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Reconstitution of microtubule into
GTP-responsive nanocapsules

Noriyuki Uchida1,2, Ai Kohata 3, Kou Okuro4,5, Annalisa Cardellini 6,
Chiara Lionello 6, Eric A. Zizzi 7, Marco A. Deriu7, Giovanni M. Pavan 6,8,
Michio Tomishige9, Takaaki Hikima10 & Takuzo Aida 1,3

Nanocapsules that collapse in response to guanosine triphosphate (GTP) have
the potential as drug carriers for efficiently curing diseases caused by cancer
and RNA viruses because GTP is present at high levels in such diseased cells
and tissues. However, known GTP-responsive carriers also respond to adeno-
sine triphosphate (ATP), which is abundant in normal cells as well. Here, we
report the elaborate reconstitution of microtubule into a nanocapsule that
selectively responds to GTP. When the tubulin monomer from microtubule is
incubated at 37 °C with a mixture of GTP (17mol%) and nonhydrolysable GTP*
(83mol%), a tubulin nanosheet forms. Upon addition of photoreactive mole-
cular glue to the resulting dispersion, the nanosheet is transformed into a
nanocapsule. Cell death results when a doxorubicin-containing nanocapsule,
after photochemically crosslinked for properly stabilizing its shell, is taken up
into cancer cells that overexpress GTP.

An ideal nanocarrier for drug delivery would be the one that can
selectively collapse to release preloaded drugs in response to endo-
genous reporters overexpressed in disease tissues1–9. Since adenosine
triphosphate (ATP) is known to be present at high levels in cancer
tissues10, ATP-responsive nanocarriers might be a promising
candidate3–7. In 2013, using partially modified biomolecular machine
chaperonin GroEL as a monomer, we succeeded in developing a one-
dimensional supramolecular polymer that can be depolymerized by the
action of ATP to release its cargo3. However, ATP is also present in
normal cells at rather high concentrations (>1mM)11, and thus disease-
selective drug delivery using ATP as the endogenous reporter cannot
always be ensured. In the present work, we developed a nanocarrier
(CLNCGTP/GTP*; Fig. 1e) that selectively responds to guanosine tripho-
sphate (GTP). GTP is an intracellularmolecule involved inmany essential

biological processes12–25, such as cell division12, nucleotide synthesis13,
and cell signaling14. In the cell division process, the tubulin heterodimer
(THD), which constitutes microtubules (MTs), uses GTP as an energy
source to induce its polymerization and depolymerization15–20. GTP is
also used as a component for the self-replication of RNAviruses26–29 such
as coronaviruses. Notably, GTP is abundant in certain diseased cells
(1.5–4.5mM)30 such as rapidly proliferating cancer cells31 and RNA virus-
infected cells32, whereas the concentration of GTP, unlike that of ATP, is
negligibly low in normal cells (<0.3mM)33. Therefore, GTP-responsive
nanocarriers have the great potential to efficiently cure cancer and RNA
virus-induced diseases including coronavirus disease 2019 (COVID-19)29.
Although GTP-responsive carriers have already been reported, those
carriers also respond to ATP5. So far, nanocarriers capable of responding
solely to GTP have never been reported.
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The nanocapsule (NC) that selectively responds to GTP to
release a preloaded drug consists of THD. As shown in Fig. 1a, THD is
composed of α-tubulin (green) and β-tubulin (cream), both of which
bind to GTP. Notably, GTP attached to the α-tubulin unit is neither
hydrolysable into GDP nor replaceable with other nucleoside

phosphates. In contrast, GTP attached to the β-tubulin unit is known
to be hydrolysable to GDP, which can be replaced with, e.g., GTP*, a
nonhydrolysable GTP analogue (guanylyl 5’-α,β-methylenedipho-
sphonate), affording THDGTP* (for convenience, only variable
nucleoside phosphates attached to the β-tubulin unit are shown as a

