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Abstract

A micropolar-based asymptotic homogenization approach for the analysis of composite materials with
periodic microstructure is proposed. The upscaling relations, conceived to determine the macro-descriptors
(macro displacement and the micropolar rotation fields) as a function of the micro displacement field, are
consistently derived in the asymptotic framework. In particular, the micropolar rotation field is expressed
in terms of the microscopical infinitesimal rotation tensor and the perturbation functions. The micro
displacement field is, in turn, obtained by choosing a third order approximation of the asymptotic expan-
sion, in which the macroscopic fields are expressed as a third order polynomial expansion. It follows that
the macro descriptors are directly related to both perturbation functions and micropolar two-dimensional
deformation modes. A properly conceived energy equivalence between the macroscopic point and a mi-
croscopic representative portion of the periodic composite material is introduced to derive the consistent
overall micropolar constitutive tensors. It is pointed out that these constitutive tensors are not affected by
the choice of the periodic cell. Moreover, in the case of vanishing microstructure the nonlocal constitutive
tensors tend to zero, as expected. Finally, the capabilities of the proposed approach are shown through
some illustrative examples.
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1. Introduction

Periodic manufactured composites are widely used in many engineering fields, ranging from mechanics,
through aerospace and robotics to bio-mechanics. In this context, it is crucial to accurately reproduce
the material response, possibly resorting to micromechanical approaches that may require very high
computational costs. At the same time, it is also fundamental to use models able to grasp the overall
response, with its peculiar characteristics, in a synthetic and accurate way. In this framework, the study
of multi-scale homogenization techniques, able to properly reproduce the overall behavior of periodic
heterogeneous materials by exploiting the detailed information available at the microscopic scale, is a
very intriguing and debated topic in literature.
The classical homogenization approaches, based on linking Cauchy continua at the microscopic and mac-
roscopic scales, could be ineffective in the case the microstructural characteristic size is not negligible
with respect either to the structural size, or to the wavelengths of both periodic forces and acoustic wave
propagating in the medium, as well as in the presence of high strain and stress gradients. In such cases,
the use at the macroscopic scale of non-local continua [1–3], involving characteristic lengths in the con-
stitutive equations, enables one to reproduce more accurately the macroscopic behavior, driven by the
actual heterogeneous material at the microscopic scale. In particular, the presence of these characteristic
lengths allows a consistent description of dispersive waves, and an objective numerical response in the
case of strain softening behavior.
The homogenization techniques proposed so far to investigate periodic Cauchy composites can be clas-
sified in three groups, that is: i) asymptotic approaches [4–13]; ii) variational-asymptotic approaches
[14–17]; iii) a wide range of identification techniques, among which analytical [18–24] and computa-
tional approaches [25–49].
By exploiting the sound mathematical basis of both asymptotic and variational-asymptotic techniques,
it is possible to find rigorous analytical solutions for the higher-order homogenization of periodic linear
elastic heterogeneous materials. The key idea is to perform a properly conceived asymptotic expansion
of the micro-displacement field in order to define a series of recursive differential problems over the peri-
odic unit cell, in terms of microscopic variables. Downscaling relations, coupling the kinematics at both
macroscopic and microscopic scales, are, then, derived consistently with solvability conditions of these
non-homogeneous recursive problems. In particular, the downscaling relations are expressed in terms of
macroscopic descriptors – displacement and its gradients – and so-called perturbation functions, directly
depending on heterogeneities. Such perturbation functions, obtained as solution of differential cell prob-
lems in the presence of locally periodic body forces, are found to be locally periodic. This circumstance
guarantees the objectivity of the results, irrespective of the choice of the periodic cell.
On the other hand, computational approaches, derived for second-order, as well as for micropolar and
micromorphic continua, are heuristically based on polynomial expansions of the macroscopic kinematic
fields, and have attracted the attention of the scientific community especially because of their appealing
formulation and reasonable computational effort. In this context, the microscopic displacement field is
assumed as the superposition of two fields. The former field is the aforementioned polynomial expan-
sion, while the latter is an a-priori unknown micro-displacement fluctuation field. Such fluctuation field
is obtained by solving differential cell problems in the absence of body forces in most cases undergoing
periodic boundary conditions.
The case of micropolar homogenization, linking a micropolar continuum at the macroscopic scale with
a heterogeneous Cauchy continuum at the microscopic scale, requires particular attention. It stands to
reason, indeed, that the lack of a one to one correspondence between displacement degrees of freedom at
both scales makes it difficult to define consistent down- and upscaling relations resorting both to standard
asymptotic or computational homogenization approaches. In [25] a micropolar computational approach
is proposed. The main idea is the definition of an heuristic relation between the microscopic fields and the
micropolar rotation field. Also in this case, periodic boundary conditions are imposed. A principal draw-
back of utilizing periodic boundary conditions, with generalized continua at the macroscopic scale, is
the inability of guaranteeing the C1-continuity of the micro-displacement field between adjacent cells for
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some second-order or micropolar/micromorphic strain components, such as bending modes, see [32, 34].
For this reason, generalised periodic boundary conditions have been proposed in the framework of the
second-order homogenization in [32], as well as in the case of micropolar homogenization in [42, 50].
Specifically, in [32, 34] a critical analysis on advantages and disadvantages of computational homogen-
ization approaches for different generalized continua has been presented. Open issues remain on the
dependence of both the fluctuation fields and homogenized constitutive parameters on the choice of the
periodic cell. A further sticking point concerns the fact that in the case of vanishing microstructure, i.e.
when the material tends to be homogeneous, these models are not able to recover the Cauchy medium, but
in general non-zero characteristic lengths or non-local constitutive components are unexpectedly found.
In the framework of second-order homogenization, in [11] a strategy has been proposed to unambiguously
determine this microscopic displacement fluctuation field via asymptotic techniques. More specifically,
an analytical correlation between the overall elastic constitutive tensors obtained through asymptotic and
computational approaches has been proposed, through the definition of a generalized macro-homogeneity
condition between the microscopic average strain energy and the macroscopic strain energy. It is also
shown that these elastic constitutive tensors are independent on the choice of the periodic cell and the
Cauchy medium is recovered when the microstructure vanishes.
On the other hand, in the case of micropolar homogenization of periodic Cauchy materials these problems
seem to be still unsolved, at least for the authors knowledge. Therefore, this paper focuses on a micropolar
modelling of composite materials with periodic microstructure (e.g. made up by inclusions regularly em-
bedded into a matrix) based on an asymptotic homogenization scheme. The proposed homogenization
procedure is conceived for providing an objective macroscopic constitutive response, independent on the
choice of the periodic cell, as well for avoiding the well-known pathological behavior found in the case
of non vanishing characteristic lengths (i.e. non local elastic constants) even when the material tends
to become homogeneous. The upscaling relations are inspired by those originally proposed by [25] in
the framework of the computational homogenization. Such upscaling relations, consistently derived in
the asymptotic framework, directly relate the macro-descriptors (macro displacements and micropolar
rotation fields) to the micro displacement field. Concerning the micropolar rotation field, it is derived
as a function of both the microscopical rotation tensor and the perturbation functions at different orders.
In particular, the microscopic displacement field is described as superposition of the macroscopic driven
third order polynomial kinematic map and the locally periodic perturbation fields. Specifically, these
perturbation functions are inherently related to the heterogeneous nature of the composite medium and
are derived from the solution of recursive differential cell problems. Moreover, the overall micropolar
elastic tensors derive from a properly conceived energy equivalence between the macroscopic point and
a representative portion of the heterogeneous material at the microscopic scale. Different applications to
bi-phase orthotropic materials are performed in order to exploit the capabilities of the proposed approach.
The paper is organized as follows. In Section 2 the governing equations at both microscopic and macro-
scopic scales are briefly recalled. In Section 3 a synopsis of the proposed method is presented. More in
detail, Section 3.1 is devoted to define the micro-macro kinematic relations and the asymptotic expansion
of the microscopic governing equations. The upscaling relations and a properly defined kinematic map
are, then, fully developed in Section 3.2. The generalized macro-homogeneity condition is, then, derived
in Section 3.3. Some illustrative applications of technological interest are proposed in Section 4. Finally,
in Section 5 some concluding remarks are reported.

2. Cauchy-micropolar homogenization

The aim of this work is to characterize a homogenized micropolar continuum at the macroscopic level,
derived from the mechanical properties of the periodic heterogeneous material described as a Cauchy
continuum at the microscopic scale. In the following the governing equations together with the boundary
conditions at both microscopic and macroscopic scales are reported.
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2.1. Microscopic governing equations of the Cauchy periodic material
In the framework of linearized kinematics, we focus on a heterogeneous composite material with peri-
odic microstructure made up, for instance, by a regular distribution of inclusions embedded into a base
matrix. A classical Cauchy continuum, subject to stresses induced by periodic body forces, is then
considered. Without loss of generality and for simplicity of notation, we restrict attention to the two-
dimensional case. A generic point x = x1e1 + x2e2 is, thus, referred to a system of coordinates with
origin at point O and orthogonal base (e1,e2), as in Figure 1(a). In the periodic medium it is possible to

Figure 1: Heterogeneous material at the microscopic level. (a) Cluster of periodic cells with structural dimensions L; (b)
Periodic CellA with characteristic size ε; (c) unit cell Q.

