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Abstract—Energy Signatures (ES) are simple multi-purpose
energy audit techniques. For instance, ES are employed in i)
the determination of the Balance Point (BP) of a building,
ii) the ranking of heating or cooling systems efficiency of a
building, iii) the provision of building diagnostic information,
and iv) the estimation of potential savings and strategies for
more energy efficient buildings. In this paper, we propose an
innovative energy audit tool based on a Neural Network (NN)
for determining ES from aggregated electric load profile of
industrial sites. The energy audit methodology defines and
applies an innovative Key Performance Indicator (KPI), called
Temperature Unstandardised Beta Weight (β∗

Temp), to take into
account not only the thermal behaviour of the building, but
also the cooling system efficiency and the electrical base load.
This energy audit has been applied on a real-case electric
consumption pattern dataset of around sixty Central Offices
(CO) from a telecommunication (TLC) service provider in
Italy. The useful outputs from the proposed methodology,
together with its simplicity, effectiveness and applicability, are
intended to support diffused understanding of buildings thermal
behaviour with the perspective of enhancing energy efficiency
and consumption reduction.

Index Terms—Building Energy Efficiency, Energy Audit, En-
ergy Signature, Neural Network

I. INTRODUCTION

In recent years, building energy efficiency is among the
most topical issues for energy research community [1]. Many
obstacles complicate the pathway to a more environmentally
sustainable way of consuming energy in buildings, such as
the shortage of awareness over buildings energy behaviour
and their inefficiencies. For instance, one of the most energy-
intensive and inefficient load in buildings is cooling that
represent nearly 16% of buildings final electricity demand
in 2020 [2], not only for residential premises but also
for commercial and industrial ones. Despite of the rise in
cooling systems efficiencies and the building energy footprint
reduction policies, this component of buildings’ energy con-
sumption has more than tripled over the last 30 years, and it
grows relentlessly.

The way forward to enhance buildings behaviour aware-
ness and identify their inefficiencies, such as for cooling
loads, is providing practical tools for building analysis ap-
plications. Classic physical models are widely adopted for
buildings performance assessment [3]. However, they nec-
essarily require extensive information regarding the building
structure, such as its thermal layout. Other approaches are
data-driven ones that are becoming more and more popular
and promise to cover a wider spectrum of building analyses.
These approaches require lower computational and modelling
effort and, in particular, they do not require information about
the buildings’ thermal layout. Even without this fundamental
information, they may provide accurate results and enhance
understanding and performance analysis of heating and cool-
ing systems [4].

For instance, Energy Signature (ES) is a grey-box data-
driven approach to point out the dependence of heating or
cooling energy consumption from weather conditions [5].
The most simple case of ES is the univariate regression
model that consider solely outdoor air temperature and energy
consumption. Multivariate ES can be employed to analyse
the impact of additional weather variables, such as solar
radiation [6]. In the last decades, ES have been adopted
to rank buildings heating systems efficiency, to produce
diagnostic information, benchmarks, and control charts [7],
and to calculate the Balance Point (BP) of buildings [8]. The
latter represents the outdoor air temperature determining a
thermal load equal to zero, that is the weather condition at
which the building does not require heating nor cooling in
order to keep indoor air temperature within a given range. In
turn, computing a structure’s BP provide crucial information
about the building envelope and its thermal behaviour. For
this reason, BP has been exploited by researchers to analyse
the potential of ventilative cooling [9] and enhance accurate
estimation of Degree-Day (DD) to support effective building-
energy policy [10] and to predict HVAC systems energy
consumption [11].

