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a b s t r a c t

This work investigates the breakup dynamics of solid agglomerates in a polymer compounding operation,
by using computational fluid dynamics (CFD) simulations together with discrete element method (DEM)
simulations. CFD simulations are used to compute the flow field and the shear stress distribution inside a
2D section of a typical internal mixer for polymer compounding. DEM simulations are instead used to
predict the mechanical response of the agglomerates and to detect the critical viscous shear stress needed
to induce breakup. DEM breakup data and viscous stress distributions are correlated by a first–time pas-
sage–statistics and used to calibrate a population balance model. The work returned detailed insights into
the flow field characteristics and into the dispersive mixing kinetics. The simulation strategy herein
reported can be adapted to study generic solid–liquid disperse flows in which the breakup of the solid
phase is found at the core of the system behaviour.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Solid fillers are often used to impart improved mechanical, ther-
mal, chemical and/or electric properties to polymer materials. In
the tire industry, for instance, carbon black and silica agglomerates
are often used as reinforcing fillers to reduce wear and increase the
strength and longevity of the tire (Manas-Zloczower, 2012). Nan-
oclays are also interesting as reinforcing fillers because of their
ability to enhance the mechanical properties of the compounds
at a fairly low content (Shah et al., 2016; Eckel et al., 2004). Also
graphene nanosheets have found application as fillers, and they
were seen to be able to improve the interface thermal properties
in electronic components (Tang et al., 2015; Gravelle et al.,
2020), to improve the selectivity of polymer membranes
(Gontarek et al., 2019), and to confer anticorrosion properties to
polymer coatings (Dutta et al., 2018).
Solid fillers often exist in the form of micron-sized agglomerates
of smaller primary particles, and it is commonly accepted that the
optimal performance of a polymer composite can be attained only
if such agglomerates are broken down to smaller entities and uni-
formly distributed throughout the matrix. Dispersion is often car-
ried out in the heavy equipment traditionally used for melt
mixing, and the breakup of the fillers in such equipment is caused
by the flow–induced stress. This is an attractive method in terms of
industrial production, as it avoids the use of solvents, it can use
well-known polymer processing equipment (e.g. intermeshing or
tangential internal mixers, single or twin screw extruders), and it
is capable of delivering high outputs. In the past decades, the fluid
dynamics of internal mixers has been investigated for different
rotor designs and operative conditions, such as rotor speed ratio,
fill factor and batch temperature, by using flow visualization tech-
niques (Freakley and Patel, 1987; Min and White, 1987) or compu-
tational fluid dynamics simulations (Cheng and Manas-Zloczower,
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Table 1
Main parameters of the CFD-DEM simulation.

Parameter Symbol Value

Medium power-law consistency index k 5:8 � 104 Pa � sn
Medium power-law index n 0:2;0:4;0:8
Medium density q 1000 kg � m�3

Agglomerate gyration radius Rg 0.233–1.071 lm
Monomer radius a 100 nm
Rotor velocity _h 3.145 rad � s�1

Rotor tip-to-tip length dtip 0.743 m
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1989; Cheng and Manas-Zloczower, 1990; Yang and Manas-
Zloczower, 1992; Salahudeen et al., 2011; Dhakal et al., 2017;
Connelly and Kokini, 2006). A kinetic model counting for the aggre-
gation and breakup of fillers in an extrusion process has also been
devised (Berzin et al., 2002), and, recently, finite volume method
simulations have been used to study dispersion kinetics in static
mixers (Ferrás et al., 2021).

On the filler particle scale, various approaches can be used to
investigate breakup, including Lagrangian tracking (Babler et al.,
2012; Marchioli and Soldati, 2015), population balance models
(Marchisio et al., 2003; Vanni, 2000), stress analysis (Breuer and
Khalifa, 2019), or first–principle models (Conchúir and Zaccone,
2013; Zaccone et al., 2009). However, most of these models are
not able to take into account the peculiar disordered structure of
agglomerates, that often presents weak points and local hetero-
geneities, which may play an important role in the breakup mech-
anism (Horwatt et al., 1992). This suggested the use of discrete
element methods (DEM), which are able to take into full account
the structure of the agglomerates, including the role that each pri-
mary particle plays in the transmission of stresses (Blais et al.,
2019; Frungieri and Vanni, 2017; Frungieri and Vanni, 2021;
Saxena et al., 2022).

Different degrees of complexity can be introduced in DEM sim-
ulations when modelling the fluid dynamics interactions between
the suspending fluid and the solid particles. In the so–called free–
draining approximation, each particle is assumed to experience the
Stokes drag force, as if no other particle were in the flow
(Eggersdorfer et al., 2010). However, the hydrodynamic screening
effects are known to play a non–negligible role on the aggregate
dynamics (Becker et al., 2009; Turetta and Lattuada, 2022a;
Turetta and Lattuada, 2022b). These can be taken into account by
geometrical considerations based on the particle exposed surface
(Higashitani et al., 2001; Fanelli et al., 2006), or by the method of
reflections, for instance (Gastaldi and Vanni, 2011). However, more
accurate predictions are given by Stokesian dynamics (Durlofsky
et al., 1987; Brady and Bossis, 1988). This method, by using a
low-order expansion of the exact solution of the flow field, is able
to evaluate the hydrodynamic forces acting on each particle for any
possible spatial arrangement (Seto et al., 2011; Harada et al., 2006)
and it has been used over the years to predict particle aggregation
(Frungieri and Vanni, 2017; Frungieri et al., 2020a), agglomerate
restructuring, and the breakup of soft and rigid agglomerates in
both uniform shear (Vanni and Gastaldi, 2011; Vanni, 2015; Ren
et al., 2015; Harshe and Lattuada, 2012) and bounded flows
(Vasquez Giuliano et al., 2022).

