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Micropolar modelling of periodic Cauchy
materials based on asymptotic homogenization

Maria Laura De Bellis, Andrea Bacigalupo, Giorgio Zavarise

Academia is a wide world with a lot of colleagues, some coworkers, and few
friends. We have had the privilege to have Peter as a great friend.
Hence, thanks Peter, for all we learned from you and for your friendship.

Abstract A micropolar-based asymptotic homogenization approach for the anal-
ysis of composite materials with periodic microstructure is proposed. The macro
descriptors are directly linked to both suitable perturbation functions, obtained via
asymptotic homogenization scheme, and micropolar two-dimensional deformation
modes. A properly conceived energy equivalence between the macroscopic point
and a microscopic representative portion of the periodic composite material is intro-
duced to derive the overall micropolar constitutive tensors. The resulting constitutive
tensors are not affected by the choice of the periodic cell.
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1 Introduction

Periodic manufactured composites are widely adopted in many engineering fields. In
this context, it is crucial to accurately reproduce the material response in a synthetic,
but accurate way. To this aim the study of multi-scale homogenization techniques is a
very interesting and debated topic in literature [1, 2, 3]. Homogenization approaches,
based on Cauchy continua at both the microscopic and macroscopic scales, may re-
veal ineffective since are not able to describe size effects as well as the dispersion
properties of periodic heterogeneous materials. To overcome these drawbacks, non-
local homogenization schemes can be effectively exploited.
In this framework, a micropolar macroscopic modelling of periodic Cauchy mate-
rials based on asymptotic homogenization approach is here proposed. In Section 2
the governing equations at both microscopic and macroscopic scales are recalled.
Section 3 is devoted to define the micro-macro kinematic relations and the asymp-
totic expansion of the microscopic governing equations. The upscaling relations and
a properly defined kinematic map are, then, fully developed in Section 4. The gen-
eralized macro-homogeneity condition is, then, derived in Section 5. An illustrative
application is, finally, proposed in Section 6.

Fig. 1 Heterogeneous material at the microscopic level. (a) Cluster of periodic cells with structural
dimensions !; (b) Periodic Cell A with characteristic size Y; (c) unit cell Q.
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2 Microscopic and macroscopic governing equations

Focus is on a 2D periodic heterogeneous composite material„ as in Figure 1(a), in
the framework of linearised kinematics. A Cauchy continuum, subject to stresses
induced by periodic body forces, is adopted. The periodic cell A = [−Y/2, Y/2] ×
[−Y/2, Y/2], whose characteristic size is Y, is shown in Figure 1(b) together with the
corresponding unit cell Q in Figure 1(c) characterized by periodicity vectors v1, v2.
The governing equations at the microscopic scale read

∇ ·
(
C<

( x
Y

)
∇u(x)

)
+ b(x) = 0, (1)

where C< is the Q-periodic elasticity tensor, b are the zero-mean-value L-periodic
body force, with L = [−!/2; !/2] × [−!/2;−!/2], for ! >> Y. It follows that the
microscopic displacement field u explicitly depends on both x and / = x/Y.
At the macroscopic scale a micropolar continuum [4] is considered with governing
equations

∇ ·
[
G" (∇U(x) + n3ℎ: (eℎ ⊗ e: )Φ (x))

]
+ ∇ ·

(
Y"∇Φ(x)

)
+ b(x) = 0,

∇ ·
[
Y") (∇U(x) + n3ℎ: (eℎ ⊗ e: )Φ(x))

]
+ ∇ ·

(
S"∇Φ(x)

)
+

− n38 9 (e8 ⊗ e 9 ) :
[
G" (∇U(x) + n3ℎ: (eℎ ⊗ e: )Φ(x)) + Y"∇Φ(x)

]
+ 23 (x) = 0,

(2)

where G" , Y" and S" are the constitutive tensors, b, 23 are the generalized body
forces, U(x) and Φ(x), are the macro-displacement and micropolar rotation field,
respectively.
In what follows a procedure aimed at identifying the macroscopic constitutive ten-
sors, characterizing the equivalent micropolar continuum, are derived from the me-
chanical properties available at the microscopic scale.