Most of the model-based approaches in literature to cal-
culate BP result in challenging and time-consuming method-
ologies [7], [12]. For these reasons, in this paper we pro-
pose a novel energy audit methodology that exploits Feed-
Forward Neural Network (NN) to accurately and automat-
ically determine buildings ES from the aggregated load
consumption profile. Unlike most of the works dealing with
ES, our methodology allows usage of meter level electric
consumption measurement instead of using the heating or
cooling systems one, therefore avoiding intrusive installations
of sensors for disaggregated loads metering. On the one
hand, this represents an element of complexity in order to
accurately determine a building ES. On the other hand, the
non-intrusiveness of the proposed methodology represents a
major advantage with the perspective of applying it to real
case scenarios, as many buildings are not provided with
adequate sensors for disaggregated load metering. Finally,
this methodology applies a robust and simple model to
estimate BP and cooling system performance by means of
Temperature Unstandardised Beta Weight (β∗

Temp), a KPI
which takes into account both Total Heat Loss Coefficient
and the Coefficient of Performance (COP) of the cooling
system. This work aspires to make novel contributions for
what concerns both the employed tools for the ES analysis
and the proposed energy KPI. Furthermore, this methodology
will enhance i) the detection of inefficient sites, by means of
comparative analysis of nearby and similar building, ii) the
identification of abnormal power consumption, and iii) the
estimation of best strategies for energy efficiency of industrial



buildings, that is providing retrofit scenarios.
In the following, Section II briefly presents the investi-

gated research field, Section III describes the methodological
pathway and the fundamental tools to be employed for the
analysis, Section IV presents and discusses the outcomes of
the appplication of the methodology to the case study. Finally,
Section V contains the final remarks and outlines the future
development of the study.

II. CASE STUDY AND DATASET

The contributions of the paper presented in the previous
section were conceived to face the issues of a real-world
dataset, containing the year aggregated load measurements
with hourly resolution from around sixty Central Offices
(CO) of the most important telecommunication (TLC) ser-
vice provider in Italy. CO are industrial buildings housing
the equipment devoted to the management of TLC net-
works.These buildings are characterised by an occasional
and irrelevant presence of occupants. Most of the electrical
demand is caused by the TLC equipment and to the huge
electric demand of cooling systems to avoid overheating of
the equipment itself. We will refer to these load contributions
as PTLC and PCLC respectively. The minor load contribution
from the auxiliaries and the lighting system is referred to as
PAux, while PDISS takes into account to energy conversion
losses and the load due to the Uninterruptible power supply
units [13]. TLC networks and their management buildings are
rising dramatically their energy demands, featuring an annual
increase of about 10% over the last decade [14].

III. METHODOLOGY

As it was presented in Section II, the investigated dataset
contains aggregated electrical load data from a number of CO.
In order to retrieve information about a building’s thermal
behaviour, the raw input data has to be properly preprocessed
and analysed. The proposed methodology to handle these
data is made of the following steps, as described by Figure
1: i) Data-Filtering, ii) Re-sampling, iii) electrical load
Normalization, iv) NN Training of a simple and ad-hoc
designed NN and v) Energy Audit, that includes achievement,
visualisation and analysis of the results.

Data-Filtering: Data are filtered in order to remove possi-
ble unreliable data. These data may be caused by measure-
ment errors or by anomalies in the electrical load pattern.
This step enhances optimal training of the neural network
and improves the accuracy of the energy audit. The task of
detecting abnormal load values is carried out by means of
a simple gradient-based statistical approach, which deletes
single load values from time series whether they feature
excessive gradient with respect to the previously recorder
data.

Re-Sampling: The filtered dataset is then re-sampled to
figure out each day mean electrical load. Indeed, it is well
known that considering fine-grained load data may cause
a drop in the accuracy of the energy audit, since transient
phenomenon due to thermal inertia of the building cannot be
described by the instantaneous response of the system.

Normalization: This step allows comparison among differ-
ent buildings. This is crucial in order to achieve two of the
goals of the proposed methodology, namely the comparative
analysis and providing retro-fit scenarios. Indeed, awareness
over a building energy efficiency shall be supported by

Fig. 1: Outlook of the proposed methodology

comparing its thermal behaviour to the one of nearby located
and similar ones. In particular, we focused on pure CO, whose
consumption is not affected by occupancy. Electrical load
data are normalized with respect to the TLC equipment load.
Indeed, these values somehow represent the buildings size.
Furthermore, this is a fundamental step in order to retrieve
information on the thermal behaviour of these buildings, as
we will point out in Section III-A.

