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Abstract— This paper investigates the economic viability of replacing the high-voltage battery pack of a 

power-split hybrid electric vehicle (HEV) and a plug-in hybrid electric vehicle (PHEV) by estimating the impact 

of battery ageing on the fuel economy, drivability capability and electric range. The HEV is modelled first, an 

optimal energy management strategy based on dynamic programming is then implemented, and experimental 

characterization data for the battery cell is presented. The batteries are tested to a heavily aged state, with up 

to an 84% loss of capacity. The battery pack payback period is estimated by assessing the vehicle operative costs 

in terms of fuel and electricity as obtained through numerical simulations as a function of battery ageing. 

Replacing the battery pack at the conventional end-of-life limit of 80% residual capacity is suggested not to be 

convenient from an economic standpoint for both the HEV and the PHEV. On the other hand, acceptable 

payback periods (i.e. 2 to 5 years) can be achieved for the battery pack when being replaced at 20% to 40% 

residual capacity. The proposed methodology can be implemented to advise an HEV or PHEV user regarding 

the benefit of replacing the battery pack due to excessive ageing. 

Index Terms— battery aging, battery state-of-health (SOH), drivability, electrified powertrain, fuel economy, 

hybrid electric vehicle (HEV), optimal control 
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I. INTRODUCTION 

Hybrid electric vehicles (HEVs) are a promising technology to reduce tailpipe emissions without depending on 

charging infrastructure like pure electric vehicles [1][2][3]. In HEVs, high-voltage batteries play a crucial role 

providing a second bidirectional energy source in the vehicle. Internal combustion engines (ICEs) in HEVs can operate 

more efficiently through their synergetic cooperation with the electric motor/generators (EMs) that are powered by 

batteries [4][5][6]. Moreover, vehicle batteries enable storing electrical energy harvested in regenerative braking for 

future use as propelling energy [7]. It is therefore crucial that the battery operates effectively throughout the entire 

HEV lifetime, even as the battery ages significantly [8][9].  

As batteries age their properties change; internal electrical resistance increases, capacity decreases, and the open-

circuit voltage characteristics may change, leading to reduced capability [10][11]. Ageing of high-voltage batteries for 

electrified vehicles is a growing research topic as electrified vehicles become more prevalent and those in the field 

reach an advanced stage of life [12][13].  In particular, a compelling research question arises concerning the 

convenience of replacing the battery pack over the electrified vehicle lifetime. On one hand, replacing the battery pack 

at the conventional end-of-life limit of 80% residual capacity ensures that the electrified vehicle achieves similar 

performances in terms of fuel and energy economy and drivability capability. On the other hand, even though high-

voltage batteries can be reused in a second-life application [14], replacing an HEV battery pack is a costly operation 

for the user and involves additional CO2 emissions to produce a new battery pack [15]. It becomes therefore crucial to 

develop numerical tools capable of properly assessing the impact of battery pack ageing on the energy economy 

performance and drivability of electrified vehicles. Such analysis allows providing an estimate to HEV and PHEV 

users of how much fuel and electrical energy consumptions increase, the electric range decreases and acceleration 

capability decreases as the high-voltage battery progressively ages. Moreover, the payback period for replacing the 

battery pack of the electrified vehicle can be estimated based on the forecasted worsening of fuel and electrical energy 

economies due to battery ageing. The HEV and PHEV user could in turn decide whether to replace the battery pack at 

the conventional end-of-life limit of 80% residual capacity or to maintain the same battery pack until the loss of capacity 

and power capability results in unacceptable performance.     

Research studies have considered how battery ageing impacts several types of vehicles. Herb et al. in 2013 modeled 

the impact of linearly decreasing battery power capability over time on the performance of a fuel cell electric vehicle 
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[16]. In 2015, Saxena et al. studied how battery capacity fade and reduced power capability impacts the ability of pure 

electric vehicles to satisfy daily travel needs [17]. The study, which was based on assumed rather than experimentally 

measured battery aging characteristics, suggested that batteries could meet driver needs well after the battery has lost 

20-30% of capacity, which is often considered the threshold for end-of-life. In 2020, Chen et al. investigated the effect 

of adjusting three parameters of an energy management strategy for a series plug-in HEV (PHEV) as the battery aged 

[18]. Even though the increase in fuel consumption due to battery ageing was mitigated through a proper calibration 

of the energy management parameters, the selected vehicle controller was a reactive rule-based approach which is not 

guaranteed to achieve the globally minimum fuel consumption control solution [19]. Recently, Tang et al. proposed a 

battery health consumption aware energy management system for a HEV based on deep reinforcement learning, 

however the HEV was simulated considering new battery conditions only [20]. While these papers give some insight 

into the impact of battery aging on vehicle performance, more work utilizing experimentally derived battery aging data 

is still needed to fully understand how the fuel consumption, electric range, and  the acceleration capability of HEVs 

and PHEVs changes as the battery pack ages. This paper aims at advancing in the highlighted research field by 

providing the following contributions: 

1. A numerical framework for assessing the global optimal fuel and electrical energy consumption, electric 

range, and acceleration capability of HEVs and PHEVs as a function of battery state of health (SOH). 

Both the reduction of capacity and increase in resistance as the battery ages are considered in the analysis. 

2. Application of experimental characterization data for three LiFePO4 cells aged until SOH is as low as 

20% to calculate the energy consumption, electric range, and acceleration performance of an HEV and 

PHEV as a function of battery SOH 

3. Assessment of the economic payback time for replacing the battery pack of both an HEV and a PHEV 

by comparing the vehicle’s fuel and electricity costs with the aged versus the new battery. 

Obtained results suggest that replacing the battery pack at the conventional end-of-life limit of 80% SOH is not 

economically beneficial for either the investigated HEV or PHEV, since the payback time is well beyond 10 years at 

this SOH.  Once SOH is around 40% or less though, replacement is economically viable for many cases, with payback 

periods as low as 2 to 5 years. 
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The paper is organized as follows: the HEV model and the adopted simulation approach are presented first. 

Experimental results for three LiFePO4 cells are then presented, including residual capacity and power capability at 

various ageing conditions. Results are presented for HEV and PHEV simulations conducted at different levels of battery 

SOH to assess fuel economy potential, acceleration capability, and PHEV electric range. The convenience of replacing 

the battery pack is then discussed by assessing the estimated battery pack payback period and the economic cost 

increase due to vehicle energy economy capability worsening for various levels of battery SOH. Conclusions are finally 

given. 

