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Abstract: A common requirement of embedded software in charge of safety tasks is to guarantee
the identification of random hardware failures (RHFs) that can affect digital components. RHFs are
unavoidable. For this reason, the functional safety standard devoted to automotive applications
requires embedded software designs able to detect and eventually mitigate them. For this purpose,
various software-based error detection techniques have been proposed over the years, focusing
mainly on detecting control flow errors. Many control flow checking (CFC) algorithms have been
proposed to accomplish this task. However, applying these approaches can be difficult because their
respective literature gives little guidance on their practical implementation in high-level programming
languages, and they have to be implemented in low-level code, e.g., assembly. Moreover, the current
trend in the automotive industry is to adopt the so-called model-based software design approach,
where an executable algorithm model is automatically translated into C or C++ source code. This
paper presents two novelties: firstly, the compliance of the experimental data on the capabilities of
control flow checking (CFC) algorithms with the ISO 26262 automotive functional safety standard;
secondly, by implementing the CFC algorithm in the application behavioral model, the off-the-shelves
code generator seamlessly produces the hardened source code of the application. The assessment
was performed using a novel fault injection environment targeting a RISC-V (RV32I) microcontroller.

Keywords: fault injection; functional safety; automotive applications; fault tolerance

1. Introduction

Embedded systems are being increasingly used in safety-critical and general purpose
applications, where failure can have serious consequences. The design of these systems is
a complex process because it requires design methods to be integrated into the hardware
and software to meet their functional and non-functional requirements. These applications
range from small applications, such as mobile phones, to complex and crucial applications,
such as medical, aerospace, and automotive systems.

The operation of systems, particularly their functional safety aspects, relies on the
hardware and software adopted. Different techniques are generally used to reduce hazards
and improve safety to avoid the presence of unreasonable risks. It is important to assess
whether systems are working correctly, and Fault Tolerance Techniques (FTT) take into
account redundancy in the software (extra instruction codes) and hardware (external
hardware components). From the hardware perspective, redundancy and diversity are the
most common techniques. In terms of the software, the techniques include design diversity,
hazard prevention, and hazard detection, which are needed to provide consequential and
timely management when hazards occur.

The core idea is to avoid the presence of systematic errors in the design (defects).
However, unfortunately, the hardware components can be affected by inevitable failures
due to their physical nature, called random (since they can happen at any moment, which is
not possible to forecast) and Random Hardware Failures (RHFs).
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Furthermore, providing an appropriate and unified design methodology is necessary
to guarantee the safe and correct operations of target applications. Thus, many safety
standards, such as MIL-STD-882D, a military standard; IEC 61508, on functional safety for
electrical, electronic, and programmable electronic safety-related systems; and ISO 26262,
targeting automotive applications, have been developed to cover the safety management of
safety-critical systems throughout their lifecycles.

FTT requires structural modules containing two basic properties, (i) self-protection
and (ii) self-checking [1]. The first property means that a component must be able to protect
itself from external contamination by detecting errors in the information passed to it by
other interacting components.

Moreover, self-checking means that a component must be able to detect internal errors
and take appropriate actions to prevent the propagation of those errors to other components.
The cost of the additional redundancy determines the coverage of error detection mecha-
nisms used in a design, reached from the hardware perspective, by additional components,
or, considering the software, by adding instructions. In some cases, both approaches can be
used together based on the integrity level that the system has to guarantee, which is deter-
mined thanks to a hazard analysis and risk assessment (HARA). Hardening by hardware
redundancy is more expensive in terms of single unit cost than software methods, affecting
the development costs but not the single unit one. Thus, for a small volume production,
where the cost of the single unit is not the primary concern, it is more convenient to adopt
the hardware approach, whereas, for a large volume, it is possible to share the higher
development cost for hardened software on all of the produced units.

Many software-implemented control flow error (CFE) detection techniques have been
proposed to harden embedded systems. These techniques are called control flow checking
(CFC) and are based on adding extra control variables and updating instructions to the
target programs. At specific points in the target program, the run time and compile time
values of the control variable are compared to one another. Any mismatch indicates that a
CFE has occurred and has been detected.