However, established models bridging the filler and equipment
scale phenomena when dealing with the investigation of a disper-
sive mixing process are still missing. In a previous work from our
group we employed CFD simulations coupled to DEM simulations
to investigate the dispersive mixing process in an internal mixer
(Frungieri et al., 2020b). The work assumed the dispersing media
to be a Newtonian fluid and the filler particles to be rigid isostatic
agglomerates undergoing instantaneous breakup as soon as the
flow–induced stress exceeded the bond strength at any mono-
mer–monomer contact location. In the present work we improve
substantially our computational model by 1. addressing breakup
in a more detailed way by using DEM simulations, built upon
Stokesian dynamics, that keep into account deformation, restruc-
turing and fragment size distribution, 2. by including the effect
of the non–Newtonian behaviour of the dispersing medium in
the CFD simulations and 3. by finally calibrating a population bal-
ance model able to fully describe the kinetics of the fragmentation
process.

The paper finally aims at presenting a procedure which, starting
from a detailed characterization of a breakup process (in terms of
fluid dynamics and filler agglomerate response to shear stress),
2

finally leads to a population balance model able to promptly pre-
dict the overall breakup kinetics. The procedure, here applied to
a polymer compounding dispersive mixing process, is suitable to
be adopted to study any process in which the breakup phenomena
of the solid disperse phase is found at the core of the system
behaviour.

The paper is organized as follows: in Section 2, we introduce the
relevant equations and operative conditions for the CFD-DEM sim-
ulations of the dispersive mixing process; in Section 3.1 and 3.2 the
results of the flow field in the equipment and the response of the
agglomerates to viscous shear forces are presented; in Section 3.3
the strategy used to infer the breakup rates from the CFD-DEM
simulations and to calibrate the population balance model is
reported. Concluding remarks follow in Section 4.
2. Numerical method

We assume the dispersing medium to be a non-Newtonian fluid
with a shear-thinning behaviour which can be described by a
power–law relationship, and the solid fillers to consist of micron-
sized agglomerates of spherical primary particles kept together
by van der Waals forces. We adopt computational fluid dynamics
(CFD) simulations for evaluating the flow field inside the mixing
equipment and discrete element method (DEM) simulations based
on Stokesian dynamics for ascertaining the breakup occurrence.
Given the small size of the agglomerates and the large viscosity
of the medium, the particle Reynolds number and the particle
Stokes number are much lower than the unity, meaning that the
response of the agglomerates to changes in the flow field is fast
and that the inertia of the agglomerates is negligible. As an addi-
tional consequence of the small size of the agglomerates, we can
safely assume that the agglomerates experience locally along their
trajectory a linear flow field, which can be fully described by the
local components of the velocity gradient. In the DEM simulations,
we assume breakup to be determined solely by the viscous shear
stress exerted by the flow field. The main parameters of the simu-
lations are reported in Table 1.

2.1. Computational fluid dynamics simulations

Since the study of the breakup of filler agglomerates is the main
focus of this work, the motion of the polymer material along the
axial direction of the internal mixer was here disregarded and 2D
simulations were performed. The flow field was evaluated by
isothermal unsteady simulations, run by using Ansys Fluent 20.2.
The non-Newtonian behaviour of the fluid was modelled by a
power–law relationship of the following kind:

l ¼ k � _cn�1 ð1Þ
where _c is the shear rate, computed from the second invariant of
the rate-of-deformation tensor eij ¼ 0:5 � dui=dxj þ duj=dxi

� �
; k is

the consistency index, assumed equal to 5:8 � 104 Pa sn, and n is
the power-law index, ranged between 0.2 and 0.8 in this work. Such
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a set of parameters falls within the typical value ranges used to
describe polymer compounds. (Manas-Zloczower, 2012; Cheng
and Manas-Zloczower, 1990; Salahudeen et al., 2011). The continu-
ity and momentum transport equations read as follows:

q
@ui

@xi
¼ 0; q

@ui

@t
þ q

@½uiuj�
@xj

¼ � @p
@xi

þ @rij

@xj
ð2Þ

where the ui’s are the velocity components of the flow, p is the fluid
pressure and rij ¼ �k _cn�1eij is the generalized stress tensor. In Eq.
(2), one can notice that, because of the negligible inertia of the sus-
pended agglomerates, no terms accounting for the back reaction of
the particles on the flow was included.

