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Abstract. In the light of NIST’s announced reopening of the call for dig-
ital signature proposals in 2023 due to lacking diversity, there is a strong
need for constructions based on other established hardness assumptions.
In this work we construct a new post-quantum secure digital signature
scheme based on the MinRank problem, a problem with a long history
of applications in cryptanalysis that led to a strong belief in its hard-
ness. Initially following a design by Courtois (Asiacrypt ’01) based on
the Fiat–Shamir transform, we make use of several recent developments
in the design of sigma protocols to reduce signature size and improve ef-
ficiency. This includes the recently introduced sigma protocol with helper
paradigm (Eurocrypt ’19) and combinations with cut-and-choose tech-
niques (CCS ’18). Moreover, we introduce several improvements to the
core of the scheme to further reduce its signature size.
As a second contribution, we formalize the natural extension of our con-
struction to a ring signature scheme and show that it achieves desired
anonymity and unforgeability guarantees. Our ring signature is charac-
terized by a sublinear scaling of the signature size in the number of users.
Moreover, we achieve competitive practical signature sizes for moderate
amount of users in comparison to recent ring signature proposals.

Keywords: Fiat–Shamir · MinRank · post-quantum signature · ring
signature · sigma protocols

1 Introduction

The NIST standardization process for post-quantum secure cryptographic
schemes is in transition to its fourth round. While the process for post-quantum
secure KEMs is progressing well, the process for digital signatures suffers from a
lack of diversity among the hardness assumptions of the remaining candidates.
In particular, the remaining signature schemes are either based on structured
lattices or symmetric primitives [40]. Although, both foundations have desirable
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attributes, the security guarantees of structured lattice-based schemes have re-
cently been challenged [39] and schemes based on symmetric primitives, while
generally secure, suffer from performance issues [40]. For this reason, NIST an-
nounced that it will reopen the call for digital signature schemes in early 2023,
making the study of schemes based on other established hardness assumptions
an important and urgent task.

In this work we propose a new post-quantum secure digital signature scheme
based on the so-called MinRank problem, which was introduced in 1999 by Buss,
Frandsen, and Shallit [21]. Roughly speaking, the MinRank problem asks to find
a low-rank linear combination of some given matrices over a finite field. The
MinRank problem is an attractive candidate for post-quantum cryptography for
multiple reasons. First, it is entirely based on linear algebra computations, al-
lowing constructions to benefit from the long line of research in optimizing the
involved operations [3,36,47]. Also, the MinRank problem has been extensively
studied due to its applications in cryptanalysis [14,19,20,22,35,41,45,48], where
faster algorithms for solving the MinRank problem usually imply improved at-
tacks on the involved schemes. This relation has established a strong belief in
the hardness of the MinRank problem over the last decades. Furthermore, there
are no quantum attacks known that go beyond straightforward quantum search
applications. However, there has been very limited work on cryptographic primi-
tives based on this problem. To the best of our knowledge, the only construction
based on the hardness of the MinRank problem is a sigma protocol from 2001
due to Courtois [23].

Sigma protocols implement zero-knowledge proofs of knowledge (PoK). These
constructions allow a prover to prove to a verifier that he knows a secret object
x, which satisfies a certain relation, without revealing any information about x.
For example, x might be the secret key corresponding to a known public key
or, as in the protocol of Courtois, the solution to a publicly-known MinRank
instance. Sigma protocols do not reach perfect soundness, i.e., a cheating prover
not knowing x might be able to convince the verifier that he actually knows x.
If a cheating prover is able to convince the verifier with probability p, then p is
called the soundness error of the protocol.

It is well known that a sigma protocol that offers security against passive
attacks can be transformed into a digital signature scheme, secure in the random
oracle model, by using the Fiat–Shamir transform. A straightforward application
of this transformation to Courtois’ protocol results in a digital signature scheme
with not particularly desirable parameters. However, starting from Courtois’
initial protocol, we adopt recent techniques in the design of sigma-protocols
to reduce the soundness error of the construction. Combining this with several
modifications and improvements to the original protocol, we are able to derive
a new digital signature scheme with significantly reduced signature and public
key sizes.

Another major advantage of our construction is that it naturally extends to
ring-signatures. A ring-signature allows a signer to sign a message on behalf of
a group of users, called a ring. A verifier is then able to verify the signature



as usual, but can not identify the signer among all members of the ring. The
performance of those schemes is usually a function depending on the number of
users in the ring. There exist constant size ring-signatures [2,25], however, none
of those are post-quantum secure. Our scheme is characterized by a sublinear
scaling of the signature size in the number of users and allowing to achieve
competitive practical parameters.

1.1 Related Work

Signature schemes constructed from sigma protocols have a long standing history
(e.g. [1,11,12,30,38,42,46,49]). A main advantage of such constructions is that
they do not require a trapdoor-relation. This makes it possible to base their
security on presumably hard instances of the underlying problem. However, a
common drawback is usually a larger signature size due to necessary repetitions
of the protocol when applying the Fiat–Shamir transformation. These repetitions
reduce the (high) soundness error of the sigma protocol from p to pR ≤ 2−λ,
where R is the number of repetitions and λ the security parameter.

Multiple recent works try to lower the initial soundness error, to reduce
the amount of repetitions. Katz et al. [34] have constructed a zero knowledge
PoK using the MPC-in-the-head paradigm [33] in combination with a prepro-
cessing stage to distribute some auxiliary information to the participants. The
protocol extends to an arbitrary number of users n resulting in a sigma proto-
col with soundness error 1

n . Beullens [17] then generalized the approach from
Katz, Kolesnikov and Wang [34] by introducing the sigma protocol with helper
paradigm. Here, the sigma protocol uses a trusted third party, called the helper,
to provide some auxiliary information to the verifier, which similarly results in
a lower soundness error of the construction. Eventually, the helper is removed
using a cut-and-choose technique. The helper paradigm and independent sim-
ilar techniques to lower the soundness error have recently led to efficient zero-
knowledge-based signature schemes [28,29,32].

1.2 Contribution

We construct a post-quantum secure digital signature scheme based on the
MinRank problem, which we call MR-DSS. Our construction obtains about half
the signature size and the public key size of a straightforward application of the
Fiat–Shamir transform to the sigma protocol by Courtois.

