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ABSTRACT

In the present paper, a new data-driven model is proposed to close and increase accuracy of Reynolds-averaged Navier–Stokes equations.
Among the variety of turbulent quantities, it has been decided to predict the divergence of the Reynolds stress tensor (RST). Recent literature
works highlighted the potential of this choice. The key novelty of this work is to obtain the divergence of the Reynolds stress tensor through
a neural network (NN) whose architecture and input choice guarantee both Galilean and coordinates-frame rotation. The former derives
from the input choice of the NN while the latter from the expansion of the divergence of the RST into a vector basis. This approach has been
widely used for data-driven models for the RST anisotropy or the RST discrepancies but surprisingly not for the divergence of the RST. The
present paper tries to fill this literature gap. Hence, a constitutive relation of the divergence of the RST from mean quantities is proposed to
obtain such expansion. Moreover, once the proposed data-driven approach is trained, there is no need to run any classic turbulence model to
close the equations. The well-known tests of flow in a square duct and over periodic hills are used to show advantages of the present method
compared to the standard turbulence models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0104605

I. INTRODUCTION

Reynolds-averaged Navier–Stokes (RANS) equations are widely
used in engineering for turbulent flow simulations. Their popularity
comes from the low computational cost compared to large-eddy simula-
tions (LES) and direct numerical simulation (DNS) approaches.
However, RANS predictions may be highly inaccurate for some classes
of flows1 due to the bad description of the effects of the Reynolds
stresses on the mean flow.2 On the other hand, thanks to the remarkable
growth of high-performance computing facilities, more and more DNS
data coming from simple geometries and moderate Reynolds numbers
are becoming available. Some classes of flows with DNS datasets are
channel flows,3,4 pipe and duct flows,5–8 flows over periodic hills,9,10 and
flows around cylinders.11–13 As a consequence, in the past years an
increasing number of studies took advantage of machine learning tech-
niques to exploit DNS data. The remarkable variety of review articles in
recent years on the subject highlights this trend.14–17 In particular, one
active research area is focused on data-driven RANS turbulence models
that increase accuracy through DNS (or highly accurate LES) data.

In this framework, data-driven models must satisfy the same
invariance properties of the physical system they are modeling. Ling
et al.18 proved that invariance to coordinates-frame rotation can be
guaranteed by taking for each physical dimension ten rotations of the
initial dataset and by including them in an augmented dataset. Even if
this approach is conceptually valid, it has the huge drawback that for
3D problems, the dataset would become 1000 bigger than the initial
one making this method impracticable both in terms of learning time
and of memory storage.

Another approach to guarantee invariance properties has been
proposed in the pioneering paper of Ling et al.19 In this work, invari-
ance is automatically satisfied by the architecture of the trained neural
network (NN). In particular, the NN outputs were the coefficients of
the decomposition of the Reynolds stress tensor (RST) anisotropy into
a tensor basis defined in Pope,20 while the inputs were invariant quan-
tities. The obtained neural network was named tensor basis neural net-
work (TBNN). Since then, various studies have been performed to
analyze data-driven approaches for the Reynolds stress tensor
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anisotropy. A change to the TBNN was proposed to increase accu-
racy.21 A convolutional neural network was used for 1D turbulent
flows and its interpretability was discussed.22 Both the coefficients and
the basis of the Reynolds stress tensor anisotropy were inferred.23 This
approach was also applied for wind turbine wakes under neutral con-
ditions.24 The same rotation-invariance idea was used to train random
forests able to predict the discrepancy between the Reynolds stress ten-
sor (RST) obtained by a baseline RANS turbulence model and the
DNS one.25,26

A recent work27 showed that predicting the divergence of the
Reynolds stress tensor, denoted as Reynolds force vector (RFV),
instead of the RST itself can effectively increase the accuracy of data-
driven RANS turbulence models. On the one hand, the RFV can be
obtained from first order statistics reducing intrinsic statistical errors
of DNS data. On the other hand, the RFV directly compares into the
RANS equations and it seems natural to directly predict it. This work
is grounded on these observations and aims to enforce into the RANS
system physical invariance properties by construction without data
augmentation. Analogously to Ling et al. approach,19 in this work a
constitutive assumption of the RFV from mean fields is derived. This
hypothesis is fundamental to derive the inputs of the data-driven
model and the vector basis used to expand the RFV. The obtained
neural network is called vector basis neural network (VBNN). The
proposed approach closes the RANS system without the requirements
of additional partial differential equations (PDEs) for turbulent scalar
quantities or for the RST discrepancies as in previous works. As a con-
sequence, once the model is satisfactorily trained, it does not require
any coupling with a classic turbulence model.

Following Sec. I, the paper is organized into four more sections.
In Sec. II, a brief overview on RANS models is given to successively
describe the TBNN.19 In Sec. III, the constitutive dependencies of the
divergence of the RST are derived. The properties of the VBNN are
consequently discussed. The numerical results are presented and dis-
cussed in Sec. IV. Classic benchmark flows in a square duct and over
periodic hills are chosen as numerical experiments to analyze the data-
driven model for two main reasons: (i) availability of highly reliable
DNS data in literature; (ii) despite their geometrical simplicity, they
represent a powerful proof-of-concept flows because classic RANS tur-
bulence models fail in the prediction of their velocity fields. Finally, in
Sec. V, conclusions are drawn.

