whereas for the rest of the strip a node-dependent kinematic model was adopted
based on Taylor expansion of different orders, denoted as TEn, where n describes the order
of the model used. On the other hand, the reference that was adopted in the study was
a model with a full Taylor expansion to the fifth order (TE5). The error was computed
in the same manner as before, expressed in Equation (36), by the time needed for the
wave to travel from point D to point E for the NDK model compared to that of a full TE5
expansion model.

Error [%] =
tTE5 − tNDK

tTE5
· 100 (36)

The error was calculated and was plotted alongside the DOF of the respective model
in the same graph and in a log scale. Figure 13 shows the error for both S0 and A0 cases and
the DOF according to the TEn model adopted. CLT and FSDT denote the Classical Laminate
Theory and the First order Shear Deformation Theory, respectively. The Expansion orders
on the abscissa refer to the order adopted in the respective NDK model.

D E

50

100
500

250

TE 5 TE n

2

F1

F2

Figure 12. The adopted NDK model showing the model kinematics and the boundary conditions,
with the dimensions provided in mm.
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Figure 13. Assessment of the error in (%) in a node-dependent kinematics model, with S0 and A0

wave propagation, compared to a full TE5 model.

It is clearly shown that using a low order model coupled with a high order model
reduces the accuracy, and the lower the NDK model is the higher the error obtained.
Assuming a 1% error acceptable in these conditions, it can be seen that in the case of S0, it
is possible to couple second order Taylor expansion or Taylor expansion of a higher order
to TE5 and produce acceptable results. When TE2 is chosen, the decrease in the DOF of
the model is calculated to be around 40%. In the case of A0 wave propagation, in order
to obtain satisfactory results, the NDK model cannot be selected as lower than TE3, thus
saving 27% of the computational cost. Using the CLT is strongly advised against as it
generates a high error. Table 3 shows the results of the NDK analysis of the mechanical
case, with the calculated time, error (%), DOF and DOF reduction (%) for both cases. It
was noticed that in S0, the use of TE4 instead of TE5 produced zero errors with a lower
computational cost.

Table 3. Effect of using NDK approach in the mechanical case on accuracy and computational
cost reduction.

S0 A0
NDK Model DOF Time (µs) Error (%) Time (µs) Error (%) DOFred (%)

CLT 100,854 - - 38.238 40.111 53.32
FSDT 100,854 - - 60.462 5.303 53.32
TE1 100,854 38.404 1.523 60.462 5.303 53.32
TE2 129,654 38.874 0.318 60.961 4.522 39.99
TE3 158,454 38.996 0.005 63.417 0.675 26.66
TE4 187,254 38.998 0.000 63.839 0.014 13.33
TE5 216,054 38.998 0.000 63.848 0.000 0.00

4. Electromechanical Coupled Case: Actuation and Sensing Using PZT

To achieve a more realistic case of structural health monitoring (SHM) of the isotropic
aluminium strip, a piezo-electrical coupled analysis was conducted. Piezo-electric trans-
ducers (PZT-5A) were used instead of applying a force and reading the displacement from
the nodes. Two piezoelectric transducers with the properties specified in Table 4 were
placed on the top and bottom of the structure, as actuators, and another PZT acting as
a sensor was placed on the top. Figure 14 shows the positioning and dimensions of the
added transducers.
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Figure 14. Benchmark of the coupled SHM problem, with the applied boundary conditions, and
dimensions (in mm).

Table 4. Structural, piezoelectric and dielectric properties of PZT-5A used in numerical model [37].

Property C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa) d31 (pm/V) d33 (pm/V) εT
33/ε0 εS

33/ε0

PZT-5A 120 75.2 75.1 111 21 22.5 −190 390 1700 826

The Lamb wave was generated by applying a modulated electric potential difference
Φ on the actuator transducers, using the same shape as the force used in the previous
section, with the same values of the parameters as the analysis was performed on the same
structure, and where:

Φ(t) = Φ̃sin(ωt)sin2(
ωt
2n

) (37)

The applied potential difference on the upper and lower transducers, respectively, is
between the potential of upper and lower electrodes Φ1,2 = Φ1,2t−Φ1,2b. For the symmetric
S0 case, Φ1 = Φ2, whereas Φ1 = −Φ2 for the antisymmetric A0 case. The electric potential
difference at the middle top of the PZT sensor was measured, where the top of the sensor
was covered by a thin layer of negligible stiffness and of high conductivity acting as an
electrode. The model time was chosen to be slightly longer in this case as the wave was
required to travel at least 300 mm. It was set as 150 µs, 180 µs for S0, A0 with 4000 and
4800 time steps, respectively, maintaining the same time step for both cases. The results
were collected as the time between the applied potential difference at the actuators and
the acquired potential difference at the sensor in the same manner that was performed
previously for the displacements, as shown in Figure 15.
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Figure 15. Time-of-flight ∆t of S0 wave propagating, obtained from the electric potential (∆Φ)
between sensor and actuator.