From a design point of view, we follow the sigma protocol with helper
paradigm of Beullens. By introducing the helper we reduce the soundness er-
ror of Courtois’ protocol from 2

3 to 1
2 . We then use a cut-and-choose technique

from [34] to remove the helper. This results in a sigma protocol with very low
soundness error, mitigating the need for multiple iterations when applying the
Fiat–Shamir transform. We further introduce several improvements to Courtois’
protocol reducing its communication complexity and, implicitly, the signature
size. Overall, we are able to decrease the signature size by a factor of roughly 2.



Further we formalize the natural extension of our scheme to ring signatures.
The possibility of such an extension was already observed by Courtois [23].
However, he did neither formalize the resulting scheme nor argue about its se-
curity or determine its parameters. We show that the extension of our scheme
matches the security definitions of ring-signatures given by Bender, Katz, and
Morselli [13]. Moreover, the ring signature scheme is characterized by a sublinear
scaling of the signature size in the amount of users, leading to particularly good
practical signature sizes, especially for moderate amounts of users.

Outline. In Section 2 we cover used notations and definitions, followed by a recap
of basic properties of sigma protocols with helpers and commitment schemes.
Subsequently, in Section 3 we recall the initial sigma protocol from Courtois. In
the following Section 4 we then describe our new scheme, including an analysis
of its public key and signature size as well as suggested parameters. Eventually,
Section 5 covers our extension of the scheme to ring-signatures.

Concurrent work Recently, Santoso et al. [44] independently proposed a vari-
ation of Courtois’ sigma protocol that achieves soundness probability 1

2 . They
adapt challenge space and responses to lower the soundness. However, their ap-
proach yields only slight improvements (in the magnitude of bytes) over Courtois’
signature size. Moreover, the authors disregard the size of the initial commit-
ments in their analysis of the communication complexity. Taking commitment
sizes into account they achieve no improvement over Courtois. We give more
details on this in Appendix C.

2 Preliminaries

For each prime power q, we let Fq denote the finite field of q elements. For
positive integers m and n, we write Mm,n(Fq) for the vector space of m × n
matrices with entries in Fq, and GLn(Fq) for the group of invertible matrices
in Mn,n(Fq). We let λ denote the security parameter. We use standard Landau
notation for complexity statements and write log for the logarithm in base 2.

Let us define the MinRank problem. By MinRank we refer to the search
version of the MinRank problem over finite fields defined as follows.

Definition 1 (MinRank problem).

– Parameters: Positive integers q,m, n, k, r with q a prime power.

– Instance: (k + 1)-tuple M of matrices M0;M1, . . . ,Mk ∈ Mm,n(Fq).

– Solution: α ∈ Fk
q such that E := M0+

∑k
i=1 αiMi has rank less than or equal

to r.



2.1 Sigma protocols with helper

Sigma protocols with helper were recently introduced by Beullens [17].
Informally, a sigma protocol with helper extends a sigma protocol by adding
a trusted party, which is called the helper. This trusted party runs a setup algo-
rithm based on a random seed at the beginning of each execution of the protocol.
The helper then sends the seed value to the prover and some auxiliary informa-
tion to the verifier. The formal definition of a sigma protocol with helper is the
following.

Helper(x)

seed
$← {0, 1}λ

aux← Setup(seed)

Send seed to the prover and aux to the verifier.

Prover(x,w, seed) Verifier(x, aux)

com,P state← P1(x,w, seed) com

ch
$← Cch

rsp← P2(P state, ch) rsp

return V (x, aux, com, ch, rsp)

Fig. 1: Structure of a sigma protocol with helper.

Definition 2 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for a relation R with challenge space C if it is of the form of Fig. 1
and satisfies the following properties:

– Completeness: If all parties follow the protocol on input (x,w) ∈ R, then
the verifier always accepts.

– 2-Special soundness: From an adversary that out-
puts with significant probability two valid transcripts
(x, aux, com, ch, rsp) and (x, aux, com, ch′, rsp′), with ch ̸= ch′ and
where aux = Setup(seed) for some seed values (unknown to the extractor),
one can efficiently extract a witness w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge: There exists a probabilistic
polynomial-time simulator that takes as input x, a random seed, and a
random challenge ch; and outputs a transcript (x, aux, com, ch, rsp), with



aux = Setup(seed), that is computationally indistinguishable from the prob-
ability distribution of transcripts of an honest execution of the protocol on
input (x,w) for some w such that (x,w) ∈ R, conditioned on the auxiliary
information being equal to aux and the challenge being equal to ch.

Every sigma protocol with helper can be transformed into a standard sigma
protocol by a cut-and-choose approach, which we outline in Section 4.2.

2.2 Commitment schemes

In our constructions we assume the existence of a non-interactive commitment
function Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ, which takes as input a pair (r,m)
consisting of λ random bits r and an arbitrary message m, and returns a com-
mitment of 2λ bits. The function Com is assumed to be computational hiding,
which informally means that the commitments do not reveal anything about the
committed message, and computational binding, which informally states that it
should not be possible to find a different message m′ that leads to the same com-
mitment. The formal definitions of these properties are given in Appendix A. In
practice, Com can be implemented by a cryptographic secure hash function.

3 The sigma protocol of Courtois

Let us briefly recall the sigma protocol of Courtois [23] for a zero-knowledge proof
of knowledge of the solution α to an instance of the MinRank problem. It follows
a three-pass design with challenge space {0, 1, 2} and achieves a soundness error
of 2

3 . The protocol is based on an additive masking of the solution vector α with
some random vector β. Initially, the prover commits to the matrices

N1 =

k∑
i=1

βiMi and N2 = M0 +

k∑
i=1

(αi + βi)Mi = N1 + E,

where E is the matrix of rank less than r from the underlying MinRank problem.
Then challenges 1 and 2 lead to revealing either β or α + β, which enables the
verifier to check that the prover followed the protocol for the computation of
either N1 or N2. In case of challenge equal to 0, the prover sends to the verifier
two matrices Z1 and Z2, which are obtained by multiplicatively and additively
masking N1 and N2 with the matrices S, T and X. Then the verifier checks
that rank(Z2 − Z1) ≤ r, which implies that rank(N2 − N1) ≤ r, i.e., that α is
a solution to the MinRank problem. See Fig. 2 for a formal description of the
protocol.