The medium is mechanically stirred by the motion of two
counter-rotating tangential rotors in a completely filled chamber.
To handle the variation in time of the shape of the flow domain,
a sliding mesh approach was adopted; the flow domain was there-
fore split in three distinct cell regions: two rotors regions and one
stator region as illustrated in Fig. 1. The first ones rotate together
with the rotors, while the second remains fixed. Thus, the grids
slide past each other along two circular interfaces. No slip bound-
ary conditions were imposed at the rotor and stator walls. The
mesh is composed of 183680 quadrilateral cells and the region
between the rotor tip and the chamber wall, which is the region
where high shear forces establish, is resolved using 14 layers; this
resolution was seen to be able to capture all the features of the
flow field at any rheological parameter used to model the
power–law behaviour of the fluid. A speed ratio of 1:1 (30 rpm:
30 rpm) for the rotors was investigated. Starting from the relative
Fig. 1. Representation of the geometry of the investigated system and domain decompos
and the static region. The static region includes the part of the fluid domain located be
regions. Mesh magnificaton of the bridge zone (bottom left) and tip zone (bottom right),
chamber wall, and the pave mesh used for discretizing the stator region in-between the
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configuration of the rotors of Fig. 1, two complete periods were
simulated with a time step Dt ¼ 1 � 10�3 s, corresponding to an
angle spanned by the rotors per time step equal to 0.18�.

Given their negligible inertia, the motion of the agglomerates
can be reduced to that of tracer particles and their equation of
motion is thus the advection equation:

_xp tð Þ ¼ u xp tð Þ; t� � ð3Þ
where u xp tð Þ; t� �

is the velocity of the flow at the tracer particle
position.

In order to compute a set of tracer trajectories a tracking algo-
rithm was used (Frungieri et al., 2020b). At each time step, seven
field quantities, i.e., two velocity components ui, four velocity gra-
dients components dui=dxj, and the medium viscosity l were eval-
uated at the center of each interior face and at the center of each
boundary edge. A modified Shepard algorithm was used to com-
pute the tracer particle trajectories and the time series of the shear
stress they are subject to (Thacker et al., 2010). The algorithm com-
putes a quadratic, smooth, and once continuously differentiable
bivariate function, which interpolates the field data at the scat-
tered nodes and can be then evaluated at arbitrary positions within
the domain. Given the transient nature of the flow, the interpolants
had to be recomputed on each instantaneous field data and the cal-
culation scheme was therefore as follows:

1. The initial positions of the particles were chosen.
2. The interpolants of the six field quantities were computed on

the instantaneous field data.
ition used for the sliding mesh approach, showing the two circular rotating regions
tween the rotors and a thin layer adjacent to the wall that surrounds the rotating
showing the radial mesh used to discretize the flow domain close to the tip and the
rotors.



Table 2
Main parameters of the DEM simulations.

Parameter Symbol Value

Primary particle radius a 100 nm
Hamaker constant AH 0:966� 22:80 � 10�20 J
Sliding resistance constant ksld 1:595 � 10�1 N/m
Rolling resistance constant krol 8:859 � 10�16 N m rad�1

Twisting resistance constant ktws 4:429 � 10�16 N m rad�1

Maximum spring elongation esld 3.1 nm
Maximum rolling displacement erol 0.00527 rad
Maximum twisting displacement etws 0.03927 rad
Integration time–step dt 10�5 s
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3. The seven quantities (ui; dui=dxi and l) at the particle positions
xp were evaluated.

4. The velocity components ui were used to obtain the new parti-
cle position by an explicit Euler integration of Eq. (3).

5. The field data was updated for the new time step.
6. Back to point 2, until particles had been tracked for two com-

plete periods.

The algorithm has been used in a previous work and it was
shown to be able to accurately track the tracer motion, preserving
momentum continuity along the trajectories (Frungieri et al.,
2020b).

2.2. Discrete element method simulations

Discrete element method simulations based on Stokesian
dynamics were used to evaluate the critical stress needed to induce
the agglomerate breakup. In using Stokesian dynamics we assume
that the flow around the agglomerates is Newtonian. Indeed, due
to the small size of the agglomerates, the variation of the shear rate
_c in the surrounding fluid can be neglected and the system can be
described by a constant effective viscosity l ¼ k _cn�1. Stokesian
dynamics, here used in its FTS (force, torque, stresslet) formulation,
relying on the linearity of the Stokes equation, is able to accurately
count for all the hydrodynamic interactions, including particle–
fluid and fluid mediated particle–particle interactions. It operates
by relating the hydrodynamic force, torque and stresslet acting
on the particles to their relative velocity with respect to the under-
lying fluid (Durlofsky et al., 1987; Brady and Bossis, 1988).

For colloidal particles the inertial effects are generally negligible
compared to the other involved forces and, consequently, the force
and torque balance on each primary particle a of an agglomerate
reads as:

FðaÞ
H ¼ �P

FðaÞ
p�p

TðaÞ
H ¼ �P

TðaÞ
p�p

(
ð4Þ

where FH and TH are the hydrodynamic force and torque, respec-
tively, acting on the particle, and where the sum on the r.h.s. counts
for all the forces and torques arising from the a-particle interaction
with the nearby particles.

