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Atrial fibrillation (AF) is the most common clinical tachyarrhythmia, posing a

significant burden to patients, physicians, and healthcare systems worldwide.

With the advent of more effective rhythm control strategies, such as

AF catheter ablation, an early rhythm control strategy is progressively

demonstrating its superiority not only in symptoms control but also in

prognostic terms, over a standard strategy (rate control, with rhythm control

reserved only to patients with refractory symptoms). This review summarizes

the different impacts exerted by AF on heart mechanics and systemic

circulation, as well as on cerebral and coronary vascular beds, providing

computational modeling-based hemodynamic insights in favor of pursuing

sinus rhythm maintenance in AF patients.

KEYWORDS

atrial fibrillation, hemodynamics, beat-to-beat variability, systemic circulation,
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Introduction

Atrial fibrillation (AF), the most common clinical tachyarrhythmia in adults,
provokes a significant burden to patients, physicians, and healthcare systems worldwide.
The Global Burden of Disease (GBD) Study estimates nearly 60 million prevalent
AF cases in 2019 (nearly doubling the estimated prevalence in 1990) (1), with
epidemiological projections foreseeing a further rise during the next decades (2). These
alarming data urge the scientific community to attempt solving the clinical conundrum
concerning the optimal management of this growing subset of patients.

The never-ending debate between those favoring sinus rhythm (SR) maintenance
(rhythm control) over the simple treatment of symptoms related to high ventricular
response AF (rate control) is yet not concluded. In the early 2000s, two randomized
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clinical trials (AFFIRM and RACE) showed, with respect to
hard cardiovascular endpoints, that rate control was non-
inferior to rhythm control. Subsequent data pooled from a large
population of patients (3) reported similar results, and the AF-
CHF study (4) showed that, even in the presence of heart failure,
rhythm control did not result superior to rate control. However,
these trials were published before the widespread adoption
of AF catheter ablation, and thus, the rhythm control option
mostly included patients on anti-arrhythmic drugs (AADs).
In the last decade, instead, AF catheter ablation has emerged
as the most effective tool to maintain long-term SR, both as
second-line therapy after failed AADs or as first-line approach
(5, 6), potentially modifying the rhythm versus rate control
benefits. In fact, a post-hoc analysis of the AFFIRM trial showed
that SR rhythm maintenance was independently associated
with improved survival, hinting that rhythm control might be
prognostic, in case SR is maintained avoiding AADs side effects
(7). In the past few years, albeit AF catheter ablation missed to
statistically demonstrate its superiority on hard cardiovascular
endpoints over AAD-based rhythm control strategy in the
intention-to-treat analysis of a large clinical trial (CABANA)
(8), the per-protocol analysis of the aforementioned study
(characterized by high crossover rates between study arms),
as well as several observational studies (9–11), showed that
AF catheter ablation reduced all-cause mortality, stroke, and
hospitalization. The EAST-AFNET 4 trial (12), published in
2020, eventually demonstrated that an early rhythm control
approach, within the first 12 months since the first diagnosis,
both by AADs and AF catheter ablation, was associated with
improved survival compared to a standard approach (e.g., rate
control, with rhythm control reserved to those patients still
symptomatic despite rate control medications).

Clinical data focusing on the hemodynamic effects of
AF are lacking and somewhat controversial, likely due to
the challenge of obtaining precise measures in the specific
districts (e.g., cerebral circulation) and of eliminating the
numerous potential clinical confounders that limit the attempt
of investigating arrhythmia-specific effects. The present review,
sustained by the mounting data toward the prognostic benefit of
SR maintenance, summarizes modeling-based evidence on the
detrimental hemodynamic effects of AF on different circulatory
districts to thoroughly argument why restoring SR in AF
patients should be pursued. In particular, we focused on the
three main aspects that have captured the most attention in the
last decade, namely, heart mechanics and systemic circulation,
cerebral hemodynamics, and coronary circle.

