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Abstract

In a variety of applicative fields the level of information in random quantities is commonly

measured by means of the Shannon Entropy. In particular, in reliability theory and survival

analysis, time-dependent generalizations of this measure of uncertainty have been considered

to dynamically describe changes in the degree of information over time. The Residual Entropy

and the Residual Varentropy, for example, have been considered in the specialized literature

to measure the information and its variability in residual lifetimes. In a similar way, one can

consider dynamic measures of information for past lifetimes, i.e. for random lifetimes of items

when one assumes that their failures occur before a fixed inspection time. This paper provides

a study of the Past Varentropy, defined as the dynamic measure of variability of information

for past lifetimes. From this study emerges the interest on a particular family of lifetimes

distributions, whose members satisfy the property to be the only ones having constant Past

Varentropy.
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1 Introduction

Let X be an absolutely continuous non-negative random variable representing the lifetime of an

item, or of an individual. If fX denotes its density, one can define the well-known Shannon infor-

mation measure (or Entropy) as

He(X) = E[IC(X)] = E[− log fX(X)] = −
∫ +∞

0
fX(x) log fX(x)dx, (1.1)

where

IC(X) = − log fX(X)

denotes the Information Content of X, which can be understood as the self-information or “sur-

prisal” associated with the possible outcomes of X (see Shannon, 1948). Actually, He(X) measures

the expected uncertainty contained in fX related to the predictability of an outcome of X. We refer

to Sun Han and Kobayashi (2002) or to Gray (2011) for two recent comprehensive monographs on

information measures and their applications in a variety of fields (see also Nanda and Chowdhury,

2019). Note that, in statistics, one may think of the information content as the log likelihood

function, that is of great interest in parameters estimation.

As already mentioned, it follows from (1.1) that the Shannon entropy represents the expectation

of the (random) information content IC(X). But for different purposes (see, e.g., Bobkov and

Madiman, 2011), one can also consider its variance, in order to evaluate the concentration of the

information content around the entropy He(X). Thus, one can also be interested in the Varentropy

of X (sometimes called Minimal Coding Variance of X, whenever X is discrete), defined as

Ve(X) = Var[IC(X)] = Var[− log fX(X)] (1.2)

= Var[log fX(X)] = E
[
(log fX(X))2

]
− [He(X)]2

=

∫ +∞

0
fX(x)[log fX(x)]2dx−

[∫ +∞

0
fX(x) log fX(x)dx

]2

.

In recent literature several papers deal with the varentropy and its properties and applications,

such as Madiman and Wang (2014) and Arikan (2016) and references therein. For example, ap-

proximations of minimal rates for data compression in terms of entropy and varentropy are given

in Kontoyiannis and Verdú (2014). Also, knowing the entropy and the varentropy one can define

reference intervals for the information content IC(X) of the form

E[IC(X)]± k
√

Var[IC(X)] = He(X)± k
√
Ve(X) (1.3)

for suitable choices of k. In the statistics field, this interval can be used to evaluate the uncertainty

about likelihood estimates.

It must be pointed out that the Shannon entropy, as well as the varentropy, provides a measure of

information for the random lifetime of an item which is new, whenever X represents its lifetime. For

such reason, different time dependent versions of this measure have been proposed in the context

of reliability and survival analysis, where the behavior of residual lifetimes along time, or past

lifetimes, are the main objects of the studies. The most well-known version of such dynamic ones
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is the Residual Entropy defined and studied in Muliere et al. (1993) and Ebrahimi (1996), whose

definition is recalled here. Given the absolutely continuous random lifetime X, having support

S ⊆ R+, survival function FX and density fX , let Xt = (X − t|X > t) denote the corresponding

Residual Lifetime at time t ∈ S, i.e. the variable whose density is given by

fXt(x) =
fX(x+ t)

FX(t)
, x : x+ t ∈ S.

The Residual Entropy of X is the function of time t ∈ S defined as

He(Xt) = E[IC(Xt)] = E[− log fXt(Xt)] = −
∫ +∞

t

fX(x)

FX(t)
log

fX(x)

FX(t)
dx.

It must be pointed out that the entropy (and the varentropy) of a random lifetime Y is actually a

functional of its density fY , depending only on the distribution of Y and not on the value assumed

by Y . But the residual entropy (such as the residual varentropy defined below) can be considered

as a function of the inspection time t: to every time t it corresponds a real value He(Xt) (defined

as a functional of the density fXt), and this is the reason why we treat them here as if they were

functions of t.

In a similar manner it can be defined a dynamic version of the varentropy, useful to evaluate

the concentration of the information content in residual lifetimes when the time increases. This is

the Residual Varentropy, studied in details in Di Crescenzo and Paolillo (2020) and Paolillo et al.

(2021), defined as

Ve(Xt) = Var[IC(Xt)] = Var[− log fXt(Xt)]

= Var[log fXt(Xt)] = E
[
(log fXt(Xt))

2
]
− [He(Xt)]

2

=

∫ +∞

t

fX(x)

FX(t)

[
log

fX(x)

FX(t)

]2

dx−
[∫ +∞

t

fX(x)

FX(t)
log

fX(x)

FX(t)
dx

]2

, t ∈ S.