II. HEV MODEL AND CONTROL STRATEGY 

A. Representative HEV 

The HEV powertrain architecture investigated in this study is representative of the third generation Toyota Prius® 

hybrid. A spark-ignition Atkinson ICE and two EMs are used in the HEV. The ICE, EM1 and final drive input shaft 

are respectively linked to the carrier, sun gear, and ring gear of a planetary gear (PG) set, a mechanical device that 

allows decoupling the speed of the ICE and EM1 from the speed of the vehicle. This HEV powertrain is a well-known 

layout from the state-of-the-art, and open-source data regarding it is available [21]. The HEV parameters used in this 

analysis are reported in Table 1, while the hybrid powertrain configuration is illustrated in Fig. 1. Two high-voltage 

battery pack configurations are used in this work, a smaller pack for the HEV and a larger pack for the PHEV.  Both 

packs consist of A123 ANR26650M1-B LiFePO4 cylindrical cells, which were experimentally tested as described in 

Section III. For the HEV, quantity 240 cells in a 120 series, 2 parallel (120S2P) configuration are assumed, resulting 

in a total stored energy of 1.8 kWh.  This pack has similar properties to the 3rd Gen Prius’s 1.3kWh NiMH battery pack, 

although the stored energy is somewhat greater. The PHEV battery pack is assumed to consist of quantity 1170 cells 

in a 130 series, 9 parallel (130S9P) configuration. This pack has 8.87 kWh of stored energy, slightly higher than the 

pack for the Prius Prime® PHEV [26]. The LiFePO4 cell chemistry has been utilized both in medium-voltage and high-

voltage battery packs of commercially available HEVs [22][23]. Moreover, LiFePO4 is recently becoming a popular 

chemistry choice thanks to lower material cost [24]. Indeed, the LiFePO4 does not involve cobalt or nickel among the 

required raw material, and it requires less lithium per kWh of capacity compared with nickel manganese cobalt oxide 
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(NMC) or nickel cobalt aluminum oxide (NCA) chemistries. The much higher energy density of new LiFePO4 cells 

also makes them much more practical for use in electrified vehicles [25].   

 

TABLE I 

ASSUMED HEV PARAMETERS 

Component Parameter Value 

Vehicle Mass 1531 kg 

ICE Capacity 1.8 L 

Power max 72 kW @ 5,000 rpm 

Torque max 142 Nm @ 4,000 rpm 

EM1 Power max 42 kW 

EM2 Power max 65 kW 

Transmission  

PG ratio (Ring / Sun) 2.6 

Gear ratio (EM2) 1.26 

Final drive ratio 3.27 

Efficiency (EV mode) 0.95 

Efficiency (HEV mode) 0.85 

Auxiliaries Electrical subsystem power 500 W 

Battery  

(HEV) 

Pack capacity (1C discharge) 1.82 kWh 

Pack configuration 120S – 2P 

Cell type A123 ANR26650M1-B 

Battery 

(PHEV) 

Pack capacity (1C discharge) 8.87 kWh 

Pack configuration 130S – 9P 

Cell type A123 ANR26650M1-B 

 

 

Fig. 1 Toyota Prius hybrid electric powertrain scheme. 

 

B. Modeling approach 

The HEV powertrain operation is modeled using a backward quasi-static approach to derive the requested power 

values and the speed of components directly from the driving mission requirements (i.e. vehicle speed and acceleration 
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over time) [27]. The value of required torque at the input shaft of the differential 𝑇𝐹𝐷 is evaluated at each time instant 

of the driving mission as  

𝑇𝐹𝐷 =
(𝐹𝑟𝑜𝑙𝑙+𝐹𝑚𝑖𝑠𝑐+𝐹𝑎𝑒𝑟𝑜+𝑚𝑣𝑒ℎ∙𝑥̈)∙𝑟𝑑𝑦𝑛

𝜏𝐹𝐷
                          (1) 

where 𝑚𝑣𝑒ℎ, 𝑥̈, 𝑟𝑑𝑦𝑛 and 𝜏𝐹𝐷 denote the vehicle mass, the vehicle acceleration, the wheel rolling radius and 

differential ratio, respectively. 𝐹𝑎𝑒𝑟𝑜, 𝐹𝑚𝑖𝑠𝑐 and 𝐹𝑟𝑜𝑙𝑙 are resistive load terms provided by the aerodynamic drag, some 

various terms (e.g. side forces, road slope) and rolling resistance, respectively. 

Looking at Fig. 1, the EM2 angular speed 𝜔𝐸𝑀2 is proportionally linked to the angular speed of the differential input 

shaft 𝜔𝐹𝐷, while the EM1 angular speed 𝜔𝐸𝑀1 is a function of the ICE speed 𝜔𝐼𝐶𝐸 as well. The resulting kinematic 

constraints for the HEV drivetrain can then be described as: 

[
𝜔𝐸𝑀1

𝜔𝐸𝑀2
] = [

−𝜏𝑃𝐺 𝜏𝑃𝐺 + 1
𝜏𝐺𝑅 0

] [
𝜔𝐹𝐷

𝜔𝐼𝐶𝐸
]                           (2) 

where 𝜏𝑃𝐺 denotes the ratio between number of teeth for the ring gear and the number of teeth for the sun gear for 

the PG, while 𝜏𝐺𝑅 is the gear ratio. Considering the torque ratios for standard epicyclic gearing, torque values for both 

EM1 (𝑇𝐸𝑀1) and EM2 (𝑇𝐸𝑀2) can be evaluated according to the torque request coming from road and driver (𝑇𝐹𝐷) and 

the torque of the ICE (𝑇𝐼𝐶𝐸), which is implemented as the control variable in (3). 

[
𝑇𝐸𝑀1

𝑇𝐸𝑀2
] =

[
 
 
 0 −

1

𝜏𝑃𝐺+1

1

𝜏𝐺𝑅∙𝜂𝑇𝑅

𝑠𝑖𝑔𝑛(𝑇𝐹𝐷)
−

𝜏𝑃𝐺
𝜏𝑃𝐺+1

𝜏𝐺𝑅 ]
 
 
 

[
𝑇𝐹𝐷

𝑇𝐼𝐶𝐸
]                                (3) 

𝜂𝑇𝑅 denotes the mechanical efficiency of the transmission, which is powered by the sign of the differential torque in 

(3) to account for both motoring and braking cases. As reported in Table 1, it should be noted that different values of 

𝜂𝑇𝑅 are considered here depending on whether the vehicle is operating in hybrid electric mode or pure electric mode. 

The electrical losses of the EMs are modelled by means of empirical lookup tables with speed and torque as 

independent variables. Then, the electrical power at the battery terminals 𝑃𝑏𝑎𝑡𝑡 can be computed by summing the 

mechanical power values of the two EMs, the electrical losses of the two EMs, and the electrical subsystem power of 

the auxiliaries (e.g. pumping, lighting, air conditioning), which is assumed having a constant value in this work.  