The efficiency of multiscale hemodynamic modeling for
the description of the cardiovascular system has been widely
recognized, and personalized computational hemodynamics
is currently a reliable investigative tool in translational
medicine (13–19). Figure 1 shows a schematic representation
of the main computational approaches, ranging from zero-
dimensional (0D) to three-dimensional (3D), together with

their mathematical features and hemodynamic outcomes. By
simplifying the spatial description, in the 0D lumped-parameter
model, each cardiovascular region is modeled through a
combination of electrical counterparts: the viscous/dissipative
effects are taken into account by the resistances (R), the
distensibility/contractility effects are described by the
compliances/elastances (C/E), and the inertial effects are
considered by the inertances (L), leading to the most general
3-elements (or RLC circuit) Windkessel model. Through the
electric analog, the only independent variable is time (t), and
the 0D lumped-parameter model is suitable to investigate the
temporal evolution of each cardiovascular compartment in
terms of pressure (P), flow rate (Q), and blood volume (V). The
one-dimensional (1D) distributed-parameter model identifies
the vessel axis (x) as the preferential spatial direction and
assumes the following hypotheses: the blood is Newtonian,
incompressible, and characterized by constant density and
kinematic viscosity; effects of suspended particles are neglected;
vessels are asymmetrical, tapered, longitudinally tethered,
with impermeable walls and only subject to small and radial
deformations; flow is laminar; and pressure is uniform across
the section. x and t (time) are the independent variables, while
hemodynamics is described by the vessel area (A), pressure (P),
and flow rate (Q). The 1D model, composed of the continuity,
momentum, and constitutive equations, is able to capture a
higher level of geometrical and viscoelastic details, as well as
wave propagation in the arterial tree. Eventually, in the 3D
model, the blood flow is governed by the three-dimensional
continuity and momentum Navier-Stokes equations, which are
discretized over the computational domain and usually solved
by finite element/volume methods. In so doing, the temporal
evolution of the 3D flow velocity and pressure fields over
the whole spatial domain are obtained, making 3D modeling
particularly promising to investigate the local hemodynamics of
complex vascular morphologies in terms of flow velocity and
wall shear stress-related parameters. Even though hemodynamic
modeling cannot substitute or deny in vivo clinical findings,
modeling-based data provide important insights for clinicians
and lay the basis for future dedicated clinical studies (20–23).

Atrial fibrillation, heart mechanics,
and systemic circulation

The AF induces several detrimental effects on systemic
hemodynamics. The two main determinants of this noxious
influence are (1) the fibrillatory atrial activation during AF
that leads to ineffective atrial contraction and loss of atrial
contribution to the ventricular filling (“atrial kick,” normally
contributing up to 20–30% of the volume) (24); and (2) the
irregularity of the ventricular activation during AF (irregular
RR intervals), as elegantly demonstrated in a seminal study by
Clarke (25), published more than 20 years ago. In this study,
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FIGURE 1

Scheme of the 0D, 1D, and 3D computational approaches: representative geometry, modeling description, and hemodynamic outcomes. RLC
circuit accounts for dissipative (R, resistance), inertial (L, inertance), and elasticity (C, compliance) effects in the 0D model. Spatial coordinates (x,
y, z) and time (t) are the independent variables, while volume (V), flow rate (Q), pressure (P), vessel cross-sectional area (A), and velocity field
( =(u, v, w)) are the dependent variables and hemodynamic outcomes of the different models. Balance equations of mass and momentum are
expressed in the differential form (0D: ordinary; 1D and 3D: partial), while constitutive equations rule the strain-stress relation between blood
and wall vessel.

performed on 16 AF patients, compared to ventricular pacing
at the same mean heart rate, during AF, the irregularity of RR
intervals led to decreased cardiac output, increased pulmonary
wedge pressure, and increased right atrial pressure.