3 Micro-macro kinematic relations and asymptotic expansion of
the microscopic governing equations

In line with the asymptotic homogenization scheme (see i.e. [5]), the following
asymptotic expansion of the microscopic displacement field is taken

D8

(
x, b =

x
Y

)
=

©«*8 (x) +
+∞∑
;=1

Y;
∑
|@ |=;

#
(;)
8 9@
(/) m

|@ |

mG@
* 9 (x)

ª®¬
������
b= x

Y

, (3)

where *8 are macro-displacement components, # (;)
: ?@1

are zero-mean-value Q-
periodic perturbation functions and @ a multi-index of length ;. The equation (3) can
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be plug into the microscopic governing equation (1). After suitable manipulations,
by collecting the terms with equal power Y, and imposing the so-called solvability
condition in the class of Q-periodic functions, a hierarchical sequence of partial dif-
ferential problems, known as 24;; ?A>1;4<B, is obtained as in [6]. More specifically,
the perturbation functions at order Y0, Y1 and Y2, i.e. # (1)

ℎ?@1
, #
(2)
ℎ?@1@2

and # (3)
ℎ?@1@2@3

are determined, together with the overall first order constitutive tensor components

�8@2 ?@1 =

∫
&

�<A 9:;

(
#
(1)
A8@2 , 9

+ X8A X 9@2

) (
#
(1)
: ?@1 ,;

+ X?:X;@1

)
3/, (4)

that are key elements intervening in the micropolar homogenization scheme, detailed
in the following sections.

4 Upscaling relations and third order polynomial kinematic map

Accordingly with the procedure detailed in [7], the upscaling relations, linking the
generalized macro-displacement field, depending on both U(x) and Φ(x), to the
displacement field at the microscopic level u(x), are here discussed. In particular for
,8 9 = −n38 9Φ a minimization procedure over the unit cell Q is proposed as follows

*1 (x) =
∫
Q

D1 (x, /)3/, *2 (x) =
∫
Q

D2 (x, /)3/,

min
,8 9

F
[
l∗8 9 (,8 9 )

]
= min
,8 9

∫
Q

(
| |l8 9 (x, /) − l∗8 9 (x, /) | |2

)2
3/, (5)

where l8 9 are the components of the micro infinitesimal rotation tensor and l∗
8 9
are

the components of a properly defined skew-symmetric tensor expressed in the form

l∗8 9 =,8 9 +
+∞∑
;=1

∑
|@ |=;
|A |=;

1
2

(
#
(;)
8 9@,A
− # (;)

98@,A

)
,̃@A . (6)

By plugging (6) truncated at the first order into (5) c, after solving the minimization
problem, the components of the micropolar rotation tensor are obtained as

,8 9 (x) =

∫
Q
"8 9 ?@1 (/) l?@1 (x, /)3/∫

Q
X?A X@1B1"ℎ: ?@1 (/)"ℎ:AB1 (/)3/

, (7)

with "8 9 ?@1 = X8 ?X 9@1 + 1
2

(
#
(1)
8 9 ?,@1

− # (1)
98 ?,@1

)
.

The upscaling relations are now particularized by truncating the microscopic dis-
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placement field at the third order, i.e.