For the battery, an equivalent circuit model is adopted with open-circuit voltage, internal resistance, charge power 

capability, discharge power capability and residual capacity values depending on the instantaneous values of both state 
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of charge (SOC) and SOH [28][29]. The instantaneous change in battery state of charge (SOC) can thus be evaluated 

following (4): 

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶,𝑆𝑂𝐻)−√[𝑉𝑂𝐶(𝑆𝑂𝐶,𝑆𝑂𝐻)]2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶,𝑆𝑂𝐻)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁(𝑆𝑂𝐶,𝑆𝑂𝐻)
∙

𝑛𝑃

𝐴ℎ𝑏𝑎𝑡𝑡∙3600
                     (4) 

where 𝑅𝐼𝑁 and 𝑉𝑂𝐶 are the internal resistance and the open-circuit voltage of the battery pack. 𝑛𝑃 stands for the number 

of cells in parallel as given by the battery pack configuration, while 𝐴ℎ𝑏𝑎𝑡𝑡 is the battery energy capacity in ampere-

hours. The adopted equivalent circuit model considers lumped parameters for the entire battery pack. This involves the 

assumption that all the series and parallel connected cells of the high-voltage battery pack have the same SOC, SOH, 

and temperature at each time instant. In the real-world, the cells of a battery pack would not have such uniform behavior 

in terms of SOC, SOH, and temperature among each other. Nevertheless, a detailed model of the individual cells 

included in the battery pack would remarkably compromise the computational efficiency and the ease of use of the 

proposed numerical framework. This would in turn impact on the clarity and ease of reading the results presented in 

this paper. The battery temperature is assumed to be a constant value of 25° C, a value representative of what could be 

achieved with an effective battery thermal management system. Indeed, modelling the battery temperature variation 

over time would require both modelling the single cells from a thermal perspective and modeling the thermal 

management system and its control logic. Also in this case, computational efficiency and ease of understanding the 

results would be compromised. Moreover, this assumption is in line with the test conditions during the experimental 

battery tests described in the next section. These two assumptions regarding the high-voltage battery pack constitute 

necessary limitations for the present study, which could however be overcome in future work. 

C. Fuel economy assessment 

To estimate the fuel economy of the HEV and of the PHEV in charge sustaining mode, an appropriate energy 

management strategy needs to be implemented. In this case, the HEV energy management strategy selects at each time 

instant either pure electric or hybrid operation. If pure electric operation is selected, only EM2 is activated to either 

propel the vehicle or to recover electrical energy during regenerative braking. On the other hand, if hybrid mode is 

enabled, the ICE is in operation and the controller selects the values of ICE speed and ICE torque. In a backward quasi-

static approach, knowing speed and torque of the ICE allows automatically determining speed and torque values for 

the EMs based on the gear ratios. Once speed and torque of the components are known, the instantaneous fuel 
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consumption rate and battery SOC variation can be easily determined. The reader can find details regarding the HEV 

modeling approach and the related equations in [30]. 

Dynamic programming (DP) is used here to create a globally optimal HEV control approach. As an off-line method, 

DP requires the knowledge of the vehicle speed profile for the entire drive cycle before performing the simulation 

[31][32]. While DP cannot practically be applied in a vehicle due to its off-line nature and computational cost, DP does 

provide an upper bound for how well a control policy could perform for this HEV architecture [33][34]. In this case, 

DP controls the speed and torque of the ICE and EMs to minimize fuel consumption solely over a predefined drive 

cycle while sustaining battery charge and limiting the overall number of ICE activations. Particularly, battery charge 

sustenance is ensured by imposing a constraint on the value of battery SOC at the end of the drive cycle, while the 

frequency of ICE activations over time is limited by including a dedicated term in the DP cost functional. The optimal 

HEV control problem to be solved using DP is reported in (5), while the related HEV operational constraints are 

reported in (6) to (16). 

argmin∫ [𝑚̇𝑓𝑢𝑒𝑙(𝑡) + 𝜇𝑐𝑟𝑎𝑛𝑘 ∙ 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸(𝑡)] 𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0
                       (5) 

Subject to: 

Mechanical constraints: 

0 ≤ 𝜔𝐼𝐶𝐸(𝑡) ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋
                     (6) 

𝜔𝐸𝑀1𝑚𝑖𝑛 ≤ 𝜔𝐸𝑀1(𝑡) ≤ 𝜔𝐸𝑀1𝑀𝐴𝑋                   (7) 

0 ≤ 𝜔𝐸𝑀2(𝑡) ≤ 𝜔𝐸𝑀2𝑀𝐴𝑋                     (8) 

0 ≤ 𝑇𝐼𝐶𝐸(𝑡) ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋
[𝜔𝐼𝐶𝐸(𝑡)]                   (9) 

𝑇𝐸𝑀1𝑚𝑖𝑛
[𝜔𝐸𝑀1(𝑡)] ≤ 𝑇𝐸𝑀1(𝑡) ≤ 𝑇𝐸𝑀1𝑀𝐴𝑋

[𝜔𝐸𝑀1(𝑡)]               (10) 

𝑇𝐸𝑀2𝑚𝑖𝑛
[𝜔𝐸𝑀2(𝑡)] ≤ 𝑇𝐸𝑀2(𝑡) ≤ 𝑇𝐸𝑀2𝑀𝐴𝑋

[𝜔𝐸𝑀2(𝑡)]               (11) 

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓(𝑡)=[0,1]                       (12) 

 

Battery constraints: 

𝑆𝑂𝐶(𝑡0) ≤ 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) ≤ 𝑆𝑂𝐶(𝑡0) + 𝛿                  (13) 

𝑃𝑏𝑎𝑡𝑡−𝑚𝑖𝑛(𝑆𝑂𝐶, 𝑆𝑂𝐻) ≤ 𝑃𝑏𝑎𝑡𝑡(𝑡) ≤ 𝑃𝑏𝑎𝑡𝑡−𝑀𝐴𝑋(𝑆𝑂𝐶, 𝑆𝑂𝐻)              (14) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑀𝐴𝑋                   (15) 

𝑃𝑏𝑎𝑡𝑡(𝑡, 𝑥̇ < 𝑥̇𝑙𝑖𝑚, 𝑥̈ < 0) ≥ 0                   (16) 

 