NN Training: A regression model shall be designed in
order to assess the impact of outdoor weather variables on
electrical load. Hence, outdoor air temperature is considered
as input for a NN, while aggregated load is provided as an
output and compared to real values. The dataset is split into
training and validation subsets, which correspond to 2/3 and
1/3 of the dataset respectively, to ensure proper training of
the network, that is avoiding under or over-fitting phenomena.
The fundamental issue of the NN architecture is detailed in
Section III-B.

Energy Audit: Finally, ES is obtained by the regression
model retrieved by the NN, employing both the training and
the validation set to achieve higher accuracy. The outcomes
of the analysis are obtained and the typical parameters of
buildings can be calculated. In particular, this methodology
allows estimating the most important parameters describing
the buildings’ thermal behaviour and their efficiency of the
cooling system. The following Section details these parame-
ters and enlightens the physical issues underlying ES.

A. A Novel Approach to Energy Signature

Literature often refers to the coefficient kTOT of the
line obtained on an ES graph, displaying mean outdoor air
temperature on the x-axis and mean cooling load on the
y-axis, as thermal heat loss coefficient for what concerns
heating ES, or as temperature sensitivity for cooling ES.
Besides, ES usually refers to thermal load, being kTOT

measured in kWTh/°C or kWTh/(°C ∗m2
). Yet, in many

cases measurements accounting for thermal power may not
be available. On the other hand, since electricity represents
the energy vector for the vast majority of cooling systems,
the energy audit of a site may be obtained by considering
electrical load. Furthermore, a non-intrusive approach shall
support the wide-spread of the proposed diagnostic tool to
any site whose total daily electrical demand is provided. This
can be done by means of the following methodology. First,
by making the assumption that the indoor air temperature
within a CO is constant, that is that the building’s shelter is



in thermal equilibrium with the outdoor environment [15], we
can obtain the thermal balance:

ϕT + ϕV + ϕSol + ϕCond + ϕSt = 0 (1)

where ϕT is the heat flux through the building envelope,
ϕV accounts for the heat exchanged with the environment
thanks to ventilation, ϕSol is the heat gain determined by solar
radiation, ϕCond is the cooling power of the air conditioning
system and ϕSt is the internal heat generation. We assume
that the latter contribution is equal to the electrical load
by TLC devices, that is ϕSt = PTLC . Then, we make the
hypothesis that the heat gain determined by solar radiation
has a negligible effect over thermal balance, that is ϕSol = 0.
Furthermore, we consider the heat fluxes due to the cooling
system, that are ϕCond and ϕV , as a single contribution to
thermal balance:

ϕCLC = ϕCond + ϕV (2)

In addition, we consider the definition of temperature
sensitivity and the well-known definition of COP:

ϕT = kTOT ∗ (Text − Tin) (3)

ϕCLC = −PCLC ∗ COP (4)

Considering equations from 1 to 4 and the aforementioned
hypothesis, it may be easily found that:

PCLC ∗ COP = kTOT ∗ (Text − Tin) + PTLC (5)

It is worth pointing out that Tin formally represents the
indoor air temperature. However, due to the constraints re-
garding control of indoor air temperature of CO and in accor-
dance with the assumptions we made, this value is considered
constant and can be regarded as Set Point Temperature TSP .

According to what reported in Section I, if the outdoor air
temperature is equal to the building’s BP, the cooling systems
is not needed to preserve TSP . Hence:

kTOT ∗ (TBP − TSP ) + PTLC = 0 (6)

Next, Equation 5 can be normalised by PTLC and divided
by the COP, obtaining:

PCLC

PTLC
=

kTOT ∗ (Text − TSetPoint)

PTLC ∗ COP
+

1

COP
(7)

Finally, considering Equations 6 and 7:
PCLC

PTLC
=

kTOT ∗ (Text − TBP )

PTLC ∗ COP
(8)

A crucial novelty proposed in this paper is to consider
a new KPI, which we may refer to as Temperature Un-
standardized Beta Weight (β∗

Temp). We define this KPI as
the electrical load normalised rise with respect to TLC load
per Celsius Degree, considering temperatures above the BP.
This KPI measurements will hence be °C−1. β∗

Temp takes
into account not only the thermal behaviour of the building
envelope, which is somehow described by kTOT , but also the
cooling system efficiency and the electrical base load (see
Figure ??). We define this KPI as:

β∗
Temp =

kTOT

COP ∗ PTLC
(9)

It should be also pointed out that calculating PTLC is a
trivial task. Indeed, the base load Pbase of CO or Data Centers
is generally considered as equal to the TLC equipment
load PTLC plus a contribution from power losses, namely
PDISS , which may be both assumed as constant values [13].