These results were compared with the analytical time needed for a wave to cross a
distance of 305 mm using the analytical group velocities of both waves. As the actual
distance travelled might be obscure in the presence of the transducers given that they have
a certain dimension along the propagation direction, an equivalent arbitrary distance was
chosen between the middle of the actuator and the end of the sensor equal to 305 mm, and
the numerical error was computed as before by comparing the numerical time obtained with
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the assumed analytical time. As described previously, the errors obtained as percentages for
both fundamental cases were plotted, according to different mesh densities and different
model kinematics. In this SHM problem, only the through-the-thickness kinematics based
on Lagrange models were compared, as the use of Lagrange models is essential in our
mixed model in order to apply the appropriate boundary conditions. The results were
plotted in Figure 16 with a log–log scale. In Figure 16a,b, it can be also noticed that the
model converged to lower error values with higher model kinematics. In the propagation
of A0 waves, however, some instances were of a negative value, particularly those where
the mesh density was 200 elements to the length, thus the error was plotted in terms of
the absolute value to favour the use of the log scale. It can be seen in Figure 16b that the
convergence was not as smooth at the beginning, as the curve made a step. Checking the
wave propagation at these instances (for 200 mesh elements), it can be seen that the wave
travels in an unconventional way, at such a high speed that the whole structure starts to
oscillate, indicating that these parameters should be avoided. Examining and comparing
the results between the two wave modes, the same behaviour mentioned in the mechanical
case above can be noticed. The convergence for a low error of the S0 wave occurs for lower
model kinematics, whereas higher kinematics are needed to further reduce the error in A0
wave propagation.
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Figure 16. Error in (%) plotted in a log-log scale, for (a) S0 and (b) A0 wave propagation, using PZT
actuators and sensor, as a function of χ, for different model kinematics.

As the wave propagates, due to the variation of geometry resulting from the position-
ing of the surface sensor, reflection is expected occur. Indeed, a reflection can be noticed
in Figure 17 at the top surface point B of y = 200 mm. After subtracting the time at the
maxima of the reflection and the propagating lamb wave at point B, and multiplying the
acquired time by the corresponding group velocity, a distance of almost 200 mm (208.5 mm)
can be obtained, which is equivalent to double the distance from point B to the sensor,
with some differences that can be attributed to the change in the velocity of the reflected
wave, or to the inaccuracy of the distance travelled of the sensor at a certain dimension.
For further investigation, the figure showing the deformation of the structure displays
results at different times before and after the wave encounters the sensor Figure 18b,c. It is
clear that the additional wave seen in the z-displacement of point B in Figure 17 is actually
the reflected part of the wave after travelling from point B, encountering the sensor, and
reflecting back to point B which has a smaller amplitude.
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Figure 17. Normalized displacement uz at point B (5, 200, 1) under A0 propagation.
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Figure 18. Showing (a) the electro-mechanical model, (b) incident A0 Lamb wave and (c) the
reflected wave.

For further investigation, the propagating waves were plotted at point B, in Figure 19
for different wave propagation scenarios where S0 and A0 waves were used in a single
asymmetric sensor or double symmetric surface mounted sensors. To obtain more informa-
tion about the nature of the reflected wave, the z-displacement of the reflected portion of the
waves at the surface points B and G was plotted for both S0 and A0 waves in Figure 20a,b,
respectively. It can be noticed in Figure 20a that the symmetric wave gradually transforms
into an antisymmetric wave, whereas in Figure 20b, although there is some phase shift at
first, the wave is antisymmetric at the end. This is due to the asymmetric nature of the
placement of a PZT sensor on the top. To reinforce the hypothesis, another model was
considered where two sensors were placed symmetrically. The reflection was taken as
described previously for both types of waves and the z-displacement was plotted at the
top and bottom points B and G in as shown in Figure 20c,d. As predicted, there was no
change in the nature of the reflected wave where an S0 wave remained S0 and vice-versa. It
is also worth mentioning that comparing the plots in Figure 20 vertically for (a) and (c), it
is clear that the wave is slower in case of one sensor on top compared to two sensors for S0
wave propagation. This is not true for A0 wave propagation as the two plots (b) and (d)
look similar.
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Figure 19. Showing the wave propagation in the the electro-mechanical model at point B, for different
wave natures and different sensor configurations.
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Figure 20. Showing a focus on the reflected waves shown in Figure 19 for the four different cases.

It can also be noticed that there is a change in the amplitude of the reflected wave.
Comparing sub-plots (c) and (d), it can be seen that in the case of S0, the reflected wave has
a 5% amplitude of the highest displacement whereas in the case of A0 that amplitude is of
10%. However, the opposite can be seen in sub-plots (a) and (b).

Implementing Node-Dependent Kinematics NDK

In this section, NDK was introduced, where the areas under the PZT were modelled
using a Lagrange model, and the rest of the structure was modelled with different Taylor
expansion models. This was performed in order to study the effect of NDK on the error in-
duced when attempting to reduce the computational cost of the coupled electro-mechanical
model. The adopted case was the electro-mechanical benchmark described in the section
above. The strip was divided into 2000 Q9 mesh elements in length, and the dynamic
analysis was performed with 4000 and 4800 time steps corresponding to a model time of
150 µs for S0 and A0 wave propagation.