identify a periodic cell A = [−ε/2, ε/2] × [−ε/2, ε/2], whose characteristic size is ε, having two ortho-
gonal periodicity vectors v1=d1e1=ε e1, and v2=d2e2=ε e2. Therefore, the microscopic elasticity tensor
C(m,ε)(x)=C(m,ε)

i jhk ei ⊗ e j ⊗ eh ⊗ ek (where the superscript m stands for the microscale) is A-periodic and
fulfills the property C(m,ε)(x + vi) = C(m,ε)(x), i= 1,2 and ∀x ∈ A, see Figure 1(b). Consistently with
standard asymptotic homogenization approaches, the unit cell Q = [−1/2, 1/2] ×[−1/2, 1/2] is obtained
by applying a rescaling factor of ε to the periodic cell A, as shown in Figure1(c). Besides the macro-
scopic variable x ∈ A , also referred to as slow variable, it is, thus, possible to define the microscopic or
f ast variable ξ=x/ε ∈ Q. Accordingly, the constitutive tensor can be expressed as C(m,ε)(x)=Cm(ξ=x/ε),
where the Q-periodicity is made explicit.
In this framework, being u(x) the displacement field of each material point, the micro strain tensor
ε(x) = sym∇u, and the micro infinitesimal rotation tensor ω(x) = skw∇u are defined. The classical
Cauchy constitutive relations, linking the microscopic stress and strain tensors, result therefore as σ(x) =

Cm(x/ε) ε(x), where σ(x) is the micro stress tensor. The linear momentum balance is ∇ ·σ(x) + b(x) = 0,
where the body forces b(x) = biei, i=1,2, only depend on the slow variable x. It is, indeed, assumed that
the body forces fulfill the L-periodicity with L = [−L/2; L/2] × [−L/2; L/2], and have zero mean values
onL. Moreover, L can be considered as a representative portion of the whole body, see Figure 1(a), under
the assumption that the structural length L is much greater than the microstructural length ε (L >> ε),
consistently with the scale separation principle.
By plugging the constitutive equations and the compatibility equations (ε(x) = sym∇u) into the linear
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momentum balance, and exploiting the symmetry properties of the elastic tensor, the governing equation
takes the following form

∇ ·

(
Cm

(x
ε

)
∇u(x)

)
+ b(x) = 0. (1)

The interface conditions, applying in the periodic cellA, expressing the continuity of displacements and
tractions, are

[[u(x)]]|x∈Γ = 0, [[Cm
(x
ε

)
∇u(x) · n]]|x∈Γ = 0, (2)

where [[g]] = gi(Γ) − g j(Γ) is defined as the jump discontinuity of the generic function g at the interface
Γ between phases i and j in A, and n denotes the outward normal to the interface. The microscopic
displacement field, solution of the governing equation (1) and the interface conditions (2), explicitly
depends on both x and ξ as a result of the Q-periodicity of the microscopic elastic tensors and the L-
periodicity of the body forces, thus giving rise to

u = u
(
x, ξ =

x
ε

)
. (3)

Due to this double Q- and L-periodicity, the problem of finding the solution of the governing equation
(1) turns out to be, in general, both very cumbersome, using numerical approaches, and very difficult or
almost impractical using analytic approaches.
A possible way out is the use of homogenization techniques that allow to replace the periodic medium
with an equivalent homogeneous one, resulting in governing equations characterized by constant coeffi-
cients. We here derive an equivalent micropolar continuum, which overall constitutive tensors are ana-
lytically obtained in terms of the actual geometric and mechanical properties of the microstructure.

2.2. Macroscopic governing equations of the micropolar homogenized material
At the macroscopic level, a generic material point is characterized by a generalized displacement de-
pending on the continuum fields U(x) and Φ(x), playing the role of macro-displacements and micropolar
rotation field, respectively, both only depending on the macroscopic (slow) variable x.
The asymmetric micropolar strain tensor is Γ(x) = H(x) −W(Φ(x)), depending on the macroscopic dis-
placement gradient H(x) = ∇U(x) and the skew-symmetric micropolar rotation tensor W(x) = Wi jei ⊗ e j.
This latter tensor is associated to the micropolar rotation vector Φe3 (being e3 the unit vector ortho-
gonal to e1, e2) through the relation Wi j = −ε3i jΦ, where ε3i j is the Levi-Civita symbol, fulfilling the
property Wi ja j = εi3kΦak for the generic vector a = akek. It is worth-noting that by exploiting the ad-
ditive decomposition of the macroscopic displacement gradient, i.e. H(x) = E(x) +Ω(x), the symmetric
E(x) = sym(H(x)) and the skew-symmetric Ω(x) = sym(H(x)) parts are consistently derived. Besides,
the curvature tensor is introduced as K(x) = ∇Φ(x). Therefore, the micropolar constitutive relations
result as

Σ(x) = GMΓ(x) + YMK(x),

M(x) = YMT
Γ(x) + SMK(x),

(4)

where the macroscopic quantities Σ(x) and M(x) are the asymmetric stress tensor and the couple stress
tensor, respectively, and GM=Gi jhkei⊗e j⊗eh⊗ek, YM=Yi jhei⊗e j⊗eh, YMT

=Yi jheh⊗ei⊗e j and SM=S i jei⊗

e j are the macroscopic homogeneous constitutive tensors. The balance of momentum and balance of
moment of momentum result

∇ · Σ(x) + b(x) = 0,
∇ ·M(x) − ε3i j(ei ⊗ e j) : Σ(x) + c3(x) = 0,

(5)
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where b(x) and c3(x) are the body forces and the body couples, respectively.
By exploiting the balance equations (5), recalling the constitutive equations (4) and the definitions of
asymmetric micropolar strain tensor Γ(x) and curvature tensor K(x), the governing equation in terms of
the components of the generalized displacements U(x) and Φ(x) takes the following form

∇ ·
[
GM (∇U(x) + ε3hk (eh ⊗ ek) Φ (x))

]
+ ∇ ·

(
YM∇Φ(x)

)
+ b(x) = 0,

∇ ·
[
YMT

(∇U(x) + ε3hk(eh ⊗ ek)Φ(x))
]

+ ∇ ·
(
SM∇Φ(x)

)
+

− ε3i j(ei ⊗ e j) :
[
GM (∇U(x) + ε3hk(eh ⊗ ek)Φ(x)) + YM∇Φ(x)

]
+ c3(x) = 0.

(6)

Concerning the body couples, without loss of generality, in the following c3(x) = 0 will be considered.

3. Outline of the proposed method

The proposed homogenization technique consists of three successive steps, which are detailed in the fol-
lowing sub-paragraphs. Firstly in subsection 3.1, the standard homogenization scheme is applied in order
to determine both the perturbation functions, characterizing the geometric and mechanical properties of
the periodic microstructure, as well as the overall constitutive tensor of the first order equivalent con-
tinuum. Secondly in subsection 3.2, based on the results of the previous step, the upscaling relations,
defining the macroscopic generalized displacements in terms of the microscopic displacement field, are
properly established. In addition, the kinematic map, which describes the microscopic displacement field
explicitly dependent on macroscopic constants associated with the micropolar deformation modes, is
uniquely defined. Finally in subsection 3.3, the generalized macro-homogeneity condition is introduced
to identify, in closed form, the overall elastic constitutive equations characterizing the equivalent micro-
polar continuum, that directly descend from the heterogeneous microstructure through the perturbation
functions.

3.1. Micro-macro kinematic relations and asymptotic expansion of the microscopic governing equations
In order to define the kinematic relations between the two scales, i.e. upscaling and downscaling relations
that will be fully developed in the following subsection 3.2, the microscopic displacement field is here
represented via an asymptotic expansion in terms of the microstructural length ε. The idea is to describe
the microscopic displacement field as the superposition of a macroscopic displacement field and a prop-
erly defined microscopic displacement fluctuation field. This latter field depends, in turn, on gradients
of the macroscopic displacement field, as well as on periodic perturbation functions. In particular, the
asymptotic expansion takes the following form as in [5, 13, 15]

ui

(
x, ξ =

x
ε

)
=

u∗i (x) +

+∞∑
l=1

εl
∑
|q|=l

N(l)
i jq (ξ)

∂|q|

∂xq
u∗j (x)


∣∣∣∣∣∣∣∣
ξ= x

ε

=

=

u∗i (x) + εN(1)
i jq1

(ξ)
∂u∗j (x)

∂xq1

+ ε2N(2)
i jq1q2

(ξ)
∂2u∗j (x)

∂xq1∂xq2

+

+ε3N(3)
i jq1q2q3

(ξ)
∂3u∗j (x)

∂xq1∂xq2∂xq3

 + O
(
ε4

)∣∣∣∣∣∣∣
ξ= x

ε

,

(7)

where u∗i (x) are L-periodic functions depending on the slow variable x, N(l)
i jq are Q-periodic perturbation

functions depending on the fast variable ξ = x
ε
, that are characterized by zero mean value within the

unit cell Q, i.e.
∫
Q

N l
i jq (ξ) dξ = 0 (so called normalization condition), and vanish for homogeneous

microstructure, and finally q = q1, ..., ql is a multi-index, with |q| being the multi-index length and ∂l

∂xq
(·) =

∂l

∂x1...∂xl
(·).