4 Improved MinRank-based signature scheme

In this section, we present an improved signature scheme based on the MinRank
problem. The scheme is constructed in three steps. First, in Section 4.1, we give



Prover(M , α) Verifier(M)

S
$← GLn(Fq), T

$← GLm(Fq)

X
$← Mm,n(Fq), β

$← Fkq

E ←M0 +

k∑

i=1

αiMi

N1 ←
k∑

i=1

βiMi, N2 ← N1 + E

Zi ← TNiS +X (i = 1, 2)

r0, r1, r2
$← {0, 1}λ × {0, 1}λ × {0, 1}λ

com0 ← Com
(
r0, (S, T,X)

)

comi ← Com
(
ri, Zi

)
(i = 1, 2)

com← (com0, com1, com2) com

ch
$← {0, 1, 2}ch

if ch = 0 then

rsp← (r1, r2, Z1, Z2)

if ch = 1 then

rsp← (r0, r1, S, T,X, β)

if ch = 2 then

rsp← (r0, r2, S, T,X, α+ β) rsp

if ch = 0 then

return
(
Com(r1, Z1) = com1

)

∧
(
Com(r2, Z2) = com2

)

∧
(
rank(Z2 − Z1) ≤ r

)

if ch ∈ {1, 2} then

Recompute Zch from rsp

return (S, T are invertible)

∧
(
Com

(
r0, (S, T,X)

)
= com0

)

∧
(
Com(rch, Zch) = comch

)

Fig. 2: The sigma protocol of Courtois for ZK proof of MinRank.

a sigma protocol with helper for a zero-knowledge proof of knowledge of the
solution to an instance of the MinRank problem. Second, the helper is removed
using a cut-and-choose technique, detailed in Section 4.2, to obtain a standard
sigma protocol. Eventually, the sigma protocol is converted to a signature scheme
by a standard application of the Fiat–Shamir transform.

Furthermore, in Section 4.3 we give several improvements to our initial de-
sign, reducing the communication complexity and, implicitly, the signature size.



4.1 Sigma protocol with helper for ZK proof of MinRank

On a high level, we use the helper as a trusted third party to provide the non-
secret-key dependent commitments. This allows us to decrease the challenge
space to {0, 1}, since the prover has to commit only to a single value. For chal-
lenge 1 the prover then allows the verifier to check that he followed the protocol
when computing the commitment, while for challenge 0 he proves his knowledge
of the solution to the MinRank problem.

More precisely, the helper provides the non-secret-key dependent commit-
ments com0 and com1 of Fig. 2. He then sends those commitments to the verifier
and the used randomness to the prover. The prover only needs to provide the
key-dependent commitment com2, after recomputing the helper-generated data
from the given randomness seed. The challenge space reduces to {0, 1}, since
the helper-provided commitment does not have to be challenged. Analogously
to before, in case of challenge 1 the prover reveals the masked secret α + β,
allowing the re-computation of N2, while for challenge 0 he answers with Z1 and
Z2 allowing to verify his knowledge of the MinRank solution. Our full protocol
is detailed in Fig. 3.

Theorem 1 (MinRank with Helper). Let Com be a commitment scheme
which is computational binding and hiding. Then the protocol detailed in
Fig. 3 satisfies Definition 2 for sigma protocols with helper for challenge space
C = {0, 1}.

Proof. We have to prove that the protocol of Fig. 3 fulfills the notions of com-
pleteness, 2-special soundness, and special honest-verifier zero-knowledge given
in Definition 2. In the following, we let rsp = (r0, r2, Y, γ) denote the response
for challenge ch = 1. In particular, an honest prover sends Y := (Y1, Y2, Y3) =
(S, T,X) and γ = α+ β.
Completeness. If all parties follow the protocol, then it is clear that the verifier
accepts, since

rank(Z2 − Z1) = rank
(
T (N2 −N1)S

)
= rank(N2 −N1) = rank(E) ≤ r.

2-Special soundness. Suppose that an adversary knows two valid transcripts

(M , aux, com, ch, rsp) and (M , aux, com, ch′, rsp′)

with ch ̸= ch′ and where aux = Setup(seed) for some value of seed, which is
unknown to the adversary. We have to prove that the adversary can efficiently
compute a solution to M .

Without loss of generality, assume that ch = 1 and ch′ = 0. Since the verifier
accepts the response rsp, we have that com0 = Com(r0, Y ) and

com2 = Com
(
r, Y2(M0 +

∑k
i=1 γiMi)Y1 + Y3

)
.

From the computational binding property of the commitment we now conclude
that Y = (S, T,X) since Com(r0, Y ) = com0 = Com

(
r0, (S, T,X)

)
.



Moreover, from the verifier accepting the response rsp′, we know that com2 =
Com(r, Z ′2). Thus, we find analogously that

Com
(
r, T (M0 +

∑k
i=1 γiMi)S +X

)
= com2 = Com(r, Z ′2),

implying Z ′2 = T (M0 +
∑k

i=1 γiMi)S + X. Further, by the helper behaving
honestly we know that com1 = Com(r1, T

∑k
i βiMiS+X) while the verifier only

accepts rsp′ if com1 = Com(r1, Z
′
1), giving Z ′1 = T (

∑k
i=1 βiMi)S +X.

In turn, this gives that

Z ′2 − Z ′1 =
(
T (M0 +

∑k
i=1 γiMi)S +X

)
−

(
T (

∑k
i=1 βiMi)S +X

)
= T

(
M0 +

∑k
i=1(γi − βi)Mi

)
S = T

(
M0 +

∑k
i=1 δiMi

)
S,

where δ := γ − β ∈ Fk
q . Since Y = (S, T,X) is known, we can compute δ by

solving the linear system∑k
i=1 δiMi = Y −12 (Z ′2 − Z ′1)Y

−1
1 −M0.

Finally, from the verifier accepting rsp′ we know that rank(Z ′2 − Z ′1) ≤ r which
implies

rank
(
M0 +

∑k
i=1 δiMi

)
= rank

(
T
(
M0 +

∑k
i=1 δiMi

)
S
)
= rank(Z ′2 − Z ′1) ≤ r,

thus δ is a solution to the instance M .
Special honest-verifier zero-knowledge. Define a simulator that takes as
input M , a random seed seed, and a random challenge ch; and outputs a valid
transcript (M , aux, c̃om2, ch, r̃sp) computed as follows:

1. Generate S, T,X, β,N1, r0, r1, com0, com1, aux from seed as a honest helper
would do.

2. If ch = 1 then pick a random r ∈ {0, 1}λ and a random γ̃ ∈ Fk
q , and set Ñ2 =

M0 +
∑k

i=1 γ̃iMi, c̃om2 = Com(r, T Ñ2S +X), and r̃sp =
(
r, r0, (S, T,X), γ̃

)
.