However, despite these known effects, evidence on the
global cardiovascular system response to AF remained
scarce and controversial. Recently, a lumped-parameter AF
modeling approach for the heart and systemic circulation was
proposed (26), presenting the following potential advantages:
first of all, AF’s hemodynamic impact can be assessed in
standardized conditions, without the potential confounding
effect of other comorbidities; second, the most relevant
cardiac variables, as well as hemodynamic parameters, can
be monitored contemporaneously. The initial computational
analysis investigated the hemodynamic response during AF
at a given mean ventricular rate (75 bpm) in an ideal healthy
male young adult, meaning that the model is not patient-
specific, but model parameters are calibrated to reproduce
the hemodynamic response of a generic healthy subject with
common anthropometric and physical features (e.g., weight:
75 kg, height: 175 cm, age: 25 years old, sex: male). In this
setup, AF induced a reduction in cardiac output, stroke volume,
and ejection fraction, as well as an increase in left ventricular

end-diastolic pressure and volume, left atrial pressures and
volumes, and pulmonary vein pressure. Overall, while the
right chambers appeared to be less affected by the arrhythmia,
left ventricle pressure-volume loops clearly indicated reduced
cardiac efficiency during AF compared to SR. A focus on the
fluid dynamics of heart valves (27) showed that during AF, both
atrioventricular valves do not seem to worsen their performance,
while the arterial valves’ efficiency is remarkably reduced.

A further step forward was to investigate the hemodynamic
effects of different mean ventricular response rates. In fact, from
a clinical standpoint, a clear heart rate target for AF patients,
especially for those with the permanent form of arrhythmia,
is lacking. A single randomized clinical trial, the Rate Control
Efficacy in Permanent Atrial Fibrillation II (RACE II) (28),
suggested that, in patients with permanent AF, lenient (targeting
resting heart rate below 110 bpm) is not inferior to strict
rate control (targeting resting heart rate below 80) both in
terms of cardiovascular outcomes and quality of life. However,
this clinical study presented several limitations, one out of all
the modest difference in average heart rates achieved in the
lenient and strict control groups (85 and 75 bpm, respectively)
(29). Five different computational simulations, assuming resting
conditions, with varying mean ventricular responses (50, 70,
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90, 110, 130 bpm) were therefore performed (30). Interestingly,
based on the lumped parameter model, slower ventricular
responses during AF related to reduced left ventricular pressure
increased stroke volume and ejection fraction, improved cardiac
efficiency, and reduced oxygen consumption compared to
higher ventricular rates. These results suggest that lowering
ventricular rate during AF may partially blunt the detrimental
hemodynamic impact exerted by the arrhythmia. Furthermore,
an additional analysis was run to evaluate how the resting
ventricular rate influenced the global cardiovascular systemic
response to exercise with ongoing AF (31). Once again, the
outcome of this exploration underlined that, in case of a slower
basal ventricular response (70 bpm), compared to a higher
one (100 bpm), the pulmonary venous pressure undergoes a
dampened worsening (increase), and systemic blood pressure
shows a more appropriate increase (as demanded by exertion).

The same computational framework was used to assess the
hemodynamic impact of different left valvular heart diseases
on systemic hemodynamics during AF (32). Several valvular
pathologies (e.g., aortic stenosis, aortic regurgitation, mitral
stenosis, and mitral regurgitation), with different grades of
severity (i.e., mild, moderate, and severe), were simulated.
Based on computational outcomes, regurgitant valvular diseases
strongly affected AF hemodynamics (reduced cardiac output
and systemic pressure, increased left ventricular volume, left
atrial pressure, and pulmonary vein pressure), while aortic
stenosis was the least impacting among the simulated valvular
conditions. Given that AF is rarely an isolated pathology, in
our opinion, these data provide a clear additional insight:
if associated with comorbid conditions, such as valvular
heart disease, AF may act as a further trigger toward
hemodynamic decompensation.