Furthermore, kTOT is a constant value as well, being a
characteristic parameter of the considered building envelope.
The COP deserves more attention, since in some cases its
value may have little variations depending on outdoor air
temperature.

B. Design of Proper Tools for Energy Audit
Over the years, many researchers exploited iterative calcu-

lation methods for ES determination, as looking for the best-
fit within a number of many possible linear regression models.
For this reason, we provide an efficient quick, customizable
and easy-to-use tool for determining BP and β∗

Temp. Indeed,
we point out that a single hidden layer Feed-Forward NN
may accurately find a rectified linear model representing ES
of the site. The proposed network features the simplest type
of element one may find in NN, namely the perceptron. This
element may compute a simple operation as in Equation 10:

f(x) = χ(⟨w, x⟩+ b) (10)

where w is the weights vector, x is the inputs vector, b is the
bias and χ is the activation function. The typical outlook of
the employed NN is reported in Figure 2. This network may
be fed with one or more external variables, that are outdoor
weather variables, and provides total electrical load as output.
Correlation analysis of the weather variables point out that
temperature is the most relevant factor to determine electrical
load in CO, as reported in Table I. These analysis clearly
enlighten the minor relevance of the other weather variables,
namely radiation, humidity and wind speed. This supports
the hypothesis of negligibility of solar radiation made in the
previous section. Hence, this is a case study investigating
univariate ES, and the input layer will feature a unique node.
It should be remarked that cooling load PCLC is the only
consumption quota which depends on outdoor temperature in
a CO. Indeed, the other contributions, namely PAux, PDISS

and PTLC are independent from weather factors. Hence,
we may state that a total load variation determined by a
temperature variation is a cooling load variation. This allow
us to consider aggregated electrical load measurements, and
supports the application of the proposed methodology to a
number of sites. Nevertheless, employing total load instead of
cooling load may cause the presence of noise in the regression
models, with a slight impact on their accuracy.

Fig. 2: The novel NN-based energy audit tool



Hence, one NN was trained for each CO, and the hy-
perparameters, specifically learning rate, learning rate decay
and batch size, were tuned separately for each network by
means of an automated grid search procedure. As we stated
before, the input layer features, in this case, a single node.
Hence, x vector’s length will be one, specifically x will be
xTemp. Inputs data is normalized according both to minimum
and maximum value, being scaled to the range 0-1. This is
standard step for NN training.

The hidden layer represents the core of the NN. Linear
ES may be easily obtained by setting a ReLU function as the
activation one for this layer. In this way, each perceptron will
provide an output equal to zero for any x such that:

whidden,i ∗ xTemp + bi <= 0 (11)

For instance, if we use a single perceptron hidden layer,
the hidden layer will provide an output equal to zero for any
temperature which does not determine any thermal load. From
an energy point of view, these temperatures are all those ones
below the so-called BP. Hence, this point may be easily found
by turning the inequality reported in Equation 11 into its
corresponding equation. On the other hand, models featuring
multiple perceptrons in the hidden layer would be able to
retrieve several elbow points. This means obtaining more than
one cooling operating regime. In this case, the lower xelbow

represents the balance point.
Each cooling regime is characterised by its temperatures

range and by the coefficient of the line in that region, that is
β∗
Temp. These values can be obtained by:

β∗
Temp,j = Σ(whidden,i ∗ wout,i),∀i|TBP,i < Tmax,j (12)

where βTemp,j is the coefficient of the line in the cooling
region j, whidden,i is the weight of the incoming connection
of perceptron i, wout,i is the weight of the connection among
perceptron i and the perceptron in the output layer.