6



It is possible to define the macro-displacement field by averaging the microscopic displacement field
within the unit cell Q, that is

Ui (x) =

∫
Q

u∗i (x) +

+∞∑
l=1

εl
∑
|q|=l

N(l)
i jq (ξ + ζ)

∂|q|

∂xq
u∗j (x)


∣∣∣∣∣∣∣∣
ξ= x

ε

dζ, (8)

where ζ ∈ Q is a translation variable, such that the vector ε ζ ∈ A defines a translation of the hetero-
geneous medium with respect to fixed L-periodic body forces b(x) [11, 15]. It is pointed out that, in
equation (8), the perturbation functions fulfill the invariance property satisfied by Q-periodic functions
g(ξ + ζ)|ξ= x

ε
, such that

∫
Q

g( x
ε

+ ζ)dζ =
∫
Q

g(ξ + ζ)dζ =
∫
Q

g(ξ + ζ)dξ. By exploiting this property and

the normalization condition, the equivalence is recovered as Ui (x) = u∗i . By plugging this relation into
equation (7), the final form of the downscaling relations is obtained

ui

(
x, ξ =

x
ε

)
=

Ui (x) +

+∞∑
l=1

εl
∑
|q|=l

N(l)
i jq (ξ)

∂|q|

∂xq
U j (x)


∣∣∣∣∣∣∣∣
ξ= x

ε

. (9)

Moreover, recalling the derivation rule valid for the function f
(
x, ξ = x

ε

)
, that is

D
Dx j

f
(
x, ξ =

x
ε

)
=

(
∂ f
∂x j

+
1
ε

∂ f
∂ξ j

)∣∣∣∣∣∣
ξ= x

ε

=

(
∂ f
∂x j

+
1
ε

f, j

)∣∣∣∣∣∣
ξ= x

ε

, (10)

the equation (9) can be, thus, plug into the microscopic governing equation (1) and the related interface
conditions (2). After suitable manipulations, by collecting the terms with equal power ε, and imposing
the solvability condition in the class ofQ-periodic functions, a hierarchical sequence of partial differential
problems, known as cell problems, is obtained. More specifically, the differential problems, expressed in
terms of the perturbation functions N(l)

i jq, are characterized by zero mean value of source terms in the unit
cell Q. Therefore, they admit sufficiently regular and Q-periodic solutions, for details see [13, 15]. The
uniqueness of solution is, finally, obtained through the normalization condition which ensures the zero
mean value of perturbation functions within the unit cell Q.
Therefore, the cell problem at the order ε−1 reads(
Cm

i jhkN(1)
hpq1,k

)
, j

+ Cm
i jpq1, j = 0, (11)

and the related interface and normalization conditions are[[
N(1)

hpq1

]]∣∣∣∣
ξ∈Γ1

= 0,[[
Cm

i jhk

(
δhpδkq1 + N(1)

hpq1,k

)
n j

]]∣∣∣∣
ξ∈Γ1

= 0,∫
Q

N(1)
i jq1

dξ = 0,

(12)

where Γ1 is the interface between two different phases in the unit cell Q, and δi j is the Kronecker delta
function.
Analogously, the cell problem at the order ε0 is(
Cm

i jhkN(2)
hpq1q2,k

)
, j

+
1
2

[(
Cm

i jhq2
N(1)

hpq1
+ Cm

i jhq1
N(1)

hpq2

)
, j

+ Cm
iq1hkN(1)

hpq2,k
+ Cm

iq1 pq2
+

+Cm
iq2hkN(1)

hpq1,k
+ Cm

iq2 pq1

]
=

1
2

∫
Q

(
Cm

iq1hkN(1)
hpq2,k

+ Cm
iq1 pq2

+ Cm
iq2hkN(1)

hpq1,k
+ Cm

iq2 pq1

)
dξ,

(13)
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and the related interface and normalization conditions are[[
N(2)

hpq1q2

]]∣∣∣∣
ξ∈Γ1

= 0,[[{
Cm

i jhkN(2)
hpq1q2,k

+
1
2

(
Cm

i jhq2
N(1)

hpq1
+ Cm

i jhq1
N(1)

hpq2

)}
n j

]]∣∣∣∣∣∣
ξ∈Γ1

= 0,∫
Q

N(2)
hpq1q2

dξ = 0,

(14)

Finally, the generic cell problem at the order εm (for m ∈ Z, m ≥ 1) takes the following form(
Cm

i jhkN(m+2)
hpq1..qm+2,k

)
, j

+
1

m + 2

∑
℘∗(q)

[(
Cm

i jhqm+2
N(m+1)

hpq1..qm+1,k

)
, j

+ Cm
iqm+1hqm+2

N(m)
hpq1...qm

+

+Cm
iqm+2hkN(m)

hpq1...qm+1,k

]
=

1
m + 2

∑
℘∗(q)

∫
Q

(
Cm

iqm+1hqm+2
N(m)

hpq1...qm
+ Cm

iqm+2hkN(m)
hpq1...qm+1,k

)
dξ,

(15)

and the associated interface and normalization conditions are[[
N(m+2)

hpq1...qm+2

]]∣∣∣∣
ξ∈Γ1

= 0,

Cm

i jhk

N(m+2)
hpq1...qm+2,k

+
1

m + 2

∑
℘∗(q)

(
δqm+2kN(m+1)

hpq1...qm+1

)
 n j



∣∣∣∣∣∣∣∣
ξ∈Γ1

= 0,

∫
Q

N(m+2)
hpq1...qm+2

dξ = 0,

(16)

where δqm+2k is the Kronecker delta function, and ℘∗(q) denotes all the possible permutations of the multi-
index q, such that if |q| = m + 2, it follows that

℘∗(q) = { f1 = (q1 → q1, q2 → q2, ..., qm+2 → qm+2) , ...,
fm+2 = (q1 → qm+2, q2 → q1, ..., qm+2 → q2)} ,

with fi, i=1,.., m + 2, being index permutation functions. In particular, in the cell problem at order ε,
obtained by replacing m=1 in equations (15) and (16) with solution in terms of the perturbation functions
N(3)

i jq1q2q3
, it reads |q| = 3, and

℘∗(q) = { f1 = (q1 → q1, q2 → q2, q3 → q3) , f2 = (q1 → q2, q2 → q3, q3 → q1),
f3 = (q1 → q3, q2 → q1, q3 → q2)} .

By solving the hierarchical cell problems, the perturbation functions N(l)
i jq are determined. Consequently,

the governing equations at the microscopic scale, equation (1), after performing asymptotic expansion
and exploiting the solvability conditions, result in fully determined average field equations of infinite
order. In particular, these equations are expressed in terms of both the macroscopic field, that is only
dependent on the slow variable x, and on homogeneous overall tensors. The average field equations of
infinite order are thus

n(2)
ipq1q2

∂2Up (x)
∂xq1∂xq2

+

+∞∑
m=1

εm
∑
|q|=m+2

n(m+2)
ipq

∂m+2Up (x)
∂xq

+ bi (x) = 0, (17)

8



where the coefficients n(2)
ipq1q2

and n(m+2)
ipq are

n(2)
ipq1q2

=
1
2

∫
Q

(
Cm

iq1hkN(1)
hpq2,k

+ Cm
iq1 pq2

+ Cm
iq2hkN(1)

hpq1,k
+ Cm

iq2 pq1

)
dξ,

n(m+2)
ipq =

1
m + 2

∑
℘∗(q)

∫
Q

(
Cm

iqm+1hqm+2
N(m)

hpq1...qm
+ Cm

iqm+2hkN(m)
hpq1...qm+1,k

)
dξ.

(18)

The equation (17) can be formally solved by performing an asymptotic expansion of the macrofield Ui(x),
in power series of ε, that is

Ui (x) =

+∞∑
j=0

ε jU ( j)
i (x) . (19)

Therefore, by plugging equations (19) into equations (17), a sequence of partial differential equations in
terms of the macroscopic fields U ( j)

i (x) is obtained. At the order ε0, the following macro-problems holds

n(2)
ipq1q2

∂2U (0)
p

∂xq1∂xq2

+ bi (x) = 0, (20)

while at the order εm (with m ∈ Z and m > 1 ) it results

n(2)
ipq1q2

∂2U (m)
p

∂xq1∂xq2

+

m+2∑
r=3

∑
| j|=r

n(r)
ip j

∂rU (m−r+2)
p

∂x j
= 0. (21)

In the particular case of the macroscopic displacement field truncated at order 0-th, i.e. Ui (x) ≈ U0
i (x),

the equation (20) specializes in the following form

n(2)
ipq1q2

∂2Up (x)
∂xq1∂xq2

+ bi (x) = 0. (22)

Analogously to [13], it is possible to prove that equation (22) can be arranged in an equivalent form in
terms of the components of the macroscopic elastic tensor Ciq2 pq1 of a first order homogeneous linear
elastic continuum, by exploiting the relation n(2)

ipq1q2
= 1

2

(
Ciq1 pq2 + Ciq2 pq1

)
.

Moreover, due to the repetition of indices q1 and q2, it results

n(2)
ipq1q2

∂2Up (x)
∂xq1∂xq2

=
1
2

(
Ciq1 pq2 + Ciq2 pq1

) ∂2Up (x)
∂xq1∂xq2

=

=
1
2

(
Cpq1iq2

∂2Up (x)
∂xq1∂xq2

+ Ciq2 pq1

∂2Up (x)
∂xq1∂xq2

)
= Ciq2 pq1

∂2Up (x)
∂xq1∂xq2

,

(23)

therefore the final form of equation (22) is

Ciq2 pq1

∂2Up (x)
∂xq1∂xq2

+ bi (x) = 0, (24)

where the components of the macroscopic elastic tensor of the first order homogeneous continuum are
expressed in terms of the perturbation function N(1)

kpq1
and take the form

Ciq2 pq1 =

∫
Q

Cm
r jkl

(
N(1)

riq2, j
+ δirδ jq2

) (
N(1)

kpq1,l
+ δpkδlq1

)
dξ. (25)
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It is, finally, pointed out that the macroscopic elastic tensor satisfies both the positive definiteness and
major and minor symmetries, i.e. Cpq1iq2 = Ciq2 pq1 , Cpq1iq2 = Cq1 piq2 = Cq1 pq2i = Cpq1q2i. Moreover, the
field equations (22) and (24) are elliptic. These properties descend from the positive definiteness, from
major and minor symmetries of the microscopic elastic tensor components Cm

r jkl, and from the equality
N(1)

kpq1
= N(1)

kq1 p whose validity is guaranteed by the structure of the cell problem (11) and (12).
Higher-order governing equations can be analogously derived by truncating the macroscopic displace-
ment field, equation (19), at order m-th (m > 0). In this case, the governing equations depend on both
overall first order tensors and on so-called auxiliary volume forces. Such volume forces depend, in turn,
on higher order overall constitutive tensors and on previous orders solutions. Adopting these volume
forces, it is, moreover, possible to account for nonlocal effects occurring in average field equations of
infinite order, that result asymptotically equivalent to the field equations governing the heterogeneous
material, see for details [51]. As the approximation order increases, a better estimation of the actual
heterogeneous medium solution is, indeed, obtained.