3. If ch = 0 then pick a random r ∈ {0, 1}λ and a random R ∈ Mm,n(Fq)

of rank r, and set Z̃2 = T (N1 + R)S + X, c̃om2 = Com(r, Z̃2), and r̃sp =

(r, r1, TN1S +X, Z̃2).

Then, by construction, (M , aux, c̃om2, ch, r̃sp) is a valid transcript where r̃sp is
uniformly distributed in

{0, 1}λ × {0, 1}λ ×GLn(Fq)×GLm(Fq)×Mm,n(Fq)× Fk
q

∪ {0, 1}λ × {0, 1}λ × {(U, V ) : U, V ∈ Mm,n(Fq), rank(U − V ) = r}.

Since also rsp is uniformly distributed in the above set, we get that rsp and r̃sp
follow the same distribution. Moreover, c̃om2 is completely determined by r̃sp
in the same way that com2 is completely determined by rsp. This implies that



the transcripts (M , aux, c̃om2, ch, rsp) and (M , aux, com, ch, rsp) follow the same
distribution.

Eventually, since the commitment com1−ch is never opened, by the computa-
tional hiding property of the commitment the transcripts are indistinguishable.

⊓⊔

4.2 Removing the Helper

In order to remove the helper, we use a cut-and-choose technique of Katz et
al. [34] that proceeds as follows. The prover computes several setups and sends
all generated auxiliary information to the verifier. The verifier then chooses a
certain amount of the setups to execute, i.e., run the normal protocol based on
the seeds of the chosen setups. Additionally, the prover sends all seeds belonging
to the setups that are not executed to the verifier, allowing him to check that
those setups have been computed honestly.

More precisely, we let the prover compute s setups and the verifier has to
choose a subset of τ setups to execute. We illustrate this procedure schematically
in Fig. 4. Now, if the soundness error of a single execution of the protocol with
helper is p then the soundness error of the whole construction becomes

pτ := max
0≤i≤τ

(
s−i
τ−i

)
pτ−i(

s
τ

) . (1)

Therefore assume that the prover computed a total of i setups dishonestly to
provide valid responses in the online phase. Since the prover discloses all seeds
belonging to setups that have not been executed, the cheating can only be hidden
from the verifier if all these i setups are executed. The probability for this to
happen is

(
s−i
τ−i

)
/
(
s
τ

)
. Now, the prover still needs to provide valid responses for

the τ − i executed and honestly computed setups, in which he succeeds with
probability pτ−i. For a more formal proof we refer to [10].

4.3 Further improvements

In order to reduce the communication complexity of the sigma protocol of Fig. 4,
we apply various improvements outlined in the following.

Merkle-tree. First, we combine the com2,i in a Merkle-tree, with com2,i being
the i-th leaf of the tree, where we label the root of the tree ρ. Then instead
of sending com2,i, ∀i, we only send ρ as a commitment. Later we then provide
missing nodes of the tree to the verifier to be able to recompute the root ρ.

Seed-tree. Similarly, we optimize the transmission of the seeds by using a seed-
tree that expands an initial root into two seeds via a hash function. From there
every node of the tree is expanded in a similar fashion, until the tree reaches a
depth of ⌈log s⌉, i.e., it contains at least s leaves. Now we declare seedi to be the
i-th leaf of that tree. The transmission of the seeds then only requires to reveal
a certain (fewer) number of nodes of the tree.



Single initial commitment. Instead of initially sending the root of the Merkle-
tree ρ together with all auxi’s as commitment, we just send a single commitment
com := Com(ρ, aux1, . . . , auxn). Later we then provide the missing inputs similar
to the missing nodes of the Merkle-tree so that the verifier can recompute com.

Sending a rank-r matrix. In the case of challenge equal to 0 instead of sending
Z1, Z2 as response, we send Z1, Z1 − Z2. Note, that the response still carries
the same information. However, the benefit lies in Z1 − Z2 being a rank-r ma-
trix, which for small r has a shorter description length. Precisely, we can write
Z1 − Z2 = XY , where X is an m × r matrix and Y an r × n matrix. Hence,
instead of sending the entries of Z2, we can send the entries of X and Y , which
requires to transmit (m + n)r log q bits instead of mn log q bits, i.e., we obtain
an improvement as long as r < mn/(m+ n).

4.4 Public key size

The public key of the scheme is the MinRank instance M . Courtois [23] generates
M0, . . . ,Mk−1 from an initial seed and chooses Mk such that there exists a
solution to the MinRank instance. Precisely, for a random matrix E ∈ Mm,n(Fq)
of rank r and a random secret key α ∈ Fk

q with αk ̸= 0, he lets

Mk := α−1k

(
−E +M0 +

∑k−1
i=1 αiMi

)
.

The public key then consists of the seed and Mk and, thus, has a size of λ +
mn log q bits. We improve on this by showing that any generic MinRank instance
can be transformed into a canonical form which yields a shorter description
length for its matrices.

More precisely, let L be the (k + 1)×mn matrix whose i-th row consists of
the entries of Mi in row-major order, for i = 1, . . . , k and whose (k + 1)-th row
is formed by the entries of M0. Now, row operations on L correspond to linear
transformations of the variables αi, i.e., we can apply elementary row operations
without affecting the existence of a solution. Hence, we assume

L =

(
I

L′
0 . . . 0

)
, (2)

where I is the k × k identity matrix. Here, we restrict to keys where the first k
columns and k rows of L form a matrix of full rank. However, since we consider
random instances this is a constant fraction of the whole keyspace.

The public key is now generated as follows. First, from a random seed of λ
bits, generate the first k rows of L′, from which the matrices M1, . . . ,Mk can be
derived following Eq. (2). Then generate a random m × n matrix E of rank r,
a random β ∈ Fk

q , and compute F := E −
∑k

i=1 βiMi. Finally, let f1, . . . , fk be
the first k entries of F in row-major order, and let M0 := F −

∑k
i=1 fiMi and

αi := βi + fi for i = 1, . . . , k. This ensures that the last row of L starts with k
zeros. The compressed public key now consists of the seed and the last mn− k
entries of M0 (the first k entries are all zero) and so its size is λ+(mn− k) log q
bits.