II. TENSOR BASIS NEURAL NETWORK
A. Reynolds-averaged Navier–Stokes equation and
turbulence models

The RANS equations for incompressible flows read

r � u ¼ 0;

@u
@t
þ u � ru� �Du ¼ �rp�r � s;

8<: (1)

where u is the averaged velocity field, � is the kinematic viscosity of
the fluid, p is the averaged pressure field divided by the constant den-
sity of the fluid, and s is the Reynolds Stress Tensor. The latter is a
symmetric tensor that needs to be modeled to close the RANS equa-
tions and whose components are associated with the correlations of
the turbulent fluctuating components of the velocity field. Hence, the
divergence of the RST describes the effects of the turbulence on the
averaged fields.

One class of turbulence models, called linear isotropic models, is
based on the well-known Boussinesq hypothesis. The RST is modeled
as follows:

s ¼ 2
3
kI� 2�tS; (2)

where k ¼ 1
2 trðsÞ is the turbulent kinetic energy (tr denotes the trace

operator), I is the identity tensor, �t is the turbulent viscosity, and
S ¼ 1

2 ½ruþ ðruÞ
T � is the mean strain rate tensor. The quantity �t

must be modeled, and the system is usually closed by two PDEs (for
example one for the turbulent kinetic energy k and one for its dissipa-
tion rate e using the relation �t ¼ Clk2=e being Cl a model’s con-
stant). In literature, many different linear turbulence models are
defined depending, for example, on the choice of the variables solved
to model �t.

The linear isotropic models fail in the description of some physi-
cal behaviors. As a consequence, more advanced non-linear models
have been proposed in literature.1,20 These models assume an algebraic
representation of s more complex than in (2). Indeed, they include
dependences on high-order powers of the mean strain rate tensor and
the mean rotation rate tensorW ¼ 1

2 ½ru� ðruÞ
T �.

Another classical approach to close the RANS system (1) is to
solve a PDE for each component of the RST tensor.28–30 This class of
models are called Reynolds stress transport models (RSTM). This pro-
cedure does not require any modeling of the RST but, on the other
hand, require the modeling of some terms inside the PDEs.

Unfortunately, both non-linear and RSTM turbulence models
are more likely to diverge compared to classic linear models and, con-
sequently, the latter are still the main option for many flow cases.31,32

B. Tensor basis neural network

Let aij ¼ sij=ð2kÞ � 1=3 dij be the anisotropic Reynolds stresses
where sij are the Reynolds stresses and dij is the Kronecker delta. In
the following, the tensor a ¼ aij will be referred to as the Reynolds
stress tensor anisotropy. The tensor a is dimensionless with vanishing
trace by definition.

Let s ¼ 1
2
k
e ½ruþ ðruÞ

T � and w ¼ 1
2
k
e ½ru� ðruÞ

T � be the
dimensionless counterparts of the mean strain rate tensor S and mean
rotation rate tensor W, respectively, where e is the turbulent kinetic
energy dissipation rate.

Some classic algebraic turbulence models for the RST can be
rephrased as algebraic models for its anisotropic part in terms of s andw.
For example, the classic linear closure (2) is equivalent to a ¼ � e

k2 �ts.
Pope20 supposed a more general constitutive relation a ¼ aðs;wÞ.

This assumption and representation theorems33 lead to

a ¼
X10
j¼1

cjðk1;…; k6ÞTj; (3)

where ki, i ¼ 1;…; 6, are invariant scalar quantities that depend on s
and w. They are20,33

k1 ¼ trðs2Þ; k2 ¼ trðs3Þ; k3 ¼ trðw2Þ;
k4 ¼ trðsw2Þ; k5 ¼ trðs2w2Þ; k6 ¼ trðs2w2swÞ:

(4)

Furthermore, Tj; j ¼ 1;…; 10; are
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T1 ¼ s; T2 ¼ sw � ws; T3 ¼ s2 � 1
3
trðs2ÞI;

T4 ¼ w2 � 1
3
trðw2ÞI; T5 ¼ ws2 � s2w;

T6 ¼ w2sþ sw2 � 2
3
trðsw2ÞI; T7 ¼ wsw2 � w2sw;

T8 ¼ sws2 � s2ws; T9 ¼ w2s2 þ s2w2 � 2
3
trðs2w2ÞI;

T10 ¼ ws2w2 � w2s2w:

(5)

Equation (3) states that the Reynolds stress tensor anisotropy can
be expressed as a finite linear combination of the 10 tensor basis ele-
ments fTjg listed above. Moreover, the coefficients involved are func-
tions of the six invariants fkig. Both the tensor basis and the
invariants are known a priori. The only unknowns are the expressions
of the ten coefficients fcjg.

The formula (3) has been the starting point for Ling et al.19

to define a Tensor Basis Neural Network able to predict the coeffi-
cients using the invariants as inputs. Once the coefficients are
obtained, the linear combination is computed to obtain a. This
approach has the huge advantage that the coefficients are auto-
matically invariant to coordinates-frame rotations and Galilean
transformations. This property arises from the Galilean and
coordinates-frame rotation invariance of the inputs fkig that are
fed into the TBNN.

III. VECTOR BASIS NEURAL NETWORK

This section focuses on the vector basis neural network used in
this work to close the RANS system by obtaining ther � s term.