The cost functional to be minimized by DP is reported in (5) and includes 𝑚̇𝑓𝑢𝑒𝑙 and 𝜇𝑐𝑟𝑎𝑛𝑘 denoting the fuel rate 

consumed by the ICE at each time instant (as computed following the HEV model described) and a constant 

penalization term for cranking the ICE, respectively. The parameter 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 represents a binary flag detecting ICE 

cranking events. When solving the optimal HEV control problem, imposed mechanical constraints in (6) to (11) involve 
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limiting torque (denoted as T) and speed (denoted as ω) of the power components within the corresponding allowed 

operating regions which are specified by the manufacturer of the component. Subscripts ‘min’ and ‘MAX’ refer to the 

minimum and the maximum allowed torques, respectively. Looking at Fig. 1, the EM1 angular speed can have both 

negative or positive values in (7) depending on the vehicle speed and the controlled ICE speed as shown in (2). On the 

other hand, the sign of the EM2 angular speed is always positive in (8). For both ICE and EMs, maximum and minimum 

allowed torque values are retained as a function of the angular speed of the corresponding component in (9) to (11). In 

(9), the ICE can deliver positive torque only, while in (10) and in (11) the torques of the EMs can have negative values 

as well when generating electrical power. In (12), 𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓 is a binary variable for the ICE state, and values of 0 and 

1 relate to the ICE being off and on, respectively. Few constraints are imposed on the battery operation throughout the 

driving mission in (13) to (16). HEV charge-sustaining operation is achieved by complying with (13), where the battery 

SOC is set to have similar values at the beginning (i.e. 𝑡 = 𝑡0) and end (i.e. 𝑡 = 𝑡𝑒𝑛𝑑) of the drive cycle assuming an 

appropriate tolerance δ. Both battery SOC, battery C-rate, 𝑐(𝑡), and battery power, 𝑃𝑏𝑎𝑡𝑡, are constrained within the 

corresponding allowed operating regions as determined by the battery manufacturer in (14), (15) and (16), respectively. 

Battery charge and discharge power limits in (14) are calculated based on the SOC and SOH dependent resistance. The 

charge power is particularly important because it limits how much energy can be captured from regenerative braking. 

Any energy which cannot be captured is dissipated by friction braking. Finally, in (16) only friction braking is assumed 

to operate below vehicle speed (𝑥̇) values of 10 km/h (denoted as 𝑥̇𝑙𝑖𝑚), given the limited amount of kinetic energy 

available to capture at low vehicle speeds [35]. 

When solving the control problem backwardly from the last time instant of the drive cycle, DP considers the state 

variables which are the parameters whose evolution throughout the drive cycle depends on the preceding time steps 

[36][37]. The states 𝑋𝑓𝑢𝑙𝑙𝐻𝐸𝑉 for the HEV powertrain layout are battery SOC and the ICE on/off state as reported in 

(2). The Control variables 𝑈 are also listed in (17), and include ICE speed and torque as discussed at the beginning of 

this sub-section: 

𝑋𝐻𝐸𝑉 = {
𝑆𝑂𝐶(𝑡)

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓(𝑡)
} ;          𝑈 = {

𝜔𝐼𝐶𝐸(𝑡)
𝑇𝐼𝐶𝐸(𝑡)

}                      (17) 

where battery SOC is managed to guarantee charge-sustenance and the ICE state (i.e. on/off) is considered to limit 

the frequency of cranking events to a reasonable value. The generic “dpm” DP toolbox available in Matlab® is used 

in this work [38]. 
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D. Acceleration capability assessment 

In addition to fuel economy, the drivability of the HEV is also evaluated as a function of battery SOH. To this end, 

acceleration from 0 to 100 km/h is simulated. The time required for the HEV to accelerate from 0-30 km/h, 30-60 km/h 

and 60-100 km/h is then used as an evaluation metric for the performance of the HEV as a function of battery SOH. 

The same HEV numerical model used for the fuel economy assessment and implemented in MATLAB© software is 

considered. However, instead of evaluating the HEV powertrain consumption in terms of fuel and battery energy, the 

maximum amount of tractive power deliverable by the power components is used to simulate the HEV acceleration 

capability. The time to accelerate to a given speed may increase with ageing due to significantly reduced battery power 

capability, as it will be shown in Section IV.C.  

III. CELL EXPERIMENTAL CHARACTERIZATION AT VARIOUS SOH VALUES 

In a previous work, the authors performed an experimental campaign assessing the ageing behavior of three A123 

ANR26650M1-B cells subjected to different current profiles associated with an HEV performing the worldwide 

harmonized light-vehicle test procedure (WLTP) cycle [41]. The current profiles were designed using a numerical 

ageing model to age the battery after approximately 100 thousand, 200 thousand, and 300 thousand km of driving.   

The three battery cells are referred to in this work as “Batt1”, “Batt2” and “Batt3”, respectively.  

The experimental setup and the trend of the residual capacity over time for the tested cells are shown in Fig. 2 and 

Fig. 3, respectively, while more details regarding the experimental campaign can be found in [41]. Specifically, the 

cells were placed in an Envirotronics SH16C thermal chamber and temperature was regulated to 25°C. A ±75A, 0–5 

V rated channel of an MCT 75–0/5-8ME Digatron Power Electronics battery cycler was used to test each cell. Cell 

voltage was measured at the battery terminals via the battery cycler and a temperature sensor was fixed to the center 

of the cylindrical surface of the cell.  
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The voltage and current measurement and control accuracy of the battery cycler is ±0.1% of full scale and the 

accuracy of the temperature sensor is ±0.5°C. The cycler can regulate voltage from 0 V to 5 V, current from -75A to 

75A, and power from -375W to +375 W. The battery cycler utilizes an automated software, named “Battery Manager”, 

which is provided by Digatron. It runs on a desktop computer and can be used to create test programs and to save the 

results in a database. Each program consists of many steps which can be a pause, constant voltage, constant current, or 

constant power step, or a power or current profile, as is used for the WLTP cycles in this specific case. 

Fig. 4(a) shows that internal cell resistance at 50% SOC is relatively constant from 100% until 80% SOH, and then 

steadily increases and doubles by around 40% SOH. Resistance was calculated from a hybrid pulse power 

characterization (HPPC) test which was repeated periodically throughout the ageing tests.  Increased resistance results 

in reduced pack power capability, as is illustrated in Fig. 4(b) and (c), for discharge and charge conditions respectively, 

for 50% SOC, an upper battery cell voltage limit of 3.6V, a lower limit of 2.5V, and the 240 cell HEV pack.  These 

plots, which were not published in the prior work [41], are used as lookup tables in the HEV model illustrated in Section 

2.  Specifically, the considered battery modeling approach updates the open-circuit voltage and resistance values with 

respect to the SOC characteristic for each value of the SOH. Then, the charge and discharge power capability is 

computed at every time step of the simulation, while respecting the voltage limits. An in-depth description of the battery 

ageing modeling approach which is used here can be found in [41], which assumes cell temperature equal to 25 °C. 