D� � �8 (x, /) = *8 (x) + Y# (1)8 9@1
(/) � 9@1 (x) +

+ Y2#
(2)
8 9@1@2

(/) ^ 9@1@2 (x) + Y3#
(3)
8 9@1@2@3

(/) ^ 9@1@2@3 (x) ,
(8)

where *8 (x) is the macroscopic displacement field and � 9@1 (x), ^ 9@1@2 (x) and
^ 9@1@2@3 (x) its gradient and higher order gradients.
Concerning the macro-displacement, a third-order Taylor polynomial expansion is
chosen

*8 (x) = *̄8 + �̄8 ?1G?1 +
1
2

¯̂8 ?1 ?2G?1G?2 +
1
6

¯̂8 ?1 ?2 ?3G?1G?2G?3 , (9)

where the coefficients *̄8 , �̄8 ?1 , ¯̂8 ?1 ?2 and ¯̂8 ?1 ?2 ?3 are the macroscopic fields eval-
uated at point x = 0, respectively. In order to identifying a micropolar continuum,
the 20 independent coefficients must be properly reduced to 6 as detailed in [7].
At this point, by replacing the equation (9), suitably manipulated, in (8), the polyno-
mial approximation of the microscopic displacement field is

D1 (x, /) =B1
1 (x, /) �̄11 + B2

1 (x, /) �̄22 + B3
1 (x, /) �̄12+

+ B4
1 (x, /) ¯̂122 + B5

1 (x, /) ¯̂211 + B6
1 (x, /) ¯̂1222,

D2 (x, /) =B1
2 (x, /) �̄11 + B2

2 (x, /) �̄22 + B3
2 (x, /) �̄12+

+ B4
2 (x, /) ¯̂122 + B5

2 (x, /) ¯̂211 + B6
2 (x, /) ¯̂1222,

(10)

where �̄8 ?1 = (�̄8 ?1 + �̄?18)/2 and the localization functionsB 9
8
(x, /) depend on the

overall first order elastic tensor components and on the perturbation functions. By
plugging equations (10) in equations (7), the micropolar rotation field Φ(x) and, in
turn, the macroscopic curvature tensor components  1 = mΦ/mG1 and  2 = mΦ/mG2
are obtained.

5 Generalized macro-homogeneity condition

The overall micropolar elastic properties are derived by exploiting a generalized
macro-homogeneity condition, establishing an energy equivalence between the
macroscopic and the microscopic scales. Accordingly with [5, 8], the <82A>B2>?82
<40= BCA08= 4=4A6H is defined as

Ē< ¤=
1
2

∫
A

∫
Q

9 (x, /)) C< (/) 9 (x, /) 3/3x, (11)

where C< is the elasticity matrix and 9 is the microscopic strain vector in the
standard matrix notation. Under the assumption of scale separation, the Ē< related
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to the strain field 90 = 9(x = 0, /) can be introduced as

Ē0
< ¤=

1
2

∫
A

∫
Q

9 (x = 0, /)) C< (/) 9 (x = 0, /) 3/3x =
|A|
2

∫
Q

9)0 C<903/, (12)

being |A|the area of the periodic cell. More specifically, this strain vector is deter-
mined from the microscopic displacement components in equation (10), taking the
form

90 = BΞ� + BΥ�, (13)

being � =
{
�̄11 �̄22 �̄12 ¯̂1222

})
, � =

{
¯̂122 ¯̂211

}) and BΞ, BΥ properly defined
strain localization matrices. The related <82A>B2>?82 <40= BCA08= 4=4A6H 34=B8CH
is consequently derived

q̄0
< =
Ē0
<

|A| =
1
2

©«�)
∫
Q

BΞ)C<B�3/ � + �)
∫
Q

BΥ)C<BΥ3/ � +

+�)
∫
Q

BΞ)C<BΥ3/ � + �)
∫
Q

BΥ)C<BΞ3/ �ª®¬ .
(14)

Furthermore, the macroscopic strain energy density evaluated in x = 0 is introduced

q0
" =

1
2

(
�0
)G"�0 +K0

) S"K0 + �0
)Y"K0 +K0

)Y") �0

)
, (15)

where the asymmetric micropolar strain vector and the curvature vector, evaluated
in x = 0 are defined as

�0 = AΞ
Γ� + AΥ

Γ�, K0 = AΞ
 � + AΥ

 �, (16)

being AΞ
Γ
, AΞ

 
, AΥ

Γ
, AΥ

 
transformation matrices.