Fig. 1 | Strategy used to prepare THD-based GTP-responsive CLNCGTP/GTP*.
a Schematic illustrations of tubulin heterodimers (THDs) hybridized with GTP
(THDGTP), its nonhydrolysable analogue GTP* (THDGTP*), and GDP (THDGDP) at its
β-tubulin unit. b Schematic illustration of two self-assembling modes of THD into
microtubules (MTs). MTGTP depolymerizes into THDGDP upon GTP hydrolysis.
THDGDP rehybridizes with GTP after a GTP treatment, facilitating the formation of
MTGTP. In contrast, MTGTP* does not undergo depolymerization. c Molecular
structures of photoreactive molecular glues (GlueCO2�, GlueCO2�Me, and GlueFITC)
bearing three guanidinium ions (Gu+) and benzophenone (BP) groups at their
periphery and CO2�, CO2 Me, and FITC groups at the focal core. d The molecular

glue covalently binds to the protein surface at its photoexcited BP groups after the
noncovalent adhesion via a Gu+/oxyanion multivalent salt-bridge interaction.
e Schematic illustration of themultistep procedure for the synthesis of crosslinked
nanocapsules (CLNCGTP/GTP*) from MTGTP. MTGTP is depolymerized into THDGDP,
which is incubated with a mixture of GTP* (83mol%) and GTP (17mol%) to form
nanosheet NSGTP/GTP*. Upon treatment with GlueCO2�, NSGTP/GTP* is transformed
into spherical nanocapsules (NCGTP/GTP*), which are further exposed to UV light,
affording CLNCGTP/GTP*. Upon addition of GTP, CLNCGTP/GTP* collapses through the
conformational change of the THD units induced by GTP hydrolysis.
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subscript). Both THDGTP and THDGTP*, when heated at 37 °C, have
been reported to self-assemble into microtubulesMTGTP andMTGTP*,
respectively (Fig. 1b)34,35. Although MTGTP depolymerizes into
THDGDP synchronously with the hydrolysis of hybridized GTP to GDP,
MTGTP* does not depolymerize into THDGDP* because of the non-
hydrolysable nature of GTP*. Therefore, our original motivation was
to tackle a challenge of modulating the stability of MTs against
depolymerization by changing the THDGTP/THDGTP* molar ratio.
However, we unexpectedly found that the coassembly of THDGTP and
THDGTP* at a certain mixingmolar ratio resulted in the formation of a
leaf-like 2D nanosheet (NS) rather than MT (Fig. 1e). Because of the
increasing importance of 2D objects36,37, this finding prompted us to
functionalize NS using the molecular glue technology38–40, which we
developed for noncovalently functionalizing biomolecules such as
proteins, nucleic acids, and phospholipid membranes, and also
inorganic materials. Molecular glues are designed to carry multiple
guanidinium ion (Gu+) groups and strongly adhere to such biomo-
lecules under physiological conditions by taking advantage of a
multivalent salt-bridge interaction with their oxyanionic functional-
ities (Fig. 1d). For this purpose, we chose GlueCO2� (Fig. 1c) and
incubated it with NS. To our surprise, NS was transformed into a
spherical nanocapsule NC (Fig. 1e). Using its photochemically mod-
ified version (CLNCGTP/GTP*; Fig. 1e), we successfully encapsulated and
delivered doxorubicin (DOX)41, an anticancer drug, into GTP-
overexpressing cancer cells to cause cell death.