4.5 Signature size

The signature size after the Fiat–Shamir transform is determined by the commu-
nication size of messages send from the prover to the verifier. For our improved
version of the protocol (see Section 4.3) this communication includes:

1. initial commitment of size 2λ,
2. missing nodes of the Merkle-tree to compute ρ,
3. seed values seedi for i /∈ I,
4. missing auxiliary information auxi to compute com :=Com(ρ, aux1, . . ., auxn),
5. responses rspi for i ∈ I.

In the online phase the verifier can compute all τ values com2,i for i ∈ I.
Hence, due to the usage of a Merkle-tree, the prover needs to send at most
⌈τ log s

τ ⌉ tree-nodes, each of size 2λ, to allow the verifier the re-computation of
the root ρ. Similarly, the usage of the seed-tree requires the prover to reveal at
most ⌈τ log s

τ ⌉ nodes of the tree, each of size λ, to enable the verifier to recompute
all s− τ seeds seedi for i /∈ I.

These seeds allow to compute auxi := (com0,i, com1,i) for i /∈ I. Further in
the online phase the verifier can compute one of either com0,i or com1,i for i ∈ I.
In order to finally re-compute com the verifier, now, misses τ values comj,i,
not obtained in the online phase, which have to be provided by the prover,
corresponding to τ · 2λ bits of communication.

Eventually the average size of each of the τ responses is

|rsp| =
(
mn+ r(m+ n)

)
log q

2︸ ︷︷ ︸
ch=0

+
λ+ k log q

2︸ ︷︷ ︸
ch=1

.

Indeed, in the case of ch = 0 the response is composed of one m× n matrix and
one rank-r (m× n)-matrix over Fq; while in the case of ch = 1 it consists of the
seed used to derive the matrices (S, T,X) and a vector of length k over Fq.

In total we find a communication complexity of

C := 2λ︸︷︷︸
1)

+3λ
⌈
τ log

s

τ

⌉
︸ ︷︷ ︸

2) + 3)

+ τ · 2λ︸ ︷︷ ︸
4)

+ τ · |rsp|︸ ︷︷ ︸
5)

, (3)

while the soundness of the protocol is pτ detailed in Eq. (1).

4.6 Parameters

In this section, we propose parameters for our signature scheme targeting NIST’s
security categories I, III, and V and detail the corresponding signature and public
key sizes.

We estimate the security of our parameters by using the recent hybrid-
MinRank approach from [6]. Given 0 ≤ a ≤ n, this hybrid-MinRank approach



Category λ q m n k r KS (a) SM(a) big-k(a)

I 128 16 16 16 142 4 158(8) 160(8) 223(0)

III 192 16 19 19 167 6 231(8) 234(8) 343(0)

V 256 16 22 22 254 6 303(11) 295(11) 416(0)

Table 1: Estimated bit-security of proposed parameter sets using ω = 2.

reduces the cost of solving a rank-r MinRank problem with K matrices in
Mm,n(Fq) to the cost of solving qar smaller instances with only K−am matrices
in Mm,n−a(Fq) and rank r. The complexity of the smaller instances is estimated
by using the kernel-search algorithm [31], the Support-Minors modeling [4], and
the big-k algorithm [24]3. Notice that we do not consider the Kipnis-Shamir [35],
and Minors [27] modelings, since it was recently proven that these modelings are
less efficient than Support-Minors [5].

The complexity of the aforementioned algorithms depends on the linear alge-
bra constant 2 ≤ ω ≤ 3, where the complexity of multiplying two n×n matrices
is O(nω). All our bit security estimates are done for the conservative choice of
ω = 2. Also, we assume that multiplying two elements in Fq costs (log q)2 bit op-
erations. Table 1 states the parameter sets for our scheme targeting the different
security categories. The column KS contains the complexity of the kernel-search
algorithm, while SM indicates the complexity of the Support-Minors modeling.
The value of a inside the parenthesis shows the hybridization parameter of the
hybrid-MinRank approach from [6].

Avoiding random solutions. Further, it is known that a set of k′ randomly chosen
matrices in Mm,n(Fq), in expectation, does not to span a rank r matrix when
k′ < (m− r)(n− r) [24, Sec. 24.2]. Hence we enforce k + 1 < (m− r)(n− r) in
order to avoid random solutions to the underlying MinRank problem.

Table 2 gives the signature and public key sizes obtained for the proposed
parameters. We compare our scheme to the original scheme by Courtois. Here,
we obtain an optimal signature size of our scheme for cut-and-choose parameters
τ = λ and s = 2λ (compare to Section 4.2). For this choice, using Merkle- and
seed-trees (as described in Section 4.3) yields signature size improvements (only)
on average.

Nevertheless, our scheme improves significantly on Courtois’ design. In terms
of signature size we, e.g., obtain a reduction by a factor of 2.4 for category I,
while achieving a public key reduction by 1.97 using the improvement described
in Section 4.4.

Note that the nature of the MinRank problem involves the transmission
of matrices between the corresponding parties, which leads in general to larger
signatures compared to schemes that only involve vector exchanges. Nevertheless,

3 The big-k algorithms is called big-m in [24].



Category Signature (KB) Public key (B)
Courtois MR-DSS Courtois MR-DSS

I 65 27 144 73

III 135 60 205 121

V 248 106 274 147

Table 2: Signature sizes (in kilobytes) and public key sizes (in bytes) for suggested
parameters of our new scheme in comparison to Courtois’ scheme. The signature
size of our scheme is computed by setting τ = λ and s = 2λ in Eq. (3)

the signature size of our construction gets close to being competitive to other
NIST PQC candidates that are not based on structured problems. As for example
to those of SPHINCS+, which achieves roughly 17kB signatures for category I.

5 MinRank-based ring signatures

In the following we formalize the extension of our MinRank-based signature
scheme to ring-signatures. We follow the formalism and the security definitions
for ring signatures given by Bender, Katz, and Morselli [13]. We refer as a ring
(of users) to a list of public keys R = (pk1, . . . , pku). The formal definition of
a ring signature scheme is given in Appendix B. An essential property of a
ring signature scheme is that no coordination between the potential users of
the scheme is needed. First, anyone can generate keys independently using Gen.
Second, at the time of signing a message msg, a particular user holding a secret
key sk uses its own public key along with any set of u− 1 public keys from other
users to create a ring R and computes σ ← Signsk(msg,R). Anyone knowing
R can verify the signature σ of the message msg, and guarantee that msg was
signed by someone holding a secret key with corresponding public key in R. In
the following we refer to the holder of sk as the signer.