Finally, the output layer is made of a single perceptron
which has to be configured with a linear activation function.
This feature enhance the NN to determine the correct offset of
the ES, that is the base load corresponding to the no-cooling
region. This value, accordingly to the hypothesis reported
in Section III-A corresponds to PTLC , and can be simply
retrieved by:

ybase = bout (13)

IV. EXPERIMENTAL RESULTS

The proposed methodology was applied on a dataset of
around sixty CO located in Italy. After preprocessing the raw
data according to what reported in Section III, we carried
out the data analysis. Hereafter, for sake of clarity, two
significant case studies, whose ES are reported in Figure 3,
are described and commented more in details. Hence, we
initially focus on single-elbow points models. This is the case
of estimating the existence of only two regions. The former
corresponds to a no-cooling condition and is described by

TABLE I: Correlation Analysis within electrical load and
weather variables from a CO

PTOT T RH vwind G
PTOT 1 0.884 -0.409 -0.230 0.376
T 0.884 1 -0.530 -0.286 0.484
RH -0.409 -0.530 1 0.151 -0.522
vwind -0.230 -0.286 0.151 1 -0.157
G 0.376 0.484 -0.522 -0.157 1

(a)

(b)

Fig. 3: Univariate ES obtained for two CO, employing single
perceptron hidden layer NN

the flat part of the ES on the left sides of the two plots
in Figure 3. On the other hand, the right part of the plots
describes the buildings’ electrical load as the cooling systems
intervene. The increase of electrical demand due to outdoor
air temperature rise is assumed to be constant and can be
described by the coefficient β∗

Temp. The models designed
achieved good performances for the whole dataset, as attested
by the coefficient of determination R2 values reported by the
ES models from the buildings. Indeed, the mean R2 value
obtained was 0.827, while 50% of the models achieved values
over 0.88 and 25% over 0.92. This confirms the consistency
of the hypothesis reported in Section III, that is assuming that
the electrical load of CO is firstly depending on outdoor air
temperature. The proposed methodology performance slightly
exceed the one from the most widely adopted SoA algorithm
for ES, that is the iterative procedure to find the best fit to
a two- segment linear regression [5], which achieved a mean
R2 equal to 0.822.

The two models in Figure 3 respectively reported R2 values
of 0.956 and 0.950. Still, accuracy of the model is the sole
common trait within these two ES. Indeed, it may be easily
seen that the cooling system of the building A, reported in
Figure 3a, intervenes at 12.8°C, while the building B, in
Figure 3b, features a much lower balance point, since it has
to be cooled as soon as the outdoor air temperature reaches
8.2°C. Generally, the investigated buildings reported a TBP

mean value equal to 13.8°C. Less than 20% of the buildings
reported a TBP higher than 17 °C. Finally, a few COs are
characterised by extremely low balance points, even below
10°C. To this extent, it should be remarked that CO may
feature extremely dense internal heat generation. This means
that cooling may be needed even if the indoor air temperature
is much higher than the outdoor one. Notice that the indoor



air temperature is assumed to be equal to the set point,
which, for the investigated COs, was set equal to 29°C by the
energy managers to ensure equipment life [16]. By recalling
Equation 6, it may pointed out that the BP is depending by
TSP , the internal heat generation and the thermal sensitivity
of the building:

TBP = TSP − PTLC/kTOT (14)