Primary particles interact via van der Waals forces, calculated as
follows (Hamaker, 1937):

FvdW ¼ AH � a
12 � hþ ‘0ð Þ2

� f hð Þ ð5Þ

In Eq. (5), h is the particle–particle surface distance, a the primary
particle radius, AH is the composite Hamaker constant for the inter-
action of two solids immersed in a third medium, and ‘0 is the min-
imum approach distance, assumed to be equal to 1.65 Å, and which
can be thought of as the typical molecular roughness length scale of
the particle surface. Finally, the term f ðhÞ takes into account the
steeper decrease of the total interaction that occurs at large separa-
tion due to the retardation effect (Frungieri and Vanni, 2021).

In order to avoid compenetration among contacting particles a
repulsive interaction model based on the JKR theory of contact
mechanics is used. The model counts for both adhesion and defor-
mation at the particle–particle contact plane. Its detailed descrip-
tion and the approach used for its implementation in the DEM
simulations can be found in Frungieri and Vanni, 2021.

It is known that adhesive forces between particles give rise to a
certain resistance to mutual sliding, rolling and twisting (Pantina
and Furst, 2005). In order to keep into account this phenomenon,
a spring force model has been introduced in our DEM simulations
according to the approach proposed by Marshall (2009) and
4

Dominik and Tielens (1997). Regarding mutual sliding, the basic
idea behind this model is that, after a contact between a pair of pri-
mary particles is formed, a thought spring is initialized, whose
length grows proportionally to the relative tangential velocity
between the two contacting particles. Thus, the spring gives rise
to a tangential restoring force Fsld which can be computed as:

Fsld ¼ �ksld

Z t

t0

usðsÞds
� �

� ts ð6Þ

where ksld is the spring stiffness, us is the tangential projection on
the contact plane of the particle–particle relative velocity, ts is the
slip direction, and where t0 is the time at which the mechanical
contact between particles occurred. In order to allow restructuring
effect, the spring stops extending if its elongation exceeds a maxi-
mum elongation esld set equal to 3.1 nm in this work.

Similarly, when two contacting particles have different rotation
rates in the normal direction (i.e. along the direction connecting
their centers), a restoring twisting torque arises, which can be
computed as:

Ttws ¼ �ktws

Z t

t0

XðsÞds
� �

� n ð7Þ

where X is the particle–particle relative angular velocity along the
normal direction n.

A restoring torque is also present when particles are in relative
rolling motion:

Trol ¼ �krol

Z t

t0

urolðsÞds
� �

� tr ð8Þ

In Eq. (8), urol ¼ �aðxi �xjÞ � n is the relative rolling velocity,
whereas tr ¼ urol= j urol j is the rolling direction. The parameters of
the DEM simulations are reported in Table 2 and were estimated
as detailed in the works by Marshall (2009) and Dominik and
Tielens (1997) and fall within typical ranges reported for polymeric
and ceramic particles in a liquid medium.

After evaluating all the particle–particle colloidal interactions,
and after enforcing the force and torque balance of Eq. (4), the solu-
tion of the following linear system provides us with the angular
and linear velocities of the particles:

RUF RXF REF

RUT RXT RET

RUS RXS RES

2
64

3
75

ua � u1

xa �x1

�e1

8><
>:

9>=
>; ¼ �

FH

TH

SH

8><
>:

9>=
>; ð9Þ

In Eq. (9), ua and xa are the linear and angular velocity of the a-th
particle, respectively, u1 andx1 are the linear and angular velocity
of the undisturbed fluid at the a-particle position, e1 is the rate-of-
deformation tensor of the undisturbed fluid, and SH is the hydrody-
namic stresslet. The matrix on the l.h.s. in Eq. (9) is an 11N � 11N
symmetric and positive definite matrix, with N being the number
of primary particles of the agglomerate. This matrix is often referred
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to as resistance matrix, and it depends on the particle relative posi-
tions and medium viscosity, only. The dposv routine from the
LAPACK library was used to solve the linear system of equations
of Eq. (9); the solution provided us with the primary particle veloc-
ity, from which trajectories were computed by an explicit Euler
integration.

In order to predict the response of the agglomerates to the fluid
shear stress, we run DEM simulations under the effect of a simple
planar shear flow, whose intensity was mildly and linearly
increased in time. For each DEM simulation, we detect the shear
stress at which breakup occurred and the morphology and size of
the generated fragments. This approach provides us with relevant
information about the critical viscous stress and the fragment size
distribution. Then, as it will be discussed in Section 3.3, by combin-
ing such predictions with the history of the viscous stress on the
particles given by their Lagrangian tracking, through a first–time
statistical analysis it is possible to calculate the frequency of
breakup in the system and finally calibrate a population balance
model counting for the overall breakup kinetics in the equipment.
2.3. Notes on computational costs

All the simulations were run on a workstation equipped with a
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz.

The CFD simulations were run using four processing cores
exploiting the MPI parallel solver of Ansys Fluent 20.2. Each simu-
lation required approximately 153 wall-clock minutes per
physical-time second.

The interpolation code has been embedded within a tracking
algorithmwritten in Fortran95, parallelized and run on 8 processes
exploiting the MPI parallelism. Seven processes were used to inter-
polate the field quantities of interest (two linear velocities, four
gradient components, medium viscosity) at each instantaneous
tracer position. One additional master process was used to collect
the data and to compute trajectories. The execution of the code for
tracking 1900 tracer particles required 48.5 wall-clock minutes per
physical-time second.