The analysis uses data for each cell from beginning of life (100% SOH) to the end of the test, 16%, 40% and 69% 

SOH for the “Batt1”, “Batt2” and “Batt3” test cases, respectively, as reported in Fig. 3. 

 

 
Fig. 2 Experimental setup for tested cells. 

 
Fig. 3 Trend of residual capacity for the tested cells. 
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IV. SIMULATION RESULTS AT VARYING BATTERY AGEING CONDITIONS 

This section illustrates the simulation results obtained for the power-split HEV powertrain at varying battery ageing 

conditions in terms of fuel economy potential and drivability. Battery SOH values from 95% to 16% in 5% steps are 

considered. The HEV fuel economy capability as predicted by DP simulations for the WLTP drive cycle are first 

assessed. Then HEV performance for the WLTP cycle at beginning, middle, and end of life, i.e. 95%, 55% and 16% 

SOH, is compared. The acceleration time for full power acceleration maneuvers is then presented. Variations in electric 

range and fuel consumption in charge-sustaining operation of the PHEV as predicted by DP are then evaluated as a 

function of battery SOH. In all the results presented here for a given driving mission, DP is implemented as the global 

optimal control strategy for the HEV and PHEV powertrains. Finally, the economic convenience of replacing the 

battery pack is assessed for both the HEV and PHEV by estimating the payback period for the replacement operation.  

A. Impact of ageing on fuel consumption – HEV 

The fuel consumption of the HEV obtained by DP for the WLTP cycle is presented as a function of SOH in Fig. 5.  

Fuel consumption is calculated for each of the three aged batteries (i.e. “Batt1”, “Batt2” and “Batt3”). The three 

sequences of calculated points are nearly superimposed thus demonstrating that fuel economy is mostly dependent on 

SOH and not on how the battery was aged in terms of the magnitude of the current profile iterated over time. For the 

 

Fig. 4 Experimentally determined cell internal resistance and calculated HEV pack power capability of the tested cells at 

50% SOC and as function of SOH. 
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new battery, fuel consumption is estimated by DP to be approximately 3.91 L/100km for the WLTP drive cycle, which 

is about 17% less than the 4.7 L/100km which the model year 2010 Toyota Prius® Hybrid is rated for [42]. Considering 

that the vehicle’s rated fuel economy is not calculated on the basis of WLTP drive cycles but from weighted UDDS 

and HWFET cycles scaled by a correction factor, the model fuel economy matches the rated fuel economy rather well.  

Several aspects of the modeling may also contribute to the marginal difference, including (1) the simplified HEV 

modelling approach, which neglects transient phenomena and some thermal aspects; (2) the lookup tables used for 

modeling power components, which may include some approximations; (3) the considered cell type (i.e. A123 

ANR26650M1-B), which is different than the cells used in the Prius®; and (4) the HEV energy management strategy, 

since DP is different than a real time control strategy. Still, in the authors’ opinion the above mentioned aspects do not 

affect the validity of the shown results. 

 

In Fig.5, fuel consumption is shown to be relatively flat during the first 20% of ageing, with fuel consumption 

increasing by only 1.8% at 80% SOH. Beyond 80% SOH the battery power capability begins to decrease, as shown in 

Fig. 4, and as a result fuel consumption starts to increase significantly, reaching a 10% increase at 50% SOH and a 

25.2% increase at 16% SOH. These results suggest that beyond 80% SOH, and especially beyond 50% SOH, there will 

be noticeable fuel economy benefits when replacing the pack. 

B. Impact of battery ageing during WLTP cycle – HEV 

To demonstrate how the HEV powertrain’s use of the battery varies with ageing, the powertrain performance is 

simulated using DP for 95%, 55%, and 16% SOH data for Batt1. Fig. 6 illustrates battery pack power and net charge 

in amp-hours over time for the three ageing cases, while Table II reports corresponding loss and performance statistics 

for the overall drive cycle. The EM and ICE loss are calculated using the model’s look up tables, the battery loss from 

 

 
Fig. 5 HEV fuel economy capability predicted by DP in the WLTP over retained battery SOH values for the three test cases and 

related average. 
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the HPPC resistance, and the friction brake loss is all the kinetic braking energy which could not be captured by the 

electric drive system due to limited battery power capability.  

 

 

As the cell ages, power capability and capacity are reduced, resulting in a substantial reduction of charge and 

discharge current and consequently a reduction of net charge used from the battery as is seen in Fig. 6. This reduced 

use of the battery has two primary impacts on vehicle fuel economy.  First, the battery is capable of capturing much 

less regenerative braking energy, resulting in around eight times more friction brake loss when SOH has reduced to 

16%, as shown in Table II.  Second, the system is not able to shut the ICE off as often and operate only at the most 

efficient points, causing ICE efficiency to reduce from 38% to 34%, as also shown in Table II. 

TABLE II 
STATISTICS OF THE HEV OPERATION CONTROLLED BY DP FOR WLTP AND BATTERY SOH VALUES OF 95%, 55% AND 16% OF 

“BATT1” 

 SOH=95% SOH=55% SOH=16% 

EM1 loss [kJ] 238 269 422 

EM2 loss [kJ] 1063 999 750 

Friction brake loss [kJ] 215 560 1645 

Battery loss [kJ] 607 581 273 

ICE off time [%] 70.9 63.6 27.9 

Fuel consumption [g] 670.4 705.5 845.4 

ICE mechanical energy [kJ] 10937 11333 12399 

 
 

Fig. 6 Battery pack power and SOC as predicted by DP for WLTP and battery SOH values corresponding to 

95%, 55% and 16% of “Batt1”. 
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Average ICE efficiency [%] 38 38 34 
 

 

 

Table II also shows that EM1, which is linked directly with the ICE via the planetary gearbox, has loss increase with 

battery ageing due to increased use of the ICE.  EM2 loss decreases by a similar amount though, due to less time spent 

in electric mode. Even though battery resistance increases with age, battery loss ends up decreasing as the battery ages 

because loss is a quadratic function and power capability is linear, meaning loss falls faster than power capability. 