Results
Reconstitution of MTGTP into NCGTP/GTP*

Figure 1e illustrates the overall procedure for the synthesis of NCGTP/

GTP* from microtubule MTGTP. As a typical example of the procedure
depicted in the flow chart in Fig. 2a, a 1,4-piperazinediethanesulfonic
acid (PIPES) buffer (pH 6.8) solution of MTGTP (5.8mgml–1, Fig. 2c) was
cooled at 4 °C, whereupon MTGTP underwent complete depolymer-
ization within 3 h to yield THDGDP quantitatively (Fig. 2d)42. As
observed by dynamic light scattering (DLS), the characteristic poly-
disperse feature of one-dimensional (1D)MTGTP (Fig. 2b, gray) changed
to a monodisperse feature with a reduced hydrodynamic diameter of
8 nm (Fig. 2b, blue). Then, THDGDP (0.3mgml–1) was immersed in a
PIPES buffer solution of a mixture of GTP and GTP* (300 µM in total)
with a GTP* content of 83mol% at 37 °C for 30min. Under the present
conditions, THDGDP was converted via the exchange events of GDP→
GTP and GDP→GTP* into a mixture of THDGTP and THDGTP*, which
then spontaneously coassembled into NSGTP/GTP* (Fig. 2e). The small-
angle X-ray scattering (SAXS) profile of NSGTP/GTP* showed that its
scattering intensity was proportional to q–2 in a small q region, which is
characteristic of two-dimensional (2D) structures (Supplementary
Fig. 9). As determined by atomic force microscopy (AFM), the average
thickness of leaf-like NSGTP/GTP* was 5 nm (Fig. 2f). Here, the content of
GTP* in the mixture of GTP and GTP* employed for the assembly of
THDGDP was critical for its successful transformation into NSGTP/GTP*.
When the content of GTP* ranged from 85–100mol%, THD pre-
ferentially assembled into MT rather than NS (Supplementary Fig. 10),
whereas THD barely assembled when its GTP* content was in the range
of 0–70mol% (Supplementary Fig. 11). Namely, the optimum THDGTP/
THDGTP* molar ratio for the coassembly into NS is narrow, roughly with
a GTP* content of 70–85mol%. By means of nuclear magnetic reso-
nance (NMR) spectroscopy in DMSO, NSGTP/GTP* prepared at a GTP*
content of 83mol% was found to contain 65mol% of THDGTP* (Sup-
plementary Fig. 12). It is known that MTGTP andMTGTP*, prepared from
THDGTP and THDGTP*, respectively, are formed by edge-closing
of NSGTP and NSGTP* as transient precursors43. Note that the longer
axis of THDGTP is shorter than that of THDGTP*

44. We suppose that
this mismatch possibly affords unfolded NSGTP/GTP* rather than
folded MTGTP/GTP*. Indeed, when THDGTP* (GTP* content of 83mol
%) was coassembled with THDGTPγS (THD hybridized with guanosine

5’-O-(3-thiotriphosphate), GTPγS), whose length is likewise shorter
than THDGTP*

44, NSGTPγS/GTP* was formed (Supplementary Fig. 13),
whereas the coassembly of THDGTP and THDGTPγS (GTPγS content of
83mol%), whose longer axes are close in length to each other44,
resulted in MTGTP/GTPγS (Supplementary Fig. 14). NSGTP/GTP* was trans-
formed into NCGTP/GTP* when it was incubated with GlueCO– (100 µM) in
PIPES buffer at 37 °C for 30min (Fig. 1e). This anomalous transfor-
mation was accompanied by a large change in the hydrodynamic
diameter from65nm (Fig. 2b, green) to 660nm (Fig. 2b, orange) with a
slight increase in the zeta potential from –42.2 to –39.0mV. Trans-
mission electron microscopy (TEM) showed that the newly formed
object NCGTP/GTP* was a hollow sphere (Fig. 2g). When MTGTP* and
THDGDP instead of NSGTP/GTP* were likewise treated with GlueCO2�, ill-
defined agglomerates resulted (Supplementary Figs. 15 and 16).

Photochemical crosslinking of NCGTP/GTP*

The physical stability of NCGTP/GTP* is important for its utilization as a
carrier for drug delivery. Through several different experiments, we
noticed that NCGTP/GTP* immediately collapsed upon incubation with
albumin or serum in buffer, indicating its insufficient stability as a
drug carrier. Here, we would like to point out a great advantage of
GlueCO2� and its homologues that their multiple benzophenone (BP)
groups upon photoexcitation enable covalent crosslinking with
adhering proteins (Fig. 1d). Successful examples so far reported
include microtubule and kinesin39, whose dynamic behaviors could
be attenuated by the reaction with photoexcited molecular glues. In
the present work, by using fluorescent FITC-appended GlueFITC

(Fig. 1c, FITC; fluorescein isothiocyanate) derived from GlueCO2�, we
first confirmed that GlueCO2� has a sufficient photoreactivity with the
constituent (THD) of NCGTP/GTP*. As shown in Supplementary Fig. 17,
the reaction mixture, after being exposed to UV light (300 nm) in
PIPES buffer, showed the presence of a fluorescence-emissive cova-
lent adduct between THDGDP and GlueFITC in sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). Then, we investi-
gated whether this photochemical approach can provide NCGTP/GTP*

with a sufficient physical stability by crosslinking the shell. Thus, a
PIPES buffer solution of NCGTP/GTP* was exposed to UV light for 2min,
where TEM (Fig. 2h) and AFM imaging results (Supplementary Fig. 18)
and DLS profiles (Fig. 2b, red) showed that crosslinked (CL) CLNCGTP/

GTP* was spherical and remained intact even upon incubation with
albumin (0.1mgml–1) or serum (0.01%) (Supplementary Figs. 19 and
20). CLNCGTP/GTP*, when prepared using GlueFITC instead of GlueCO2�,
was fluorescent (Supplementary Fig. 21), indicating the presence of
the molecular glue in CLNCGTP/GTP*.