Since the TSP is given and equal for any CO, the values of
TBP may be interpreted considering solely PTLC and kTOT .
This issue of the thermal behaviour of CO may be easily
understood by looking at Figure 4, reporting the experimental
results retrieved for building A. This plot well enlightens
3 regions. Region A is the no-cooling region, which is
characterised by thermal flux through the envelope toward the
external environment capable of balancing the internal heat
generation. As the outdoor temperature overcomes TBP , we
get into region B, as the cooling system intervenes in order to
keep indoor air temperature below the set point. Nevertheless,
heat transmission through the envelope still plays a role in
removing heat from the building. The wider this region is,
the higher potential savings can be achieved by means of a
Free Cooling system [17]. The third region, reported as C
in Figure 4, corresponds to the situation where the thermal
flux through the envelope, ϕT , reverses, since the outdoor
temperature is higher than the indoor, kept constant and equal
to TSP . In this case, the cooling system has to tackle with
both the other contributions. Let us imagine to modify the
building envelope to increase thermal flux through the walls,
that is increasing kTOT . ϕT , represented by the yellow line,
would feature a steeper tilt. Since the TSP is not modified,
this would cause a rise in TBP . This represents a first retrofit
scenario. In this case, less energy would be wasted if the
outdoor air temperature is below the TSP . On the other hand,
the electrical load would rapidly rise for hot days. Still, the
building envelope and its internal heat generation are not the
only factors affecting the electrical consumption caused by
refrigeration of CO. Indeed, the thermal fluxes reported in
Figure 4 do not take into account the efficiency of the cooling
system itself. As we stated in Section III-A, the proposed KPI
β∗
Temp is intended to describe this fundamental topic as well.

The values retrieved by the methodology attest that a typical
CO features β∗

Temp equal to 0.02759°C−1. This means that
the electrical demand for cooling increases of 2.76% per °C,
for any temperature above TBP . The β∗

Temp value represents
the tilt of the line in the cooling region in the plots in Figure 3.
It is worth remarking that the ES from building B enlightens,

Fig. 4: Estimated thermal balance contributions in a CO

Fig. 5: A NN-derived ES featuring two elbow points

compared to building A, inefficiencies due to both a low TBP

and an high β∗
Temp value. Indeed, electrical demand features

an electrical demand rise of 2.57%°C−1, compared to a rise
of 1.66%°C−1 for building A. Finally, the cooling systems
COP can be estimated. For instance, the buildings reported
in Figure 3 have respectively COP equal to 3.72 and 1.87.

The easiness to modify the model configuration is one
major advantage with respect to SoA algorithms. Indeed, the
NN may be configured in order to identify more operating
regimes. This can be done by setting multiple perceptrons in
the NN hidden layer. The more perceptrons are included in
the network, the higher will be the accuracy of the model.
The results from the two-elbows configuration for building
A are reported in Figure 5. The R2 rises to 0.960, as the ES
fits the load data more finely. In this case, two elbows are
detected, at temperatures 10.7°C and 18.4°C. In this case,
the former represents TBP , while the second corresponds to
a change in the cooling system operating regime. Indeed,
while β∗

Temp is equal to 1.02%°C−1 for the first cooling
region, the electrical load rise become more relevant in the
right part of the ES, featuring a tilt of 1.91%°C−1. This
phenomenon may be determined by the presence of multiple
chillers, which intervenes at different temperatures. Any two-
elbow ES we retrieved was characterised by an higher tilt on
the second cooling region. This looks very reasonable, as if
more than one chiller is available, the energy management
would initially activate the more efficient one, while the
second would intervene just in case the former is not capable
of facing with the whole thermal load.

V. CONCLUSION AND FUTURE WORK

A simple and effective NN-based tool was proposed to
calculate ES by solely considering aggregated electrical
load of industrial premises. This methodology shall sup-
port widespread of energy audit and enhance awareness
over the energy behaviour and potential inefficiencies of
not sensorized buildings. The methodology was tested on a
real case dataset from an energy intensive industrial sector,
namely the telecommunication one. The proposed model is
characterised by good performance, achieving a mean R2

equal to 0.827, and by a flexible configuration to explore
different cooling operating regimes. Simple equations en-
hance extraction of fundamental information from the bias
and connection weights of NN. In particular, balance point
temperature, the novel KPI β∗

Temp, accounting for multiple
aspects of buildings’ thermal behaviour, and the cooling



system COP were calculated. The outcomes of this study shall
be deepened, analysing typical retrofit scenarios, such using
a Free Cooling system, improving efficiency of the cooling
system or modifying the building envelope. Further work has
to be done in order to validate the correct number of elbow
points to be considered for estimating a building ES. Finally,
higher accuracy of the models can be achieved by including
additional weather variables in the regression model.
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