A. Constitutive dependencies

Let us define the dimensionless quantity gr � s ¼ k1=2
e r � s. In the

present work, we assume the constitutive hypothesis,

gr � s ¼ fðs;w; gr � S; frk;RedÞ; (6)

where s ¼ k
e S; w ¼ k

e W; gr � S ¼ k5=2
e2 r � S, and frk ¼ k1=2

e rk are the
dimensionless counterparts of the symmetric part of the velocity gradi-
ent S, the antisymmetric part of the velocity gradient W, the diver-
gence of S and the gradient of k, respectively. Finally,

Red ¼ min
ffiffi
k
p

d
50� ; 2
� �

is the wall-distance-based Reynolds number,

where d is the wall distance. This quantity is relevant during the train-
ing process as reported in literature.25,34 The motivations behind this
constitutive choice are discussed in the Appendixes.

With the above hypothesis, following the idea in Ling et al.,19gr � s can be written in a basis made by Nc¼ 12 vectors ftkgNc
k¼1 with

corresponding coefficients that depend on Ni¼ 26 invariant scalar
quantities fkkgNi

k¼1. In particular, it reads

gr � s ¼XNc

k¼1
ckðk1;…; kNiÞ tk: (7)

The appropriate vector basis and the invariants can be obtained
from Zheng33 (Tables I and II). The vector basis reads

t1 ¼ gr � S; t2 ¼ s gr � S; t3 ¼ s2 gr � S;
t4 ¼ w gr � S; t5 ¼ w2 gr � S; t6 ¼ ðsw þ wsÞ gr � S;

t7 ¼ frk; t8 ¼ s frk; t9 ¼ s2 frk;
t10 ¼ w frk; t11 ¼ w2 frk; t12 ¼ ðsw þ wsÞ frk:

(8)

The invariants are

k1 ¼ ð gr � SÞTð gr � SÞ; k2 ¼ trðs2Þ; k3 ¼ trðs3Þ;
k4 ¼ trðw2Þ; k5 ¼ trðsw2Þ; k6 ¼ trðs2w2Þ;

k7 ¼ trðs2w2swÞ; k8 ¼ ð gr � SÞTsð gr � SÞ;
k9 ¼ ð gr � SÞTs2ð gr � SÞ; k10 ¼ ð gr � SÞTw2ð gr � SÞ;

k11 ¼ ð gr � SÞTswð gr � SÞ; k12 ¼ ð gr � SÞTs2wð gr � SÞ;
k13 ¼ ð gr � SÞTwsw2ð gr � SÞ; k14 ¼ ðfrkÞTðfrkÞ;

k15 ¼ ðfrkÞTsðfrkÞ; k16 ¼ ðfrkÞTs2ðfrkÞ;
k17 ¼ ðfrkÞTw2ðfrkÞ; k18 ¼ ðfrkÞT gr � S;

k19 ¼ ðfrkÞTswðfrkÞ; k20 ¼ ðfrkÞTs2wðfrkÞ;
k21 ¼ ðfrkÞTwsw2ðfrkÞ; k22 ¼ ðfrkÞTswð gr � SÞ;
k23 ¼ ðfrkÞTs2wð gr � SÞ; k24 ¼ ðfrkÞTwð gr � SÞ;

k25 ¼ ðfrkÞTwsw2ð gr � SÞ; k26 ¼ ðfrkÞTðsw þ wsÞð gr � SÞ;
k27 ¼ Red;

(9)

where the first 26 invariants derive from the dependencies on
s;w; gr � S; frk while the last one is the scalar quantity added in the
dependencies assumption (6). The latter is invariant to the choice of
the coordinates-frame. The invariant trðsÞ is neglected because identi-
cally zero due to the incompressibility constraint.

In Sec. IV, we will consider also the simplified assumption,gr � s ¼ fðs;w; gr � S;RedÞ:
In this case, the vector basis is formed by the first six vectors in (8)
while the invariants are the first 13 and the last one in (9) (they are the
expressions that do not involve frk).

TABLE I. Root mean square error (RMSE) of VBNN and Baseline models usinggr � sDNS as reference.
Model RMSE

VBNN 0.32 � 10�1

Baseline 2.43 � 10�1

TABLE II. Maxima of the secondary motion norm and corresponding amplification
factor.

Model maxðjjðuy; uzÞT jj2Þ=ub
maxðjjðuy; uzÞT jj2Þ

maxðjjðuDNSy ; uDNSz ÞT jj2Þ

DNS 2.04 � 10�2 1
VBNN 2.65 � 10�2 1.30
Baseline 3.47 � 10�2 1.70
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B. Vector basis neural network

1. Inputs and outputs

The vector basis neural network outputs are the coefficients cj,
j ¼ 1;…;Nc, in (7). The VBNN should be able to reproduce the diver-
gence of the RST using only information coming from RANS simula-
tions. In particular, during the training stage, the quantityr � s comes
from the DNS while the invariants, the vectors, and the adimensionali-
zation factors come from the RANS. Therefore, during the training the
optimization process aims to reduce

jj ð gr � sÞDNS �XNc

k¼1
cNNk ðkRANS1 ;…; kRANSNi

Þ tRANSk jj2: (10)

Here, the quantities kRANSi ; i ¼ 1;…;Ni and tRANSk ; k ¼ 1;…;Nc

come from RANS simulations whereas the quantities
cNNk ; k ¼ 1;…;Nc, are the neural network outputs. In Eq. (10), with

an abuse of notation, we define ð gr � sÞDNS ¼ ðk1=2ÞRANSeRANS r � sDNS. In
some cases, the DNS e field is not available. For this reason, the dimen-
sionless VBNN output must be successively dimensionalized using
RANS fields.