Computational simulation of the assembly of NSGTP/GTP*
Considering that tubulin nanosheets NSGTP/GTP* are, on average,
0.04 µm2 wide and 4.2 nm thick, the formation of NCGTP/GTP* (surface
area; ~6.2 µm2, membrane thickness; 50 nm) requires at least 1000
pieces of NSGTP/GTP* to assemble. Note that GlueCO2� carrying both Gu+

andCO2� groups in its structure can self-assemble via their salt-bridge
interaction. In the initial stage of the transformation of NSGTP/GTP* into
NCGTP/GTP*, we postulate that a certain number of GlueCO2� molecules
utilize their Gu+ groups to forma salt-bridged networkwith the surface
CO2� groups on NSGTP/GTP* (Fig. 1d) as well as the focal-core CO2

–

group in GlueCO2�. This adhesion event can lower the surface charge
density of NSGTP/GTP* and enhance its hydrophobic stacking, which is
secured by possible reorganization of the salt-bridged polymeric net-
works on NSGTP/GTP* (Fig. 1e). We performed all atom molecular
dynamics (MD) simulations45 to explore the adhesion of GlueCO2� and
the effect of this event on the tubulin assembly. From a full MTmodel
(PDB code: 3J6E), we obtained its partial structure composed of three
laterally assembled THDGTP* units ([THDGTP*]3) as a model of NS
(Fig. 3a). TheMDsimulation suggested thatGlueCO2� adopts a globular
conformation in aqueous media with a hydrodynamic diameter of
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1.5 nm (Fig. 3b, Supplementary Fig. 22). When exposed to 30 equiva-
lents of GlueCO2� (Fig. 3c, d), [THDGTP*]3 enhances its hydrophobic
nature (Fig. 3e, f) as a result of the surface charge neutralization by
adheringGlueCO2�. In the solvent-accessible surfacearea of [THDGTP*]3,
the hydrophobic dominancy increases from 48% to 57% (Fig. 3g).
Notably, when GlueCO2� was allowed to adhere onto [THDGTP*]3, the
molecular simulations suggested that [THDGTP*]3 adopts a slightly
more flattened conformation, characterized by a distribution angle
with an average value of ~156° (Fig. 3h, i, blue), compared with that of

native [THDGTP*]3 (red). The simulations also showed that, even after
the GlueCO2� adhesion, [THDGTP*]3 preserved a certain level of flex-
ibility (Fig. 3i). We also calculated radial distribution functions g(r)
between the charged groups of GlueCO2� and the amino acid residues
of [THDGTP*]3. Supposedly, the CO2

– groups in aspartic acid and glu-
tamic acid are interactive with the Gu+ groups in GlueCO2�, while the
cationic groups in lysine and arginine are interactive with the focal
CO2� group in GlueCO2�. As expected, the g(r) data revealed that the
Gu+ groups inGlueCO2� are largely populated near theCO2� groups on
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NSGTP/GTP* surface, making NSGTP/GTP* more flatten.
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the [THDGTP*]3 surface (Fig. 3j, blue), whereas they are scarcely popu-
lated around the polar but nonionic hydroxyl groups in serine,
threonine, and tyrosine (Fig. 3j, gray). Meanwhile, the focal CO2

– group
in GlueCO2� is not populated around the cationic groups on the
[THDGTP*]3 surface (Supplementary Fig. 23). The computational cal-
culation also showed that multiple adhering GlueCO2� molecules can
interact and self-assemble via a salt-bridge interaction between their
Gu+ and CO2

– groups (Fig. 3j, red), which results in forming a dense Gu
+/CO2

– salt-bridged polymeric network on the [THDGTP*]3 surface
(Fig. 3k). This may promote the self-assembly of flexible NSGTP/GTP and
stabilize them in the gently curved multilayered configuration of
NCGTP/GTP*, as observed experimentally46,47. As a control experiment,
the use of GlueCO2�Me (Fig. 1c) having a focal ester group instead of its
ionized form for the transformation of NSGTP/GTP* into NCGTP/GTP*

resulted in an ill-defined agglomerate (Supplementary Fig. 24).