A large number of studies in reliability theory deal with past lifetime, that is the random variable

conditioned on the fact that the failure occurs before a specified inspection time t. We refer the

reader to Finkelstein (2002), Nanda et al. (2003) and Kayid and Izadkhah (2014), and references

therein, for results concerning past lifetime in reliability analysis (see also Barlow and Proschan,

1996). In many situations, uncertainty can refer to the past instead of the future. In fact, if we

consider a system which is failed or down at time t, it could be of interest to study the uncertainty

about the time in (0, t) in which it has failed. Moreover, past lifetime plays a central role in the

analysis of right-censored data (see, e.g., Andersen et al., 1993). For past lifetimes, as well for

residual lifetimes, it can be useful to provide dynamic versions of the entropy and the varentropy,

whose definitions are similar to the ones described above. To this aim, recall that given the

absolutely continuous random lifetime X, having support S ⊆ R+, cumulative distribution FX and

density fX , its Past Lifetime at time t ∈ S is the variable tX = (X|X ≤ t) whose density is

ftX(x) =
fX(x)

FX(t)
x ∈ (0, t), (1.4)

and whose mean, known as Mean Past Lifetime, is given by

µ̃X(t) =

∫ t

0

(
1− FX(x)

FX(t)

)
dx = t− 1

FX(t)

∫ t

0
FX(x)dx, t ∈ S. (1.5)
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The corresponding Past Entropy and Past Varentropy can be thus defined as

He(tX) = E[IC(tX)] = E[− log ftX(tX)] = −
∫ t

0

fX(x)

FX(t)
log

fX(x)

FX(t)
dx (1.6)

and

Ve(tX) = Var[IC(tX)] = Var[− log ftX(tX)]

= Var[log ftX(tX)] = E
[
(log ftX(tX))2

]
− [He(tX)]2

=

∫ t

0

f(x)

F (t)

[
log

fX(x)

FX(t)

]2

dx−
[∫ t

0

fX(x)

FX(t)
log

fX(x)

FX(t)
dx

]2

, (1.7)

for all t ∈ S.

The past entropy He(tX) has been studied in details in Di Crescenzo and Longobardi (2002),

but there are no detailed studies describing specific properties of the past varentropy Ve(tX). The

purpose of this paper is to fill this lack, providing a list of useful formulas, properties and examples

for the past varentropy. As pointed out in the following sections, the past varentropy satisfies some

properties which are similar to those satisfied by the residual varentropy (described in Di Crescenzo

and Paolillo, 2020), but one can also observe differences. For example, while there exist at least

three families of lifetimes distributions with continuous densities for which the residual varentropy

is constant, on the contrary there exists only one family for which such property is satisfied by the

past entropy.

2 Main results

First, we provide an alternative simple formula for the past varentropy of a random lifetime X. To

this aim, recall that the reversed hazard rate function of X is defined as

qX(t) = lim
∆t→0+

1

∆t
P(X ≥ t−∆t|X ≤ t) =

fX(t)

FX(t)
, (2.1)

for t ∈ S. The reversed hazard rate function is the instantaneous failure rate occurring immediately

before the time point t, i.e., that the failure occurs just before the time point t, given that the unit

has not survived longer than time t (see Block and Savits (1998) and Finkelstein (2002) for more

details about the reversed hazard rate function). We recall also the notion of inverse cumulative

reversed hazard rate function, that is defined as

QX(t) =

∫ +∞

t
qX(x)dx = − logFX(t), (2.2)

(see for instance Li and Li, 2008). Also, note that the past entropy can be expressed as

He(tX) = −QX(t)− 1

FX(t)

∫ t

0
fX(x) log fX(x)dx

= 1− 1

FX(t)

∫ t

0
fX(x) log qX(x)dx, (2.3)
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as shown in Di Crescenzo and Longobardi (2002). Thus, through (1.7) and (2.3), one obtains

Ve(tX) =

∫ t

0

f(x)

F (t)

[
log

fX(x)

FX(t)

]2

dx− [He(tX)]2

=
1

FX(t)

∫ t

0
fX(x)(log fX(x))2dx+ (logFX(t))2 − 2 logFX(t)

FX(t)

∫ t

0
fX(x) log fX(x)dx

−[He(tX)]2

=
1

FX(t)

∫ t

0
fX(x)(log fX(x))2dx+ (QX(t))2 +

2QX(t)

FX(t)

∫ t

0
fX(x) log fX(x)dx

−[He(tX)]2

=
1

FX(t)

∫ t

0
fX(x)(log fX(x))2dx+ (QX(t))2 − 2QX(t) [QX(t) +He(tX)]− [He(tX)]2

=
1

FX(t)

∫ t

0
fX(x)(log fX(x))2dx− (QX(t) +He(tX))2, (2.4)

for t ∈ S.

Remark 2.1. As well as, when t tends to the supremum of the support S, uX , the past entropy

tends to Shannon entropy, also the past varentropy reduces to the varentropy, i.e., limt→uX Ve(tX) =

Ve(X).

Now, consider the case in which t tends to the infimum of the support, lX . If the pdf fX of X is

differentiable and such that

lim
t→l+X

fX(t) 6= 0 and lim
t→l+X

f ′X(t) 6= +∞, (2.5)

then limt→l+X
Ve(tX) = 0. In fact, from (2.4) the past varentropy can be expressed as

Ve(tX) =
FX(t)

∫ t
lX
fX(x) (log fX(x))2 dx−

(∫ t
lX
fX(x) log fX(x)dx

)2

F 2
X(t)

,

and by using L’Hôpital’s rule twice, it readily follows

lim
t→l+X

Ve(tX) = lim
t→l+X

(
f ′X(t)FX(t)

f2
X(t)

log fX(t)−
f ′X(t)

f2
X(t)

∫ t

lX

fX(x) log fX(x)dx

)
= lim

t→l+X

f ′X(t)

f2
X(t)

∫ t

lX

FX(x)f ′X(x)

fX(x)
dx = 0,

where the last equality depends on the assumptions in (2.5).