A desired property of a ring signature scheme is to preserve the anonymity of
the signer, i.e., informally speaking, the verifier can not identify the signer among
all members of R. Another fundamental security property is the unforgeability
for fixed rings. Roughly speaking, for a given ring R, without knowing any of
the secret keys corresponding to public keys in R, an adversary is not able to
produce a valid signature. Formal definitions of those security properties are
given in Appendix B.1

5.1 Extending to ring signatures

Let us briefly outline the idea of how to extend our signature scheme to a ring-
signature scheme. The public key of each user is a matrix R, while the instance
M (the public key of our regular signature scheme) is now a public parameter
of the ring-signature scheme. Each user crafts R, such that he knows a linear



combination of the Mi’s that added to R yields a low-rank matrix, i.e., he knows
a solution to the instance (M , R), which defines his secret key. Recall that a ring
is defined as u public keys R := (R1, R2, . . . , Ru). A ring signature is obtained
by invoking the signing function of our regular scheme with (M ,R) as public
key and the known solution as private-key.

Formal definition of the scheme In the following we let MR-Sign and
MR-Verify denote the signing and verification function of our signature scheme
outlined in Section 4. Further, let M := (M0,M1, . . . ,Mk) ∈

(
Mm,n(Fq)

)k+1 be
a public parameter of the scheme (generated from some public Initseed ∈ {0, 1}λ).
In the following R is the public-key corresponding to secret-key α and the ring
is R = (R1, . . . , Ru).

Gen(1λ) :

1. Choose random secret key α := (α1, . . . , αk) ∈ Fk
q ,

2. Set the public key to R = −
(
M0 +

∑k
i=1 αiMi

)
+E, where E ∈ Fm×n

q is a
randomly chosen rank r matrix.

3. Output (R,α)

Signα(msg,R) :

1. Set γ ← (α, εj), where εj ∈ Fu
q denotes the j-th canonical vector.

2. Output MR-Signγ(msg)

VerifyR(msg, σ) :

1. Output MR-Verify
M̃

(msg, σ), where M̃ := (M ,R)

The proof of correctness as well as the proofs of our scheme fulfilling the
security notions of anonymity with regard to adversarially-chosen keys and un-
forgeability against fixed rings is given in Appendix B.2

5.2 Parameters of the scheme

Next we derive parameter sets for our constructed ring signature scheme.
Therefore, we need to make some observations on the security of the constructed
instances. Let us start with a remark on the amount of users a certain parameter
set can support.

Limitation on the number of users A given parameter set for our MinRank-
based ring signature scheme can not afford an unlimited number of users. This
is because for a ring of size u we can forge a signature by solving a MinRank
instance with u + k + 1 matrices in Mm,n(Fq). Such an instance turns easy if
u+k+1 is big enough. By using the big-k algorithm [23] one solves any MinRank
problem with parameters (m,n, k′, r) in polynomial time Poly(m,n, k′) as long



# users 8 16 32 64 128 256 512 1024 4096

q 16 16 16 16 16 16 16 16 16

m 16 16 18 20 23 29 36 46 81

n 16 16 18 20 23 29 36 46 81

k 102 102 102 124 158 216 320 340 560

r 5 5 6 6 6 7 7 9 12

bit-security 144 144 154 164 174 205 198 190 145

Table 3: Suggested parameters for our ring signature an their estimated bit-
security.

as k′ ≥ m(n− r). Hence in both cases, i.e., for the one-user and the ring version
of our scheme we make sure that

k′ < m(n− r). (4)

Still, in the case k′ < m(n − r), the attacker can succeed with probability
qk

′−m(n−r). Hence, the complexity of the algorithm becomes

qm(n−r)−k′
· Poly(m,n, k′).

We take this attack into account when deriving parameters. Further, we enforce
u+ k+1 ≤ (m− r)(n− r) in order to avoid random solutions to the underlying
MinRank problem.

Attack scenarios To forge a signature for a given ring R := (R1, R2, . . . , Ru)
one has to solve an instance of the rank-r MinRank problem with matrices
(M ,R) ⊂ Mm,n(Fq), where M := (M0;M1, . . . ,Mk) is the fixed set of matrices
of the scheme. We consider two attack scenarios. First, due to the construction
of our ring signature, one can fix to zero the coefficients of all but one matrix
in R and still the remaining problem has a solution. That is, for any 1 ≤ i ≤ u,
the rank-r MinRank problem defined on the k+1 matrices M0+Ri,M1, . . . ,Mk

has a solution. Finding this solution corresponds to solving a MinRank instance
with parameters (q,m, n, k + 1, r). In the second scenario the attacker aims at
finding a solution to the instance M0,M1, . . . ,Mk, R1, . . . , Ri, for 2 ≤ i ≤ u
which has i solutions. We then take the minimum time complexity obtained in
both scenarios to derive the bit complexity.

Table 3 shows a list of parameters for our ring signature achieving NIST
category I security.

5.3 Public key and signature size

Suppose we have a ring with u users. The public key size for a ring of u users is
given by

λ+ u ·mn log q.



#users 23 24 25 26 27 28 210 212 Assumption Security

MRr-DSS 27 27 32 36 45 64 145 422 MinRank Cat. I

KKW [34] - - - 250 - - - 456 LowMC Cat. V

Raptor [37] 10 - - 81 - 333 1290 5161 MSIS / MLWE 100 bit

EZSLL [26] 19 - - 31 - - - 148 MSIS / MLWE Cat. II

Falafl [15] 30 - - 32 - - - 35 MSIS / MLWE Cat. I

Calamari [15] 5 - - 8 - - - 14 CSIDH 128 bit
(60bit)

LESS [8] 11 - - 14 - - - 20 Code Equiv. 128 bit

Table 4: Ring signature size (in kilobytes) of our ring signature in comparison
to recent proposals.

