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Università degli Studi di Torino

Turin, Italy
marco.ottina@unito.it

Abstract—Wildfires are an ever-increasing problem, exacer-
bated by the current global warming trends. Accordingly, it is
becoming more and more relevant to monitor factors influencing
their outbreaks and spreading, in order to both preemptively
act on the most risky areas, and guide interventions in case
an outbreak occurs. Different approaches have been proposed
during the decades tackling this issue, which however require
large datasets that are difficult and expensive to gather.

In this paper, we propose to address the management of
wildfires by empowering existing centralised models with a de-
centralised component. Leveraging dedicated monitoring drones
together with smartphones held by experts and intervention
corps, a decentralised system could both enhance data collection
and assist interventions. As conditions near wildfires require
strong fault-tolerance guarantees, we propose to develop such an
application through aggregate programming, a novel approach to
the resilient programming of decentralised systems.

Index Terms—fire prevention, monitoring, aggregate program-
ming, edge intelligence

I. INTRODUCTION

Wildfires are an ever-increasing problem [1] and their rates
and intensities are influenced by many different factors, such
as global warming [2], [3], weather conditions in general,
the interested areas properties and human activities [4]. For
example, the humidity level interferes by reducing the prob-
ability of fire outbreaks. The vegetation distribution and type
gives relevant contributions to fires development, especially
during hot and dry seasons. The landscape and the presence
of water in form of lakes, rivers or vapour are important factors
that also need to be taken into account. Human activity and
urbanization play a role in wildfire ignition as well [5]. This
multitude of different relevant factors contributes significantly
to the complexity of the wildfire monitoring problem.

Thus, collecting an increasing amount of data may highlight
some important factors that can by themselves spark the
ignition of fires, or be crucial actors in their propagation.
It is then becoming more and more relevant to monitor at a
large scale factors such as weather, concentrated elements like
patches of fuel-rich plants, and human activities [6] in order
to achieve a wider and deeper understanding of the wildfires
outbreaks and to preemptively act on the most risky areas.

The coordination of both the monitoring and intervention
processes is a non-trivial task, which insofar has been carried

out through centralised approaches requiring a reliable and
efficient network. However, in real-world settings the connec-
tion between agents deployed in wild areas and the Internet
may be unstable, weak or absent, thus limiting or impeding a
centralised communication and orchestration.

This paper proposes to manage the interconnection between
deployed devices (monitoring drones) and intervening humans
(through their smartphones) according to a decentralised ap-
proach. Thanks to the aggregate programming model [7] and
its implementation FCPP [8], [9], a resilient ad-hoc network
can be maintained even in absence of Internet connection,
while handling message losses due to adverse weather condi-
tions. Exploiting the aggregate programming framework, we
delineate an approach specifically designed at the maintenance
of such a resilient network, with some devices identified as
workers performing the necessary monitoring and intervention
tasks, while other devices called postmen focus on bridging
messages in order to keep the network connected to ground
stations, that are meant to operate as higher-level orchestrators,
also interacting with the Internet if possible.

Section II introduces the necessary background concepts
on collective adaptive systems in general, on the aggregate
programming model and its implementation FCPP. Section III
describes the wildfire monitoring case study, focusing on the
issues and obstacles that a solution to this problem needs to
address. Then, Section IV presents the proposed technological
solution, first at a higher level and then outlining the aggregate
programming patterns to be leveraged in order to ease its
design. Finally, Section V concludes proposing a roadmap to
the practical implementation of the proposed solution.

II. BACKGROUND

A. Collective Adaptive Systems

Collective Adaptive Systems (CAS) are collections of in-
telligent agents able to automatically change their internal
structure (i.e., the connections between their components)
and/or their function in response to external inputs.

Due to such characteristics, programming CAS presents
peculiar challenges, that must be addressed in ways that
depend on the given context and goals. At a sufficient level
of abstraction, the various approaches can be classified in four
categories [10]:

• methods that abstract devices and/or networks, such as
TOTA [11] and MapReduce [12];978-1-6654-6297-6/22/$31.00 ©2022 European Union



• methods that provide geometrical or topological pattern
languages, such as the self-healing geometries in [13];

• methods that provide languages for information retrieval
and routing, such as TinyLime [14];

• general space-time computing models, such as
StarLisp [15] and Aggregate Programming [7].