More sophisticated multiscale approaches are able to grasp
propagation and waveform alterations as well as regional
variations of flow structure induced by AF. By comparing SR
and AF at the same given mean ventricular rate (75 bpm), a
multiscale 0D-1D modeling (33), which couples a 0D cardiac
dynamics and a 1D description of the arterial tree, showed that
the arterial system is not able to completely absorb the AF-
induced variability. The sole heart rhythm variation promotes
an alteration of the wave dynamics, which is amplified in the
distal circulation, by modifying the interplay between forward
and backward signals. The results suggest a possible vascular
dysfunction due to prolonged exposure to irregular and extreme
values. Recent 0D-3D multiscale studies (34), coupling 3D PC-
MRI data for the aorta and a compact 0D model for the
remaining circulation, showed that AF led to the modification
of systemic blood perfusion and increase of the endothelial
cell activation potential. Both these mechanisms can increase
the risk of atherogenesis and thrombus formation in different
regions from ascending to the thoracic aorta. Moreover, the
concomitant presence of aortic aging further worsens flow
circulation (35): in this case, AF exacerbates the vascular defects

due to aging, which increases the possibility of cardiovascular
diseases per se.

Notably, the aforementioned computational approaches
focus on acute hemodynamic effects. Over longer time
periods, the contractile impairment induced by fast and
irregular ventricular rate (36) may induce arrhythmia-induced
cardiomyopathy, and consequent detrimental systemic
hemodynamic effects further magnify the hemodynamic
alterations described. Figure 2 graphically summarizes the main
concepts of this section.

Atrial fibrillation and cerebral
hemodynamics

Since at least three decades, it has been known that
AF relates to a fivefold increased risk of stroke, compared
to the general population (37). However, more recently, AF
has shown to also relate to cognitive decline and dementia,
independently from clinical cerebrovascular events (stroke or
transient ischemic attack – TIA). A seminal work from Ott
et al. (38), based on a cross-sectional analysis of a subgroup
of patients in the Rotterdam Study, reported for the first
time an independent association between AF and dementia.
Thereafter, several prospective studies have been published,
whose results have been recently integrated in a meta-analysis
(39), demonstrating that AF is associated with a 28% increase in
the risk of dementia compared to non-AF controls, net of the
eventual intercurrent stroke/TIA during follow-up. However,
the relative independent contribution of AF to dementia onset
compared to other common dementia risk factors (e.g., age and
hypertension) is to date not quantifiable. Another intriguing
finding was that, when comparing the results to several previous
analyses that assessed the risk of dementia without accounting
for the possible occurrence of stroke/TIA during follow-up,
the stroke-independent contribution to dementia seemed to be
more prominent than the stroke-dependent one.

During the past years, several mechanisms have been
proposed to explain the association between AF and cognitive
decline (40). As reported by our group (41), AF patients present
at cerebral magnetic resonance imaging (MRI) a significantly
increased number of silent cerebral ischemia (SCIs) compared
to a control group with a similar cardiovascular risk profile, and
the burden of these lesions is proportional to the duration of the
arrhythmia (paroxysmal to persistent). More recently, Conen
(42) demonstrated that in 1,390 AF patients without previous
cerebrovascular events, cerebral MRI showed the presence of
different silent cerebral lesions in a significant number of
patients, such as silent cerebral infarction in 30%, microbleeds
in 22%, and white matter hyperintensities (WMHs) in 99% of
the investigated population; the presence of these alterations,
particularly silent infarctions and moderate-grade WMHs, was
significantly associated with cognitive decline at multivariate
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FIGURE 2

Atrial fibrillation effects on cardiac mechanics and systemic hemodynamics. AF, atrial fibrillation; CO, cardiac output; EF, ejection fraction; HR,
heart rate; LA, left atrium; LV, left ventricle; SR, sinus rhythm; SV, stroke volume.

analysis. In addition, it was shown that AF is associated with
smaller brain volumes as compared to non-AF patients, and this
association was stronger in patients with persistent/permanent
forms of AF and with increased time from the diagnosis of the
disease (43).