Recent works27,35,36 proposed indirect approaches to obtain
ðr � sÞDNS aiming to reduce errors associated with the lack of statisti-
cal convergence in DNS databases. In this work, ðr � sÞDNS is obtained
by interpolation of the available sDNS into the RANS mesh followed by
computation of its divergence on the RANS mesh.

2. Architecture and hyperparameters

The input and output layers of the VBNN have a number of
nodes, that is, constrained by the assumption (6). In particular, the
input layer has Ni nodes (as many as the invariants) while the output
layer has Nc nodes (as many as the coefficients to be predicted), see
Fig. 1. In this work, Ni is smaller compared to other models in litera-
ture such as Cruz et al.27 where Ni¼ 72.

After some tests, it has been noticed that increasing the depth to
more than six hidden layers or the width to more than 30 nodes per
hidden layer did not increase the prediction ability of the network.
This behavior was observed also in literature.34 At the end, eight

hidden layers have been defined with 30 nodes each as made by Ling
et al.19

It has been observed that the network is not affected by overfit-
ting issues. Thus, the regularization term associated with the weights
norm has been shut down. The Adam optimizer37 is used with learn-
ing rate that decreases during the training stage from 10�3 to 10�5

and batch size equal to 50. The exponential linear unit38 (ELU) func-
tion has been chosen as activation function because of the better
observed performances.

Due to the intrinsic stochasticity of the optimization process, sev-
eral training runs with the same hyperparameters have been per-
formed. Among them, the run that minimized the validation error has
been identified as the reference one for the specific hyperparameters
choice.

C. Invariance properties

1. Galilean invariance

Galilean invariance states that the laws of motion are the same
in all frames with constant velocities.26 All the inputs of the VBNN
are Galilean invariant because k, e, S, W, r � S and rk are
all Galilean invariant. Consequently, the outputs of the VBNN,
that depends on the inputs, do not change through a Galilean
transformation.

2. Coordinates-frame rotation invariance

Given a rotation matrix Q, the invariants (9) and the vectors (8)
follow the transformation law,18

kQi ¼ ki; i ¼ 1;…;Ni;

tQk ¼ Qtk; k ¼ 1;…;Nc;
(11)

where the superscript Q denotes the representation of the quantity in
the rotated coordinates system.

The VBNN is the coordinates-frame rotation invariant in the
sense that all the scalar outputs are coordinates-frame rotation invari-
ant. This property directly derives from the invariance of the scalar
inputs, i.e., kQi ¼ ki. It implies that gr � s transforms correctly under
rotations. Indeed

FIG. 1. Architecture of the vector basis
neural network.
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gr � sQ ¼XNc

k¼1
ckðkQ1 ;…; kQNi

Þ tQk

¼
XNc

k¼1
ckðk1;…; kNiÞQtk

¼ Q
XNc

k¼1
ckðk1;…; kNiÞ tk

" #
¼ Q gr � s: (12)

D. Implicit–explicit treatment of r � s
Once the term r � s is obtained, the RANS system (1) has to be

solved. The easiest approach is to treat explicitly this term like a source
term. However, the ill-conditioning of this approach is known39 when
dealing with data-driven Reynolds stress tensor. Consequently, Wu
et al. proposed to treat implicitly the Reynolds Stress Tensor compo-
nent aligned to the mean strain rate tensor S into the diffusive term. A
better conditioning of the system was observed with this approach.
The present work takes inspiration on this remark with the slight
change imposed by dealing with the divergence of the RST instead of
the RST itself. Hence, the attention will be devoted to the term aligned
withr � S.

Let us take the expression (7) with the first term explicitly
written,

gr � s ¼ c1 gr � S þXNc

k¼2
ck tk: (13)

Recalling gr � s ¼ k1=2
e r � s and gr � S ¼ k5=2

e2 r � S, the above expres-
sion becomes

r � s ¼ k2

e
c1r � Sþ

e

k1=2
XNc

k¼2
ck tk: (14)

The scalar term k2
e is dimensionally a viscosity. This remark drives to

the definition of the turbulent-like viscosity,

�tl :¼ � k2

2e
c1: (15)

Thus, the momentum equation of the RANS system reads

@u
@t
þ u � ru� ð� þ �tlÞDu ¼ �rp�

e

k1=2
XNc

k¼2
ck tk: (16)

Looking at the obtained system, the difference between the turbulent-
like and the turbulent viscosity consists in their positioning with
respect to the divergence operator. Indeed, the former is located out-
side the divergence, i.e., �tlr � ðruÞ, while the former inside it, i.e.,
r � ð�truÞ, see (1) and (2).

In general, it is not guaranteed that �tl > 0 (corresponding
to c1 < 0) holds everywhere. Let us write �tl ¼ �þtl þ ��tl where
�þtl ðxÞ ¼ maxð�tl; 0Þ is the positive part of the turbulent-like viscosity.
Finally, let us define

ðr � sÞ† :¼ ���tlr � Sþ
e

k1=2
XNc

k¼2
ck tk: (17)

The final RANS system with implicit–explicit treatment reads

r � u ¼ 0;
@u
@t
þ u � ru� ð� þ �þtl ÞDu ¼ �rp� ðr � sÞ

†;

8<: (18)

where the term associated with �þtl is treated implicitly into the diffu-
sion term while the term ðr � sÞ† is treated explicitly.

More details about the implementation of the implicit–explicit
treatment in OpenFOAM are given in the Appendixes.