For our DEM simulations, the wall-clock time scales approxi-
mately with the square of the number of monomers composing
the agglomerate. The simulation of an agglomerate composed of
48 monomers required 16.3 wall-clock minutes per physical-time
second when executed on a single-core.

Finally, the computational cost for the solution of the popula-
tion balance model was dramatically lower, accounting to few
wall-clock seconds for simulating the whole solid phase population
dynamics until stationary conditions were reached.
3. Results and discussion

3.1. CFD predictions

The flow field inside the mixing equipment was computed for
three different values of the power–law index n of the medium
(= 0.2, 0.4, 0.8). For all three cases a quite complex flow field was
observed. The fluid undergoes a simple circular motion in the lobe
regions, as induced by the rotation of the rotors, whereas a more
complex flow pattern can be observed both in the bridge region,
that is the large clearance region in-between the rotors, and in
the small gap between the rotor tips and the chamber wall. The
velocity flow field reported in Figs. 2a-c makes this apparent. It
can be seen that the bridge region is responsible for the exchange
of material between the two lobes of the mixer, as each rotor
pumps the fluid in the bridge region where the flow is swept by
the other rotor rotation. This mass exchange mechanism has been
observed in a number of both numerical and experimental works
5

and it can be modulated by changing the rotor speeds and design
(Freakley and Patel, 1987; Salahudeen et al., 2011; Cheng and
Manas-Zloczower, 1989). The region between the rotor tip and
the chamber wall also presents features worth to be pointed out.
Here the flow can be interpreted as the superposition of a pressure
induced flow, and a drag flow, induced by the rotor rotation. As
illustrated in the pressure contour plot of Fig. 2b, in front of the
rotor tip, the pressure is consistently higher than in the region
behind it (Freakley and Patel, 1987; Frungieri et al., 2020b). As a
consequence, in the tip region the pressure flow opposes the drag
flow, thus giving rise to a small recirculation vortex. However, it is
apparent in Fig. 2d that the vortex dimension is strongly depen-
dent upon the rheological features of the medium, being relatively
small for the least shear thinning fluid (n ¼ 0:8) and consistently
larger for the most shear thinning one, where the vortex occupies
almost completely the small gap between the wall and the rotor
tip.

The most crucial quantities in determining the breakup of the
filler agglomerates are the shear stress, which provides a measure
for the local intensity of the flow-induced stress, and the mixing
index, which instead provides a topological characterization of
the flow field, in terms of relative importance of the elongational
and rotational component of the flow. The mixing index has been
computed as:

k ¼
ffiffiffiffiffiffiffiffi
IIE1

pffiffiffiffiffiffiffiffi
IIE1

p þ ffiffiffiffiffiffiffiffiffi
IIX1

p ð10Þ

where IIX1 is the second invariant of the vorticity tensor
X1 ¼ 0:5 ru1 �ru1;T

� �
and where IIE1 is the second invariant of

the rate-of-deformation tensor. The mixing index has a 0� 1 range,
with 0 indicating a rotational motion, and 0.5 and 1 indicating pure
shear and pure elongational flow, respectively. Distribution plots of
the mixing index k for three different values of the power–law
index are shown in Fig. 3. In all cases, the flow field shows elonga-
tional components in the bridge region, whereas it is shear-
dominated (k ¼ 0:5) in proximity of the chamber wall. Both the dis-
tribution of k and its average value in the mixing chamber (0.56 for
n ¼ 0:8, 0.50 for n ¼ 0:4, 0.41 for n ¼ 0:2.) well compare with the
results obtained by Cheng and Manas-Zloczower (1990) through
finite element method simulations. The parameter k is commonly
considered to be important when assessing the efficiency of a flow
field in inducing breakup, with a number of works that pointed out
that elongational flows are more effective than shear flows
(Higashitani et al., 2001; Ren et al., 2015). However such a param-
eter does not suffice to predict breakup, as it has to be considered
together with the intensity of the viscous shear stress (Cheng and
Manas-Zloczower, 1990). Therefore, we report in Fig. 4 the distribu-
tion plots of the shear stress intensity l _c computed on instanta-
neous field data, for the three different values of the power–law
index. The figure also reports the cumulative distribution functions
of the shear stress. It can be seen that the intensity of the shear
stress is highly dependent upon the power-law index n. For the
most shear-thinning fluid (n ¼ 0:2) the maximum shear stress in
the gap is around 1 MPa, but it grows as the power-law index is
increased, reaching 10 MPa for the least shear thinning one
(n ¼ 0:8). However, it can be seen that for every n the largest values
of the shear stress establish in proximity of the wall of the chamber,
where k � 0:5. Consequently, the largest breakup probability should
be expected in the region close to the chamber wall, where the flow,
as shown in Fig. 3, is largely shear–dominated.

3.2. DEM predictions

We assumed the agglomerates dispersed in the polymer med-
ium to be composed of spherical primary particles kept together



Fig. 2. Flowfield in the internal mixer as computed by the CFD simulations. (a) Velocity magnitude contour plot, (b) pressure distribution, c) velocity field by an arrow
representation illustrating the mechanism of mass exchange between the lobes of the mixer. Data refer to the fluid with n ¼ 0:8. d) Recirculation pattern in the gap region for
varying power–law index.
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by van der Waals forces, and to undergo breakup as a response to
the viscous shear stress.