3.2. Upscaling relations and third order polynomial kinematic map
The upscaling relations, linking the generalized macro-displacement field, depending on both U(x) and
Φ(x), to the displacement field at the microscopic level u(x), are here discussed. Regarding the continuum
field U(x), the following standard expressions derive from equation (8) as

U1 (x) =

∫
Q

u1 (x, ξ)dξ,

U2 (x) =

∫
Q

u2 (x, ξ)dξ.
(26)

On the other hand, concerning the micropolar rotation field Φ(x), a newly proposed upscaling relation is
introduced. The idea is to exploit a minimization procedure over the unit cell Q to find the components
of the skew-symmetric micropolar rotation tensor that best fit the micro infinitesimal rotation tensor of
the actual heterogeneous medium.
Recalling the relation Wi j = −ε3i jΦ, indeed, the following least square minimization procedure is ex-
ploited

min
Wi j
F

[
ω∗i j(Wi j)

]
= min

Wi j

∫
Q

(
||ωi j(x,

x
ε

+ ζ) − ω∗i j(x,
x
ε

+ ζ)||2
)2

dζ =

= min
Wi j

∫
Q

(
||ωi j(x, ξ) − ω∗i j(x, ξ)||2

)2
dξ,

(27)

where the symbol || · ||2 is the Euclidean norm, and ωi j are the components of the micro infinitesimal
rotation tensor, depending both on the slow variable x and the f ast variable ξ, as

ωi j

(
x, ξ =

x
ε

)
=

1
2

(
Dui

Dx j
−

Du j

Dxi

)
=

1
2

(
∂ui

∂x j
−
∂u j

∂xi
+

1
ε

(
ui, j − u j,i

))∣∣∣∣∣∣
ξ= x

ε

, (28)

it follows that

ωi j (x, ξ) =
1
2

(
∂ui

∂x j
−
∂u j

∂xi
+

1
ε

(
ui, j − u j,i

))
. (29)

Moreover, in equation (27), ω∗i j are the components of a properly defined skew-symmetric tensor, depend-
ing on the components of both the micropolar rotation tensor Wi j and the perturbation functions N(l)

i jk, that
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take the following form

ω∗i j =Wi j +

+∞∑
l=1

∑
|q|=l
|r|=l

1
2

(
N(l)

i jq,r − N(l)
jiq,r

)
W̃qr =

=Wi j +
1
2

(
N(1)

i jq1,r1
− N(1)

jiq1,r1

)
W̃q1r1 +

1
2

(
N(2)

i jq1q2,r1r2
− N(2)

jiq1q2,r1r2

)
W̃q1q2r1r2+

+......+
1
2

(
N(n)

i jq1q2...qn,r1r2...rn
− N(n)

jiq1q2...qn,r1r2...rn

)
W̃q1q2...qnr1r2...rn + ......,

(30)

where W̃q1r1 = Wq1r1 , W̃q1q2r1r2 = Wq1r2δq2r1 , and W̃q1q2...qnr1r2...rn = Wq1rnδq2r1 ...δqnrn−1 , with m ∈ Z, n ≥ 2.
Considering only the first term of the series, it results

ω∗
i j

(x, ξ) ≈ Wi j +
1
2

(
N(1)

i jp,q1
− N(1)

jip,q1

)
Wpq1 =

[
δipδ jq1 +

1
2

(
N(1)

i jp,q1
− N(1)

jip,q1

)]
Wpq1 , (31)

where exclusively first order perturbation functions appear. Substituting equations (29) and (31) into
equation (27), after solving the minimization problem, the components of the micropolar rotation tensor
are obtained as

Wi j(x) =

∫
Q

ωpq1 (x, ξ)
[
δipδ jq1 + 1

2

(
N(1)

i jp,q1
− N(1)

jip,q1

)]
dξ∫

Q

δprδq1 s1

[
δhpδkq1 + 1

2

(
N(1)

hkp,q1
− N(1)

jhp,q1

)] [
δhrδks1 + 1

2

(
N(1)

hkr,s1
− N(1)

khr,s1

)]
dξ
. (32)

Finally, the expression of the micropolar rotation tensor Φ (x) is found by specializing equation (32) as

Φ (x) = W21 (x) =

∫
Q

ω21 (x, ξ)
[
1 + 1

2

(
N(1)

121,2 − N(1)
211,2 − N(1)

122,1 + N(1)
212,1

)]
dξ∫

Q

[
1 + 1

2

(
N(1)

121,2 − N(1)
211,2 − N(1)

122,1 + N(1)
212,1

)]2
dξ

, (33)

where the component ω21 of the micro infinitesimal rotation tensor is obtained through equation (29).
The upscaling relations, equations (26) and (33), are now particularized to the case in which the micro-
scopic displacement field ui (x, ξ) is described by the asymptotic expansion (9) properly truncated. In
particular, only the first three terms of the series are retained, resulting in

uIII
i (x, ξ) = Ui (x) + εN(1)

i jq1
(ξ) H jq1 (x) + ε2N(2)

i jq1q2
(ξ) κ jq1q2 (x) + ε3N(3)

i jq1q2q3
(ξ) κ jq1q2q3 (x) , (34)

where the macroscopic fields Ui (x), H jq1 (x), κ jq1q2 (x) and κ jq1q2q3 (x) are detailed in the following.
It is worth mentioning that the microscopic displacement field is defined by superposing the macro-
displacement field and a combination of fluctuating fields within the unit cell that are obtained by solving
the nested cell problems presented in subsection 3.1.
Concerning the macro-displacement, a third-order Taylor polynomial expansion is chosen

Ui (x) = Ūi + H̄ip1 xp1 +
1
2
κ̄ip1 p2 xp1 xp2 +

1
6
κ̄ip1 p2 p3 xp1 xp2 xp3 , (35)

where Ūi, H̄ip1 , κ̄ip1 p2 and κ̄ip1 p2 p3 are the macro-displacement components, and the first, the second and the
third displacement gradient components evaluated at point x = 0, respectively. Particularly, the equation
(35) contains 20 independent coefficients that can be reduced to 6, accordingly with [34], by applying the
set of hypotheses discussed here below.
As a first assumption, the components of the macro-displacement evaluated at point x = 0 vanish, i.e.
Ūi = 0. Moreover, the components of the skew-symmetric part of the displacement gradient, evaluated in
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(a) (b) (c)

Figure 2: Selected micropolar deformation modes: mode associated to (a) κ̄1222; (b) κ̄122 and (c) κ̄211.

x = 0, is set equal to zero, namely Ω̄i j = 0 and, therefore, H̄i j = Ēi j, with Ēi j being the components of the
symmetric part of the displacement gradient in x = 0. Besides, analogously to [23, 42, 50], it is assumed
that the macroscopic displacement field U(x), expressed in equation (35), satisfies the field equations of
an equivalent homogeneous first order continuum in the absence of body forces, i.e. ∇ · (C∇U(x)) = 0,
where C=Ci jhkei ⊗ e j ⊗ eh ⊗ ek is the overall elasticity tensor, obtained through equation (25). As a
consequence, the coefficients κ̄ip1 p2 and κ̄ip1 p2 p3 of (35) must fulfill a set of 6 algebraic equations. Without
loss of generality, the particular case of orthotropic material symmetry is here considered, thus these
algebraic equations assume the following form

Cαααα κ̄ααα + Cαβαβ κ̄αββ + (Cααββ + Cαβαβ) κ̄βαβ = 0,
Cαααα κ̄αααα + Cαβαβ κ̄ααββ + (Cααββ + Cαβαβ) κ̄ββαα = 0,
Cαααα κ̄αβαα + Cαβαβ κ̄αβββ + (Cααββ + Cαβαβ) κ̄βαββ = 0,

(36)

where the indices α, β are not summed up and it is assumed that α , β with α, β = 1, 2. Finally, proper
micropolar deformation modes are selected (as shown in Figure 2), so that κααα = 0; καααα = 0 and
καβββ = −κβααα, with α , β and α, β = 1, 2. Therefore, the resulting polynomial form of the macro-
displacement components reads as

Uα (x) = Ēααxα + Ēαβxβ −
Cαβαβ

Cααββ + Cαβαβ

κ̄βααxαxβ +
1
2
κ̄αββx2

β +
1
6
κ̄αβββx3

β+

−
1
2

Cαβαβ

[
Cββββκ̄αβββ −

(
Cααββ + Cαβαβ

)
κ̄βααα

]
CααααCββββ − 2CααββCαβαβ −

(
Cααββ

)2
−

(
Cαβαβ

)2 ,

(37)

where the indices α, β are not summed up and it is assumed that α , β with α, β = 1, 2. This expression
is also referred to as kinematic map. At this point, by replacing the equation (37) in (34), the polynomial
approximation of the microscopic displacement field, in terms of Ē11, Ē22, Ē12, κ̄122, κ̄211, κ̄1222 , takes the
following form

u1 (x, ξ) = B1
1 (x, ξ) Ē11 + B2

1 (x, ξ) Ē22 + B3
1 (x, ξ) Ē12+

+ B4
1 (x, ξ) κ̄122 + B5

1 (x, ξ) κ̄211 + B6
1 (x, ξ) κ̄1222,

u2 (x, ξ) = B1
2 (x, ξ) Ē11 + B2

2 (x, ξ) Ē22 + B3
2 (x, ξ) Ē12+

+ B4
2 (x, ξ) κ̄122 + B5

2 (x, ξ) κ̄211 + B6
2 (x, ξ) κ̄1222,

(38)

where the functions B j
i (x, ξ) are reported in Appendix A.