By exploiting the generalizedmacro-homogeneity condition, establishing the equiva-
lence between themicroscopic andmacroscopic strain energy density q̄0

< ¤=q0
"
(x = 0),

after some manipulations, the overall elastic micropolar matrices are determined.
In the case the periodic cell is characterized by centrosymmetric topology, it results

G" =

∫
Q

AΞ
Γ

−)BΞ)C<BΞAΞ
Γ

−1
3/,

S" =

∫
Q

AΥ
 

−)BΥ)C<BΥAΥ
 

−1
3/, (17)

and the coupling matrix is Y" = 0.
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6 Benchmark test

As an example, a strip of two-phase periodic medium, realized by assembling,
along horizontal and vertical directions, periodic cells with a stiff matrix (phase 1)
embedding soft square inclusions (phase 2), see Figure 2, is considered. The the size
of the inclusion is Y/2 and the material is characterized by [� = �2/�1 = 3/50 and
[a = a1/a2 = 1 (with �1= 500 GPa, a1=0.1). The specimen undergoes a system of
discontinuous periodic forces, with period !1=(4U + V)Y, located on both top and
bottom sides of the strip characterized by width equal to VY, with U = 4, V = 10, and
Y being the size of the periodic cell. Plane strain conditions are assumed.
The numerical results of the micro-mechanical model, in terms of displacement

Microscopic scale Macroscopic scale

Fig. 2 Strip undergoing discontinuous periodic forces: schematic of the heterogeneous medium
versus the homogenized one.

components, along a horizontal line located at a distance 9/2Y from the top side of
the strip, are compared with the respective ones obtained considering the micropolar
homogenized model.
In Figure 3(a) the dimensionless micro-mechanical displacement component D1/!1
(blue dotted line), and the respective macro-mechanical one *1/!1 (red solid line)
are plotted versus the dimensionless coordinate G1/!1. Analogously, in Figure 3(b)
the dimensionless components D2/!1 and *2/!1 are reported with the same line
styles. For both microscopic and macroscopic displacement components a very
good agreement is shown.

Acknowledgements The authors gratefully acknowledge financial support from National Group
of Mathematical Physics (GNFM-INdAM), from the Compagnia San Paolo, project MINIERA no.
I34I20000380007 and project Search for Excellence Ud’A 2019.
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Fig. 3 Case with softer inclusion. Comparison between dimensionless micro-mechanical displace-
ment components, in blue dotted lines, and the respective macro-mechanical ones versus G1/!1.(a)
Components D1/!1,*1/!1; (b) components D2/!1,*2/!1.

References

1. E. Sanchez-Palencia. Comportements local et macroscopique d’un type de milieux physiques
heterogenes. International Journal of Engineering Science, 12(4):331–351, 1974.

2. N. Bakhvalov and G. Panasenko. Homogenization: Averaging Processes in Periodic Media.
Kluwer Academic Publishers, Dordrecht-Boston-London, 1984.

3. T.I. Zohdi and P. Wriggers. An introduction to computational micromechanics. Springer
Science Business Media, 2008.

4. R. D. Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and
Analysis, 16(1):51–78, 1964.

5. A. Bacigalupo. Second-order homogenization of periodic materials based on asymptotic
approximation of the strain energy: formulation and validity limits. Meccanica, 49(6):1407–
1425, 2014.

6. M.L. De Bellis and A. Bacigalupo and G. Zavarise Characterization of hybrid piezoelectric
nanogenerators through asymptotic homogenization. Computer Methods in Applied Mechan-
ics and Engineering, 355:1148–1186, 2019.

7. A. Bacigalupo and M.L. De Bellis and G. Zavarise Asymptotic homogenization approach for
the micropolar modelling of periodic materials Submitted 2021

8. V. Smyshlyaev and K. Cherednichenko. On rigorous derivation of strain gradient effects in
the overall behaviour of periodic heterogeneous media. Journal of the Mechanics and Physics
of Solids, 48(6):1325–1357, 2000.