A CFE can be inter-block or intra-block. An inter-block one is an invalid jump between
two different basic blocks (BBs), whereas an intra-block CFE is an invalid jump within
the same BB. Both types of CFEs can lead to hazardous situations by causing the affected
program or system to halt, crash, or provide an erroneous output.

In this paper, we present two novelties with respect to the state of the art.
The first is that the experimental results comply with ISO 26262 automotive functional

safety standards.
The second novelty is hardening two case study applications based on two established

CFC techniques through model-based software design (MBSD). Assessing the effective-
ness of CFC techniques can be difficult. In contrast with the literature, where these are
implemented at the assembly-language level, we applied them directly in the MathWorks
Simulink model to compare the reported error detection ratios with our experimental
results. Implementing at the model level simplifies developer activities and avoids using
low-level languages as required by functional safety standards. In addition, based on our
proposal, it could be more developer-friendly to implement CFC methods on each source
code written in high-level languages.

The remainder of this paper is structured as follows. We discuss the background in
Section 2 with related work, and give a short overview of hardware fault tolerance in
Section 2.1, CFC techniques in Section 2.2, and an overview of functional safety in the
automotive industry in Section 2.3. In Section 3, the case study is discussed, the fault models
are explained in Section 3.1, and Section 3.2 shows the implementation method. Section 4
shows the results, with details of the target platform in Section 4.1, fault injection results
in Section 4.2, diagnostic coverage in Section 4.3, and an overhead analysis in Section 4.4.
Finally, Section 5 draws conclusions and reports proposals for future works.
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2. Background
2.1. Hardware-Based Fault Tolerance Techniques

Hardware-based techniques have two main groups: (i) redundancy-based and (ii) hard-
ware monitors. The first group relies on hardware or time redundancy. In contrast, the
second group adds special hardware modules to the system’s architecture to monitor the
control flow of the programs inside the processors and memory accesses performed by
them, such as watchdog processors [2], checkers [3], or infrastructure intellectual properties
(I-IP) [4]. Hardware-based techniques have a high cost, verification and testing time, and
area overhead, leading to a higher power consumption.

2.1.1. Redundancy

Hardware redundancy is the most common technique, which is the addition of extra
hardware components for detecting or tolerating faults [5,6]. For example, instead of using
a single core/processor, more cores/processors can be exploited so that each application
is executed on each core/processor; then, the fault can be detected or even corrected.
Hardware redundancy can be applied through (i) passive, (ii) active, and (iii) hybrid
methods.

(i) Passive Redundancy

Examples of this redundancy are N Modular Redundancy (NMR), such as Triple
Modular Redundancy (TMR), and using voting techniques. These techniques are referred
to as M-of-N systems, which means that the system consists of N components, and the
correct operation of this system is achieved when at least M components correctly work.
The TMR system is a 2-of-3 system with M = 2 and N = 3, which is realized by three
components performing the same action, and the result is voted on [5,6].

(ii) Active Redundancy

This type of active hardware redundancy includes duplication with comparison
(DWC), standby-sparing (SS), a pair-and-a-spare technique, and watchdog timers. In
DWC, two identical hardware components perform the exact computation in parallel, and
their output is compared. Therefore, the DWC technique can only detect faults but cannot
tolerate them because the faulty component cannot be determined [5,6]. In standby-sparing,
one module is operational, and one or more modules are standby or spares. If the fault
is detected in the main component, it will be omitted from the operation, and the spare
component will continue the execution [5,6]. Meanwhile, pair-and-a-spare is a combination
of DWC and SS techniques. For instance, two modules are executed in parallel, and their
results are compared to detect the fault [5,6].

(iii) Hybrid Redundancy

The basic concept of this method is integrating the main features of both active and
passive hardware redundancies. N modular redundancy with spare, sift-out modular
redundancy, self-purging redundancy, and triple duplex architecture are examples of hybrid
hardware redundancy [5,6]. The basic concept of self-purging is based on NMR with spare
techniques. All modules are active and participate in the function of the system. In sift-out
modular redundancy, there are N identical modules. However, they are configured in the
system through special circuits (comparators, detectors, and collectors). The triple duplex
architecture combines the DWC technique with TMR, which helps to detect the faulty
module and remove it from the system.