B. Aggregate Programming

Among the approaches previously mentioned, in this paper
we focus on Aggregate Programming (AP). AP is charac-
terized by the definition of a single program that is exe-
cuted asynchronously in each node of a whole network. The
networked system is thus modelled as a single aggregate
machine, which manipulates collections of distributed data
called computational fields.

Communication between devices is realised at low level
through proximity-based broadcasts, which at a higher level
generate neighbouring fields, i.e., maps from neighbour device
identifiers to their relative values. Neighbouring fields cannot
be accessed directly; instead, they are manipulated through
“map” operations that produce a new field, and “fold” opera-
tions that synthesize a single value from a field.

Such aggregate computations can be expressed through
the Field Calculus (FC) [16], a minimal functional language
providing the necessary mechanism to express and function-
ally compose distributed computations, neglecting low-level
aspects such as synchronisation, delivery of messages between
devices, and the number and physical positions of devices in
the network. The FC language has been proved to be able
to express any computable distributed program [17], while
being particularly effective in the monitoring of space-time
properties [18]–[21], and allowing integration with traditional
multi-agent planning techniques [22], [23].

An FC program P running on every device i of the network,
executes the following steps periodically:

• the device perceives contextual information, i.e.:
– data provided by local sensors,
– local (state) information stored in the previous round,
– messages received from neighbours after the previ-

ous round.
As said above, the latter are made available to the
program P as a neighbouring field ϕ;

• the device evaluates the program P considering as input
the contextual information gathered as described above.
Note, therefore, that P is not only executed by each
device, but also at each round: when needed, different
behaviors are obtained by branching statements in P
based on the input context;

• the result of the local computation is stored locally (as
local state), sent to neighbours and may produce outputs
fed to local actuators.

The above steps, executed across space by different devices,
and across time at different rounds, give rise to a global
behaviour at the overall network-level [24] that can thus be
viewed as a single aggregate machine. While the neighbouring

relation is usually based on spatial proximity, it is possible to
define it as a logical relationship, for example as a master-slave
relationship among devices independently of their position.

C. FCPP
FCPP (FieldCalc++) is a library written in the C++ language

that implements the Field Calculus (FC). Given the goal of
being able to deploy FCPP on as many platforms as possible,
C++ has been chosen as the implementation language not only
for its power and efficiency, but also because it can target most
platforms, from microcontrollers to GPUs. Beside providing
an internal DSL for expressing FC programs within C++, the
library provides several features:

• a component-based software architecture, suitable to be
extended and customised for different application scenar-
ios, such as deployments on IoT devices, simulation, and
HPC;

• an efficient implementation exploiting compile-time opti-
misations through advanced template programming [25];

• support for parallel execution of a simulated system or
self-organising cloud application;

• tools for executing FC programs on simulations of dis-
tributed systems.

The only scenario that is currently fully supported by
the implemented components of FCPP is the simulation of
distributed systems. Compared to the alternative implemen-
tations of FC (Protelis [26] and Scafi [27]), it features addi-
tional simulation capabilities (3D environments, basic physics,
probabilistic wireless connection models), with a significant
reduction of the simulation cost, and a corresponding speedup
of the development and test of new distributed algorithms.
Moreover, thanks to the extensible architecture, it is much
easier to address additional scenarios than with previous FC
implementations. Two such scenarios are of particular practical
interest:

• deployments on microcontroller-based systems typically
used in IoT applications, which have limited computing
power and memory;

• deployments as self-organising cloud applications, which
require fine-grained parallelism in order to be able to
scale with the resources allocated in the cloud.

Prototype components addressing these scenarios are currently
under development, and are already available in the main
FCPP distribution.

Figure 1 shows the architecture of the FCPP library, parti-
tioned in three main conceptual layers:

1) C++ data structures of general use. Some are needed
by the components of the second layer either for in-
ternal implementation or for the external specification
of their options; other data structures are designed for
implementing the aggregate functions of the third layer.