This means that the public key size is linear in the number of users u.
The signature size is given by f(m,n, k+u, r, q), where f(m,n, k, r, q) denotes

the signature size with one user and parameters (m,n, k, r, q). Asymptotically
we find

f(m,n, k + u, r, q)

f(m,n, k, r, q)
= O

(
λ/ log q +mn+ k + u

λ/ log q +mn+ k

)
= O

(
mn+ k + u

mn+ k

)
,

assuming that λ
log q = O (mn). Since we know from Eq. (4) that k < mn we

achieve a signature size that scales with the number of users u roughly as
O
(

u
mn

)
.Note that as long as mn is a function in u that tends to infinity for

growing u, this corresponds to a sublinear scaling. Moreover, for practical pa-
rameters the large denominator allows us to achieve a competitive signature size
for low to moderate amounts of users.

Table 4 states the signature sizes of our ring signature MRr-DSS achieved
for different amounts of ring sizes using the parameters detailed in Table 3. We
compare our parameters to various recent developments. Note that parameters
for NIST category I are not available for all designs, so we also indicate the
achieved security level.

The most compact ring signatures are obtained by the Calamari construction
of Beullens, Katsumata, and Pintore [15], which follows a group-action-based
construction similar to classical discrete logarithm based schemes. However,
there is some doubt about the quantum security of its hardness assumption.
Moreover, the chosen parameters offer at most 60 bits of quantum security em-
ploying NIST metrics [43]. Recently, Barenghi et al. [8] adapted the same idea
but instantiated the group action via the code equivalence problem. However,
despite recent efforts [9, 16] motivated by cryptographic constructions [7, 8, 18],
the code equivalence problem has not yet reached the same level of cryptanalytic
maturity as the MinRank problem.



Apart from group action based constructions, for a large number of users the
Falafl scheme [15] yields the best signature size, due to its logarithmic depen-
dence on the ring size.

However, for low to moderate amounts of users (≤ 27) our scheme yields com-
petitive performance. Even though some of the considered schemes might achieve
(slightly) lower signature sizes in this regime, those are all based on structured
lattice-based assumptions. Our scheme yields a solid alternative to this trend by
being based on the hardness of random instances of a non-structured problem.
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A Commitment scheme

In this section we give the formal definition of a computation hiding and com-
putation binding commitment scheme.

Definition 3 (Computational hiding). We say that Com is computationally
hiding if for all polynomial time algorithms A, and every pair of messages m,
m′ the advantage AdvhidingCom (A,m,m′) is a negligible function of the security pa-
rameter λ, where

AdvhidingCom (A,m,m′) :=

∣∣∣∣∣ Pr
bits

$←{0,1}λ

[
A
(
Com(bits,m)

)
= 1

]
− Pr

bits
$←{0,1}λ

[
A
(
Com(bits,m′)

)
= 1

]∣∣∣∣∣ .
Definition 4 (Computational binding). We say that Com is computation-
ally binding if for all polynomial time algorithms A, the advantage AdvbindingCom (A)
is a negligible function of the security parameter λ, where

AdvbindingCom (A) = Pr
[
Com(bits,m) = Com(bits′,m′) | (bits,m, bits′,m′)← A(1λ)

]
.

B Ring signatures

In the following we give the formal definition of a ring signature scheme.

Definition 5 (Ring signature scheme). A ring signature scheme is a triple
of polynomial time algorithms (Gen, Sign,Verify) that generates keys, sign a mes-
sage, and verify the signature of a message, respectively. Formally:

– Gen(1λ) outputs a key pair (pk, sk), where pk denotes the public key and sk
its corresponding secret key.

– Signski(msg,R) outputs a signature σ of the message msg with respect to the
ring R = (pk1, . . . , pku). Here it is assumed that: (1) (pki, ski) is a valid
key-pair output by Gen; (2) |R| ≥ 2; and (3) each public key in the ring is
distinct.

– VerifyR(msg, σ) verifies a signature σ of the message msg with respect to R.

We say that a ring signature scheme is correct if it satisfy the following correct-
ness condition: for every λ and for every set of outputs {(pki, ski)}ui=1 of Gen(1λ)
it holds

VerifyR(msg, Signski(msg,R)) = 1,

where R = (pk1, . . . , pku).

B.1 Security definitions

Next we give the security definitions for ring signatures following Bender, Katz,
and Morselli [13].



Definition 6 (Anonymity w.r.t adversarially-chosen keys). Let
(Gen, Sign,Verify) be a ring signature scheme, u(·) a polynomial, and let A be
a PPT adversary. Consider the following game:

1. The key pairs {(pki, ski)}
u(λ)
i=1 are generated using Gen(1λ), and the set of

public keys S := {pki}
u(λ)
i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that for every R and 1 ≤ i ≤
u(λ) it holds OSign(i,msg,R) := Signski(msg,R), where pki ∈ R.

3. A outputs a message msg and a ring R that contains at least two public keys
pki0 , pki1 ∈ S.

4. A challenge signature σ ← Signskib (msg,R), where b
$← {0, 1} is a random

bit, is given to A.
5. A outputs a bit b′, and it succeeds if b′ = b.

We say (Gen, Sign,Verify) achieves Anonymity w.r.t adversarially-chosen keys
if, for any PPT A and any polynomial u(·), the success probability of A in the
aforementioned game is negligibly close to 1

2 .

Note that in contrast to the weaker security notion of basic anonymity the
property of anonymity w.r.t adversarially-chosen keys allows the adversary to
inject own public keys in R. This holds for the usage of the oracle in step 2 as
well as when providing the challenge data in step 3.

Definition 7 (Unforgeability against fixed-ring attacks). We say that a
ring signature (Gen, Sign,Verify) is unforgeable against fixed-ring attacks if for
any PPT adversary A and for any polynomial u(·), the probability that A succeeds
in the following game is negligible:

1. The key pairs {(pki, ski)}
u(λ)
i=1 are generated using Gen(1λ), and the set of

public keys R := {pki}
u(λ)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(i,msg) outputs
Signski(msg,R).

3. A outputs (msg∗, σ∗), and succeeds if Verify(msg∗, σ∗) = 1 and also A never
made a query of the form OSign(∗,msg∗).

B.2 Proofs

In the following we prove the correctness, anonymity, and unforgeability of our
ring-signature scheme defined in Section 5.1.

Correctness Let εi be the i-th canonical vector in Fu
q and ski denote the

secret key of the i-th user in the ring R. Clearly, γi := (ski, εi) is a solution
to the MinRank problem defined on M̃ := (M ,R). The correctness of the ring
signature scheme now follows from the correctness of our basic signature scheme
by observing that

VerifyR
(
msg, Signski(msg,R)

)
= MR-Verify

M̃

(
msg,MR-Signγi

(msg)
)
.