C. Impact of battery ageing on drivability – HEV and PHEV 

To characterize the drivability of the HEV and the PHEV, a 0-100 km/h full power acceleration was simulated. For 

both the HEV and PHEV, the time required to complete the maneuver is plotted in Fig. 7 for different levels of battery 

ageing while highlighting the time required to complete three acceleration sub-maneuvers: 0-30 km/h, 30-60 km/h and 

60-100 km/h. Battery characteristics at each SOH are assumed to be an average of the three test cases. With a new 

battery the full HEV can accelerate from 0-100 km/h in 9.8 seconds, which aligns with the performance of the actual 

Prius [43], thus further validating the model. The acceleration time of the full HEV increases by 5%, 11%, 22% and 

36% at SOH values of 80%, 60%, 40% and 16%, respectively. The acceleration rate is relatively stable until 80% SOH 

and increases substantially with further ageing. The 60-100 km/h acceleration time is most affected because the 

drivetrain is operating in the peak power region here, rather than in the peak torque region as at lower speeds.  Peak 

battery pack power is reduced considerably with ageing, as shown in Fig. 4. This in turn affects the maximum tractive 

power deliverable by the drivetrain of the HEV, as can be seen in Fig. 8 which shows drivetrain power and vehicle 

speed for 0-100km/h full power accelerations for different states of ageing of Batt1. The drivetrain peak tractive power, 

which is a function of ICE, EM1, EM2, battery, and transmission power, reduces from 74kW for new battery conditions 

to 64kW for SOH=55% and down to 53kW when SOH=16%. These results demonstrate that power capability reduces 

steadily with battery ageing. 

Concerning the PHEV, a new battery pack allows to accelerate from 0-100 km/h in 7.6 seconds. Compared with the 

full HEV, reducing the 0-100 km/h acceleration by 2.2 seconds is enabled by the increased battery pack power 

capabilities of the PHEV. The acceleration capability of the PHEV remains stable even for lower battery SOH values 

(i.e. 50%). This relates to the PHEV acceleration performance not being constrained by the battery pack power 

capabilities when its SOH ranges from 95% to 50%, but rather by the EM2 torque capability. For heavily aged battery 
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conditions (i.e. SOH=16%), the 0-100 km/h acceleration time increases to 9.3 seconds, which is still lower than the 0-

100 km/h of the HEV with a new battery. These results show that battery ageing does not have a significant impact on 

the acceleration capability of PHEVs.   

 

D. Impact of ageing on electric range and charge-sustaining fuel consumption – PHEV  

For the PHEV, both charge-depleting and charge-sustaining modes must be considered when assessing the impact of 

battery aging. When starting with a full charge, a PHEV typically operates in pure electric, charge depleting mode until 

much of the usable battery energy has been discharged. Then the vehicle transitions from charge depleting mode, where 

the engine is off, to charge sustaining mode where the engine may be on and the vehicle operates like the HEV [44][45]. 

In this work, the transition point to charge sustaining mode is defined as the point when battery power capability falls 

below 100 kW. This value, which has some extra margin, was chosen to ensure that EM2 can deliver its maximum 

 
Fig. 7 HEV acceleration performance in 0-30km/h, 30-60 km/h and 60-100 km/h full power acceleration maneuvers over 

retained battery SOH values for both the HEV and PHEV. 

 

 
Fig. 8 Time series of drivetrain power and vehicle speed in 0-100km/h full power acceleration maneuver for battery SOH 

values corresponding to 95%, 55% and 16% for the HEV with “Batt1” and 16% for the PHEV with “Batt1”. 
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power of 62 kW in both vehicle operating modes.  Fig. 9(a) illustrates the PHEV pack discharge power capability, 

which is calculated from the experimental results, for each tested value of battery SOH. The transition point steadily 

reduces with decreasing battery SOH, and once battery SOH falls below 50% it can no longer supply 100 kW so 

transition points with derated power are instead selected. Fig. 9(b) shows the resulting usable capacity of the PHEV 

battery pack as a function of its SOH. 

 
Fig. 9 Discharge power capability and usable capacity in pure electric mode for the PHEV battery pack. 

 

The PHEV powertrain performance is then simulated in Matlab® software using DP and almost the same 

methodology as for the HEV. The one change is that the DP formulation is updated to simulate both charge-depleting 

and charge-sustaining operating modes for the PHEV. An additional constraint is required to prevent the ICE from 

activating in charge-depleting mode. This objective is obtained through an additional state variable (𝑚𝑜𝑑𝑒𝐶𝐷−𝐶𝑆), 

resulting in state variables 𝑋𝑃𝐻𝐸𝑉 as shown in (18). 

𝑋𝑃𝐻𝐸𝑉 = {

𝑆𝑂𝐶(𝑡)
𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓(𝑡)

𝑚𝑜𝑑𝑒𝐶𝐷−𝐶𝑆(𝑡)
}                         (18) 

𝑚𝑜𝑑𝑒𝐶𝐷−𝐶𝑆  is a binary state variable whose value is 0 at the beginning of the drive cycle to denote charge-depleting 

PHEV operation. Then, its value is set to 1 once the PHEV battery is depleted to the transition point. This allows DP 

to discriminate between charge-depleting and charge-sustaining operation when controlling the HEV powertrain. For 

the simulations, the battery starts fully charged, and then in charge sustaining mode the battery SOC is constrained 

such that the final value of SOC is similar to that at the transition point. 

Fig. 10 illustrates obtained results in terms of PHEV electric range and fuel economy in charge-sustaining operation 

in WLTP as a function of battery SOH for both PHEV and HEV.  The electric only, charge depleting range is 

determined by repeating WLTP cycles until the transition point is reached. The simulated range is shown in Fig. 10 to 
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decrease approximately linearly with battery aging, from 66 km for the new pack to just 8 km for the heavily aged 

pack, which aligns with the usable capacity in Fig. 9(b).  The 66 km electric range of the new pack is 26 km greater 

than the 40 km rated range of the 2017 Toyota Prius® Prime [26]. Possible reasons for this mismatch include those 

listed in Section IV.A as well as that the usable capacity here is around 8.2 kWh while it’s closer to 6 kWh for the 

Prius® Prime [46]. The same road load parameters and vehicle mass are also used for the PHEV, but this likely has a 

minimal impact since the added mass of the battery is similar to the mass of an additional passenger.  On the other 

hand, the trend in predicted fuel economy in charge-sustaining operating mode is quite stable for all the battery SOH 

cases, oscillating within a small range around 3.7 l/100 km. As the main explanation for the overall constant trend of 

PHEV fuel economy capability in charge-sustaining mode, Fig. 9(a) highlights how a satisfactory overall battery power 

capability is preserved even at low values of battery SOH thanks to the increased pack capacity for a PHEV. As 

consequence, EMs can deliver enough power to allow the ICE operating in highly efficient operating points even at 

heavily aged battery conditions.  The fuel economy of the HEV shown in Fig. 5 is plotted as well in Fig. 10. Looking 

at this plot, the PHEV is suggested to be further advantageous compared with the HEV from a battery ageing 

perspective since its fuel economy is quire stable with respect to battery SOH. Only 2.6% fuel economy worsening in 

charge-sustaining operation is observed at 16% SOH compared with new battery conditions, which is a remarkably 

lower compared with the 25.2% fuel economy increase of the HEV at 16% battery SOH compared with new battery 

conditions.  
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Fig. 10 Electric range and charge-sustaining fuel economy of the PHEV and fuel economy of the HEV as predicted by DP in 

WLTP over retained battery SOH cases. 