By plugging equations (38) in equations (33) and (29), the micropolar rotation field Φ(x), is obtained. In

12



particular, the micropolar rotation evaluated in x = 0, i.e. Φ0 = Φ(x = 0), results

Φ0 =

∫
Q

(
C1 (ξ) Ē11 + C2 (ξ) Ē22 + C3 (ξ) Ē12 + C4 (ξ) κ̄122 + C5 (ξ) κ̄211 + C6 (ξ) κ̄1222

)
dξ∫

Q

(∆ (ξ))2dξ
, (39)

with the functions Ci (ξ) and ∆ (ξ) being defined in Appendix A. Moreover, the components of the
macroscopic curvature tensor K1 = ∂Φ/∂x1 and K2 = ∂Φ/∂x2, evaluated in x = 0, i.e. K0

1 = K1(x = 0)
and K0

2 = K2(x = 0) are

K0
1 =

∫
Q

(
D1 (ξ) κ̄122 +D2 (ξ) κ̄211 +D3 (ξ) κ̄1222

)
dξ∫

Q

(∆ (ξ))2dξ
,

K0
2 =

∫
Q

(
G1 (ξ) κ̄122 + G2 (ξ) κ̄211 + G3 (ξ) κ̄1222

)
dξ∫

Q

(∆ (ξ))2dξ
,

(40)

where the functions Di (ξ) and Gi (ξ) are, likewise, reported in Appendix A. Finally, the components of
the asymmetric micropolar strain tensor, evaluated in x = 0, i.e. Γ0

i j = Γi j(x = 0) with i, j = 1, 2 , read

Γ0
11 =Ē11,

Γ0
22 =Ē22,

Γ0
12 =Ē12 + Φ0(Ē11, Ē22, Ē12, κ̄122, κ̄211, κ̄1222),

Γ0
21 =Ē12 − Φ0(Ē11, Ē22, Ē12, κ̄122, κ̄211, κ̄1222),

(41)

where, the following relations have been exploited,

Γ0
12 = Ē12 + Ω̄12 − W̄12 = Ē12 + Ω̄12 + Φ0,

Γ0
21 = Ē12 + Ω̄21 − W̄21 = Ē12 + Ω̄21 − Φ0,

(42)

recalling that Ω̄21 = −Ω̄12 = 0, and W̄21 = −W̄12 = Φ0.

3.3. Generalized macro-homogeneity condition
The overall micropolar elastic properties are derived by exploiting a generalized macro-homogeneity
condition, establishing an energy equivalence between the macroscopic and the microscopic scales. In
what follows the matrix notation is used, consistently with the definitions in Appendix B.
Accordingly with [11, 15], the microscopic mean strain energy is defined as

Ēm=̇
1
2

∫
A

∫
Q

ε (x, ξ)T Cm (ξ) ε (x, ξ) dξdx. (43)

Under the assumption of scale separation, the macroscopic fields are both smooth and characterized by
sufficiently small variations of the macroscopic variable x in the periodic cell A. In this framework, the
microscopic mean strain energy related to the strain field ε evaluated in x = 0 can be introduced as

Ē0
m=̇

1
2

∫
A

∫
Q

ε (x = 0, ξ)T Cm (ξ) ε (x = 0, ξ) dξdx =
|A|

2

∫
Q

εT
0 Cmε0dξ, (44)
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where |A| corresponds to the area of the periodic cell, and ε0 is the strain vector evaluated at x = 0, i.e.
ε0 = ε(x = 0, ξ). This strain vector is determined from the microscopic displacement components in
equation (38), by exploiting the derivation rule, reported in equation (10), and takes the form

ε0 = BΞΞ + BΥΥ, (45)

where the vectors Ξ and Υ are expressed as

Ξ =
{

Ē11 Ē22 Ē12 κ̄1222

}T
, Υ =

{
κ̄122 κ̄211

}T
, (46)

and BΞ and BΥ are properly derived strain localization matrices. By plugging equation (45) in equation
(44), the microscopic mean strain energy Ē0

m becomes

Ē0
m =
|A|

2

ΞT
∫
Q

BΞT CmBΞdξΞ + ΥT
∫
Q

BΥT CmBΥdξΥ +

+ΞT
∫
Q

BΞT CmBΥdξΥ + ΥT
∫
Q

BΥT CmBΞdξΞ

 .
(47)

The related microscopic mean strain energy density is consequently derived

φ̄0
m =
Ē0

m

|A|
=

1
2

∫
Q

εT
0 Cmε0dξ =

1
2

ΞT
∫
Q

BΞT CmBΞdξΞ + ΥT
∫
Q

BΥT CmBΥdξΥ +

+ΞT
∫
Q

BΞT CmBΥdξΥ + ΥT
∫
Q

BΥT CmBΞdξΞ

 .
(48)

Analogously, the macroscopic strain energy density evaluated in x = 0 is introduced

φ0
M =

1
2

(
Γ0

T GMΓ0 + K0
T SMK0 + Γ0

T YMK0 + K0
T YMT

Γ0

)
, (49)

where the asymmetric micropolar strain vector and the curvature vector, evaluated evaluated in x = 0,
take the following form, remembering equations (40), and (41),

Γ0 = AΞ
ΓΞ + AΥ

ΓΥ,

K0 = AΞ
KΞ + AΥ

KΥ,
(50)

being AΞ
Γ
, AΞ

K , AΥ
Γ

, AΥ
K transformation matrices. By exploiting the generalized macro-homogeneity con-

dition, that establishes the equivalence between the microscopic and macroscopic strain energy density
φ̄0

m=̇φ0
M (x = 0), after some manipulations, the following relations read

AΞ
Γ

T GMAΞ
Γ + AΞ

K
T SMAΞ

K + AΞ
Γ

T YMAΞ
K + AΞ

K
T YMT AΞ

Γ =

∫
Q

BΞT CmBΞdξ,

AΥ
Γ

T GMAΥ
Γ + AΥ

K
T SMAΥ

K + AΥ
Γ

T YMAΥ
K + AΥ

K
T YMT AΥ

Γ =

∫
Q

BΥT CmBΥdξ,

AΥ
Γ

T GMAΞ
Γ + AΥ

K
T SMAΞ

K + AΥ
Γ

T YMAΞ
K + AΥ

K
T YMT AΞ

Γ =

∫
Q

BΥT CmBΞdξ,

AΞ
Γ

T GMAΥ
Γ + AΞ

K
T SMAΥ

K + AΞ
Γ

T YMAΥ
K + AΞ

K
T YMT AΥ

Γ =

∫
Q

BΞT CmBΥdξ.

(51)
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It follows that the overall elastic micropolar matrices, in symmetrized forms, can be, thus, obtained by
solving the set of equations (51) and result as

GM =

∫
Q

LΞ
Γ

−T FΞT CmFΞLΞ
Γ

−1
dξ −

∫
Q

LΞ
Γ

−T AΞ
Γ

T LΞ
Γ

−T FΞT CmFΥLΥ
K
−1AΞ

KLΞ
Γ

−1
dξ+

−

∫
Q

LΞ
Γ

−T AΞ
K

T LΥ
K
−T FΥT CmFΞLΞ

Γ

−1AΞ
ΓLΞ

Γ

−1
dξ+

+

∫
Q

LΞ
Γ

−T AΞ
K

T AΥ
K
−T AΥ

Γ

T LΞ
Γ

−T FΞT CmFΥLΥ
K
−1AΞ

KLΞ
Γ

−1
dξ+

+

∫
Q

LΞ
Γ

−T AΞ
K

T LΥ
K
−T FΥT CmFΞLΞ

Γ

−1AΥ
Γ AΥ

K
−1AΞ

KLΞ
Γ

−1
dξ,

SM =

∫
Q

LΥ
K
−T FΥT CmFΥLΥ

K
−1

dξ −
∫
Q

LΥ
K
−T AΥ

Γ

T LΞ
Γ

−T FΞT CmFΥLΥ
K
−1AΥ

KLΥ
K
−1

dξ+

−

∫
Q

LΥ
K
−T AΥ

K
T LΥ

K
−T FΥT CmFΞLΞ

Γ

−1AΥ
Γ LΥ

K
−1

dξ+

+

∫
Q

LΥ
K
−T AΥ

Γ

T AΞ
Γ

−T AΞ
K

T LΥ
K
−T FΥT CmFΞLΞ

Γ

−1AΥ
Γ LΥ

K
−1

dξ+

+

∫
Q

LΥ
K
−T AΥ

Γ

T LΞ
Γ

−T FΞT CmFΥLΥ
K
−1AΞ

KAΞ
Γ

−1AΥ
Γ LΥ

K
−1

dξ,

YM =

∫
Q

LΞ
Γ

−T FΞT CmFΥLΥ
K
−1

dξ,

(52)

with the auxiliary matrices FΞ and FΥ depending on both the localization and the transformation matrices,
that is

FΞ = BΞ − BΥAΥ
K
−1AΞ

K ,

FΥ = BΥ − BΞAΞ
Γ

−1AΥ
Γ ,

(53)

and the matrices LΞ
Γ

and LΥ
K take the following form in terms of the transformation matrices

LΞ
Γ = AΞ

Γ − AΥ
Γ AΥ

K
−1AΞ

K ,

LΥ
K = AΥ

K − AΞ
KAΞ

Γ

−1AΥ
Γ .