Anonymity w.r.t adversarially-chosen keys We proof anonymity w.r.t
adversarially-chosen keys in the random oracle model by showing the existence
of a simulator that, without knowing any of the secret keys corresponding to one
of the public keys in the ring, can produce signatures that are indistinguishable
from signatures build by a legitimate user.

First note that from the HVZK property of our sigma protocol in the random
oracle model it follows that there exists a simulator S ′ which is able to provide
values σ′ indistinguishable from legitimate signatures produced with MR-Sign. To
construct S ′ we simply follow the Fiat–Shamir transform but using the simulator
S of our sigma protocol whenever a valid transcript is needed.

Now, recall that the signing operation of our ring signature is a call to
MR-Sign with adapted public-key (M ,R), where

Signski
(msg,R) = MR-Signsk′

i
(msg).

Therefore we can use S ′ as a simulator to obtain values σ′ which are indis-
tinguishable from legitimate ring signatures.

Now, let G0 denote the game described in Definition 6. We modify step 4
in G0 to define a new game G1. Instead of σ ← Signskib (msg,R), the output of
step 4 in G1 is σ′ ← S ′(msg,R). Notice G0 and G1 are indistinguishable games.
Hence, the advantage of any adversary A against G0 and G1 is the same. Also,
the challenge σ′ given in G1 does not depend on the bit b chosen in step 3.
Therefore, the advantage of an adversary A against game G1 is zero.

Unforgeability against fixed-ring attacks Forging a signature for a fixed
ring R, i.e., winning the game given in Definition 7, directly reduces to forging a
signature for MR-Sign with public-key (M ,R). The unforgeability for MR-Sign
now follows from the Fiat–Shamir transform applied to the sigma protocol and
its HVZK property.

C A note on Santoso et al.’s scheme

The parameters given by Santoso et al. [44] to obtain a security level of λ bits
are shown in Table 5.

Parameter set λ q n m k r

A 128 2 26 26 208 13

B 192 2 33 33 330 17

C 256 2 39 39 468 20

Table 5: Parameter sets proposed in [44].



Missing commitments in the signature size The authors of [44] disregard
the size of the initial commitments in their analysis of the communication com-
plexity. Taking commitment sizes into account (2λ bits for each hash, to be
collision-resistant) the signature size of [44] is given by

λ

(
29

2
λ+mn log q +

k

2
log q

)
. (5)

While the signature size of Courtiois’ scheme is given by

λ

log(3/2)

(
20

3
λ+

2

3
mn log q +

2

3
k log q

)
. (6)

Random solutions As stated in Section 4.6, a random instance of the
MinRank problem with parameters (q, n,m, k, r) has, in expectation, nsol :=
qk−(m−r)(n−r) solutions. Some algorithms, as e.g., the kernel search algorithm,
can directly benefit from multiple solutions by obtaining a speed-up of magni-
tude nsol > 1 in those cases. It turns out that the parameter sets given in [44]
contain a large amount of solutions, affecting security.

New security estimates and signature size Table 6 shows the bit-security
of the kernel search algorithm for parameters suggested in [44]. Note that all the
parameter sets are far below the claimed bit-security, which is 128 for set A, 192
for set B, and 256 for set C. Also, observe that the signature size is larger than
the one of standard Courtois for all suggested parameters.

Parameters
set Algorithm Bit-security

Courtois’
signature size
using Eq. (6)

Santoso et al.’s
signature size
given in [44]

Santoso et al.’s
signature size
using Eq. (5)

A kernel
search 88 38.54 KB 18.81 KB 41.19 KB

B kernel
search 121 89.19 KB 44.50 KB 94.64 KB

C kernel
search 159 162.01 KB 82.15 KB 170.84 KB

Table 6: Bit-security and signature size for parameter sets proposed in [44].



Helper(M)

seed
$← {0, 1}λ

Generate S ∈ GLn(Fq), T ∈ GLm(Fq), X ∈ Mm,n(Fq), and β ∈ Fkq from seed.

Generate r0
$← {0, 1}λ and r1

$← {0, 1}λ from seed

N1 ←
∑k
i=1 βiMi

com0 ← Com(r0, (S, T,X))

com1 ← Com(r1, TN1S +X)

aux← (com0, com1)

Send seed to the prover and aux to the verifier.

Prover(M , α, seed) Verifier(M , aux)

Regenerate S, T,X, β, r0, and r1 from seed.

Recompute N1.

N2 ← N1 + E, Zi = TNiS +X (i = 1, 2)

r2
$← {0, 1}λ, com2 ← Com(r2, TN2S +X) com2

ch
$← {0, 1}ch

if ch = 0 then

rsp← (r1, r2, Z1, Z2)

if ch = 1 then

rsp←
(
r0, r2, (S, T,X), α+ β

)
rsp

if ch = 0 then

return
(
Com(r1, Z1) = com1

)

∧
(
Com(r2, Z2) = com2

)

∧
(
rank(Z2 − Z1) ≤ r

)

if ch = 1 then

Recompute N2, Z2 from rsp

N2 ←M0 +
∑k
i=1(αi + βi)Mi

Z2 ← TN2S +X

return (S, T are invertible)

∧
(
Com

(
r0, (S, T,X)

)
= com0

)

∧
(
Com(r2, Z2) = com2

)

Fig. 3: Structure of a sigma protocol with helper for ZK proof of MinRank.



Prover(x,w) Verifier(x)

for i ∈ {1, . . . , s} do

seedi
$← {0, 1}λ

(com0,i, com1,i)← Setup(seedi)

auxi = (com0,i, com1,i)

com2,i ← P1(x,w, seedi)

end for auxi, com2,i, ∀i

I ⊆ {1, . . . , s}, |I| = τ

chi
$← C, ∀i ∈ II, chi, ∀i ∈ I

rspi ← P2(x,w, seedi, chi), ∀i ∈ I
rspi, ∀i ∈ I

seedi, ∀i /∈ I

for i ∈ {1, . . . , s} \ I do

if auxi 6= Setup(seedi) then

return false

return
∧

i∈I
V (x, auxi, com2,i, chi, rspi)

Fig. 4: Sigma protocol obtained by removing the helper from the protocol in
Fig. 3. P1, P2 and V relate to the actions performed by the prover and verifier
in Fig. 3 respectively.
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