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Abstract—The aim of this paper is to overcome one of the
main problems of machine learning when it faces the medical
world: the need of a large amount of data. Through the distorted
Born approximation, the scattering parameters and the dielectric
contrast in the domain of interest are linked by a linearized
integral operator. This method allows to generate a large data-
set in a short time. In this work, machine learning is exploited
to classify brain stroke presence, typology and position. The
classifier model is based on the multilayer perceptron algorithm
and it is used firstly for validation and then with a testing set
composed by full-wave simulations. In both cases, the model
reaches very high level of accuracy.

I. INTRODUCTION

Microwaves (MW) imaging and sensing techniques allow to
obtain devices with a small size, low power intensity, portable
and low cost. All these characteristics make this technology
suitable for medical diagnostic of several diseases [1]. In
particular, in this work, we are going to treat one of the main
cause of human death: brain stroke.

In recent years, machine learning (ML) faces the medical
world, and in this paper the background is the combination
of MWI and ML, here some examples [2], [3]. However,
the need of a huge amount of data for ML clashes with the
difficulty in collecting a lot of medical data in a short time.
Here, we try to overcome this incompatibility between these
two worlds. In particular, we proprose an alternative method
to generate the data-set in a short time, through a linearized
integral operator. Multilayer perceptron (MLP) is used for
classification in validation and testing phase [4].

II. MICROWAVE IMAGING SYSTEM

Fig. 1 depicts our Microwave Sensing system. We exploit a
helmet composed of 24 flexible antennas, each acting as both
transmitter and receiver. These antennas are placed in a thin
dielectric layer that gives flexibility, increases the coupling,
and facilitates field penetration through the head tissues. The
position, the orientation, and the number of antennas are
obtained with an optimization method that balances good
performances and limited system complexity. Here, we use
a working frequency equal to 1 GHz. In comparison with
systems already in the literature [5], our approach reduces the
overall size and increases matching and antennas attachment.
The head in Fig. 1 represents the healthy condition and it
contains a single material with head tissues average dielectric
properties.

III. DATA-SET GENERATION

In this section, there is the description of the process to
generate the data-set, composed by 9 classes, which take into

Fig. 1. MWI system CAD model.

account the presence, the typology and the position of the
stroke. As shown in Fig. 2, the head is divided in 4 regions:
front left (FL), front right (FR), back left (BL) and back right
(BR). The data-set has 1 class for healthy case, and 4 classes
for each type of stroke that identify the region.

The domain of interest (DoI), corresponding to the head,
is discretized via tetrahedral cells. Each tetrahedron assumes
the dielectric properties of the belonging tissue, depending on
its position. The dielectric contrast is calculated considering
the complex dielectric properties distribution of background
(ϵb(r)) and the case of interest (ϵr(r)):

∆χ(r)
∆
=

ϵr(r)− ϵb(r)

ϵb(r)
, (1)

For each pair of antennas j and k, this is the linearized
integral equation that links the dielectric contrast ∆χ with the
differential scattering parameters ∆S, exploiting the distorted
Born approximation:

∆Sj,k = −jωϵb(r)

2ajak

∫∫∫
V

Eb,j(r) · Eb,k(r)∆χ(r) dr (2)

where, Eb(r) is the field radiated in r, a is the power waves
at antennas port, ω is the angular frequency and V is the DoI
volume. Finally, ∆S is the difference between the scattering
parameters at antennas ports with and without the stroke.

The first step is the positioning of a spherical stroke in
the head, randomly choosing the center among the tetrahedra
barycenters and changing the dielectric properties of the
tetrahedra with a distance from the center smaller than the
considered radius. The stroke can have 5 different dimensions,
coherent with realistic cases: radius equal to 1, 1.5, 2, 2.5, 3
cm. Once the tetrahedra belonging to the stroke have been
defined, we can calculate the dielectric contrast through (1).



The second step, after the positioning of the stroke, is the
addition of white noise to the dielectric contrast with 4
different levels that cause the following noise thresholds on
∆S: -110, -105, -95, -90 dB.

Now, for each pair of antennas, we calculate ∆S through
(2). The features of the data-set are the scattering parameters
obtained adding Sinc (scenario without the stroke) to ∆S.
Since, the S matrix is symmetrical, we select only the upper
triangular matrix. Moreover, the real and the imaginary part of
S parameters are considered as 2 different features, for a total
of 600 features. The data-set comprises 10000 samples, almost
equally distributed among the classes. Through this method,
the S parameters are comparable to the ones obtained with
full-wave simulations, but with a reduction of generation time
equal to 3 orders of magnitude.

Fig. 2. Head subdivision: front left (FL), front right (FR), back left (BL)
and back right (BR).

IV. NUMERICAL RESULTS

In this section there are the results obtained with MLP
algorithm. The first test is validation in which the data-set is
divided into training set (80% data-set) and validation set (20%
data-set). The hyperparameters of MLP are selected through
the grid search technique [6]. The neural network is composed
by 5 hidden layers (1000, 500, 250, 100 and 50 neurons).
It exploits as activation function the hyperbolic tangent, the
solver stochastic gradient descent and the regularization term
α = 0.0001 [4]. After the training, the model classifies the
validation set with an accuracy equal to 97.90%.

The next step is the analysis of the algorithm model perfor-
mances with a testing set composed by full-wave simulations,
obtained through a finite element method (FEM) solver [7]. In
this phase, the stroke can assume 2 different shapes (sphere
and ellipsoid) with different dimensions comparable with the
ones exploited in the training set. In the testing set for
each class, there are a few samples. For each of them we
obtain further samples by adding 4 different levels of noise
obtained mapping the noise on dielectric contrast space (δχ)
to the differential scattering parameters space (δS), with (2).
Through this method we generate a testing set with a total of
140 samples.

In Fig. 3, the confusion matrix with on the rows the true
labels and on the column the predicted labels. The squares

identify the 3 macro-classes: yellow for healthy case, green for
ischemic stroke and red for hemorrhagic stroke. The results in
Fig. 3 shows that the algorithm always correctly classifies the
macro-class, but in some critical cases it assigns to the stroke
a wrong position, in that cases the center of the stroke is really
close to one of the head axis.

Fig. 3. Confusion matrix with testing phase results. The 3 squares identify
the macroclasses: yellow for healthy case, green for ischemic and red for
hemorrhagic stroke

V. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an efficient method to
generate a large amount of different simulated data in a short
time. Applying the Born approximation, the dielectric contrast
in the DoI is linked with the differential scattering parameters
through a linearized integral operator. The ML model is based
on MLP algorithm and it reaches good performances in both
validation and testing phase. The future step will be the use
of the same algorithm model to classify measurements data.
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