(54)

In the case the periodic cell is characterized by centrosymmetric topology, the relations FΞ = BΞ, FΥ =

BΥ, LΞ
Γ

= AΞ
Γ
, LΥ

K = AΥ
K hold, thus the overall elastic micropolar matrices specialize in

GM =

∫
Q

AΞ
Γ

−T BΞT CmBΞAΞ
Γ

−1
dξ,

SM =

∫
Q

AΥ
K
−T BΥT CmBΥAΥ

K
−1

dξ,
(55)

and the coupling matrix is YM = 0. It is worth noting that, in the extreme case of homogeneous material
at the microscopic scale, i.e. vanishing mismatch between elastic moduli of constituents in the periodic
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cell, also the nonlocal elastic matrix is SM = 0, since the perturbation functions are identically zero.

An alternative way to determine the overall elastic matrices of the equivalent micropolar continuum GM,

SM, and YM, collected in the block matrix CM(mp) (see Appendix B, equation (B.6)), can be obtained
considering the vector Ψ in terms of the two vectors Ξ and Υ, that is

Ψ =
{
Ξ Υ

}T
, (56)

and, thus, expressing the strain vector ε0, as a variant of equation (45), i.e.

ε0 = B(Ξ,Υ)Ψ, (57)

where the localization block matrix B(Ξ,Υ) has been introduced. Therefore, the microscopic mean strain
energy density becomes

φ̄0
m =

1
2
ΨT

∫
Q

B(Ξ,Υ)T CmB(Ξ,Υ)dξΨ. (58)

Moreover, the macroscopic strain energy density can be alternatively expressed as

φ0
M =

1
2

(
E(mp)

0
T
CM(mp)E(mp)

0

)
, (59)

where

E(mp)
0 = A(Ξ,Υ)Ψ. (60)

being A(Ξ,Υ) the block transformation matrix. By exploiting the macro-homogeneity condition, the final
form of the overall elastic block matrix reads

CM(mp) = A(Ξ,Υ)−T
∫
Q

B(Ξ,Υ)T CM(mp)B(Ξ,Υ)dξA(Ξ,Υ)−1
. (61)

4. Illustrative applications: homogenization of a bi-phase material

In this section, some illustrative examples of technological interest are proposed to assess the capabilities
of the proposed homogenization technique. In Subsection 4.1, the periodic perturbation functions char-
acterizing a two-phase composite material with cubic symmetry and isolated inclusions are determined
as solution of the nested cell problems. The related micropolar homogenized elastic tensors are con-
sistently derived. In this context, a parametric analysis is performed in order to deduce the influence of
the microstructural mechanical properties on the overall constitutive ones. Subsections 4.2 and 4.3 are,
finally, devoted to the solution of two benchmark problems. In the former, the analytical results obtained
as solution of the homogenized model are compared with a micro-mechanical finite element analysis.
In the latter, instead, a complex loading condition is applied on an infinite strip. The results are critic-
ally commented. Finite Element analyses have been performed to solve the numerical problems at both
macroscopic and microscopic scale.

4.1. Perturbation functions solution of hierarchical PDE Cell Problems and micropolar equivalent con-
stants

A two-phase periodic medium, made of square inclusions regularly distributed within a base matrix, is
considered. The related square periodic cell, having size ε=1 mm, is shown in Figure 3. Both constitu-
ents are assumed isotropic, perfectly bonded and in plane strain conditions. In the following, the ratios
between the Young’s moduli and the Poisson ratios of inclusion and matrix are denoted by ηE = E2/E1,
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Figure 3: Schematic of the periodic cellA.

and ην = ν2/ν1, respectively.
First, the cell problems, equations (11)–(16) at the orders ε−1, ε0 and ε1, respectively, are numerically
solved in order to derive the perturbation functions N(l)

i jq for a unit cell Q characterized by E2 = 0.5 GPa
and E1 = 500 GPa, i.e. ratios ηE = 10−3, and ην = 1, with ν2 = ν1 =0.1. In Figures 4, 5, and 6, selected
contour plots of perturbation functions, N(1)

i jq1
, N(2)

i jq1q2
, and N(3)

i jq1q2q3
are reported, respectively. It emerges

that the perturbation functions are Q-periodic, smooth along the cell boundaries, and characterized by
zero mean values within Q according to the normalization conditions. By exploiting the perturbation
functions and determining the macroscopic elastic tensor of the first order homogeneous continuum via
equation (25), the overall constitutive tensors of the micropolar homogenized medium are, then, com-
puted. It is observed that, due the centro-symmetric microstructure, the coupling overall constitutive
matrix YM is identically zero. Thus, the non-vanishing overall elastic matrices are the following

GM =


27.469 2.5347 0 0
2.5347 27.469 0 0

0 0 12.896 −2.3544
0 0 −2.3544 12.9369

 104 MPa,

SM =

[
1.1769 0

0 1.1769

]
103 MPa mm2.

The same analyses have been repeated considering a first case where ηE varies, by fixing E1=500 GPa,
and ν1=ν2=0.1, and a second case in which, instead, ην varies by fixing ν1=0.1 and E1=E2=500 GPa. The
results of this parametric analysis are obtained by exploiting the micropolar constitutive equations for the
general case in the following component form

Σ(i j) = G(i j)(hk)Γ(hk) + G(i j)[hk]Γ[hk] + Y(i j)hKh,

Σ[i j] = G[i j](hk)Γ(hk) + G[i j][hk]Γ[hk] + Y[i j]hKh,

Mh = Y(i j)hΓ(i j) + Y[i j]hΓ[i j] + S hkKk,

(62)

where the split between the symmetric and skew-symmetric components of the tensors Σ, and Γ is per-
formed, i.e. Σ(i j) = 1

2

(
Σi j + Σ ji

)
, Σ[i j] = 1

2

(
Σi j − Σ ji

)
, Γ(i j) = 1

2

(
Γi j + Γ ji

)
, Γ[i j] = 1

2

(
Γi j − Γ ji

)
, and the
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Figure 4: Contour plots of perturbation functions: (a) N(1)
111; (b) N(1)

211; (c) N(1)
112; (d) N(1)

212.

associated constitutive components are

G(i j)(hk) =
1
4

(
Gi jhk + Gi jkh + G jihk + G jikh

)
,

G[i j][hk] =
1
4

(
Gi jhk −Gi jkh −G jihk + G jikh

)
,

G(i j)[hk] = G[hk](i j) =
1
4

(
Gi jhk −Gi jkh + G jihk −G jikh

)
,

Y(i j)h =
1
2

(
Yi jh + Y jih

)
,

Y[i j]h =
1
2

(
Yi jh − Y jih

)
.

(63)

In Figure 7(a), the dimensionless components G(i j)(hk)/E1 of the overall elasticity matrix GM, with E1

being the Young modulus of the matrix, are plotted against ηE ∈ [3/50, 103] in a semi-log plot. The
blue, red and green curves correspond to the components G1111 = G2222, G1122, G(12)(12), respectively. In
particular, a monotonic increasing trend is observed, as the Young modulus of the inclusions increases, i.e.
ranging from inclusions softer or stiffer than the matrix. Figure 7(b) shows the dimensionless components
G[i j][hk]/E1 versus ηE in a semi-log plot. In this case it is worth noting that a singularity occurs at
ηE = 1, that is when, as the microstructure vanishes, a Cauchy homogeneous material is considered. This
circumstance is due to the fact that the skew-symmetric components of the strain tensor Γ is not defined
for a Cauchy homogeneous continuum. Finally, in Figure 7(c) the characteristic lengths λ1/ε, and λ̃1/ε
(see equation (69)) are reported, in a semi-log plot against ηE. As expected at ηE=1, i.e. in the limit case
of locally homogeneous material, both the characteristic lengths vanish, since the nonlocal constitutive
matrix SM vanishes in turn, recovering a well known feature of the classical Cauchy medium.
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Figure 7: Micropolar equivalent material: classical and micropolar homogenized elastic coefficients versus ηE =

E2/E1 versus ηE ∈ [3/50, 103]. (a) blue curve G1111 = G2222; red curve G1122; green curve G(12)(12) ; (b) component
G[12][12]; (c) characteristic lengths λ1/ε, and λ̃1/ε.
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Figure 8: Micropolar equivalent material: classical and micropolar homogenized elastic coefficients versus ηE =

E2/E1 versus ηnu. (a) blue curve G1111 = G2222; red curve G1122; green curve G(12)(12); (b) component G[12][12]; (c)
characteristic lengths λ1/ε, and λ̃1/ε.

Analogously, in Figure 8, the dimensionless components G(i j)(hk)/E1, G[i j][hk]/E1, and the characteristic
lengths λ1/ε, and λ̃1/ε are reported against ην. In Figure 8(a), considerably smaller variations of the
components G(i j)(hk)/E1, compared to the respective Figure 7(a), are found. Moreover, it emerges that for
ην=1, i.e. Cauchy homogeneous material, both a singularity is found in Figure 8(b), and a zero value
point is shown in Figure 8(c).