This spectrum of AF-related cerebral phenotypic alterations
can be broadly brought back to three possible phenomena: (1)
subclinical micro-embolic events; the repetitive recurrence of
these events, causing SCIs and WMHs, might contribute in
reducing brain volume and affecting cognitive function; (2) oral
anticoagulant therapy, particularly in case of warfarin therapy
(44), may partly promote cerebral microbleeds; (3) the irregular
rhythm may directly impact cerebral circulation, resulting in
cerebral lesions (SCIs, microbleeds, WMHs) and atrophy.

Different from the first two mechanisms, the latter has
seldom been investigated, most probably due to the evident
technical difficulties in assessing the cerebral circle downstream
of the Willis circle. Scant evidence from the end of the past
century using transcranial Doppler (TCD) already suggested
that AF might lower mean regional cerebral perfusion (45),
but the scientific community had to wait until 2018 for the
seminal work of Gardasdottir (46) for definitive proof. In
this work, brain perfusion was estimated with phase contrast
MRI in a large cohort of patients from the AGES-Reykjavik
Study: individuals with persistent AF showed a reduced mean
cerebral blood flow as compared to paroxysmal AF patients
(in SR at the time of the MRI; −8%) and controls with no

history of AF (−13%). In addition, in a subsequent experiment
(47), the same group demonstrated that successful electrical
cardioversion in persistent AF individuals was associated, after
at least 10 weeks of SR maintenance, with an improvement
of brain perfusion and cerebral blood flow measured by both
arterial spin labeling (ASL) and phase contrast MRI, while
no change in perfusion or blood flow was detected in those
individuals where cardioversion was unsuccessful.

In addition to the reduction of the mean cerebral
blood flow, AF with its irregular ventricular activation
might also have a beat-to-beat impact on cerebrovascular
circulation. This hypothesis has been demonstrated in silico
(48). Based on a cerebral fluid-dynamics setup with two
coupled lumped-parameter models (of the systemic and cerebral
circulation, respectively), AF is related to transient and repetitive
critical cerebral hemodynamic events in the distal cerebral
circle, consisting of brief but incessant periods of deep
cerebral hypoperfusions or hypertensive events. The repetitive
occurrence of these critical events might at least partly explain
the genesis of SCIs/WMHs (transient hypoperfusions) and
cerebral microbleeds (transient hypertensive events), which
could accumulate over time and determine the progressive
cerebral damage linked to cognitive decline and dementia.

In vivo validation of these computational findings, given
the limitations of the widely adopted noninvasive techniques
assessing cerebral hemodynamics (TCD and cerebral ALS-
MRI) (49, 50) not powered to assess beat-to-beat deep
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microcirculatory dynamics, is challenging. Our group, for this
aim, proposed spatially resolved near-infrared spectroscopy
(SRS-NIRS) (51), a noninvasive technique mainly used to
monitor cerebral tissue oxygenation in critical care, with the
ability to provide a noninvasive assessment of the cerebral
microcirculation with high temporal resolution, sensitive
to beat-to-beat variations when used with a high sampling
frequency (20 Hz). Cerebral SRS-NIRS and noninvasive
systemic hemodynamic monitoring were recorded before and
after elective electrical cardioversion in 53 AF/atrial flutter
(AFL) patients (52), analyzing the total hemoglobin index
(THI), a proxy of deep cerebral blood flow. In case of successful
SR restoration, in front of a nonsignificant decrease in arterial
blood, both hypoperfusive and hyperperfusive/hypertensive
microcirculatory events were significantly reduced. These
findings represent the first in vivo demonstration that
SR restoration by ECV significantly improves cerebral
microcirculation on a beat-to-beat level.