GTP-responsiveness of CLNCGTP/GTP*

We investigated whether photochemically stabilized CLNCGTP/GTP* is
responsive to GTP or not. Notably, the concentrations of both extra-
cellular and intracellular GTP are lower than 0.3mM in normal cells33.
However, as already described in the introductory part, rapidly pro-
liferating cancer cells and RNA virus-infected cells contain GTP in a
concentration range of 1.5–4.5mM30. Therefore, drug-loaded CLNCGTP/

GTP*, when takenup into suchGTP-rich environments,might selectively
collapse to release its preloaded guest. Upon incubation for 100min at
37 °C in PIPES buffer with 0.2mMGTP, CLNCGTP/GTP* still maintained its
spherical shape, as observed by TEM (Fig. 4a). However, when the GTP
concentration was increased to 0.5mM, CLNCGTP/GTP* gradually col-
lapsed (Fig. 4b), displaying a polydisperse DLS profile in 100min
(Fig. 4c, green). This minimum concentration threshold is important
for achieving the error-free delivery to GTP-enriched sites. We added
Biomol GreenTM as a phosphoric acid (PO4

–) detector to a mixture of
CLNCGTP/GTP* and GTP (1mM), and successfully detected PO4

– bymeans
of electronic absorption spectroscopy, indicating that CLNCGTP/GTP* has
a GTPase activity (Fig. 4d). Although THDGTP*, the constituent of
CLNCGTP/GTP*, has no GTPase activity, the product upon incubation of
THDGTP* with GTP for 1 h in PIPES buffer at 37 °C showed a GTPase
activity comparable to that of THDGTP (Supplementary Fig. 25), indi-
cating the conversion of THDGTP* into THDGTP. Thus, under the GTP-
rich conditions described above, GTP* in CLNCGTP/GTP* is likely replaced
with GTP to afford CLNCGTP, which possibly collapses along with the
hydrolysis of GTP in a manner analogous to the depolymerization of
MTGTP. Of particular importance, CLNCGTP/GTP* remained intact to the
treatment with other triphosphates (0.5mM), such as ATP, cytosine
triphosphate CTP, uracil triphosphate UTP (Fig. 4e, Supplementary
Figs. 26 and 27).

Guest encapsulation into CLNCGTP/GTP*

How to stably encapsulate guests inside nanocarriers is one of the
important subjects for drug delivery. By using gold nanoparticles (NPAu;
14 pM, diameter 50nm) as a guest, we succeeded in obtaining NPAu-
encapsulated CLNCGTP/GTP* by adding GlueCO2� (100 µM) to a PIPES buf-
fer solution of a mixture of NSGTP/GTP* (13 µgml–1) and NPAu at 37 °C.
After 30-min incubation, the resultingmixture was exposed for 2min to
UV light (300nm) for crosslinking. Using TEM (Fig. 4f) and asymmetric
field flow fractionation analysis (Supplementary Fig. 28), we confirmed
that CLNCGTP/GTP* encapsulated NPAu (CLNCGTP/GTP*⊃NPAu) in its hollow
sphere. We also confirmed that CLNCGTP/GTP*, when treated with GTP,
indeed released its preloaded guest. For this purpose, we first prepared
FITC-labeled THDGDP with a mixture of GTP and GTP* (GTP* content:
83mol%) in PIPES buffer, and further incubated the resulting fluorescent
NSGTP/GTP* with GlueCO2� in the presence of doxorubicin (DOX) for
30min. Then, the mixture was exposed for 2min to UV light (300nm)
for transforming NCGTP/GTP*⊃DOX into CLNCGTP/GTP*⊃DOX, which was
confirmed by confocal laser scanning microscopy (CLSM) to carry both

FITC and DOX dyes (Supplementary Fig. 29, green and red, respec-
tively). When CLNCGTP/GTP*⊃DOX was incubated with 1mM GTP in PIPES
buffer for 100min, DOX, as observed by CLSM, became much less
fluorescent, indicating the disruption of CLNCGTP/GTP* to release DOX
(Fig. 4g, (i)–(iii), lower panel). Upon incubation for 20min, 50min, and
100min, the residues obtained by ultrafiltration (cut-off molecular
weight = 5000) of the reaction mixtures contained 73%, 53%, and 21% of
the total amount of preloaded DOX, respectively (Fig. 4h), while in the
absence of GTP, DOX was not released (Fig. 4g, (i)–(iii), upper panel).