2) components. They define the abstractions for repre-
senting single devices (nodes) and the overall network
(net), which is fundamental in scenarios where there is
no physical network, such as simulations and cloud-
oriented applications. It is worth noting that, in an
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Fig. 1. Representation of the software architecture of FCPP as the combination of three main layers: data structures for both other layers, and components
which provide node and network abstractions to aggregate functions. Components are categorized as general purpose (cyan), used across different domains,
and simulation-specific (violet), with variations for different domains. The new displayer and simulated map (simulation-specific) components are highlighted
in magenta. Dependencies between them can be either hard (solid), for which the pointed component is required as an ancestor of the other; or soft (dotted),
for which the pointed component is not required, but if present, it should be an ancestor of the other component.

application based on FCPP, the two types node and
net are obtained through template programming by
combining a chosen sequence of components [28], each
of them providing a needed functionality, in a mixin-like
fashion [29], [30]. The role of the component system is
thus that of enabling the reuse of specific functionalities
across different application scenarios.

3) aggregate functions. Actual implementations of FC pro-
grams, as templated functions with a node parameter;
note that also these functions are partitioned in several
layers, starting from the built-ins that implement the core
of FC, up to the applications written by the users of the
FCPP library.

Figure 1 shows the dependencies between components, i.e.,
whether a component needs another component as its ancestor
in the mixin composition. The number of such dependencies
has been kept as low as possible, and it is always possible
to substitute a “required” component for another offering an
analogous interface in the composition.

III. WILDFIRE MONITORING

A. Forecasting Strategies

Different approaches have been proposed during the decades
for the monitoring and prevention of wildfires. Almost all of
them involve a system aimed at predicting at least one feature.
For instance: [31] provides models to predict the wildfire scale,
like the fire’s duration and the area burned; [32] analyses
spatial data to provide natural hazard likelihoods estimations;
and [33] combines conditions like wind and vegetation in a
cellular automata model to describe the evolution in space and
time of the wildfire. Statistics are heavily involved in every
model, in particular in [34], which implies that large datasets

are needed in order to extract accurate descriptions without
suffering from errors due to sample fluctuations.

B. Intervention Guidance

All of these models can be valuable tools, supporting a
decision process managed and actuated by agents in a CAS,
which monitor susceptible areas for wildfires. Such a CAS
may include fixed sensors, drones, and other agents able
to both scan the environment to provide data to wildfire
prevention models, as well as possibly interacting with their
surroundings to mitigate the situation whenever possible. Real-
time monitoring, through modelling systems, may be capable
to indirectly guide the intervention of firefighters and other
experts in order to increase efficiency and reduce risks and
wastes of resources. For example, changes in wind direction
and speed, or in air composition like in the levels of humidity
and oxygen, may impact the flames’ evolution, by redirecting,
feeding or weakening them. Also, flames exhibiting chaotic-
like patterns may hurt the firefighters or set up new things on
fire, including hazardous substances as fuel tanks and explo-
sives. The analysis of a current situation and environment may
thus redirect the firefighters’ actions, for instance, prioritizing
some areas and objects over others, or by avoiding being
engulfed in flames if the model predicts it is about to happen.

C. Data Acquisition

As discussed in [2], many different data can be of interest
for wildfire management: from weather conditions as humid-
ity and strong winds, to human activities and presence of
flammable fuels in vegetation or soil. The high variability in
type and geographical displacement of the interested data pose
difficult challenges in the collection of the desired information.
This becomes particularly problematic as the areas of interest



are often poorly served by existing infrastructure, and internet
connectivity may be difficult if at all possible.

Various devices and strategies to collect data have been
considered, each differing in terms of area coverage and granu-
larity. Satellites may supply huge images depicting large areas,
providing overview and esteems to the models mentioned
above, but often lack in granularity and fine-detailed resolution
due to the satellite’s own limitations. Meteorological data or
images can be collected during overflight of particular areas
[35], such as helicopters, hot air balloons, or unmanned aerial
vehicles. In that cases, GPS data may also be used to tag
perceived values and to help the orchestration and movements
of the involved devices and humans [36]. Fixed sensing infras-
tructure such as video-cameras and specialised observatories
can also be used, but their usefulness and deployment cost is
often limited by the availability of internet connection.