By using (1.6) and (2.4) one can find the past entropy and past varentropy for some distributions

of interest in reliability theory. Some examples are listed here.

� Let X be a random variable with uniform distribution over (0, b), i.e., X ∼ U(0, b), b > 0.

Hence, for t ∈ (0, b) we have

He(tX) = log t

Ve(tX) = 0.
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Figure 1: Plots of past entropy and past varentropy of exponential distribution with parameter

λ = 1, 2, 3, 4 (black, blue, red and green, respectively).

� Let X be a random variable with exponential distribution, i.e., X ∼ Exp(λ), for λ > 0. Then,

for t > 0 we have

He(tX) = 1 + log

(
1− e−λt

λ

)
− λte−λt

1− e−λt

Ve(tX) = 1− λ2t2e−λt

(1− e−λt)2
.

The plots of past entropy and past varentropy are shown in Figure 1 for different choices of

λ. Observe that limt→0+ Ve(tX) = 0 as expected since the exponential distribution satisfies

the assumptions given in (2.5) for any value of the rate λ.

� Let X be a random variable such that fX(x) = 2x and FX(x) = x2, x ∈ (0, 1). Hence, for

t ∈ (0, 1) we have

He(tX) =
1

2
+ log

t

2

Ve(tX) =
1

4

� Let X be a random variable Beta(2, 2) distribution, i.e., such that fX(x) = 6x(1 − x) and

FX(x) = 3x2 − 2x3, x ∈ (0, 1). Hence, for t ∈ (0, 1) we have

He(tX) =
1

t2/2− t3/3

[(
t2

2
− t3

3

)
log

(
6(1− t)
t(3− 2t)

)
+

2

9
t3 − 1

3
t2 − 1

6
t− 1

6
log(1− t)

]
Ve(tX) =

1

t2/2− t3/3

[(
t2

2
− t3

3

)
log2

(
6(1− t)
t(3− 2t)

)
+

1

3

(
4

3
t3 − 2t2 − t

)
log

(
6(1− t)
t(3− 2t)

)
+

1

9

(
−8

3
t3 + 4t2 + 8t+ 5 log(1− t)

)
− 1

3
log

(
1

t2/2− t3/3

)
log(1− t)

−1

6
log2(1− t)− π2

18
+

1

3
Li2(1− t))

]
− [He(tX)]2
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Figure 2: Plots of past entropy and past varentropy of X ∼ Beta(2, 2).

where Li2 is the Spence’s function or dilogarithm function (see, e.g., Morris, 1979). The plots

of past entropy and past varentropy are shown in Figure 2.

� Let X be a random variable having cumulative distribution FX(x) = 1 −
(
b−x
b

)α
, for x ∈

(0, b) ⊆ R+ and α > 0. Then, for t ∈ (0, b):

He(tX) =
bα

bα − (b− t)α
log

(
αb(α−1)

bα − (b− t)α

)
− (b− t)α

bα − (b− t)α
log

(
α(b− t)(α−1)

bα − (b− t)α

)
− α− 1

α

Ve(tX) =

(
α− 1

α

)2

− bα(b− t)α

[bα − (b− t)α]2
log2

[(
b

b− t

)α−1
]

The plots of this past entropy and of the corresponding past varentropy are shown in Figure 3.

It is interesting to observe that the past varentropy is constant in two of the cases described

above, increasing in one case, and non-monotone in the other one. Thus, monotonicity of the

varentropy is not always guaranteed. Let us remark that, if the reversed hazard rate is decreasing

for all t, then the past entropy is increasing for all t (see Di Crescenzo and Longobardi, 2002,

Proposition 2.2). However, monotonicity of the reversed hazard rate is not a sufficient condition

for monotonicity of the varentropy. In fact, for the Beta(2, 2) distribution the reversed hazard rate

qX(t) = 6(1 − t)/(3t − 2t2) is decreasing, while the varentropy is not monotone. For this reason,

conditions for the monotonicity of Ve(tX) and an implicit formula for the derivative of the past

varentropy are now described.

Conditions for monotonicity of the past varentropy can be easily provided by using the results

that appear in Paolillo et al. (2021). For it, we recall the definition of two stochastic comparisons

between variables that are used in the proof. Given the random variables X1 and X2 having

distributions F1 and F2, respectively, we say that X1 is smaller than X2 in the concave order,

X1 ≤c X2 in notation, if F−1
2 (F1(x)) is convex on the support of F1. We say that X1 is smaller
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Figure 3: Plots of past entropy and past varentropy of X with cdf FX(x) = 1 −
(
b−x
b

)α
for b = 5

and α = 2, 3, 4, 5 (black, blue, red and green, respectively).

than X2 in the starshaped order, X1 ≤∗ X2 in notation, if F−1
2 (F1(x))/x is increasing on the support

of F1. Details and applications of these stochastic orders can be found in Shaked and Shanthikumar

(2007).