We generated numerically a library of agglomerates by using a
cluster–cluster collision method, able to produce agglomerates
with a prescribed fractal dimension, which was set to df ¼ 2:3 in
the present work (Thouy and Jullien, 1994; Filippov et al., 2000).
The generation started from a population of trimers and proceeded
hierarchically through the collision of equally sized agglomerates,
with the generation of one single new contact at each collision
event. As a consequence, the agglomerates have an isostatic struc-
ture, with each primary particle involved in two bonds only (ex-
ceptions are the terminal particles of the branches, with a single
bond, and the internal particles acting as a junction between differ-
ent branches, with three or more bonds). In Fig. 5 a sample of the
population of agglomerates used in the simulations is shown,
together with some of their relevant properties. Given the disor-
6

dered structure of the agglomerates, to obtain statistically robust
data, for each agglomerate size class, 10 different structures with
the same number of primary particles and gyration radius were
considered.

By the DEM simulations we aim at detecting the critical shear
stress l _c needed to induce breakup. To this purpose in the simula-
tions we treated the medium as a Newtonian fluid subject to an
externally imposed shear rate which is progressively increased in
time. Once the first breakup event was observed, the shear rate
was kept constant and the simulation run until we observed the
fragment size distribution to reach equilibrium, with no further
breakup events detectable. For each structure we considered three
different and mutually perpendicular initial orientations with
respect to the flow field. The slope of the ramp was chosen by a
trial and error procedure until we observed the critical shear stress
to be independent of the further reduction of the slope.



Fig. 3. Mixing index distribution for three different values of the power-law index n.

Fig. 4. Viscous stress contour plots for three different power-law index, and cumulative distribution function of the viscous shear stress intensity.
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Fig. 6 reports a sequence of snapshots of a sample breakup sim-
ulation of an agglomerate made of 96 primary particles. The
agglomerate rotates in the shear flow, undergoing a progressive
restructuring process which leads to a compaction of its structure,
and it finally undergoes breakup at the critical shear stress, gener-
ating a number of smaller fragments. To characterize the restruc-
turing phenomenon we report in Fig. 7 the temporal evolution of
an agglomerate gyration radius and average coordination number.
The first is computed as the root mean square distance of the pri-
mary particles from the agglomerate center of mass, the second is
computed as the average number of bonds in which primary parti-
cles are involved. It can be seen that, because of the rotational
motion of the agglomerate in the shear flow, the gyration radius
has an oscillatory behaviour with a sequence of minima and max-
ima, corresponding approximately with the maximum alignment
of the agglomerate major axis with the direction of maximum ten-
sile stress (45� with respect to flow direction) and the direction of
maximum compression (�45� with respect to the flow direction),
respectively. It is apparent that the gyration radius progressively
reduces in time as a result of restructuring and finally the first
7

breakup event leading to the formation of two fragments occurs.
This progressive compaction phenomena is also apparent from
the temporal evolution of the average coordination number. Ini-
tially the cluster has an average coordination number equally
approximately to two (and corresponding to an isostatic structure),
but this increases over time as a result of the generation of new
internal bonds due to restructuring. This structural evolution was
observed in all the agglomerates considered and led to a change
of the space filling properties, which changed from a loose to a
more dense packing state, with the loss of the agglomerate initial
fractal features. Such an effect has to be ascribed to the onset of
a relative sliding and rolling motion at the particle–particle con-
tacts at which the sliding/rolling resistant force is exceeded by
the flow induced stress.

In Fig. 8 the critical shear stress needed to observe the first
breakup event is plotted as a function of the gyration radius
made dimensionless by the primary particle size. Each series
of data is relative to a different value of the Hamaker constant.
It can be seen that as the Hamaker constant is increased,
agglomerates break at a larger stress and, more remarkably,



Fig. 5. A sample of the population of agglomerates used in the DEM simulations. Agglomerates are characterized according to the number of primary particles P, their outer
radius Rmax , their gyration radius Rg , and average coordination number hnci. The primary particle radius a is 100 nm. All agglomerates have a fractal dimension df equal to 2.3.

Fig. 6. Sequence of snapshots of a breakup event of an agglomerate subject to a
ramp of increasing shear. (a) Initial morphology, (b) Restructured agglomerate, (c)
Final fragments.

Fig. 7. Temporal evolution of the agglomerate gyration radius made dimensionless
by the primary particle radius (left vertical axis) and average coordination number
(right vertical axis). The vertical dotted line indicates the occurrence of the first
breakup event. The shear stress varies linearly from 0 to 0.197 MPa.
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the critical stress needed to induce breakup follow fairly well a
power-law relationship with the initial gyration radius of the
8

agglomerates, with a breakup exponent which only slightly
changes among the three different data series, ranging between
�0:75 and �1:0. In the inset of Fig. 8 the data have been made
dimensionless by introducing a fragmentation dimensionless
number defined as:



Fig. 8. Shear stress needed to break the agglomerates for different value of the
particle–particle bond strength. Blue squares are for agglomerates for which
AH=0:966 � 10�20 J, for red triangles AH=9:66 � 10�20 J, for black circles AH=22:8 � 10�20

J. In the inset the data has made dimensionless by AH=a3.
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Fr ¼ l _ccr
AH=a3

ð11Þ

which measures the ratio between the critical viscous stress l _ccr
and the characteristic bond strength AH=a3. It can been seen that
the data collapse fairly well on a single master curve, with small
deviations emerging only for the largest agglomerates. This makes
it possible to conclude that the critical viscous stress data obtained
in this work can be extended to count for the case of agglomerates
characterized by a different bond strength intensity and/or size.