Additionally, a new paradigm of data acquisition is emerg-
ing in the recent years: collaborative data collection, exploiting
social media and the capabilities of modern mobile devices
[37]. Large scale disaster events can often be detected and
monitored by combining information gathered from different
social media networks, obtaining more copious, consistent
in time and widespread amount of data. This data can feed
forecasting systems, enabling more targeted and localized in-
tervention. For example, some drones can be dispatched in the
areas where a dangerously high likelihood of wildfire ignition
is suspected [38]. The drones can then reliably provide high-
quality data of various types, from images to hygroscopic data
or temperature, in selected regions of interest, thus increasing
the granularity and precision of the available information,
which is needed to feed forecasting and analysis models [6].
The currently limited amount of drones available does not
allow a widespread and dense usage of those devices, so they
are usually delivered only when strictly needed and within the
regions where wildfires are already present or highly likely to
spawn in the near future.

D. Difficulties upon Intervention

Many difficulties may arise during interventions of the
firefighters and forestry corps, which may be consequently
slowed down, limited or disrupted. Wind conditions may
hinder the mobility of devices and personnel dispatched, as
well as reducing the effectiveness of sensors and water streams
aimed to deal with fires. Untracked dry vegetation and fuels
[39] may unexpectedly feed the wildfires, increasing their
damage potential, and possibly allowing flames to engulf
humans, animals or valuable objects within burning areas.
The damages and erosion made by fire to huge plants and
buildings may lead to their sudden fall, resulting in high risks
to everything and everyone in the surrounding area. Clearing
the potential diffusion path of a fire is thus a crucial precaution,
that however requires careful monitoring.

In current practice, this is usually handled by human experts,
based on their subjective perception of the situation. However,
fatigue and mental overloading in such critical situations has
been shown to often lead to sub-optimal or erroneous decision-

making and planning operations. Furthermore, human senses
may be limited or imprecise, limiting the forecasting abilities
of domain experts. Overall, this considerations demand for the
support of machines in the decision process, including sensing
drones and artificial intelligence assistants.

On the other hand, drones and other sensing machines have
their own limitations. Excessive temperature or air conditions
may corrupt the gathered data, requiring to reconstruct infor-
mation by combining data coming from different but close
devices. Connectivity may be absent or scarce in some areas,
especially during wildfires due to signal dispersion induced
by airborne particles and physical obstacles between drones
as trees and hills. Temporarily isolated drones may fail to
behave properly and become useless, possibly ending up
crashing, requiring orchestration efforts on the drone location
and communication patterns to solve or mitigate those issues.

IV. PROPOSED TECHNOLOGICAL SOLUTION

We propose to tackle the problem of wildfire monitoring
through a combination of drones running Linux-based opera-
tive system (OS) and smartphones running Android OS. Other
connected devices may also be part of the network (e.g., main
stations). We assume that drones will perform most of the
tasks, while smartphones would still be helpful both in keep-
ing the network connected, and in allowing friendly human
interaction with the system to the dispatched personnel. The
interaction between the involved devices could be provided
through the Aggregate Programming (AP) framework and the
FCPP library implementing it, allowing for a resilient and
adaptive orchestration. The proposed solution focuses then in
the devices management capable to build up a communication
infrastructure that is fault and approximation tolerant, robust
to an evolving context, flexible under small changes and
automatically readjusts itself in real-time in case of changes,
disruptions, and connection losses.

A. Network Architecture

In order to program the aforementioned decentralised sys-
tem of drones and smartphones, we propose to sort devices into
three main categories, defining their role in the computation
based on their capabilities: workers, postmen, stations. A
worker is a device having crucial tasks to perform in given
locations (called Points of Interest), including human support
or image acquisition and measuring. A station is a device
with stable network connectivity (e.g., a truck-like vehicle,
or a drone deploy point), able to interact with centralised
forecasting services on the cloud. Finally, a postman acts as
a bridge-like proxy by forwarding messages between workers
and stations. A single device may take on multiple roles simul-
taneously, if its capabilities allow it and tasks are compatible;
although we expect most devices to take one role only.