Proposition 2.1. Let X be a random lifetime with an absolutely continuous distribution FX and

a strictly decreasing [increasing] density function fX . If the ratio

fX(F−1
X (pF (s)))

fX(F−1
X (pF (t)))

(2.6)

is increasing in p ∈ (0, 1) for all s ≤ t, then the corresponding past varentropy Ve(tX) is increasing

[decreasing] in t ∈ S.

Proof. Recall that, for any t ∈ S, the past lifetime tX has density ftX(x) = fX(x)/FX(t) and

cumulative distribution FtX(x) = FX(x)/FX(t), with x ≤ t. Thus, the corresponding quantile

function is F−1
tX

(p) = F−1
X (pFX(t)), for p ∈ (0, 1). Also observe that, for s ≤ t,

fsX(F−1
sX

(p))

ftX(F−1
tX

(p))
=
fX(F−1

X (pFX(s)))

FX(s)
· FX(t)

fX(F−1
X (pFX(t)))

=
fX(F−1

X (pF (s)))

fX(F−1
X (pF (t)))

· FX(t)

FX(s)
,

where the latter is increasing in p by assumption (2.6). Then one has sX ≤c tX (see Remark

4.3 in Paolillo et al., 2021, or Section 4.2 in Shaked and Shanthikumar, 2007). Now observe

that, since fX is decreasing [increasing] by assumption, then also fsX and ftX are decreasing

[increasing]. Thus, by the equivalence pointed out in Remark 4.6 in Paolillo et al. (2021), one also

has that fsX(sX) ≤∗ ftX(tX) [fsX(sX) ≥∗ ftX(tX)], which, in turns, implies Ve(sX) ≤ Ve(tX)

[Ve(sX) ≥ Ve(tX)] by Theorem 5.2 in the same paper.

It is easy to verify, for example, that exponential distributions satisfy the assumptions of Propo-

sition 2.1 for any value of the rate λ.
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The following result provides an implicit formula for the derivative of the past varentropy, useful

to describe distributions having constant varentropy.

Proposition 2.2. For all t ∈ S, the derivative of the past varentropy is

V ′e (tX) = −qX(t)
[
Ve(tX)− (He(tX) + log qX(t))2

]
.

Proof. First observe that by differentiating both sides of (2.3) we get the following expression for

the derivative of the past entropy:

H ′e(tX) = qX(t)[1−H(tX)− log qX(t)]. (2.7)

Consider now (2.4). By differentiating both sides we get

V ′e (tX) =
qX(t)

FX(t)

∫ t

0
fX(x)(log fX(x))2dx+ qX(t)(log fX(t))2

−2(QX(t) +He(tX))(−qX(t) +H ′e(tX)), (2.8)

where qX(t) is defined in (2.1). Hence, recalling (2.7) and (2.4), from (2.8) we get

V ′e (tX) = −qX(t)
[
Ve(tX) + (QX(t) +He(tX))2 − (log fX(t))2

−2(QX(t) +He(tX))(He(tX) + log qX(t))] ,

and, after straightforward calculations, one gets the statement.

From (2.7) one can obtain conditions such that absolutely continuous distributions, having con-

tinuous densities, have a corresponding constant past varentropy. To this aim, consider first the

case of random variables having support S = [0, 1].

Proposition 2.3. Let X have support S = [0, 1]. Then, its varentropy Ve(tX) is constant if, and

only if, X has cumulative distribution function

FX(x) = xα, x ∈ [0, 1], (2.9)

for a parameter α > 0. In this case, one has Ve(tX) = (1− 1/α)2 for all t ∈ [0, 1].

Proof. First observe that, if X has cumulative distribution defined as in (2.9), then the pdf is given

by

fX(x) = αxα−1, x ∈ (0, 1),

and, for t ∈ (0, 1), the past varentropy is defined as

Ve(tX) =

∫ t

0

αxα−1

tα

[
log

(
αxα−1

tα

)]2

dx−
[∫ t

0

αxα−1

tα
log

(
αxα−1

tα

)
dx

]2

.
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By the change of variable y =
(
x
t

)α
, we get

Ve(tX) =

∫ 1

0

[
log

(
αy(α−1)/α

t

)]2

dy −

[∫ 1

0
log

(
αy(α−1)/α

t

)
dy

]2

= log2
(α
t

)
−
∫ 1

0
2

(
α− 1

α

)
log

(
αy(α−1)/α

t

)
dy −

[
log
(α
t

)
− α− 1

α

]2

= log2
(α
t

)
− 2

(
α− 1

α

)
log
(α
t

)
+ 2

(
α− 1

α

)2

−
[
log
(α
t

)
− α− 1

α

]2

.

Thus Ve(tX) is constant and equal to (1− 1/α)2. It follows now, from Proposition 2.2, that

(He(tX) + log qX(t))2 = (1− 1/α)2,

and so

|He(tX) + log qX(t)| = |1− 1/α|, ∀t ∈ [0, 1]. (2.10)

Since the density fX is continuous by assumption, then also qX and He(Xt) are continuous. Thus,

He(tX) + log qX(t) is continuous in t ∈ [0, 1], so that equality (2.10) implies

He(tX) + log qX(t) = c, ∀t ∈ [0, 1]. (2.11)

for some c ∈ R.

As shown in Kundu et al. (2010), Theorem 2.1, there exist only three families of distribution for

which (2.11) is satisfied. Two of them have infinite support on the left, i.e., of the form (−∞, b],
for b ∈ R (thus they can not be distributions of random lifetimes), and the only one having support

entirely contained in R+ (and in [0, 1] in particular) is the one defined in (2.9). Finally, since the

family defined in (2.9) has constant past varentropy, the assertion follows.