 

Fig. 11 shows the PHEV fuel rate and battery cell charge time series data as calculated by DP for four repetitions of 

the WLTP cycle.  The results include battery SOH values of 95%, 55% and 16%. As the battery ages, the transition to 

charge sustaining operation occurs earlier and earlier, with the transition occurring around 1000 seconds for the 16% 

SOH case. Moreover, during charge sustaining operation DP activates the ICE at higher values of vehicle speed since 

this minimizes fuel consumption over the drive cycle. 
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Fig. 11 PHEV fuel rate and cell charge as predicted by DP for four repetitions of WLTP and battery SOH values corresponding 

to 95%, 55% and 16% . 

 

E. Assessing the economic convenience of replacing the battery pack - HEV 

Estimating the fuel economy capability worsening due to battery ageing as performed in section IV.A opens new 

possibilities in assessing the economic convenience of replacing the battery pack of the HEV. For the following 

analysis, few assumptions need to be considered. After being replaced, the performance of the battery pack is assumed 

not to decay over time. This leads to slightly decrease the estimated the pack payback period. Moreover, the HEV user 

is assumed to accept the worsening in acceleration capability due to battery ageing as estimated in Section IV.C. 

𝑃𝐵𝐻𝐸𝑉, the payback period of a HEV battery pack replacement in years, can then be evaluated as a function of the 

battery pack replacement cost ($𝑝𝑎𝑐𝑘−𝐻𝐸𝑉), the average distance driven by the HEV user in kilometers per year 

(𝑘𝑚𝑦𝑒𝑎𝑟) and the SOH of the battery pack at the time of replacement using (19): 

𝑃𝐵𝐻𝐸𝑉($𝑝𝑎𝑐𝑘−𝐻𝐸𝑉 , 𝑘𝑚𝑦𝑒𝑎𝑟 , 𝑆𝑂𝐻) =
$𝑝𝑎𝑐𝑘−𝐻𝐸𝑉

[𝐹𝐸(𝑆𝑂𝐻=0.95)−𝐹𝐸(𝑆𝑂𝐻)]

100
∙𝑘𝑚𝑦𝑒𝑎𝑟∙$𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

               (19) 

where 𝐹𝐸 is the HEV fuel economy capability in liters per 100 km as a function of the battery SOH. $𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 denote 

the gasoline cost, which is retained being $1.29 per liter here [47].  
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Fig. 12 illustrates obtained results for the battery pack payback period as a function of $𝑝𝑎𝑐𝑘−𝐻𝐸𝑉, 𝑘𝑚𝑦𝑒𝑎𝑟 and 𝑆𝑂𝐻. 

Particularly, results presented in section IV.A are considered for extracting the values of 𝐹𝐸 as a function of SOH. 

Two cost options are retained for the HEV battery pack replacement being respectively $500 and $2,000. Looking at 

Fig. 12 (a), replacing the HEV battery pack at 80% SOH as standard practice turns out not to be economically 

convenient. Indeed, the payback period for a $500 battery pack does not get lower than 13 years even when driving 

100 thousand kilometers per year on average. On the other hand, replacing the HEV battery pack progressively gets 

more economically convenient as the battery SOH gets lower in Fig. 12 (a). For example, an HEV user that drives 30 

thousands of km per year on average can pay back the new battery pack in 4.5 years (i.e. driving 135 thousands of km) 

when replacing it at 50% SOH. When the battery SOH gets as low as 20%, the battery pack payback period of 4.5 

years can be attained even by a HEV user that drives only 10 thousand of km per year on average. Fig. 12 (b) shows 

that, as the cost for replacing the battery pack gets higher (e.g. $2,000), the economic convenience of such operation 

considering the operative cost related to fuel consumption gets even lower. For example, an HEV user driving 50 

thousands of km per year would need more than 10 years to pay back the battery pack replacement when the SOH 

equals 50%. Even for heavily aged battery conditions (i.e. 20% SOH), a 4.5-year payback period can be attained only 

by driving at least 40 thousands of km yearly. This plots could help an HEV user deciding regarding the convenience 

of replacing the battery pack. 

 
Fig. 12 Battery pack payback period as a function of the battery pack replacement cost, the average yearly distance driven by the 

HEV user and the SOH of the battery pack at the time of replacement. 

 

F. Assessing the economic convenience of replacing the battery pack - PHEV 

Compared with the HEV, evaluating the economic convenience of replacing the PHEV battery pack involves further 

calculations. The assumptions performed in Section IV.E hold. Moreover, the battery pack of the PHEV is assumed to 
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be fully charged at the beginning of each day. In this case, the equation for computing the payback period for the PHEV 

battery pack 𝑃𝐵𝐻𝐸𝑉 in years gets more complicated as follows: 

𝑃𝐵𝑃𝐻𝐸𝑉($𝑝𝑎𝑐𝑘−𝑃𝐻𝐸𝑉 , 𝑘𝑚𝑑𝑎𝑦, 𝑆𝑂𝐻) =
$𝑝𝑎𝑐𝑘−𝑃𝐻𝐸𝑉

[$𝑑𝑎𝑦(𝑘𝑚𝑑𝑎𝑦,𝑆𝑂𝐻)−$𝑑𝑎𝑦(𝑘𝑚𝑑𝑎𝑦,𝑆𝑂𝐻=0.95)]∙365
                 

With:                          (20) 

$𝑑𝑎𝑦(𝑘𝑚𝑑𝑎𝑦, 𝑆𝑂𝐻)

= min[𝑘𝑚𝑑𝑎𝑦; 𝐴𝐸𝑅(𝑆𝑂𝐻)] ∙ $𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 ∙
𝑘𝑊ℎ𝐴𝐸𝑅(𝑆𝑂𝐻)

𝐸𝑅(𝑆𝑂𝐻)
+ max{[𝑘𝑚𝑑𝑎𝑦 − 𝐴𝐸𝑅(𝑆𝑂𝐻)]; 0}

∙ $𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 ∙
𝐹𝐸(𝑆𝑂𝐻)

100
 

where $𝑝𝑎𝑐𝑘−𝑃𝐻𝐸𝑉 is the cost of the PHEV battery pack replacement, while $𝑑𝑎𝑦 is the daily cost associated to the 

fuel and electricity consumptions of the PHEV as a function of the battery SOH and 𝑘𝑚𝑑𝑎𝑦, the average number of 

kilometers driven by the PHEV user daily. 𝐸𝑅 and 𝑘𝑊ℎ𝐴𝐸𝑅 denote the PHEV electric range in kilometers and the 

usable battery pack capacity in pure electric mode as a function of the battery SOH. Finally, $𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 is the electricity 

cost, which is retained being $0.16 per kilowatt-hour here [48]. 