The proposed strategy aims to create a network resilient
to disconnection, by assigning the postman role to a suffi-
cient number of drones. This has to be accomplished while
maintaining the overall effectiveness of the systems, which
poses a lower bound on the number of workers that have to be



appointed. In the meanwhile, access to cloud-based services
through few available stations should be granted whenever
possible, as it can enhance the system’s predictive capabilities.
On the other hand, the network should be able to operate even
in case of a complete lack of stations. Roles should be initially
preassigned, with possibility of varying them over time to react
to unexpected environmental changes.

A possible aggregate approach ensuring robust communica-
tion in an hostile environment can be the following. A forest
structure could be created by an adaptive aggregate algorithm
executed on all devices, where stations are roots and parent
devices are assigned in order to ensure connectivity between
every node in the network and a root. As stations are connected
to the internet, we can assume that all of them are able to
communicate with each other, in turn connecting the whole
network. If no stations are available, an aggregate algorithm
could elect a leader device to act as a station surrogate, to drive
connectivity inside the local network, even though in that case
internet connectivity will not be available.

The postman role may be adaptively assigned only to de-
vices with movement capabilities (usually drones). A general
coordinated policy may assign tasks to the nearest devices that
can handle them and are not busy yet, making them workers.
Devices that are not burdened by tasks may act as postmen,
striving to ensure network connectivity. A postman should
keep track of their children and parent positions, obtained for
instance through a GPS sensor. If the children are sufficiently
close to the parent, it may simply strive to stand stationary in
a middle-way position, in order to maintain the connection
with both children and the parent. If this is not possible,
the postman should move back and forth between a position
closer to children and one closer to the parent, in order to
allow communication to proceed (although slower). While
performing the postman task, sensing activities could still
proceed and feed some data into the network.

B. Application of Aggregate Programming and FCPP

The AP framework and consequently the FCPP library
already provides all necessary prerequisites and algorithms
required to develop the proposed strategy. According to the
AP framework (cf. Section II-B), drones and smartphones
periodically evaluate a same program in cyclic rounds. By
tuning the round duration, the whole system can be reasonably
reactive and adaptive to changes, while keeping resource con-
sumption under control. Information about the devices states
and environment can be easily shared across devices through
basic constructs like nbr and share. The AP framework ensures
fault-tolerance by default, as well as algorithms that are
guaranteed adaptive, which can build the proposed system.

The selection of workers may leverage existing leader elec-
tion algorithms [40] which are already available in FCPP. Fur-
thermore, aggregate functions computing distances between
devices [41] can be used to generate the spanning forest and
calculate shortest paths from workers to their parent station.
Resilient dispatching of single messages has already been
address through the spawn construct [42].

V. CONCLUSIONS

In this paper, we presented a roadmap towards a resilient
technological solution for the problem of wildfire monitoring.
A system of drones may be deployed in a critical area for
data acquisition and general assistance tasks, while experts
and intervention corps may also be present and interact with
the system through smartphones. The Aggregate Programming
paradigm, incarnated into the FCPP library, could be exploited
to ensure resilient coordination of the network. In particular,
a dynamic spanning forest construction and task allocation
system could ensure consistent network connectivity even with
limited drones and adverse meteorological conditions.

In order to concretely realise the proposed system, two
independent ingredients need to be available. First, build
configurations and networking drivers have to be developed
for FCPP on the Android and Linux OSs. Simultaneously, the
decentralised task allocation policy and “postman” behaviour
should be defined and optimised through testing in the FCPP
simulation framework. With these two preconditions met, a
concrete deployment on a fleet of drones and smartphones
could be made and assessed in a test environment, such as
a plain field. After these steps of successful validation, more
realistic tests could be performed, opening to the possible use
in real emergency situations.
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[6] G. Amatulli, F. Peréz-Cabello, and J. de la Riva, “Mapping
lightning/human-caused wildfires occurrence under ignition point loca-
tion uncertainty,” Ecological Modelling, vol. 200, no. 3, pp. 321–333,
2007.