To generalize the above result to random lifetimes having different supports, we can use the

following proposition, that deals with the past varentropy under linear transformations. We recall

that if Y = aX + b for a > 0 and b ≥ 0, then the past entropies of X and Y are related by

He(tY ) = He

(
t−b
a
X
)

+ log a ∀t, (2.12)

(see Di Crescenzo and Longobardi, 2002).

Proposition 2.4. Let Y = aX + b, with a > 0 and b ≥ 0. Then, for their past varentropies, we

have

Ve(tY ) = Ve

(
t−b
a
X
)
, ∀t. (2.13)

Proof. From Y = aX + b we know that FY (x) = FX
(
x−b
a

)
and fY (x) = 1

afX
(
x−b
a

)
. Hence, from

(1.7) and (2.12), we get

Ve(tY ) =

∫ t−b
a

0

fX(x)

FX
(
t−b
a

) (log
1
afX (x)

FX
(
t−b
a

))2

dx−
(
H
(
t−b
a
X
)

+ log a
)2
. (2.14)

10



By writing

log
1
afX (x)

FX
(
t−b
a

) = log
fX (x)

FX
(
t−b
a

) − log a,

and developing the two squares in (2.14), one easily obtains the statement.

From Propositions 2.3 and 2.4 one immediately gets the following statement.

Corollary 2.1. Let X be an absolutely continuous random lifetime with continuous density fX .

Then, its varentropy Ve(tX) is constant if, and only if, X has cumulative distribution function in

the family

FX(x) =

(
x− b
a

)α
, x ∈ [b, a+ b], (2.15)

for a parameter α such that α > 0.

Apart for the property stated in Corollary 2.1, the family defined in (2.15) is the only one

of lifetimes distribution having continuous density that satisfies the property stated in the next

proposition. Recall first that the Generalized Reversed Hazard Rate of a random lifetime is defined,

for γ ∈ R, as

qγ,X(t) =
fX(t)

[FX(t)]1−γ
, t ∈ S (2.16)

(see Buono et al. (2021), where their applications in the study of properties of aging intensity

functions are described). We remark that, by choosing γ = 0 in (2.16), we get q0,X(t) = qX(t), i.e.,

q0,X is the usual reversed hazard rate function. Let us observe that for γ = 1 the generalized reversed

hazard rate function is equal to the density function. This is reasonable since the density function

gives a first rough illustration of the aging tendency of the random variable by its monotonicity.

Proposition 2.5. Let X be a random lifetime having continuous density, and let γ ∈ R. Its

generalized reversed hazard rate function qγ,X(t), with parameter γ, is constant if, and only if, FX
is in the family defined in (2.15) and γ = 1/α. Moreover, in this case one has

q1/α,X(t) =
fX(t)

[FX(t)]1−1/α
= e1−1/α−He(X), ∀t ∈ [b, a+ b]. (2.17)

Proof. Let us suppose that there exists c ∈ R such that q1−c,X(t) = ec−He(X) for all t ∈ S, being S
the support of X. From (2.1) and (2.3) we have

He(tX) + log qX(t) = log fX(t)− 1

FX(t)

∫
(0,t)

⋂
S
fX(x) log fX(x)dx

= log fX(t) +
1

FX(t)

[
He(X) +

∫
(t,+∞)

⋂
S
fX(x) log fX(x)dx

]
.

Moreover, from the hypothesis, we get∫
(t,+∞)

⋂
S
fX(x) log fX(x)dx = −He(X)FX(t)− cFX(t) logFX(t),

11



and so

He(tX) + log qX(t) = He(X) + log
fX(t)

[FX(t)]c
= c.

This last equality is satisfied only for distributions in the family described in (2.15), with c = 1−1/α.

Conversely, if X has distributions in the family described in (2.15), then, with a direct calculation,

one can verify that (2.17) holds.

A generalization of Proposition 2.1 will now be stated. For it, let φ be a differentiable and

strictly monotonic function and let Y = φ(X) for a given X. It has been shown in Di Crescenzo

and Longobardi (2002) that the past entropies of X and Y are related by the equations

He(tY ) =

{
He

(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)], if φ is strictly increasing,

He

(
Xφ−1(t)

)
+ E[log(−φ′(X))|X > φ−1(t)], if φ is strictly decreasing.

(2.18)

Similar results can be proved for the past varentropy.

Proposition 2.6. Let Y = φ(X), where φ is a differentiable and strictly monotonic function.

Then, if φ is strictly increasing, for the past varentropy of Y we have

Ve(tY ) = Ve
(
φ−1(t)X

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log φ′(X)

∣∣∣∣X < φ−1(t)

]
+Var[log φ′(X)|X < φ−1(t)]− 2He

(
φ−1(t)X

)
E[log φ′(X)|X < φ−1(t)], (2.19)

whereas, if φ is strictly decreasing

Ve(tY ) = Ve
(
Xφ−1(t)

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log(−φ′(X))

∣∣∣∣X > φ−1(t)

]
+ Var[log(−φ′(X))|X > φ−1(t)]− 2H

(
Xφ−1(t)

)
E[log(−φ′(X))|X > φ−1(t)]. (2.20)

Proof. Suppose first that φ is strictly increasing. From Y = φ(X) we know that FY (x) =

FX
(
φ−1(x)

)
and fY (x) = fX(φ−1(x))

φ′(φ−1(x))
. Hence, from (1.7) and (2.18), we get

Ve(tY ) =

∫ φ−1(t)

0

fX(x)

FX (φ−1(t))

(
log

fX (x)

FX (φ−1(t))
− log φ′(x)

)2

dx

−
[
He

(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)]

]2
.