IV. NUMERICAL RESULTS

This section discusses about the application of the VBNN into
two classical benchmark flows: the flow in a square duct and the flow
over periodic hills. As it will be discussed, standard RANS models fail
in the description of the velocity field in these configurations.

FIG. 2. Square duct domain.
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The VBNN is implemented and trained in Python using the
Tensorflow package40 while all the RANS computations are performed
with the finite volume method-based OpenFOAM opensource code.41

A. Flow in a square duct

1. Dataset

DNS data6 at several bulk Reynolds numbers Reb have been used.
The simulations with Reb ¼ 2200; 2600; 2900 are employed for train-
ing purposes. In particular, 80% of the data are used for training while

the remaining 20% for validation. The flow at Reb¼ 3500 is employed
to test the network prediction ability. The test flow Reynolds number
is higher than the training ones to analyze the extrapolation property
of the VBNN. This particular flow is (in average) stationary and uni-
form across the main streamwise direction. Only the data coming
from three square sections in the central region of the duct are used to
reduce considerably the training effort. Figure 2 shows the domain
and one square section. The obtained dataset counts roughly 2 � 104
simulation cells. The Launder, Reece, and Rodi (LRR) RSTM29 is used
as RANS model with a low-Reynolds number approach at wall

FIG. 3. Comparison between first (a), sec-
ond (b), and third (c) components of gr � s
from DNS (on the left), VBNN (in the mid-
dle) and RSTM Baseline one (on the
right).
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(with the first mesh layer thickness such that the maximum value of
yþ is around 1). In the following, this turbulence model will be referred
to as Baseline.

2. Results analysis

Figure 3 compares the components of the vector gr � s obtained
from DNS, VBNN and Baseline model, respectively. Regarding the first
component, the VBNN is in agreement with the DNS both qualitatively
and quantitatively while the Baseline overpredicts it in the center and
along the diagonals of the square section. Regarding the second and
third components, the Baseline have positive and negative values located
in two separated square section’s halves. In addition, maxima and min-
ima are overestimated in absolute value. On the other hand, the VBNN
describes correctly the values of these components and where these are
positive and negative. However, VBNN predicts in few cells near the
corners maxima or minima that are not in the DNS.

Table I shows the root mean square error (RMSE) defined as
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3Ncells

XNcells

i¼1
jj gr � sDNSi � gr � smodel

i jj2
vuut ; (19)

where Ncells is the number of cells in the RANS square section grid.
This metric quantitatively measures the distance between the DNS
dimensionless target and the turbulence model ones. The Baseline
RMSE is one order of magnitude higher than the VBNN.

Among all the predicted coefficients in the expansion (7), the first
one plays a key role in the conditioning of the RANS system. In partic-
ular, the more extended are the regions with a negative predicted first
coefficient (and consequently positive �tl), the better conditioned is the
system. Figure 4 shows the ratio between the turbulent-like viscosity
�tl, defined in (15), and the kinematic viscosity �. The ratio is positive
in the majority of the square section with values bigger than eight fre-
quently occurring. The negative regions are very limited and located
on the square diagonals near the corners. The minimum value of the
ratio is lower than �1, in particular minð�tl=�Þ ¼ �1:70. If the
turbulent-like viscosity was treated completely implicitly, the total vis-
cosity associated with the Laplacian operator in (16) would be negative
in some regions. This observation justifies the splitting of �tl into its
positive and negative part being the former only treated implicitly.

The obtained data-driven r � s is successively inserted into the
RANS solver to obtain new steady fields. Figure 5 shows the magni-
tude of the secondary motion jjðuy; uzÞT jj2=ub (assuming the stream-
wise velocity aligned to the x axis), where ub is the bulk velocity.
Lighter colors correspond to higher values of the norm. The different
resolution between the models is due to the grid density, being the
DNS one much finer than the VBNN and Baseline one (the same grid
is employed for both models). Even if the Baseline model describes
correctly the regions where the secondary motion is more prominent,
it drastically overpredicts it. On the other hand, the VBNN secondary
motion is still overpredicted, but its magnitude is in between the DNS
case and the Baseline one. To make a quantitative comparison, Table
II reports the values of maxðjjðuy; uzÞT jj2Þ=ub, and the relative ampli-
fication using the DNS value as reference. The VBNN approach
reduces the overestimation from 70% of the Baseline model to 30%.
Finally, the VBNN secondary motion is characterized by symmetry
(up to numerical discrepancies in the central and on the peaks regions)
with respect to square section diagonals, while the Baseline case does
not correctly respect the symmetry.

Figure 6 shows the velocity components profiles along the red
lines defined in Fig. 2 in the lower-left square section quadrant. The uy
has been flipped of sign to make comparison with literature curves26,39

easier. The Baseline model correctly describes the main motion ux.
However, it overpredicts the magnitudes of both secondary motion’s
velocity components. On the other hand, the VBNN model correctly
predicts the secondary motion close to the corners, i.e., for

FIG. 4. Ratio between turbulent-like viscosity �tl and kinematic viscosity � in the
square section.

FIG. 5. Magnitude of the secondary
motion in the DNS (left), the VBNN (mid-
dle), and the Baseline model (right).
Lighter colors correspond to higher magni-
tudes of the secondary flow.
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y=h ¼ 0:25, where the profiles almost overlaps the DNS ones without
losing accuracy on the main flow. Small improvements of the second-
ary motion are also noticeable for the other curves, in particular near
wall for uy curves and far from wall for the uz ones.