[7] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[8] G. Audrito, “FCPP: an efficient and extensible field calculus framework,”
in IEEE International Conference on Autonomic Computing and Self-
Organizing Systems, ACSOS 2020, Washington, DC, USA, August 17-21,
2020. IEEE, 2020, pp. 153–159.

[9] G. Audrito, L. Rapetta, and G. Torta, “Extensible 3d simulation of
aggregated systems with FCPP,” in 24th International Conference on
Coordination Models and Languages (COORDINATION), ser. Lecture
Notes in Computer Science, vol. 13271. Springer, 2022, pp. 55–71.

[10] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organizing
the aggregate: Languages for spatial computing,” in Formal and Practi-
cal Aspects of Domain-Specific Languages: Recent Developments. IGI
Global, 2013, pp. 436–501.

[11] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Transactions on
Software Engineering Methodologies, vol. 18, no. 4, pp. 15:1–15:56,
2009.



[12] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[13] A. Kondacs, “Biologically-inspired self-assembly of two-dimensional
shapes using global-to-local compilation,” in 18th International Joint
Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, 2003,
pp. 633–638.

[14] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P.
Picco, “Mobile data collection in sensor networks: The TinyLime,”
Pervasive and Mobile Computing, vol. 1, no. 4, pp. 446–469, 2005.

[15] C. Lasser, J. Massar, J. Miney, and L. Dayton, Starlisp Reference
Manual. Thinking Machines Corporation, 1988.

[16] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1–5:55, 2019.

[17] G. Audrito, J. Beal, F. Damiani, and M. Viroli, “Space-time universality
of field calculus,” in 20th International Conference on Coordination
Models and Languages (COORDINATION), ser. Lecture Notes in Com-
puter Science, vol. 10852. Springer, 2018, pp. 1–20.

[18] G. Audrito and G. Torta, “Towards aggregate monitoring of spatio-
temporal properties,” in VORTEX 2021: Proceedings of the 5th ACM
International Workshop on Verification and mOnitoring at Runtime
EXecution, Virtual Event, Denmark, 12 July 2021. ACM, 2021, pp.
26–29.

[19] G. Audrito, F. Damiani, V. Stolz, G. Torta, and M. Viroli, “Distributed
runtime verification by past-ctl and the field calculus,” J. Syst. Softw.,
vol. 187, p. 111251, 2022.

[20] G. Audrito, R. Casadei, F. Damiani, V. Stolz, and M. Viroli, “Adaptive
distributed monitors of spatial properties for cyber-physical systems,” J.
Syst. Softw., vol. 175, p. 110908, 2021.

[21] G. Audrito, F. Damiani, G. M. D. Giuda, S. Meschini, L. Pellegrini,
E. Seghezzi, L. C. Tagliabue, L. Testa, and G. Torta, “RM for users’
safety and security in the built environment,” in VORTEX 2021: Pro-
ceedings of the 5th ACM International Workshop on Verification and
mOnitoring at Runtime EXecution, Virtual Event, Denmark, 12 July
2021. ACM, 2021, pp. 13–16.

[22] G. Audrito, R. Casadei, and G. Torta, “Fostering resilient execution
of multi-agent plans through self-organisation,” in IEEE International
Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Companion Volume, Washington, DC, USA, September
27 - Oct. 1, 2021. IEEE, 2021, pp. 81–86.

[23] ——, “Towards integration of multi-agent planning with self-organising
collective processes,” in IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS 2021, Companion
Volume, Washington, DC, USA, September 27 - Oct. 1, 2021. IEEE,
2021, pp. 297–298.

[24] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans-
actions on Modelling and Computer Simulation, vol. 28, no. 2, pp. 16:1–
16:28, 2018.

[25] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth
Series). Addison-Wesley Professional, 2004.