4.2. Benchmark 1: Infinite periodic medium undergoing harmonic body forces
An infinite two-phase periodic medium is considered (see Figure 9) undergoing L-periodic harmonic

Figure 9: Schematic of the heterogeneous medium versus the respective homogenized one (in light blue) undergoing harmonic
body forces b2(x1), and a zoom on the two-phase periodic cell having size ε.

body forces with non vanishing component

b2(x1) = ıΞ2eı
(
2πn x1

L1

)
, (64)

being n ∈ Z∗ the wave number, ı2 = −1 the imaginary unit, Ξ2 the amplitude of b2(x1) and L1 the wave
length coinciding with the structural length L. Plane strain conditions are assumed. By exploiting the
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periodicity of both heterogeneous material and volume forces, it is possible to restrict the problem to
a limited portion of the heterogeneous medium, as schematically shown in Figure 9. Moreover, since
the body forces are invariant with respect to x2, a cluster of L/ε periodic cells along direction e1 can be
considered.
The macroscopic micropolar governing equations (6), thus, specialize into

G1221
∂Φ

∂x1
+ G2121

(
∂2U2

∂x1
2 −

∂Φ

∂x1

)
+ b2 = 0,

S 11
∂2Φ

∂x1
2 + (G2121 −G1221)

∂U2

∂x1
+ (2G1221 −G1212 −G2121) Φ = 0,

(65)

and after some manipulations they result as

∂3Φ

∂x1
3 −

G2121G1212 −G1221
2

S 11G2121

∂Φ

∂x1
−

G2121 −G1221

S 11G2121
b2 = 0,

∂U2

∂x1
+

S 11

G2121 −G1221

∂2Φ

∂x1
2 −

2G1221 −G1212 −G2121

G2121 −G1221
Φ = 0.

(66)

The analytic solution of equations (66) is found in terms of Φ (x1) and U2 (x1), and takes the form

Φ (x1) = Aeı
(
2πn x1

L1

)
,

U2 (x1) = ıBeı
(
2πn x1

L1

)
,

(67)

where the coefficients A and B result

A = −

G2121−G1221
S 11G2121

Ξ2(
2πn
L1

)3
+ 2πn

L1

(
1
λ1

)2 ,

B = −A
L

2πn

(2πn
λ̃1

L1

)2

− ψ1

 ,
(68)

with characteristic lengths λ1, λ̃1 and the coefficient ψ1 expressed in the following form

λ1 =

√
S 11G2121

G2121G1212 −G1221
2 ,

λ̃1 =

√
S 11

G2121 −G1221
,

ψ1 =
2G1221 −G1212 −G2121

G2121 −G1221
.

(69)

In the case b2(x1) = −Ξ2 sin
(
2πn x1

L1

)
, the solution becomes

Φ (x1) =

G1221−G2121
S 11G2121

Ξ2(
2πn
L1

)3
+ 2πn

L1

(
1
λ1

)2 cos
(
2πn

x1

L1

)
,

U2 (x1) =

L1
2πn

((
2πn λ̃1

L1

)2
− ψ1

)
G1221−G2121

S 11G2121
Ξ2(

2πn
L1

)3
+ 2πn

L

(
1
λ1

)2 sin
(
2πn

x1

L1

)
,

(70)
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Figure 10: Case with stiffer inclusion, ηE = 103, ην=1. Comparison between macroscopic analytical solutions (solid lines)
and macroscopic fields obtained from micro-mechanical results via upscaling relations (stars). Red and blue solid lines and
stars refer to harmonic body forces characterized by wave number n=1, n=2, respectively. (a) U2/L1 vs x1/L1; (b) Φ vs x1/L1.

where the equations (70) are equivalent to the real part of (67). The macroscopic analytical solution and
(70), in terms of macrodisplacement and micropolar rotation field, is compared with the micromechanical
finite element solution obtained considering a portion (cluster of L/ε periodic cells along direction e1) of
the heterogeneous material with proper periodic boundary conditions. In particular, the micromechanical
displacement fields are integrated by exploiting the upscaling relations (26), (39) in order to determine
the corresponding macroscopic fields.
Two different heterogeneous materials are analyzed, characterized by the same matrix (E1= 500 GPa,
ν1=0.1) and either a softer or a stiffer inclusion, with ηE = 3/50, ην = 1, and ηE = 103, ην = 1,
respectively. In both cases L/ε=11 along direction e1 is considered. In Figure 10, the case with ηE = 103,
ην = 1 is investigated. The analytic solutions, reported in solid lines, are compared with the respective
values (plotted as stars), obtained, via upscaling relations, from the numerical results of the heterogeneous
model. Red and blue solid lines and stars refer to harmonic body forces characterized by wave number
n=1, n=2, respectively. In particular, in Figures 10(a) and 10(b), the dimensionless macrodisplacement
U2/L1 and the micropolar rotation Φ are plotted versus the dimensionless macroscopic coordinate x1/L1,
respectively. A good agreement between analytic macroscopic and numerical micromechanical solutions
is found for both U2 and Φ, irrespective on the considered wave number.
The same comparison between macro- and micromechanical results has been repeated for the case with
softer inclusion. i.e. ηE = 3/50, ην = 1. The related plots are reported in Figure 11. Also in this case,
numerical micromechanical solutions provide a good agreement with macroscopic analytical results for
both U2/L1, (Figure 11(a)) and Φ (Figure 11(b)), considering the two wave numbers n=1, n=2.
Finally, in Figure 12 the comparison between the macroscopic analytical solution U2/L1 (solid lines),
and the micromechanical solution u2/L1 (dotted lines) is shown, considering a section line along e1 that
intersects the centroid of the periodic cells, with x2/L1=0 as x1/L1 varies, see Figure 9. Red and blue
curves refer to wave numbers n=1, n=2, respectively. In particular, Figure 12(a) refers to the case with
stiffer inclusion, while Figure 12(b) to the case with softer inclusion. In both cases, either for n=1 or
n=2, it emerges that the macroscopic analytical solution is able to well reproduce the micromechanical
behavior of the actual heterogeneous material. As expected, in the case with stiffer inclusions, more
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Figure 11: Case with softer inclusion, ηE = 3/50, ην=1. Comparison between macroscopic analytical solutions (solid lines)
and macroscopic fields obtained from micro-mechanical results via upscaling relations (stars). Red and blue solid lines and
stars refer to harmonic body forces characterized by wave numbers n=1, n=2, respectively. (a) U2/L1 vs x1/L1; (b) Φ vs
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pronounced fluctuations around the macroscopic solution are observed in the micromechanical solution,
corresponding to the jump between phases.
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Figure 12: Comparison between dimensionless macroscopic analytical solution U2/L1, solid lines, and micromechanical
solution u2/L1, dotted lines, as x1/L1 varies, for x2/L1=0. Red and blue curves refer to wave numbers n=1, n=2, respectively.
(a) Case with stiffer inclusion; (b) Case with softer inclusion.
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4.3. Benchmark 2: Infinite strip undergoing discontinuous periodic forces
As a second benchmark example, we consider an infinite strip of two-phase periodic medium, realized
by assembling, along horizontal and vertical directions, the same periodic cells with square inclusions
already considered in Section 4.1, see Figure 13. The specimen, of height βε, undergoes a system of
discontinuous periodic forces with period L1=(4α + β)ε and located on both top and bottom sides of the
strip, with α = 4 and β = 10. Plane strain conditions are assumed. The same materials considered in

Microscopic scale Macroscopic scale

Figure 13: Strip undergoing discontinuous periodic forces: schematic of the heterogeneous medium versus the respective
homogenized one (in light blue).

Subsection 4.2 are here taken into account. For both heterogeneous materials, the numerical results of
the micro-mechanical model, in terms of displacement and stress components, along a horizontal line
located at a distance 9/2 ε from the top side of the strip, are compared with the respective ones obtained
considering the micropolar homogenized model.
First the case with stiffer inclusions is considered. In Figure 14(a) the dimensionless micro-mechanical
displacement component u1/L1 (blue dotted line), and the respective macro-mechanical one U1/L1 (red
solid line) are plotted versus the dimensionless coordinate x1/L1. Analogously, in Figure 14(b) the dimen-
sionless components u2/L1 and U2/L1 are reported with the same line styles. For both microscopic and
macroscopic displacement components a very good agreement is shown. In Figure 15 the macroscopic
dimensionless stress components Σ11/E1, Σ22/E1, and Σ(12)/E1, are compared against the respective mi-
croscopic one, i.e. σ11/E1, σ22/E1, and σ(12)/E1, versus x1/L1. The micropolar macroscopic model is
able to provide results close to the average of that evaluated with the micro-mechanical model. It is noted
that, as expected, micro-mechanical stress components show more pronounced fluctuations that the ones
observed on the primal variables u1 and u2 in Figure 14.

Secondly, the case with softer inclusions is taken into account. In Figure 16(a), 16(b) the dimen-
sionless micro-mechanical displacement components u1/L1, u2/L1 (blue dotted lines), and the respective
macro-mechanical ones U1/L1, U2/L1 (red solid lines) are plotted versus x1/L1, respectively. Also in
this benchmark example, in the case with stiffer inclusions, the fluctuations in the microscopic displace-
ment solution are more evident than in the case with softer inclusions. Moreover, in Figure 17, the
macroscopic dimensionless stress components Σ11/E1, Σ22/E1, and Σ(12)/E1, are compared against the
respective microscopic one, i.e. σ11/E1, σ22/E1, and σ12/E1, versus the dimensionless coordinate x1/L1.
Also in this case of stiffer inclusions, the homogenized solution is in good agreement with the respective
micro-mechanical one.