3. Role of the implicit–explicit treatment

Figure 7 compares the secondary motion obtained with the
implicit–explicit treatment of the divergence of the RST and with the
totally explicit one. Even if the latter damps the magnitude of the
motion as desired, it unphysically breaks the symmetries. In addition,
the explicit simulation takes an order of magnitude more time steps to
reach the steady state. In general, a convergence speed-up of implicit
treatments is usually observed.35

It is important to highlight that differences between the two fields
are uniquely due to the treatment of the divergence of the RST into
the equations. As a matter of fact, the same r � s field is fed into the
equations.

4. Role of the dependencies choice

In this section, we test also the dependences hypothesis (6) by
choosing the simpler relation

gr � s ¼ fðs;w; gr � S;RedÞ; (20)

FIG. 7. Comparison of the magnitude of the secondary motion in the case of implicit–
explicit (left) or purely Explicit (right) treatment ofr � s. The same colormap as in Fig. 5
is used.

FIG. 8. Magnitude of the secondary motion: on the left the field assuming a depen-
dence on frk , on the right the field not assuming a dependence on frk . The same
colormap as in Fig. 5 is used.

FIG. 6. Primary (a) and secondary motion [(b) and (c)] velocity components along
the red lines defined in the square section in Fig. 2. The sign of uy is changed com-
pared to the coordinates defined in Fig. 2 to make comparison with literature26,39

easier.
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i.e., by removing the dependence on frk. In this case the basis consists
of six elements while the invariants are 14. This hypothesis still let pos-

sible the implicit–explicit treatment of the RANS system because gr � S
is still a basis vector. This would not be the case if gr � S were excluded
from the dependencies in (6). Considering the results of Sec. IVA3,

the analysis without gr � S is not carried out.
The RMSE error in this case is 0:37� 10�1, bigger than the cor-

responding value in Table I. This behavior is expected because a
smaller vector basis and a smaller set of invariants are considered.

Figure 8 shows the secondary motion in the two cases. Even

when frk is not considered, the secondary motion is still correctly
damped compared to the Baseline case. However, the field loses its
symmetry with respect to the square diagonals.

The lack of symmetry of the secondary motion incurred both in

the explicit treatment and by removing frk from the dependencies can
compromise the symmetry of the main motion by inducing a non-
physical rotation. This phenomenon is confirmed in Fig. 9.

5. Role of the Baseline RANS model

Until now, the Launder, Reece, and Rodi RSTM has been used as
starting Baseline RANS model to generate the dataset to train the
VBNN. While it has been shown that this model overestimates the
intensity of the secondary motion, it still predicts this phenomenon. In
this section, the Launder and Sharma (LS) k� e linear model42 is
used. For the sake of brevity, only the a posteriori results concerning
the velocity field are shown.

Figure 10 compares the intensity of the secondary motion of the
DNS, VBNN and Baseline models. As expected, the Baseline model
does not predict secondary motion. On the other hand, the VBNN
model predicts it even if underestimated. Analogously to the LRR
model case, the intensity of the VBNN model is in between the
Baseline and DNS case.

Table III reports the values of maxðjjðuy; uzÞT jj2Þ=ub and the rel-
ative attenuation using the DNS value as reference. It confirms the
absence of the secondary motion in the Baseline case. The maximum
intensity in the VBNN case is 81% the DNS one.

Figure 11 shows the velocity profiles of the primary and second-
ary flows along the red lines defined in Fig. 2. The ux profiles of both
the Baseline and VBNN models are in agreement with the DNS. As
already observed, the Baseline model does not predict any secondary
flow while the VBNN predicts non-null uy and uz profiles. Regarding
uy, the VBNN underestimates the maximum values and slightly

FIG. 9. Main motion ux=ub with the
Explicit treatment and by removing frk
from the dependencies of gr � s .

FIG. 10. Magnitude of the secondary
motion in the DNS (left), the VBNN (mid-
dle) and the LS k � e Baseline model
(right). Lighter colors correspond to higher
magnitudes of the secondary flow.

TABLE III. Maxima of the secondary motion norm and corresponding amplification
factor when using the LS k � e as Baseline model.

Model maxðjjðuy; uzÞT jj2Þ=ub
maxðjjðuy; uzÞT jj2Þ

maxðjjðuDNSy ; uDNSz ÞT jj2Þ

DNS 2.04 � 10�2 1
VBNN 1.65 � 10�2 0.81
Baseline 3.38 � 10�9 1.66 � 10�7
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overestimates the minimum values at y=h ¼ 0:25 and y=h ¼ 0:5. The
maximum at y=h ¼ 0:75 is predicted slightly to far from wall.
Regarding uz, the VBNN profiles are in agreement with the DNS
values.

B. Flow over periodic hills

1. Dataset

The DNS data10 have been used with different hills geometries
but fixed bulk Reynolds number Reb¼ 5600 are available. Figure 12
shows the different steepness associated with the parameter a. The
smaller is a, the steeper is the hill profile. All lengths are set dimension-
less dividing by the hill high h.

The flows with a ¼ 0:5; 0:8; 1:2; 1:5 have been employed for the
training (with the same splitting 80%� 20% for training and valida-
tion) while the case with a ¼ 1:0 is used for testing only. The RANS
simulations have been performed with a 2D domain. The cardinality
of the training dataset is about 5:9 � 104 cells, which is the cells number
in the 2D RANS domain. It has been observed that a dropout regulari-
zation method43 with drop probability of 0.1 was helpful in the train-
ing and consequently adopted. The Launder and Sharma k� e linear
model is employed as Baseline RANS model. The analysis with the
LRR model has not been performed due to convergence issues. All
computational details can be found in Xiao et al.10 where the
OpenFOAM case is available.