Besides the critical stresses, our DEM simulations returned the
size and full morphology of the fragments generated upon
breakup. In Fig. 9 we report the distribution of the size of the lar-
gest generated fragment, both after the first breakup event, and
when the asymptotic fragment size distribution was reached. After
the first breakup event (i.e. after the occurrence of the first bond
failure which leads to the generation of two fragments) it can be
noted that the maximum fragment has, in roughly the 80% of the
cases, a mass which is about the 90% of the one of the parent
agglomerate. However, the first breakup event is soon followed
by a cascade of subsequent bond failures, and at equilibrium an
Fig. 9. Distribution of the size of the largest fragment generated after the first
breakup event (circles) and at equilibrium (squares). Standard deviation bars
indicate the deviations among data obtained at the different adopted values of the
Hamaker constant. The PDF was calculated by dividing the abscissa in five classes of
width 0.2.

9

average number of fragments typically ranging between two and
six are generated, with the largest one which has in about the
40% of the cases a mass which is half the mass of the parent
agglomerate. The case of a single breakup event leading to the for-
mation of one large fragment shall also be expected (see the rela-
tively large probability of having maxðPfrgm=PparentÞ equal to 0.7 or
0.9 in the asymptotic size distribution). These results well compare
with the ones reported in previous works where the agglomerate
breakup was seen to lead to the formation of several fragments
of scattered size (Eggersdorfer et al., 2010; Rwei et al., 1990).
3.3. Evaluation of breakup frequencies and population balance model
calibration

The DEM and the CFD predictions have been combined and used
to calibrate a simple population balance equation (PBE) model able
to fully count for the breakup kinetics in the equipment.

In order to calculate the rate of fragmentation of the agglomer-
ates, 1900 tracer particles were suspended in the flow and tracked
according to the tracking algorithm described in Section 2.1. We
applied first–passage–time statistics to the viscous stress time ser-
ies so obtained and we measured the length of the time intervals
sbrk necessary for observing the first occurrence of a viscous stress
strong enough to cause the failure of the agglomerate (Babler et al.,
2012; De Bona et al., 2014): referring to Fig. 10 (top) and consider-
ing an agglomerate injected in the flow field at random time and
space coordinates, the breakup time sbrk was computed as the time
the agglomerate takes to experience the condition l _c > l _ccr ,
where l _ccr is the critical stress determining its breakup. Breakup
frequencies for varying critical stress were then computed as the
inverse of the mean breakup time, obtained by averaging sbrk over
the trajectories of the 1900 tracer particles. The results of the first–
passage–time statistics for the three different investigated flow
fields are shown in Fig. 10 (bottom). As expected, breakup frequen-
cies monotonously decrease as the agglomerates become more
resistant. For all values of the power–law index of the fluid, two
Fig. 10. Top) Illustration of the numerical procedure used to compute the breakup
frequency for varying critical stress. Bottom) Breakup frequency as a function of the
critical stress necessary for the agglomerate failure. Data were obtained by
averaging the breakup times obtained by the analysis of 1900 shear stress signals.



Fig. 11. Agglomerate number fraction for varying number of constituent primary
particles. The black circle represents the population initial composition. In the inset
the temporal evolution of the agglomerate average size is reported for three
different particle–particle bond strength. Breakup frequencies for the n ¼ 0:2 flow
field of Fig. 10 were used to model the fragmentation rates.
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regions of distinct slope can be identified in the graph, similarly to
what was obtained for Newtonian systems (Frungieri et al., 2020b).
For small values of l _ccr (i.e., loose contacts and large agglomerates)
the breakup frequency is large, and it mildly decreases. For small
agglomerates and strong contacts (large l _ccr) the breakup fre-
quency is lower and drops quite abruptly as l _ccr grows. For the
highest power–law index only (n ¼ 0:8), there is a third region
located at the smallest values of critical stresses, where the
breakup frequency decreases rapidly of two orders of magnitude.

The plot of Fig. 10 can be seen as a kinetic law giving the rate of
fragmentation in the equipment as a function of the agglomerate
critical resistance l _ccr . This, coupled with the fragment size distri-
bution reported in Fig. 9 and the critical viscous stress data
obtained by the DEM simulations (Fig. 8), provides us with the
information needed to setup a population balance model for the
system, able to fully predict its dynamics.