Additional intriguing insights on the association between
AF and cognitive decline/dementia derive from an interesting
10-year follow-up study by Cacciatore (53). In this experience,
AF patients presenting low (<50 bpm) compared to high
(>90 bpm) median ventricular response were predictive of
dementia onset. In fact, as suggested by computational data
(54), higher ventricular rates relate to a progressive increase
in critical cerebral hemodynamic events (hypoperfusions
and hypertensive events) at the distal cerebral circle, while
the excessively slow ventricular response is associated with
systemic-proximal cerebral (up to the middle cerebral artery)
hypoperfusions. Altogether, these findings, despite the results
of the aforementioned RACE II trial, suggest that a rate
control strategy aiming for a median ventricular response lower
than 110 bpm appears more beneficial in terms of cerebral
circulation. The main concepts of this section are illustrated in
Figure 3.

Atrial fibrillation and coronary
circulation

Patients with ongoing AF may present chest pain, ECG
abnormalities, such as ST segment depression, and troponin
release, even in the absence of classical obstructive epicardial
coronary disease, particularly at high ventricular rates (55–57).

The coronary circulation presents some peculiar
characteristics: the blood flow is mainly diastolic and a
complex interaction occurs between the driving pressure (aortic
pressure) and extravascular forces (intramural and endocavitary
pressure) compressing the microvasculature of the different
myocardial layers, in particular the subendocardium. In this
setting, AF-related hemodynamics may determine blunted
coronary flow reserve even in the presence of normal epicardial
coronary arteries (55, 58).

The AF patients present downregulation of endothelial
nitric oxide synthase (eNOS) (59), accounting for reduced
nitric oxide-dependent vasodilation, as well as a potential
influence on neurohumoral factors (60) [elevated levels of
atrial natriuretic peptide (ANP) and brain natriuretic peptide
(BNP), which mediate a shift of the vascular tone toward
vasoconstriction], and increased sympathetic tone (61) (which
increases coronary vascular resistance, reducing coronary flow
reserve in response to increased myocardial energy demand).
On top of these mechanisms, a direct detrimental hemodynamic
effect may also relate to the irregular RR intervals, similar to
the altered cerebral patterns of the microcirculatory perfusion,
transient cerebral hypoperfusion, and hypertensive events,
observed for the cerebral circulation during AF (48, 52,
54, 62). A computational multiscale (0D-1D) cardiovascular
model including left heart mechanics and arterial tree fluid
dynamics, together with a one-dimensional description of
the epicardial coronary circulation, was designed (63). Based
on this heart-arterial-coronary model, AF was simulated at
different median ventricular responses (50, 70, 90, 110, 130
bpm), assessing the impact of the arrhythmia at different
ventricular rates on the left anterior descending (LAD) flow
waveform, as well as on coronary blood flow perfusion. The
LAD flow waveform emerged as severely affected by AF,
resulting, in particular, in a net decrease of coronary blood
flow above 90–110 bpm. In addition, oxygen consumption
monotonically increased with the ventricular rate (as estimated
by rate pressure product), underlying how exceeding 90–
110 bpm likely causes an imbalance in the oxygen supply-
demand ratio.

To further study AF-related coronary microcirculation,
a similar 1D-0D multiscale model of the entire human
cardiovascular system enriched by detailed mathematical
modeling not only of the epicardial coronary arteries but also
of their downstream microcirculatory districts, subdivided into
three layers (subepicardium, midwall, and subendocardium),
has been designed (64). In this setting, AF and SR have been
simulated at different ventricular rates (75, 100, 125 bpm),
and the mean microcirculatory blood flow per beat across
the different myocardial layers, in the districts downstream of
the three coronary arteries [LAD; left circumflex artery, LCx;
and right coronary artery, RCA], was compared. The major
findings of this analysis were that the microcirculatory blood
flow decreases across all myocardial layers, and at all ventricular
rates, in AF compared to SR. In particular, the most affected
were the subendocardial layers of the microcirculatory districts
downstream of the left coronary arteries (LAD, LCx), where
increased left endoventricular pressure during AF plays a role
in increasing microvascular resistance of the subendocardial
vessels. Of note, there was a more significant reduction of
microvascular blood flow across all cardiac layers in AF
simulations at the higher ventricular response (100, 125 bpm),
as compared to the corresponding SR simulations, supporting
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FIGURE 3

Atrial fibrillation effects on cerebral hemodynamics. AF, atrial fibrillation; HR, heart rate; SR, sinus rhythm.