2. Results analysis

Figure 13 shows the first two components only of gr � s for the
DNS, VBNN and Baseline models, being the third component zero
(the VBNN correctly predicts it). The VBNN components are in
agreement with the reference ones while this is not true for the
Baseline model.

For the first component, VBNN provides a correct description of
the maxima loci that starts from the crest of the front hill. It also pre-
dicts the limited region of local maximum at the middle-end of the
first hill and the following minimum. The Baseline case has wrong,
both in location and values, maxima and minima in the left part of the
domain. It predicts correctly the minima region on the second hill
(well predicted by the VBNN model too). However, there is a wrong
maximum on the top of the second hill.

FIG. 11. Primary (a) and secondary motion [(b) and (c)] velocity components along
the red lines defined in the square section in Fig. 2. The Baseline model is the LS
k � e linear model. The sign of uy is changed compared to the coordinates defined
in Fig. 2 to make comparison with literature26,39 easier. FIG. 12. Periodic hills shapes with respect to the a slope parameter.
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Regarding the second component, the VBNN model describes
correctly the value and the extension of the maximum located at
x=h � 3:5; y=h ¼ 0, and the Baseline model overpredicts both
aspects. Finally, the VBNN case is characterized by the minima region
that starts from the first hill crest.

Figure 14 shows �tl=� to understand the relevance of the
implicit–explicit treatment. The ratio is positive in the majority of
the domain with the exception of the two region immediately above
the hills, predominantly above the rear one. In particular, this quantity
assumes values Oð102Þ with maximum of about 800. This behavior is
helpful for the conditioning of the system. It has been observed that
the dropout regularization helps in reducing the regions with negative
turbulent-like viscosity.

Figure 15 represents the horizontal velocity profiles along the ver-
tical lines at x=h ¼ c with c ¼ 0;…; 8. The profiles are obtained once
the simulation reaches the steady state with r � s coming from the
VBNN model. Figure 15(a) shows the whole domain while Fig. 15(b)
focuses on the first hill downstream wall region and Fig. 15(c) depicts
the middle top wall region.

Generally speaking, the VBNN curves are closer to the DNS ones
compared to the Baseline ones. This behavior is observable in the
whole computational domain. It is worth mentioning that the VBNN
model predicts, even if underestimated, the local maximum of the hor-
izontal velocity on the crest of the first hill (x=h ¼ 0; y=h ¼ 1). This
behavior is not captured by the Baseline model for which ux monoton-
ically increases until y=h � 2:8.

Figure 15(b) shows that the Baseline model predicts almost null
reversal flow downstream the first hill and underestimates the size of
the recirculation region. These are expected errors when simulating
the flow over periodic hills with linear k� e models.44 On the other
hand, the VBNN simulation predicts reversal flow quantitatively close
to the DNS case for x=h ¼ 1 and x=h ¼ 2. VBNN still predicts rever-
sal flow, even if underestimated, for x=h ¼ 3. However, at x=h ¼ 4
the VBNN horizontal velocity is positive near wall while the DNS one
is still negative.

Figure 15(c) represents the maxima of the curves that are located
near the upper wall (y=h ¼ 3:036). The maxima are slightly but con-
stantly underestimated by the Baseline model. Conversely, the VBNN
curves are very close to the DNS ones and do not suffer from the
underestimation issue.

Figure 16(a) represents the vertical velocity profiles along the ver-
tical lines at x=h ¼ c with c ¼ 0;…; 8, while Fig. 16(b) focuses on the

FIG. 13. Comparison between first (a)
and second (b) components of gr � s from
the DNS (on the left), the components
obtained with the VBNN (in the middle)
and the RSTM Baseline one (on the right).
The third component is not shown
because uniformly zero.

FIG. 14. Ratio between turbulent-like viscosity �tl and kinematic viscosity � in the
periodic hills case.

FIG. 15. ux profiles comparison between DNS, VBNN, and Baseline cases (a).
Zoom downstream the first hill crest in magenta box in figure above (b). Zoom in
the middle top wall region in green box in figure above (c).
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x=h ¼ 1 line near the hill. VBNN leads to improvements compared to
the Baseline k� e model, even if less prominent than the ux case. The
region with best improved accuracy is the x=h ¼ 1 line near the hill
wall represented in Fig. 16(b). The VBNN model predicts a positive
velocity region close to the DNS one while the k� e turbulence model
predicts a positive velocity in a smaller region. In particular, the verti-
cal velocity goes from negative to positive at y=h � 0:93 in the DNS,
y=h � 0:86 in the VBNN, and y=h � 0:70 in the k� e model.

Finally, it is worth noting that an analysis of the effects of the
explicit treatment of gr � s on the simulated flow has not been possible
due to instability issues.

V. CONCLUSIONS

The present paper proposes a new data-driven turbulence model
to close and increase accuracy of the RANS equations. Hence, the
model predicts the divergence of the Reynolds stress tensor, usually
called Reynolds force vector.27 This target vectorial quantity is obtained
through a neural network that predicts the coefficients of a vector basis
expansion. These coefficients are functions of invariant scalar quanti-
ties that depend on the averaged fields. The vector basis and the invari-
ants are uniquely defined once a list of dependencies of the target
function is made. A possible dependencies choice is discussed starting
from a well-known assumption in literature for the Reynolds stress
tensor anisotropy. Moreover, the architecture of the trained network
and the invariants choice guarantee both Galilean and coordinates-
frame rotation invariances. In addition, this approach closes directly
the RANS system and does not require any coupling with classic tur-
bulence models. An implicit treatment of the first term of the expan-
sion is proposed to increase the conditioning of the RANS system.