Intracellular drug delivery with CLNCGTP/GTP*

As a proof-of-concept study, we investigated whether FITC-labeled
CLNCGTP/GTP* can be taken up by humanhepatocellular carcinomaHep3B
cells (Fig. 5a). The cells were incubated in Eagle’s minimum essential
medium (EMEM) containing CLNCGTP/GTP* (0.5 µgml–1) for 2.5 h, rinsed
with Dulbecco’s phosphate-buffered saline (D-PBS), and further incu-
bated in EMEM containing 10% fetal bovine serum (FBS) for 1.5 h. CLSM
(Fig. 5b (i), left panel) together with flow cytometry analysis (Fig. 5c)
revealed that most of the cells took up FITC-labeled CLNCGTP/GTP*. Upon
subsequent incubation for 21.5 h in EMEM (10% FBS), the entire cyto-
plasm eventually became fluorescent (Fig. 5b (ii), right panel) as a pos-
sible consequence of the collapse of incorporated CLNCGTP/GTP*. In sharp
contrast, FITC-labeled THDGDP and NSGTP/GTP*, the intermediates for
constructing CLNCGTP/GTP*, were scarcely taken up into Hep3B cells
(Supplementary Figs. 30 and 31). The high intracellular uptake of FITC-
labeled CLNCGTP/GTP* is possibly due to a salt-bridge interaction between
the Gu+ groups in adhering GlueCO2� and cell-surface oxyanionic
groups48. We confirmed that the intracellular uptake was little affected
by the presence of endocytosis inhibitor NaN3 (ref. 49), suggesting that
the incorporation of CLNCGTP/GTP* into Hep3B cells was caused via an
endocytosis-independent direct pathway (Supplementary Fig. 32). For
the drug delivery application of CLNCGTP/GTP*, we conducted a cell via-
bility assay with CLNCGTP/GTP*⊃DOX. When treated with CLNCGTP/

GTP*⊃DOX ([CLNCGTP/GTP*] = 2.6 µgml–1, [DOX] = 2 µM) in EMEM (Fig. 5d)
for 2.5 h, Hep3B cells took up DOX as observed by CLSM after a sub-
sequent incubation in EMEM (10% FBS) for 1.5 h (Fig. 5e (iii), left panel),
and then died within next 21.5 h to form an ill-defined agglomerate
(Fig. 5e (iv), right panel). We also confirmed that Hep3B cells took up a
larger amount of DOX in CLNCGTP/GTP* (Fig. 5f, red) than DOX alone
(Fig. 5f, orange). Accordingly, CLNCGTP/GTP*⊃DOX successfully lowered
the cell viability to 30±6% (Fig. 5g, red), whereas that caused by DOX
alone was only 48± 15% (Fig. 5g, orange). As expected, the cell viability
decreased as the concentration of CLNCGTP/GTP*⊃DOX was increased
(Supplementary Fig. 33), while the viability upon incubation with
CLNCGTP/GTP*⊃DOX did not substantially increase when the incubation
time was shortened from 2.5 h to 1.0h (Supplementary Fig. 34). This is
likely caused by the GTP-selective collapse of CLNCGTP/GTP*. The intra-
cellular delivery of CLNCGTP/GTP*⊃DOXwas also successful with other cell
lines such as A549 cell and HeLa cell (Supplementary Fig. 35). We also
confirmed that neither the coexistence of THDGDP nor THDGDP/Glue

CO2�

enhanced the efficacy of DOX (Supplementary Fig. 36). Together with
the noncytotoxic nature of CLNCGTP/GTP* (Fig. 5g, green) and its stability
in a range of pH at tumor tissue (Fig. 2h)50, these results allow us to
expect that CLNCGTP/GTP* may have the potential to deliver preloaded
drugs into cancer cells using GTP as an endogenous reporter.