2.1.2. CFC Techniques

In general, dedicated monitoring hardware such as a watchdog processor or extra
hardware within the processor are deployed to monitor the control flow by comparing the
instruction addresses with stored expected addresses or run time signatures with reference
signatures, or by verifying the integrity of signatures with error correction codes [7–11].
For example, control flow checking by execution tracing (CFCET) [11] uses execution
tracing to transmit the run time branch instruction address and the branch target address to
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an external watchdog processor. The watchdog processor compares these addresses with
the reference addresses stored in its associative memory to detect a deviation in control
flow. Watchdog direct processing (WDP) [12] and online signature learning and checking
(OSLC) [8] use the watchdog processor to compare with the reference control flow. ASIS [7]
uses a hardware signature generator and watchdog monitor to check the control flow of
several processors.

2.2. Software-Based Hardening Techniques

CFE detection techniques have been proposed in the literature over the years. In order
to detect CFEs, such techniques insert extra control variables, called signatures, managed
by set and test instructions into the target program. The set instructions usually modify
the signature incrementally (by applying changes with logical or arithmetical operations
that input the current value to compute the next one to be assigned). In terms of test
instructions, the signature is compared with the expected one determined at the compile
time. By adding instructions, these control variables are recalculated at the run time and
compared to the expected compile time value.

A basic block (BB) is a sequence of consecutive instructions with precisely one entry
and one exit point. A program can be described by its CFG, which is an oriented graph
with the BBs as the vertices and the intentional paths between BBs as the edges. If a
transition between BBs not represented in set edges happens at the run time, then an error
is recognized. This error is a violation of the CFG of the program.

In this section, some of the CFC techniques are discussed. Methods are based on
comparing the value of the signatures computed at the run time with their expected values
assigned to each block at the design or compile time.

The enhanced control flow checking using assertion (ECCA) technique was proposed
in [13]. Its idea is to assign three compile time variables to each BB for a comparison
and update: BID, NEXT1, and NEXT2. BID is a unique prime number larger than 2
that serves as the compile time signature. NEXT1 and NEXT2 hold the signatures of the
possible successor blocks of the current BB. The redundancy instructions are added for
the two proposed. Firstly, the test function is executed at the beginning of the BB to check
whether the predecessor BB is permissible or not. The second function is a set that is
executed at the end of BB, and the signature is updated for a possible successor BB because
the multiplication and division operations used in assertions come at the expense of an
increased performance overhead.

When the processor executes a new BB, particular assertions check the control flow
using the involved BB identifiers. However, the authors of ECCA claim that this can be
resolved by grouping the different cases into one BB.

Control flow checking by software signatures (CFCSS), discussed in [14], is a technique
that assigns two compile time variables to each BB based on a predecessor’s relationship.
The first variable is the compile time signature si, a unique randomized bit sequence. The
second variable is di, defining the first predecessor’s proper branch to the current BB. The
global signature variable G is used to track the execution at the run time; in a fault-free
run, it always corresponds to the signature of the basic block currently being executed.
When control is transferred from one BB to another, CFCSS calculates the destination BB’s
signature from the current BB’s signature by using the XOR function to figure out the
difference between the signatures of the current and destination BBs. In the case of an
error-free run, the run time signature should hold the same value as the compile time
signature of the current BB. When a BB has multiple incoming edges, the update phase
uses an extra variable, D. Pre-predecessor BBs are guaranteed to update this variable; then,
the run time signature can be updated to the proper value regardless of which predecessor
has been executed.

The yet another control-flow checking using assertions (YACCA) technique was ex-
plained in [15]. It assigns a unique signature to each BB entry and exit point. The advantage
of using this method is the possibility of detecting CFEs happening when the program flow
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jumps from the inside of a BB to one of its legal successors, even if the successive BB gives
back control to the BB affected by the wrong jump. This is possible since the signature is
re-assessed before each branch instruction to drop the wrong-successor CFE.