5. Final Remarks

A new micropolar modeling for periodic Cauchy materials based on an asymptotic homogenization
scheme has been proposed. The microscopic displacement field is, first, represented via an asymptotic
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Figure 14: Case with stiffer inclusion. Comparison between dimensionless micro-mechanical displacement components, in
blue dotted lines, and the respective macro-mechanical ones, in red solid lines, versus x1/L1.(a) Components u1/L1, U1/L1;
(b) components u2/L1, U2/L1.
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Figure 15: Case with stiffer inclusion. Comparison between dimensionless micro-mechanical stress components, in blue
dotted lines, and the respective macro-mechanical ones, in red solid lines, versus x1/L1.(a) Components Σ11/E1, σ11/E1; (b)
components Σ22/E1, σ22/E1; (c) components Σ(12)/E1, σ12/E1.

expansion in terms of a micro-structural length. A set of hierarchical cell problems is, thus, obtained, by
plugging the asymptotic expansion into the governing equations at the microscopic scale. The solution
of such differential problems is given by the perturbation functions that characterize the properties of the
microstructure. These perturbation functions are sufficiently regular and locally periodic, i.e. with wave
length equal to the size of the periodic cell, and, therefore, they are not dependent on the choice of the
reference periodic cell.
The key idea is to propose consistent upscaling relations able to define the macroscopic descriptors (gen-
eralized macro-displacement components) of the micropolar continuum in terms of the micro-displacement
components, and the perturbation functions. In particular, the micropolar rotation field is obtained by
solving a least square minimization procedure that minimizes the difference between the micro infinites-

25



0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2

3

4

x 10
−5

x1/L1

U
1
/L

1
,u

1
/L

1

0 0.2 0.4 0.6 0.8 1

−2.5

−2

−1.5

−1

−0.5

0

x 10
−3

x1/L1

U
2
/L

1
,u

2
/L

1

(a) (b)

Figure 16: Case with softer inclusion. Comparison between dimensionless micro-mechanical displacement components, in
blue dotted lines, and the respective macro-mechanical ones, in red solid lines, versus x1/L1.(a) Components u1/L1, U1/L1;
(b) components u2/L1, U2/L1.
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Figure 17: Case with softer inclusion. Comparison between dimensionless micro-mechanical stress components, in blue
dotted lines, and the respective macro-mechanical ones, in red solid lines, versus x1/L1.(a) Components Σ11/E1, σ11/E1; (b)
components Σ22/E1, σ22/E1; (c) components Σ(12)/E1, σ12/E1.

imal rotation tensor and a properly defined skew-symmetric tensor, depending on the components of both
the micropolar rotation tensor and gradients of the perturbation functions. The upscaling relations, linking
the actual microscopic displacement field to the generalized macro-displacements, are then specialized to
the case where the micro displacement is approximated by an asymptotic expansion truncated at the third
order. As concerns the macro-displacements, involved in the asymptotic expansion, a third-order Taylor
polynomial is chosen as a function of both macro-displacement components, and displacement gradients
components evaluated at a macroscopic reference point. In the third order polynomial only a restricted
number of terms, related to the micropolar deformation modes, is retained. To this aim a set of hypo-
theses, including the satisfaction of the macroscopic governing equations of a first order homogenized
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continuum in the absence of body forces, is imposed. Then the kinematic map is consistently derived.
By exploiting the kinematic map, the generalized micropolar displacements, the curvature tensor and the
micropolar strain tensor are determined.
The overall micropolar elastic properties are derived by exploiting a generalized macro-homogeneity
condition, establishing an energy equivalence between the macroscopic and the microscopic scales. It
is pointed out that the resulting overall elastic tensors are not affected by the choice of the periodic cell.
Moreover, in the limit case of locally homogeneous material, i.e. when the microstructure vanishes, the
characteristic lengths tend to zero, thus confirming the absence of non-local effects at the macroscopic
scale. The main reasons of this relevant outcome are related, on the one hand, to the proper choice of
the upscaling relations and, on the other hand, to the choice of the microscopic average strain energy,
involving regular and periodic perturbation functions that consistently describe the material microstruc-
ture, and that are obtained solving hierarchical cell problems in the framework of asymptotic techniques.
These circumstances represent an improvement in the study of homogenization techniques of periodic
Cauchy materials into micromorphic or micropolar equivalent continua.
The capabilities of the proposed homogenization technique in predicting the behavior of periodic ma-
terials are assessed through some illustrative examples. Considering a two-phase microstructure char-
acterized by cubic symmetry, first the perturbation functions are derived, by numerically solving cell
problems. The related constitutive tensors are, thus, evaluated performing a parametric analysis, as the
microstructural mechanical properties vary. Such analysis confirm the model consistency in the case of
homogeneous materials. Two benchmark examples, involving periodic forces, are, then, investigated.
The macroscopic fields, derived both through analytic and numerical approaches, are compared with
those obtained via upscaling relations of the micromechanical solutions. Moreover, the macroscopic
fields are qualitatively and quantitatively compared against the respective ones at the microscopic scale.
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Appendix A. Functions occurring in the microdisplacement field u1 (x, ξ), u2 (x, ξ), and the macro-
scopic descriptors Φ0, K0

1
and K0

2
in terms of the coefficients Ē11, Ē22, Ē12, κ̄122, κ̄211,

κ̄1222

The functions Bi
1 (x, ξ) occurring in the polynomial approximation of the microscopic displacement field,

equation (37), take the following form depending on the components of the overall elastic tensor of the
first order homogeneous continuum and the perturbation functions, i.e.

B1
1 =x1 + εN(1)

111, (A.1)

B2
1 =εN(1)

122, (A.2)

B3
1 =x2 + ε

(
N(1)

121 + N(1)
112

)
, (A.3)

B4
1 =

x2
2

2
+ ε

N(1)
112x2 −

N(1)
121C1212x2

C1122 + C1212
−

N(1)
122C1212 x1

C1122 + C1212

 + ε2

N(2)
1122 −

2N(2)
1212C1212

C1122 + C1212

 , (A.4)

B5
1 = −

C1212 x2x1

C1122 + C1212
+ ε

((
N(1)

121 − N(1)
112

)
x1 − N(1)

111x2

)
C1212 + N(1)

121C1122x1

C1122 + C1212
+

+ ε2

(
N(2)

1211 − 2 N(2)
1121

)
C1212 + N(2)

1211C1122

C1122 + C1212
,

(A.5)

B6
1 = B6 0

1 + εB6 1
1 + ε2B6 2

1 + ε3B6 3
1 , (A.6)

where the functions B6 0
1 (x), B6 1

1 (x, ξ), B6 2
1 (x, ξ) and B6 3

1 (x, ξ) are

B6 0
1 =

x2
3

6
−
ς1

2

(
C1212

2 + (C1122 + C2222) C1212

)
x2x1

2, (A.7)
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ς1

2

(
N(1)

121C1111C1212 +
(
N(1)

121 − 2N(1)
112

)
C1122C1212+

+
(
N(1)

121 − N(1)
112

)
C1212

2 + N(1)
112

(
C1111C2222 −C1122

2
))

x1
2+

+ ς1

((
N(1)

122 − N(1)
111

) (
C1212

2 + C1122C1212

)
+

(
N(1)

122C1111 − N(1)
111C2222

)
C1212

)
x1x2+

+
ς1

2

(
N(1)

112C2222C1212 +
(
2N(1)

121 − N(1)
112

)
C1122C1212+

+
(
N(1)

121 − N(1)
112

)
C1212

2 + N(1)
121

(
C1111C2222 −C1122

2
))

x2
2,

(A.8)
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(A.9)

B6 3
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where the parameters ς1 and ς2 are

ς1 =
(
C1111C2222 −C1122

2 − 2C1122C1212 − 2C1212
2
)−1
, (A.11)

ς2 =
(
C1111C2222 − 2C1122C1212 − 2C1212

2
)−1
. (A.12)
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Analogously, the functions Bi
2 (x, ξ) of the equation (37), are

B1
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211, (A.13)

B2
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222, (A.14)

B3
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, (A.15)
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+
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where the functions B6 0
2 (x), B6 1

2 (x, ξ), B6 2
2 (x, ξ) and B6 3
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The functions Ci(ξ) and ∆(ξ) occurring in equation (39) are
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where the υ parameter takes the following form
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The functionsDi (ξ) and Gi (ξ) in equations (40) are
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Appendix B. Microscopic and macroscopic constitutive equations in equivalent matrix notation

Considering a generic material point at the microscopic level the displacement vector of is defined as
u =

{
u1 u2

}T
and the constitutive equations, relating the strain vector ε =

{
ε11 ε22

√
2ε12

}T
and

stress vector σ =
{
σ11 σ22

√
2σ12

}T
, are

σ = Cmε, (B.1)
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where Cm is the microscopic elastic matrix. The Equation (B.1) in component form specializes in


σ11

σ22√
2σ12
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√
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
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ε11

ε22√
2ε12

 . (B.2)

At the macroscopic level, instead, the generic material point is endowed with independent translational
and rotational degrees of freedom collected in the generalized displacement vector U =

{
U1 U2 Φ

}T
.

The asymmetric micropolar strain vector and the curvature vector are

Γ =
{

Γ11 Γ22 Γ12 Γ21

}T
,

K =
{

K1 K2

}T
.

(B.3)

Moreover, the macroscopic stress vector and the couple stress vector results as

Σ =
{

Σ11 Σ22 Σ12 Σ21

}T
,

M =
{

M1 M2

}T
,

(B.4)

Finally, the micropolar constitutive relations at the macroscopic scale read as{
Σ

M

}
=

 GM YM

YMT SM

 { ΓK
}
. (B.5)

At this point, the equation (B.3) can be recast in the generalized micropolar strain vector E(mp) ={
Γ K

}T
, analogously, the equation (B.4) can be recast in the generalized stress vector is defined as

S(mp) =
{
Σ M

}T
. As a consequence, the micropolar constitutive relations take the following form

S(mp) = CM(mp)E(mp). (B.6)

Equations (B.5) and (B.6) in component form result
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. (B.7)

Finally, by splitting the symmetric and skew-symmetric components of the asymmetric micropolar stress
and the micropolar strain, as in equation (62), it results
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



Γ11

Γ22

2Γ(12)

2Γ[12]

K1

K2


. (B.8)
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