Discussion
Here, we have documented the successful reconstitution of MTGTP

into a GTP-responsive nanocarrier (Fig. 1). MTGTP is depolymerized
into THDGDP, which is incubated with a mixture of GTP* and GTP
(content of GTP*: 70–85mol%), thereby facilitating the in situ
coassembly of the resulting THDGTP* and THDGTP monomers to form
NSGTP/GTP*. Subsequently, NSGTP/GTP* is treated with molecular glue
GlueCO2� to be transformed into spherical NCGTP/GTP*, followed by
UV exposure to afford crosslinked CLNCGTP/GTP* capable of stably
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encapsulating guests (Fig. 2). In GTP-rich environments, CLNCGTP/GTP*

collapses and releases preloaded guests through the transformation
of CLNCGTP/GTP* into

CLNCGTP followed by the hydrolysis of its bound
GTP into GDP, analogous to the depolymerization of MTGTP (Fig. 4).
Using CLNCGTP/GTP*, we successfully delivered DOX into cancer cells
that overexpress GTP, and caused cell death more efficiently than
DOX alone (Fig. 5). Most importantly, CLNCGTP/GTP* is a drug carrier
that can selectively collapse in response to GTP rather than ATP that
is abundant in normal cells. Since cells infected with RNA viruses
such as coronavirus produce a large amount of GTP in their self-
replication process, GTP is an endogenous reporter for RNA virus-
infected cells. In vivo utilization of CLNCGTP/GTP* for curing RNA virus-

induced diseases such as COVID-19 is one of the interesting subjects
worthy of further investigation.

Methods
MD simulation was performed using AmberTools 20, GROMACS
2020.5 package, and Visual Molecular Dynamics (VMD) package, and
MD simulation methodologies are described in the Supplementary
Information.

Reconstitution of MTGTP into CLNCGTP/GTP*

THDGTP was obtained by purification from porcine brain51 by two
cycles of polymerization and depolymerization in PIPES buffer
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(100mM PIPES, 2mM MgSO4, 0.5mM GTP, 4 µgml–1 leupeptin, and
0.4mM PefaBlock, pH 6.8). A solution of THDGTP (5.8mgml–1) in PIPES
buffer (100mM PIPES, 5mM MgCl2, 2mM MgSO4, 1.5mM GTP, and
10% DMSO, pH 6.8) was incubated at 37 °C for 30min to affordMTGTP.
The reactionmixture was centrifuged at 17,900 × g for 20min at 24 °C.
The resulting precipitate was dissolved in PIPES buffer (100mMPIPES,
100 µMMgCl2, and 20 µMGDP, pH 6.8) and incubated at 4 °C for 3 h to
afford THDGDP

43. Subsequently, THDGDP (0.3mgml–1) thus obtained
was incubated in PIPES buffer (100mM PIPES, 1mM MgCl2, 250 µM
GTP*, and 50 µM GTP, pH 6.8) at 4 °C for 60min and then at 37 °C for
30min to afford NSGTP/GTP*. NSGTP/GTP* (13 µgml–1) was incubated in a
solution of GlueCO2� (100 µM) in PIPES buffer (14mM PIPES, 1mM
MgCl2, and 200 µM GTP*, pH 6.8) at 37 °C for 30min. The reaction
mixture was exposed to UV light at 300 nm for 2min, affording
CLNCGTP/GTP*. FITC-labeled NSGTP/GTP* and

CLNCGTP/GTP* were prepared
using FITC-labeled THDGDP (14% labeling rate)51 under conditions that
were otherwise identical to those listed above. Prior to the NMR
measurement of the NSGTP/GTP* sample, unbound GTP and GTP* were
removed by centrifugation (286,000 × g) of the reaction mixture at
37 °C for 60min. Zeta potentials of NSGTP/GTP* (1.3 µgml–1) and NCGTP/

GTP* (1.3 µgml–1) were measured at 37 °C in PIPES buffer.

GTP-responsiveness of CLNCGTP/GTP*

A solution of CLNCGTP/GTP* (12 µgml–1) in PIPES buffer (9mM PIPES,
0.9mM MgCl2, and 180 µM GTP*, pH 6.8) was incubated in the pre-
sence of GTP (0.1mM, 0.2mM, 0.5mM, and 1mM), ATP (0.5mM), CTP
(0.5mM), and UTP (0.5mM) at 37 °C for 100min. For the evaluation of
the GTP hydrolysis activities of CLNCGTP/GTP* (12 µgml–1) and THDGDP

(12 µgml–1), Biomol GreenTM reagent (100 µl) was added to the reaction
mixtures, incubated for 30min at room temperature and subjected to
electronic absorption spectroscopy at 620 nm.