The proposed model is tested for the flow in a square duct
and the flow over periodic hills. Both flows, despite their

geometrical simplicity, present features that classic turbulence
models do not describe correctly, in particular the secondary flow
for the former and the recirculation flow downstream the first hill
in the latter. The duct flow case is tested using a classic Launder
and Sharma k� e linear closure and the Launder, Reece, and Rodi
Reynolds stresses transport model. The periodic hills case is tested
using the Launder and Sharma k� e linear closure. The data-
driven model qualitatively and quantitatively outperforms classic
turbulence models in both scenarios.
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APPENDIX A: DEPENDENCIES OF gr � s
Starting from the definition of RST anisotropy and its expan-

sion in (3), one could write

s ¼ 2k
X10
j¼1

cjðk1;…; k6ÞTj þ
1
3
I

24 35: (A1)

It is possible to compute the divergence of the above expression as
follows:

r � s ¼ 2
X10
j¼1

cjðk1;…; k6Þ rk½ �TTj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

þ 2
X10
j¼1

k rcjðk1;…; k6Þ
� �TTj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

þ 2
X10
j¼1

kcjðk1;…; k6Þr � Tj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

þ 2
3
rk|ffl{zffl}
d

: (A2)

FIG. 16. uy profiles comparison between DNS, VBNN, and Baseline cases (a).
Zoom downstream the first hill crest at x=h ¼ 1 in magenta box in figure above (b).
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Let us suppose that both the tensor basis expressed in (5) and
the turbulent kinetic energy are known (the standard approach is to
obtain them from a RANS simulation). While the terms a; c; d can
be treated by a neural network that obtains scalar coefficients only,
the term b contains the gradient of the unknowns that are vector
quantities. Thus, the expression (A2) cannot be directly used while
preserving coordinates-frame rotation invariance. Nonetheless, it
can be used as a guideline to write down a new constitutive law for

r � s or its dimensionless counterpart gr � s ¼ k1=2
e r � s. It has been

decided to predict the latter to be as close as possible to the TBNN
approach in Ref. 19 where the dimensionless Reynolds Stress
Tensor anisotropy is predicted.

From the above computations, it seems natural to suppose

dependences of gr � s from s, w, their respective divergences and
rk. It is worth noting that the divergence of each tensors fTjg in
(A2) involves multiplications of s, w and their respective
divergences.

In order to work with dimensionless quantities only, analogously
to Ling et al.,19 it has been decided to make the following assumption:

gr � s ¼ fðs;w; gr � S; gr �W; frkÞ; (A3)

where s ¼ k
e S; w ¼ k

e W; gr � S ¼ k5=2
e2 r � S; gr �W ¼ k5=2

e2 r �W, andfrk ¼ k1=2
e rk are the dimensionless counterparts of the symmetric

part of the velocity gradient S, the antisymmetric part of the velocity
gradientW, the divergence of S, the divergence ofW, and the gradi-
ent of k, respectively.

The list of dependences (A3) can be simplified because r �
S ¼ r �W ¼ 1

2Du from the Schwarz theorem and the incompressi-
bility assumption. Indeed, if u is sufficiently regular, it holds

r � S ¼ @

@xj

1
2
@ui
@xj
þ
@uj
@xi

" #
¼ 1

2
@2ui
@x2j
þ @

@xi

@uj
@xj

" #
¼ 1

2
@2ui
@x2j

;

r �W ¼ @

@xj

1
2
@ui
@xj
� @uj
@xi

" #
¼ 1

2
@2ui
@x2j
� @

@xi

@uj
@xj

" #
¼ 1

2
@2ui
@x2j

:

(A4)

As a consequence, the constitutive assumption can be simplified to

gr � s ¼ fðs;w; gr � S; frkÞ: (A5)

In this work, a dependence from r � S and not from r � s (both to
be made dimensionless) is supposed to make the implicit treatment
of the first expansion term straightforwardly.

Finally, as remarked by several authors,26,34 any other scalar
quantity can be included in the constitutive assumption without
changing the coordinates-frame rotation property. In particular, in our
work we assume an additional dependence from the wall-distance-
based Reynolds number Red.

APPENDIX B: IMPLICIT–EXPLICIT TREATMENT
IN OPENFOAM

The system (18) does not require any coupling with a turbu-
lence model and can theoretically be solved in OpenFOAM with a
laminar solver like icofoam. The explicit term ðr � sÞ† is easy to

implement because it is sufficient to define a new solver starting
from an existing one by adding a fixed source term into the
momentum equation.

The implicit term is less trivial to implement. The field �þtl can-
not be defined as a uniform field as the kinematic viscosity.
Therefore, it has been decided to implement a “fake” turbulence
model that passes the same �þtl field at each solver iteration. Thus,
the simpleFoam solver is used. To the best knowledge of the
authors, OpenFOAM is coded to deal with classic turbulent viscosi-
ties that are inside the divergence operator. In order to modify the
code as less as possible, it has been decided to solve for an equiva-
lent momentum equation that reads

@u
@t
þ u � ru�r � ð� þ �þtl Þru

� �
¼ �rp� ðr � sÞ† �rur�þtl :

(B1)
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