Now, by developing the two squares in the previous equality, and observing that∫ φ−1(t)

0

fX(x)

FX (φ−1(t))

(
log φ′(x)

)2
dx − E2[log φ′(X)|X < φ−1(t)]

= Var[log φ′(X)|X < φ−1(t)],

we obtain the result.

The proof is similar if φ is strictly decreasing.
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Example 2.1. The Inverted Exponential distribution (invExp), introduced as a lifetime model in

Lin et al. (1989), has been considered by many authors in reliability studies (see, e.g., Krishna

and Kumar, 2012, or Oguntunde et al., 2014, and references therein). The past varentropy of an

inverted exponential distribution can be actually obtained by using Proposition 2.6. To this aim,

consider X ∼ Exp(λ) and Y = φ(X) = 1/X so that φ is strictly decreasing and Y ∼ invExp(λ).

We can use the result presented in (2.20) to evaluate the past varentropy of Y . In fact, we have

Ve(tY ) = Ve
(
X1/t

)
− 2E

[
log

λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]
+Var

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2H

(
X1/t

)
E
[

log

(
1

X2

)∣∣∣∣X >
1

t

]
.

The residual entropy and the residual varentropy for the exponential distribution are given as

He(Xt) = 1− log λ, Ve(Xt) = 1,

and then the past varentropy of Y is expressed as

Ve(tY ) = 1− 2E
[

log
λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]
+Var

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2(1− log λ)E

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
.

With several calculations, the above expression reduces to

Ve(tY ) = −3 +
4λ

t
log

1

t2
+

8t

λ
+

(
8− 4λ

t

)
1

e−λ/t
Ei

(
−λ
t

)
− 4

e−2λ/t
Ei2

(
−λ
t

)
+

4

e−λ/t
log

1

t2
Ei

(
−λ
t

)
− 4

λe−λ/t

∫ +∞

1/t

log x2

x2
e−λxdx,

where Ei(·) is the exponential integral function (see, e.g., Gautschi and Gahill, 1972). The plot of

this past varentropy is shown in Figure 4 for different choices of λ.

We conclude this section pointing out that there exists a strong relationship between the past

varentropy and the residual varentropy of an absolutely continuous random lifetime X whenever

its support S is finite. Without loss of generality let X assume values in [0, uX ], and let fX be its

density function. Then consider a random lifetime X̃ whose density is the symmetric of fX with

respect to uX/2, i.e., the lifetime having density fX̃(x) = fX(uX − x) for all x ∈ [0, uX ]. It is easy

to observe that X and X̃ have the same information content, i.e., that IC(X) and IC(X̃) have

the same distribution. Let now t ∈ [0, uX ], and consider the conditioned lifetimes (X|X > t) and

(X̃|X̃ ≤ uX − t). Again, it is easy to verify that the corresponding densities are symmetric, i.e.,

that f(X̃|X̃≤uX−t)(x) = f(X|X>t)(uX − x), so that IC(X|X > t) and IC(X̃|X̃ ≤ uX − t) have the

same distribution. It obviously follows that, for all t ∈ [0, uX ], it holds

He(X̃|X̃ ≤ uX − t) = He(X|X > t) and Ve(X̃|X̃ ≤ uX − t) = Ve(X|X > t).

Thus properties and explicit expressions of the past entropy and past varentropy of a random

lifetime with finite support can be obtained from properties and explicit expressions of the cor-

responding residual entropy and residual varentropy, after an appropriate transformation of the

density.
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Figure 4: Plots of past varentropies of inverse exponential distributions with parameter λ = 1, 2, 3, 4

(black, blue, red and green, respectively).

3 Bounds for the past varentropy

A very simple upper bound for the past varentropy can be provided for a large class of distributions,

as stated in the next proposition.

Proposition 3.1. Let X be a non-negative random variable with support S and log-concave pdf

fX(x). Then

Ve(tX) ≤ 1 for all t ∈ S.

Proof. We observe that if fX(x) is log-concave, then also ftX(x) = fX(x)
FX(t) is log-concave. From

Theorem 2.3 of Fradelizi et al. (2016), we know that if X has a log-concave pdf, then Ve(X) ≤ 1

and the proof follows from this result.

For example, the density fX(x) = 6x(1 − x), x ∈ [0, 1] of X ∼ Beta(2, 2) is logconcave, so that

the past varentropy of X is always smaller than 1, as confirmed by its plot shown in Figure 2.

However, by comparing this bound with the plot of Ve(tX), one can immediately observe that it

is a really large bound. Better upper bounds can be provided, for any X, by using results available

in the literature. For it recall that, for a random lifetime X, the corresponding Inactivity Time at

t is defined as X(t) = (t−X|X ≤ t) = t− tX, i.e. the random time whose density is

fX(t)
(x) =

fX(t− x)

FX(t)
.