Fig. 13 shows the results obtained for 𝑃𝐵𝑃𝐻𝐸𝑉 as a function of $𝑝𝑎𝑐𝑘−𝑃𝐻𝐸𝑉, 𝑘𝑚𝑑𝑎𝑦 and 𝑆𝑂𝐻. Particularly, results 

presented in section IV.D are considered for extracting the values of 𝐹𝐸, 𝑘𝑊ℎ𝐴𝐸𝑅 and 𝐸𝑅 as a function of SOH. Two 

cost options are retained for the PHEV battery pack replacement being respectively $2,500 and $8,000. Both the plots 

in Fig. 13 feature a knee point corresponding to the 𝐸𝑅 achievable by the PHEV with a new battery pack (i.e. 66 

kilometers). Given the large cost of a PHEV battery pack, the payback period for the PHEV battery pack exponentially 

increases when the daily driven distance gets lower than 66 kilometers. On the other hand, the payback period exhibits 

an overall constant trend as the number of daily driven kilometers gets higher than 66 kilometers. This is due to the 

PHEV fuel economy capability being quite stable at different values of battery SOH as shown in Fig. 10.  

Looking at Fig. 13 (a), replacing the PHEV battery pack may be suggested only in the case of an intense use of the 

vehicle. For example, around 10 years are required to pay the pack replacement back at 70% SOH. Nevertheless, no 

advantage is suggested in keeping the same PHEV battery pack when the SOH goes below 40%. Indeed, similar 

payback periods are observed between 40% SOH and 20% SOH. This relates to similar values of 𝐸𝑅 being achieved 

in the range of SOH comprised within 20% and 40%. Moving to Fig. 13 (b), all the curves are upshifted compared with 
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Fig. 13 (a) due to the higher pack replacement cost. In this case, such high cost generally discourages the PHEV pack 

replacement. Nevertheless, the similarity between replacing the battery pack at 20% SOH and 40% SOH is preserved. 

Also in this case a PHEV user could use these plots to evaluate the convenience of replacing the PHEV battery pack.  

 
Fig. 13 Battery pack payback period as a function of the battery pack replacement cost, the average daily distance driven by the 

PHEV user and the SOH of the battery pack at the time of replacement. 

 

V. CONCLUSIONS 

Hybrid electric vehicle batteries continue to function when their capacity has fallen well beyond 80% SOH, the value 

which is often considered end of life. As battery capacity degrades power capability decreases as well, which impacts 

the vehicle’s performance. Specifically, the reduction in battery power capability prevents the vehicle from accelerating 

as quickly and recapturing as much regenerative braking energy as when the vehicle was new. The loss of battery 

capacity and power capability also results in the ICE operating more frequently and at less efficient operating points.  

In this study, both a full and a PHEV powertrain layout is investigated using experimentally derived battery 

characteristics. For the HEV, the degradation of the battery causes a 6% increase in fuel consumption at 60% SOH and 

a much greater 25% increase at 16% SOH. 0 to 100 km/h acceleration time also increases significantly as the battery 

ages, going from 9.8 s when new to 10.9 s at 60% SOH and to 13.3 s at 16% SOH. For the PHEV, the loss of battery 

capacity and loss of electric range are correlated, with a 14.4% decrease in electric range at 80% SOH, a 50% decrease 

at around 50% SOH, and a much greater 87.5% decrease at 16% SOH. On the other hand, predicted charge-sustaining 

fuel economy of the PHEV remains quite stable thanks to the much higher power capability of the larger PHEV pack, 

even at low values of SOH. 

The economic payback time for replacing the battery pack has been evaluated by calculating how many years it will 

take for the new battery pack cost to equal the additional fuel and electricity costs that would be incurred if the aged 

battery were instead continued to be used. For both the HEV and the PHEV, replacing the pack after 20% of capacity 
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loss, which is typically considered end of life, appears to not be economically beneficial due to excessively long 

payback periods. For example for the HEV, with a $500 battery pack replacement cost a five year or less payback time 

can only be achieved once the battery SOH is 40% or less and when driving 18,000 km or more per year. On the other 

hand, for a higher cost for the pack replacement (i.e. $2,000) the payback period increases to 10 to 15 years under the 

same conditions, which discourages the replacement from an economic perspective. As concerns the PHEV, the battery 

pack replacement is only advisable when the user drives on average more kilometers per day than the pure electric 

range achievable with a new battery pack. In this case, replacing the battery pack when the SOH is less than 40% is 

suggested thanks to an acceptable payback time (i.e. less than 5 years) for a $2,500 pack replacement cost. The payback 

period would be more than doubled for a higher pack replacement cost (i.e. $8,500), which dissuades swapping the 

battery pack if the cost is high. 

In general, the proposed methodology can be implemented to predict when an HEV or PHEV user is likely to benefit 

from replacing the battery pack due to excessive ageing. When the vehicle user accepts a slight worsening in the vehicle 

acceleration capability and fuel economy, the use of the battery pack on-board the HEV or PHEV can be extended 

down to lower values of SOH. In this way, considerable economic savings can be achieved and the CO2 emissions 

caused by the manufacturing of new battery packs can be reduced. While this study investigates how the performance 

degradation of cylindrical lithium iron phosphate (LiFePO4) cells impacts HEVs and PHEVs, the same approach could 

be applied for battery packs using NMC, NCA Li-ion cells, or nickel metal hydride (NiMH) cells all of which are 

commonly used in electrified vehicles. The aging properties of these battery types will likely translate to different 

conclusions regarding the relation between battery aging, increase in fuel consumption, and decrease in electric range 

for plug-in applications. 

Related future work could also aim at overcoming the assumptions introduced in Section II.B by improving the 

fidelity level of the high-voltage battery pack modelling. Numerical models and control logic related to the difference 

among the cells in terms of temperature and SOC, along with the pack cooling system, could be implemented to this 

end. Finally, the HEV simulations performed as the battery ages may be useful for developing more accurate battery 

state estimation algorithms, robust battery management systems and HEV energy management strategies capable of 

adapting to the SOH of the high-voltage battery pack.  
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