Using a uniformly spaced grid for discretizing the agglomerate
size interval, the population balance equations read as (Vanni,
2000):

dnp

dt
¼ bp p ¼ 1;2; . . . ð12Þ

where p is the number of primary particle composing the agglom-
erates, np is the number concentration of agglomerates made by a
p number of primary particles and where bp is the rate of agglomer-
ate birth and death due to breakup. This has been modelled as:

bp ¼ �rðbÞp þ
X1

q¼pþ1

bðp; qÞrðbÞq ð13Þ

where rp ¼ np � f brkðpÞ is the rate of death of p-sized agglomerates
due to breakup, and where the second term on the r.h.s. is the rate
of birth of agglomerates composed by p particles, as a result of the
breakup of the larger ones. We set the fragmentation rate term for
each agglomerate class resorting to the power-law relating size and
critical stress reported in Fig. 8 and by linearly interpolating the
data reported in Fig. 10. The fragment size distribution b has been
set according to the data obtained by the DEM simulations and
reported in Fig. 9. However, we reduced the complexity of the
asymptotic fragment size distribution to a ternary fragmentation
mechanism, according to which breakup events result into a large
fragment, which accounts for half the mass of the parent agglomer-
ate, and in two other fragments whose mass is equal to a quarter of
the mass of the parent agglomerate. The matrix bðp; qÞ of Eq. (12)
has been therefore set as:

bðp;4qÞ ¼ 1:0; p ¼ 2q
2:0; p ¼ q

�

bðp;4qþ 1Þ ¼

0:5; p ¼ 2q
0:5; p ¼ 2qþ 1
1:5; p ¼ q

0:5; p ¼ qþ 1

8>>><
>>>:

bðp;4qþ 2Þ ¼

0:5; p ¼ 2qþ 1
0:5; p ¼ 2qþ 2
1:5; p ¼ q

0:5; p ¼ qþ 1

8>>><
>>>:

bðp;4qþ 3Þ ¼

0:5; p ¼ 2qþ 1
0:5; p ¼ 2qþ 2
0:5; p ¼ q

1:5; p ¼ qþ 1

8>>><
>>>:

q ¼ 1;2;3; . . .

ð14Þ
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Please notice that agglomerates composed by a number p of pri-
mary particles smaller than 4 have been assumed to be invulnerable
to breakup, and so to be only generated, as a consequence of the
breakup of the larger ones. The problem of Eq. (12) has been coded
using Fortran and the time integration of the system of ordinary dif-
ferential equations has been performed by the lsode solver of the
library ODEPACK using the Adams–Moulton (AM) method for
non-stiff problems. (Hindmarsh, 1983).

For the sake of conciseness, we limit ourselves to report the
results of the breakup kinetics for the flow field of the power–
law fluid with n ¼ 0:2, and for an initially monodisperse popula-
tion composed by agglomerates made by 100 primary particles,
with AH ¼ 9:66 � 10�20 J. Fig. 11 reports the number concentration
of a sample of agglomerate classes as a function of time, as
obtained by the PBE model. It can be seen that the large agglomer-
ates (P ¼ 100) are rapidly broken down generating smaller
agglomerates in the initial stage of the process. These, as can be
seen from the P ¼ 25 and P ¼ 6 curves, are promptly produced in
the initial stage of the process but their concentration approaches
zero for large time as a consequence of their further breakup. At
the asymptotic condition the population is made mostly by small
agglomerates (P < 4) and large agglomerates are totally consumed.
It is worth to notice that, due to the large variability of the breakup
frequencies which span across several orders of magnitude with
the agglomerate size, the average size of the agglomerate drops
quite rapidly in the initial stage of the process, but the asymptotic
size distribution is reached only at a later stage. Finally, in the
inset, the effect of the particle–particle bond strength on the aver-
age size of the agglomerates is shown. As expected, as the agglom-
erates become looser (low AH), the breakup dynamics is faster and
the asymptotic average size is sooner reached. On the contrary, lar-
ger AH values result into a slower breakup dynamics.
4. Conclusions

Herein, we presented the results of a numerical work aimed at
investigating the dispersive mixing of solid filler agglomerates in a
polymer compounding operation. The work uses computational
fluid dynamics and discrete element method simulations, and
finally combine data to calibrate a population balance model.
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CFD simulations were run for three different values of the
power–law index describing the shear-thinning behaviour of the
fluid and returned the viscous stress distribution to which the
agglomerates are subject to in the mixing equipment. Simulations
made apparent that the power–law index has profound implica-
tions both on the flow field topology and typical viscous stress.
DEM simulations, carried out to study the breakup behavior of
the agglomerates, returned detailed insights into the breakup
dynamics both in terms of critical shear stress for breakup and
fragment size distribution. A power–law was found to fairly well
describe the relationship between the critical stress and the size
and strength of the agglomerates. Furthermore, the analysis of
the fragment size distribution evolution showed that fragmenta-
tion occurs via a cascade of breakup events, resulting in a variable
number of fragments, with the largest one often counting for the
50% of the mass of the parent agglomerate. A first–time passage–
statistics conducted upon the shear stress time series experienced
by the agglomerates allowed us to correlate the critical stress data
with the equipment fluid dynamics and to compute the agglomer-
ate breakup rates. Such data have been used finally to calibrate a
population balance model which returned a full picture of the
kinetics of the dispersive mixing process.

The work presented herein has been focused on the investiga-
tion of a polymer compounding mixing process. However, it is
worth to point out that the methodology here reported can be
easily adapted to investigate agglomerate breakup in different pro-
cesses and flow fields, and data can be in the same way used to
tune simple population balance models able to promptly predict
fragmentation kinetics and particle size distribution for the process
of interest.
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