The following upper bound for Var[− log fX(t)
(X(t))] has been proved in Goodarzi et al. (2016),

Proposition 1, making use of an upper bound for variances proved in Cacoullos and Papathanasiou
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(1985):

Var[− log fX(t)
(X(t))] ≤ E

[
η2
X(t−X(t))

qX(t−X(t))

(
mX(t−X(t))−mX(t) +X(t)

)]
(3.1)

for all t ∈ S, where ηX(x) = −f ′X(x)/fX(x) is the eta function and mX(x) = E[X(x)] = x− µ̃X(x)

is the mean inactivity time function, and where µ̃X(x) is defined in (1.5). Now observe that

Ve(X(t)) = Var[− log fX(t)
(X(t))]

= E[log2 fX(t)
(X(t))]−

[
He(X(t)))

]2
=

∫ t

0

fX(t− x)

FX(t)
log2

(
fX(t− x)

FX(t)

)
dx−

[∫ t

0

fX(t− x)

FX(t)
log

(
fX(t− x)

FX(t)

)
dx

]2

=

∫ t

0

fX(x)

FX(t)
log2

(
fX(x)

FX(t)

)
dx−

[∫ t

0

fX(x)

FX(t)
log

(
fX(x)

FX(t)

)
dx

]2

= Var[− log ftX(tX)]

= Ve(tX).

Thus, recalling that mX(x) = x− µ̃X(x) and X(t) = t− tX, from (3.1) one gets the upper bound

Ve(tX) ≤ E
[
η2(tX)

qX(tX)
(µ̃(t)− µ̃(tX))

]
∀ t ∈ S.

A lower bound for the past varentropy can also be proved. For it, define first the variance past

lifetime function ν̃2
X as

ν̃2
X(t) = Var(tX) = Var(X|X ≤ t) =

1

FX(t)

∫ t

0
x2fX(x)dx− (µ̃X(t))2, t ∈ S.

Note that, for every t ∈ S the variance past lifetime function ν̃2
X(t) is the same as the variance of

the inactivity time X(t) (see, e.g., Kandil et al., 2011, for details and properties of the variance of

the inactivity time function).

Proposition 3.2. Let tX be the past lifetime of X at time t, and let the mean past lifetime µ̃X(t)

and the variance past lifetime ν̃2
X(t) be finite for all t ∈ S. Then

Ve(tX) ≥ ν̃2
X(t)

[
E(ω′t(tX))

]2
,

where the function ωt(x) is defined by solving the equation

ν̃2
X(t)ωt(x)ftX(x) =

∫ x

0
(µ̃X(z)− z)ftX(z)dz, x ∈ S. (3.2)

Proof. Recall that if X is a random variable with pdf fX , mean µX and variance σ2
X , then

Var[g(X)] ≥ σ2
[
E(ω(X)g′(X))

]2
, (3.3)

where ω(x) is defined by σ2ω(x)f(x) =
∫ x

0 (µ− z)f(z)dz (see Cacoullos and Papathanasiou, 1989).

Hence, in (3.3) choosing g(x) = − log ftX(x) and tX as X, one obtains

Var(− log ftX(tX)) ≥ ν̃2
X(t)

[
E
(
ωt(tX)

f ′
tX

(tX)

ftX(tX)

)]2

. (3.4)
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By differentiating both sides of (3.2), one has

ω(x)
f ′
TX

(x)

f
TX(x)

=
µ̃X(x)− x
ν̃2
X(t)

− ω′t(x),

and then, from (3.4),

V (tX) = Var(− log ftX(tX))

≥ ν̃2
X(t)

[
E
(
µ̃X(t)− tX

ν̃2
X(t)

− ω′(tX)

)]2

= ν̃2
X(t)

[
E(ω′t(tX))

]2
.

4 Past varentropy and parallel systems

When the past varentropy Ve(tX) of a random lifetime X is available, then in some cases it is

possible to easily compute the past varentropy of another lifetime Y whose distribution is a trans-

formation of that one of X. An example is given by the scale model: the family of random variables

{X(a) : a > 0} follows a Scale model if there exists a non-negative random variable X with cumu-

lative distribution function F and density f such that X(a) has distribution F (a)(t) = F (at) for all

t, where a > 0 is the parameter of the model. Some examples are the exponential, Weibull (with

a fixed shape parameter) and Pareto (with a fixed shape parameter) distributions. In these cases,

from Proposition 2.4 one immediately obtains that

Ve(tX
(a)) = Ve (atX) , ∀t.

A more interesting case is when the family of random variables {X(a) : a > 0} follows a Pro-

portional Reversed Hazard Rate model, i.e., if there exists a non-negative random variable X with

cumulative distribution function FX and density fX such that

F (a)(t) = P(X(a) ≤ t) = [FX(t)]a, f (a)(t) = a[FX(t)](a−1)fX(t), t ∈ S, (4.1)

being F (a) and f (a) the cumulative distribution function and the density of X(a), respectively (see

Gupta and Gupta (2007) for more details). We remark that the model takes the name from the

fact that the reversed hazard rate functions of the random variables in the family are proportional

to the reversed hazard rate function of X; in fact, letting q(a) be the reverse hazard rate of X(a),

q(a)(t) =
f (a)(t)

F (a)(t)
= a

fX(t)

FX(t)
= a qX(t) ∀t ∈ S.

Moreover, we note that the inverse cumulative reversed hazard rate function is expressed as

QX(a)(t) = − logF (a)(t) = aQX(t).