[26] D. Pianini, M. Viroli, and J. Beal, “Protelis: practical aggregate program-
ming,” in 30th ACM Symposium on Applied Computing (SAC). ACM,
2015, pp. 1846–1853.

[27] M. Viroli, R. Casadei, and D. Pianini, “Simulating large-scale aggregate
MASs with Alchemist and Scala,” in Federated Conference on Computer
Science and Information Systems (FedCSIS), ser. Annals of Computer
Science and Information Systems, vol. 8. IEEE, 2016, pp. 1495–1504.

[28] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell, “Mass-produced
software components,” in 1st international conference on software
engineering, 1968, pp. 88–98.

[29] H. I. Cannon, “Flavors: A non-hierarchical approach to object-oriented
programming,” Artificial Intelligence Laboratory, MIT, USA, Tech. Rep.,
1979.

[30] G. Bracha and W. R. Cook, “Mixin-based inheritance,” in International
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA) / European Conference on Object-Oriented
Programming (ECOOP). ACM, 1990, pp. 303–311.

[31] H. Liang, M. Zhang, and H. Wang, “A neural network model for wildfire
scale prediction using meteorological factors,” IEEE Access, vol. 7, pp.
176 746–176 755, 2019.

[32] A. Jaafari, E. K. Zenner, M. Panahi, and H. Shahabi, “Hybrid artificial
intelligence models based on a neuro-fuzzy system and metaheuristic
optimization algorithms for spatial prediction of wildfire probability,”
Agricultural and Forest Meteorology, vol. 266-267, pp. 198–207, 2019.

[33] A. Alexandridis, D. Vakalis, C. Siettos, and G. Bafas, “A cellular
automata model for forest fire spread prediction: The case of the wildfire
that swept through Spetses island in 1990,” Applied Mathematics and
Computation, vol. 204, no. 1, pp. 191–201, 2008.

[34] S. W. Taylor, D. G. Woolford, C. B. Dean, and D. L. Martell, “Wildfire
Prediction to Inform Fire Management: Statistical Science Challenges,”
Statistical Science, vol. 28, no. 4, pp. 586 – 615, 2013.

[35] J. Mandel, M. Chen, L. P. Franca, C. Johns, A. Puhalskii, J. L. Coen,
C. C. Douglas, R. Kremens, A. Vodacek, and W. Zhao, “A note on
dynamic data driven wildfire modeling,” in Computational Science
- ICCS 2004, M. Bubak, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 725–731.

[36] O. Ghorbanzadeh, K. Valizadeh Kamran, T. Blaschke, J. Aryal,
A. Naboureh, J. Einali, and J. Bian, “Spatial prediction of wildfire sus-
ceptibility using field survey gps data and machine learning approaches,”
Fire, vol. 2, no. 3, 2019.

[37] V. Slavkovikj, S. Verstockt, S. Van Hoecke, and R. Van de Walle,
“Review of wildfire detection using social media,” Fire Safety Journal,
vol. 68, pp. 109–118, 2014.

[38] M. T. Rashid, Y. Zhang, D. Zhang, and D. Wang, “Compdrone: Towards
integrated computational model and social drone based wildfire monitor-
ing,” in 2020 16th International Conference on Distributed Computing
in Sensor Systems (DCOSS), 2020, pp. 43–50.

[39] P. F. M. Ellis, “The likelihood of ignition of dry-eucalypt forest litter by
firebrands,” International Journal of Wildland Fire, vol. 24, no. 2, pp.
225–235, 2015.

[40] Y. Mo, G. Audrito, S. Dasgupta, and J. Beal, “A resilient leader elec-
tion algorithm using aggregate computing blocks,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 3336–3341, 2020, 21st IFAC World Congress.

[41] G. Audrito, F. Damiani, and M. Viroli, “Optimal single-path informa-
tion propagation in gradient-based algorithms,” Science of Computer
Programming, vol. 166, pp. 146–166, 2018.

[42] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “En-
gineering collective intelligence at the edge with aggregate processes,”
Eng. Appl. Artif. Intell., vol. 97, p. 104081, 2021.