Preparation of CLNCGTP/GTP*⊃NPAu
CLNCGTP/GTP*⊃NPAu was prepared after the incubation of a mixture of
NSGTP/GTP* (13 µgml–1), GlueCO2� (100 µM), and gold nanoparticles
(NPAu; 14 pM) in PIPES buffer (14mM PIPES, 1mM MgCl2, and 200 µM
GTP*, pH 6.8) at 37 °C for 30min, followed byUV irradiation at 300nm
for 2min. For the asymmetricfieldflow fractionation analysis, a sample
solution of CLNCGTP/GTP*⊃NPAu in PIPES buffer was subjected to ultra-
filtration (1500 × g) for 5min using a regenerated cellulose membrane
(cut-off MW= 5000) prior to analysis. PEG-coated NPAu was used to
avoid nonspecific adhesion of THD52.

GTP-triggered release of DOX from CLNCGTP/GTP*
CLNCGTP/GTP*⊃DOX was prepared after the incubation of a mixture of
NSGTP/GTP* (13 µgml–1), GlueCO2� (100 µM), and DOX (10 µM) in PIPES
buffer (14mM PIPES, 1mM MgCl2, and 400 µM GTP*, pH 6.8) at 37 °C
for 30min, followed by UV irradiation at 300 nm for 2min. The reac-
tion mixture was incubated with GTP (1mM) at 37 °C for 100min and
then subjected to ultrafiltration (2400 × g) using a regenerated cellu-
lose membrane (cut-off MW= 5000) for 10min. The resulting residue
was subjected to fluorescence spectroscopy (λext = 470 nm). A refer-
ence sample without GTP was likewise prepared.

Intracellular delivery
Hep3B cells (3.0 × 103 cells/well) plated onto an 8-well chambered
cover glass were incubated in EMEM containing 10% FBS at 37 °C with
5% CO2 for 24 h. The cell samples were rinsed twicewith D-PBS prior to
use. Typically, the cells were treated with FITC-labeled CLNCGTP/GTP*

(0.5 µgml–1) and incubated at 37 °C with 5% CO2 for 2.5 h. Then, the
cells were rinsed twice with D-PBS and further incubated at 37 °C for
1.5 h (4-h incubation in total) or 21.5 h (24-h incubation in total) with 5%
CO2 in EMEM containing 10% FBS. Analogous cell samples treated with
FITC-labeled THDGDP (0.5 µgml–1), FITC-labeled NSGTP/GTP* (0.5 µgml–1),
CLNCGTP/GTP* (0.5 µgml–1) with NaN3 (5mM)49, CLNCGTP/GTP*⊃DOX

([CLNCGTP/GTP*] = 2.6 µgml–1, [DOX] = 2 µM), CLNCGTP/GTP* (2.6 µgml–1),
and DOX (2 µM) were likewise prepared. For a cell viability assay using
CLNCGTP/GTP*⊃DOX,

CLNCGTP/GTP*, and DOX, the cell samples were
incubated with Cell Counting Kit-8 reagents (10 µl) for 30min, and
subjected to electronic absorption spectroscopy at 450 nm.Hep3B cell
samples treated with Tween 20 (0.2%) were used as a positive control.

Statistics and reproducibility
All experiments including the preparation of CLNCGTP/GTP*, the investi-
gation of its GTP-responsive collapse, and the intracellular delivery
using CLNCGTP/GTP* were performed at least three times to check the
reproducibility.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data corresponding to the findings of this study are provided in
the article and Supplementary Information. Source data is available for
Figs. 2b, 3g, i, j, 4c–e, h, 5c, f, and g and Supplementary Figs. 9–11, 13–16,
19–25, 27, 28 and 30–36 in the associated source data file. 3D structures
of THD for the MD simulation were obtained from Protein Data Bank
(PDB) (PDB code: 3J6E and 1TUB). Complete modeling data, structures
and parameters used for, and extracted from simulations are available at
https://zenodo.org/record/7070651#.Yx80t9JBxkg. Source data are
provided with this paper.
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