The proportional reversed hazard rate model finds applications, for example, in analysis of parallel

systems. In fact, if we have a system composed by n units in parallel and characterized by i.i.d.
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lifetimes X1, . . . , Xn with distribution FX(t), then the lifetime of the system is given by X(n) =

max{X1, . . . , Xn}. Then, we have FX(n)(t) = [FX(t)]n, i.e., the system satisfies the proportional

reversed hazard rate model (4.1) with a = n. The purpose of the next examples is to highlight

the behavior of the past varentropy when it refers to the lifetime of a parallel system with i.i.d.

components.

To this aim, let us first evaluate the past entropy of X(a) and the past varentropy of X(a) for an

arbitrary a > 0. One has

He

(
tX

(a)
)

= −QX(a)(t)−
1

[FX(t)]a

∫ t

0
f (a)(x) log f (a)(x)dx

= −aQX(t)− 1

[FX(t)]a

∫ [FX(t)]a

0
γ(y; a)dy,

with the change of variable y = [FX(x)]a, and where γ(y; a) = log
[
ay1−1/afX(F−1

X (y1/a))
]
. Hence,

we obtain the past varentropy of X(a) as

Ve

(
tX

(a)
)

=
1

[FX(t)]a

∫ t

0
f (a)(x)(log f (a)(x))2dx−

[
1

[FX(t)]a

∫ t

0
f (a)(x) log f (a)(x)dx

]2

=
1

[FX(t)]a

∫ [FX(t)]a

0
[γ(y; a)]2dy −

[
1

[FX(t)]a

∫ [FX(t)]a

0
γ(y; a)dy

]2

.

Let us now consider, as an example, the case where X has a modified Pareto distribution

with FX(t) = t/(1 + t) and density fX(t) = 1/(1 + t)2, for t ≥ 0. In this case, γ(y; a) =

log
[
ay1−1/a(1− y1/a)2

]
, so that

He

(
tX

(a)
)

= a log

(
t

1 + t

)
− 1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
γ(y; a)dy,

Ve

(
tX

(a)
)

=
1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
[γ(y; a)]2dy −

[
1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
γ(y; a)dy

]2

.

When a is an integer, i.e., when X(a) represent the lifetime of a parallel system of a number a

of i.i.d. components, one obtains the past entropies and past varentropies shown in Figure 5 (for

different integer values of a). It is interesting to observe that both the past entropies and the past

varentropies intersect each other for different values of a: for small values of the time t one has the

smaller past entropies and larger past varentropies when the number of components in parallel is

large, and viceversa for large values of the time t. It means, for example, that in the long run (for

large values of the inspection time t) the uncertainty of the information content of the past lifetime

of a parallel system reduces as the number of components in the system increases (and viceversa

for small t).

The same can be observed when X has an exponential distribution with parameter λ. In this
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Figure 5: Plots of past entropy and the past varentropy of modified Pareto PRHR model for a = 1

(dashed line) and a = 2, 3, 4, 5, 6 (blue, red, green, cyan and black, respectively).

case, γ(y; a) = log
[
λay1−1/a(1− y1/a)

]
, so that

He

(
tX

(a)
)

= a log
(

1− e−λt
)
− 1

[1− e−λt]a

∫ [1−e−λt]a

0
γ(y; a)dy,

Ve

(
tX

(a)
)

=
1

[1− e−λt]a

∫ [1−e−λt]a

0
[γ(y; a)]2dy −

[
1

[1− e−λt]a

∫ [1−e−λt]a

0
γ(y; a)dy

]2

.

The plots of He

(
tX

(a)
)

and Ve
(
tX

(a)
)
, for different integer values of a and with λ = 2, are shown

in Figure 6. As for the modified Pareto case, both the past entropies and the past varentropies

intersect each other for different values of a, having a similar behavior.

It must be observed that this behavior differs from what is shown in Example 4.1 in Di Crescenzo

and Paolillo (2020), where the residual varentropies for a proportional hazard model with an un-

derlying generalized exponential distribution do not intersect for different values of the parameter

a.

This behavior seems to be confirmed by other similar analysis we performed. But there exists a

family for which the past varentropies do not intersect, which is the family discussed in Proposition

2.3, whose varentropies are constant. In fact, let Xα be a lifetime having support S = [0, 1]

and distribution Fα(x) = xα, for x ∈ S. Then, the corresponding parallel system with n i.i.d.

components has distribution Fnα(x) = xnα for x ∈ S, which is still in the family of distribution

having constant past varentropy. Thus, in particular, one has Ve(tXnα) = (1 − 1/(nα))2 for all

t ∈ S, and obviously these past varentropies do not intersect as n varies in N+. This is another

interesting property of such a family of distributions.

Conclusions

In this paper, we have introduced and studied the past varentropy. It is related to the past entropy,

which is a measure of information about the past lifetimes. In particular, the past varentropy
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Figure 6: Plots of past entropy and the past varentropy of exponential PRHR model for a = 1

(dashed line) and a = 2, 3, 4, 5, 6 (blue, red, green, cyan and black, respectively).

provides the variability of the information content of past lifetimes. We have given some examples

of past varentropy and obtained conditions ensuring that it is monotone or constant. Moreover, its

behavior under linear or monotonic transformations has been studied. A relationship between past

varentropy and residual varentropy has been also provided, and upper and lower bounds for the past

varentropy have been described. Finally, the behavior of the past varentropy under construction

of parallel systems of i.i.d. components (and, more generally, under proportional reversed hazard

rate models) has been discussed.
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