Figure 21 shows the different kinematics used in each part of the NDK model. The
actuator part consists of three layers (two PZT actuators and the strip). The model kine-
matics at each of those layers was fixed at LE 2B4, meaning two B4 elements were used for
the thickness in each element. The same was performed in the sensor area, where it was
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composed of three layers, the strip, the PZT sensor and a very thin conductive material at
the top of the sensor of negligible stiffness acting as an electrode. The model kinematics
of the strip between the sensor and actuator and at the end of the sensor were modelled
based on Taylor expansion of different orders, denoted as TEn, where n described the order
of the model used. A full Lagrange expansion (LE 2B4) was adopted as a reference for both
symmetric and antisymmetric waves, with which the results were compared, the error was
calculated and whose DOF was reduced.

Φ 1 t

Φ 1 b = 0

Φ 
2 t 

= 0 

Φ 2 b 

uz=0

2
 

200
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0
.3

0
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Figure 21. Electro-mechanical NDK model adopted, showing the model kinematics and the boundary
conditions, with the dimensions given in mm.

The results of the errors obtained together with the computational cost and DOF
reduction are reported in Table 5 and plotted in Figure 22 according to the corresponding
kinematics used in the plate region away from the actuators and sensor. It can be clearly
shown that increasing the model kinematics decreased the obtained error and also de-
creased the level of computational cost reduction. It is also evident that using TE2 model
kinematics in an S0 wave is sufficient to produce an error of less than 1% (0.332%) with a
computational cost reduction of almost 40% (37.5%). As before, the use of a more refined
model is needed to achieve an error of less than 1% in A0 wave propagation. This was
attained with the use of TE3 model kinematics, which in turn led to a 20% computational
cost reduction.
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Figure 22. Assessment of the error in (%) in a node dependent kinematics model, with S0 and A0

wave propagation in an electro-mechanical plate model, compared to a refined full LE 2B4 model.

Table 5. Effect of using NDK approach in the electro-mechanical case on accuracy (error) and
computational cost reduction.

S0 A0
NDK Model DOF Time (µs) Error (%) Time (µs) Error (%) DOFred (%)

CLT 126,435 - - 59.712 38.818 54.21
FSDT 126,435 - - 92.004 5.732 54.21
TE1 126,435 58.335 1.762 91.966 5.771 54.21
TE2 172,548 59.184 0.332 93.472 4.228 37.51
TE3 218,580 59.378 0.005 96.820 0.797 20.84

LE 2B4 276,120 59.381 0.000 97.598 0.000 0.00
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5. Conclusions

In this paper, fundamental S0 and A0 Lamb wave propagation were studied, propagat-
ing in a slender isotropic aluminium strip using a plate model in both the pure mechanical
and coupled electromechanical cases. The model used was the MUL2 plate model, based on
the Carrera Unified Formulation CUF, which was developed by the MUL2 group. Higher
order models, plate element types and the number of time steps of the dynamic model
were all investigated and compared in the mechanical case. The use of the higher order
models was shown to decrease the error obtained between the numerical and analytical
results which cannot be achieved through numerical refinement alone. The use of a higher
order plate element type increases the rate of convergence to the numerical solution with
less mesh elements, and decreasing the time step in the model reduces the obtained error.
It was also found that A0 wave propagation is more computationally expensive as more
refined model kinematics and numerical mesh refinement is needed to achieve satisfactory
results compared with S0 wave propagation. A coupled electromechanical case was also
proposed, where the Lamb waves were actuated and sensed using surface piezoelectric
sensors and actuators. It was found that the used model was able to capture the electric
potential signal generated due to wave propagation, which was then analysed to study
the wave propagation and convergence using different model kinematics. The obtained
results conformed with the mechanical case, where the error is reduced under higher order
through-the-thickness expansion. A Node Dependent Kinematics (NDK) problem was
also introduced in both cases, where the effect of reduction of the computational cost was
studied with respect to the obtained error. It was shown that it is possible to use such
models to decrease the computational cost of the proposed set-up up 40% while reducing
the accuracy of the model by less than 1%. It was also shown that for A0 problems, higher
order kinematics need to be incorporated into an NDK model to achieve an acceptable
accuracy compared to a lower order used in S0 models. The nature of the reflected wave in
the electro-mechanical model was investigated. It was shown that due to the asymmetry of
the mounted sensor, the nature of the resulting reflection might change. This is especially
applicable for S0 travelling waves where the reflection seems to have an antisymmetric
shape. This was not observed in symmetric double surface mounted sensors.

For further research, it is suggested to study the convergence of numerical models
by implementing laminated structures, i.e., composite materials using Lamb wave prop-
agation. It is also suggested to use a network of sensors and actuators, while exploiting
the full potential of the Node Dependent Kinematics approach to substantially decrease
the computational cost. This work would serve the purpose of accurate damage detection
and structural health monitoring (SHM) in thin panels with a lower cost. Comparison
of the damage positions obtained numerically under such models with those obtained
experimentally is also of interest in the future, with or without taking into consideration
the damping of the material and its effect on the attenuation of the propagating waves.
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