FIGURE 4

Atrial fibrillation effects on coronary hemodynamics. AF, atrial fibrillation; HR, heart rate; LAD, left anterior descending coronary artery; LV, left
ventricle; SR, sinus rhythm.
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the concept that fast ventricular rates during arrhythmia
appear detrimental.

In the end, a 1D model of coronary circulation, with an
assigned flow rate at the aorta root as an upstream boundary
condition and constant pressure as a distal outflow boundary
condition, was proposed to study the impact of different kinds
of arrhythmias on coronary circulation (65). The authors found
that coronary blood flow, defined as the net blood flow through
left and right coronary arteries, was significantly affected by
arrhythmias. In particular, during bigeminy, trigeminy, and
quadrigeminy, coronary blood flow decreased by 28, 19, and
14% with respect to the baseline pacing at rest (60 bpm)
and by 33, 22, and 17% with respect to pacing at 160
bpm, respectively.

Overall, these findings are concordant with the available
evidence in the literature. Mechanically induced AF diminished
coronary flow reserve particularly in the subendocardial layers
of dog’s hearts (subendocardial blood flow was reduced by
22%, while subepicardial blood flow was reduced by 9%) (66).
Moreover, Kochiadakis elegantly demonstrated in humans (67),
with the use of an intracoronary Doppler flow wire, reduced
coronary flow reserve in experimentally induced AF compared
to right atrial pacing at a similar heart rate, proving the critical
role played by the irregular RR interval; interestingly, in the
same study, it was also shown that, in case of AF with excessively
short RR intervals, the ventricle may not generate enough
pressure to open the aortic valve, corresponding to a markedly
reduced coronary flow in that specific heartbeat. Figure 4
resumes the main notions regarding how AF affects coronary
circulation.

Limitations

Although computational modeling presents advantages
in characterizing the hemodynamic impact exerted by
AF, especially in those vascular regions—as the cerebral
microcirculation—where the anatomical and structural
complexity makes accurate clinical measures difficult to obtain,
the following limitations need to be considered. First, the
described hemodynamic modeling approaches predict acute
hemodynamic effects, not taking into account possible chronic
arrhythmia-induced hemodynamic compensatory mechanisms.
Second, not all the cardiovascular models presented incorporate
beat-to-beat autonomic response, and none of them considers
the long-term effects of the autonomic nervous system. Third,
the cardiovascular modeling approach is usually calibrated on a
generic young healthy subject and validated against available AF
hemodynamic literature data. While a number of mechanisms,
such as posture and gravity effects, metabolic regulations, and
cardiac electromechanics activity, would need to be included
to account for different hemodynamic scenarios (from cardiac
dysfunctions to astronautical applications), patient-specific

cardiovascular modeling surely is emerging as a powerful tool
to personalize and integrate cardiac care.

Conclusion

Growing scientific evidence, mainly based on cardiovascular
modeling studies, points toward a relevant impact of AF on
different aspects of physiological cardiovascular functioning,
ranging from a broad impact on heart mechanics and systemic
circulation to more specific influences on key vascular beds such
as the cerebral and the coronary circles. Altogether, these data, if
considered with the recent results of the EAST-AFNET 4 trial
(12), highlight the critical role of sinus rhythm maintenance
in improving not only patient’s prognosis but also patient’s
hemodynamics, with likely benefit in cognitive function and
ischemic symptoms. In addition, in case sinus rhythm could not
be maintained over time, a strict rate control in permanent AF
patients might be advisable to limit the hemodynamic impact
of the arrhythmia.
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