Relationship signatures for control flow checking (RSCFC) [16] is based on extracting
the relationship between the blocks and then assigning signatures to every block. It encodes
the control flow relations between different BBs into the unique formatted signatures and
then inserts control flow checking instructions into the head and the end of every BB
separately. The method has a higher fault detecting rate than CFCSS, but this algorithm
needs more performance overhead, and the express ability of the signature is confined by
the machine word length. Ending run time signatures detects the faults in the flow control
program with the information at the beginning and end of the blocks. This technique allows
for the detection of inter-block CFEs thanks to three variables: a compile time signature si,
the CFG locator Li, and the cumulative signature mi.

The technique that proposes the detection of soft errors using software redundancy
is soft error detection using software redundancy (SEDSR), an inter-block CFE detection
technique proposed by [17].

Based on this technique, critical blocks have to be identified in the CFG. Critical blocks
are duplicated at the compile time and have to be identified in the CFG.

SEDSR assigns only one compile time variable to each BBs. This variable shows the
valid successor BBs of the current BBs. The bit position on the variable shows the position
of the successor of the current BB. If there are n BBs in the CFG of the program, then si has
to be n bits wide, and the bits of the successor BBs are set to 1. The run time signature S is
verified at the beginning of each BB. The verification checks whether the current BB is the
previous BB’s valid successor. In case of an error-free run, the bit on the position associated
with the current BB should be set. If that bit is 0, an error has occurred. The run time
signature S is updated, in the middle of each BB, by incrementally assigning the compile
time signature si of the current BB to S.

To further increase the error detection ratio, the same authors of the latter also pro-
posed the software-based control flow checking (SCFC) technique to extend their SEDSR
technique [18]. Two run time variables were used. The first is a variable containing the run
time identifiers of the BBs, ID, and the second contains the run time signature S. SCFC uses
the same compile time signature si as in SEDSR.

First, run time verification is performed at the beginning of each BB. This verification
checks whether or not ID holds the compile time identification number (ID) of the current
BB. A mismatch indicates that a CFE has occurred. The second run time verification,
i.e., the verification of the run time signature S, is performed in the middle of each BB.
This verification is the same as SEDSR and checks if the current BB is a valid successor of
the previous one.

To achieve a higher CFEs detection, ID and S are updated at different places in the BB.
S is updated in the middle of the BB after being verified. ID updates the compile time id of
the successor block at the end of the BB.

Random additive control flow error detection (RACFED) [19] is the CFE detection tech-
nique that uses run time signature updates to detect inter and intra-block CFEs. It detects
CFEs by inserting a control variable and updating instructions in the target code.

A control variable update instruction is inserted at the beginning of each BB. This up-
date instruction is followed by a verification instruction for the run time value of the
control variable compared to the compile time one. Control is transferred to the error if
any mismatch between the two values is detected. Table 1 reports a comparison between
each CFC method as discussed above. The reported detection coverage and overheads are
measured by [19,20] upon implementation performed at the assembly level. They used
their software-implemented fault injection (SWIFI) tool to validate comparisons between
techniques. It used the CFG of the program to find possibilities to flip a single bit in
the program counter (PC) register so that an interblock CFE is caused. Since this paper
considered CFC methods, this approach resembles industry-relevant architectures such as
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AUTOSAR (AUTomotive Open System ARchitecture), in which, a graph representation of
a function is constructed by dividing the function into basic blocks at each (conditional)
branch. The objective of AUTOSAR is to establish an open industry standard for the
automotive software architecture between suppliers and manufacturers [21]. The standard
comprises a set of specifications describing software architecture components and defining
their interfaces [22].

Table 1. Comparison of CFC methods. UV indicates used variables, S indicates signatures, DP
indicates detection performance [%], CO indicates code size overhead [%], and EO indicates execution
time overhead [%].

Algorithm UV S Intra-Block DP CO EO

ECCA 4 prime-numbers χ 73.5 36.0 244.8
CFCSS 2 randomized-bit χ 75.8 15.2 76.6

YACCA 2 bit-field χ 82.8 30.0 203.2
RSCFC 2 bit-field X 49.4 17.5 86.8
SEDSR 3 bit-field X 46.8 12.3 67.1
SCFC 3 bit-field X 60.4 22.9 115.7
SIED 2 random numbers X 52.4 14 115.7

RACFED 3 random numbers X N.A. N.A. 81.5

Many companies now use AUTOSAR specifications for building automotive products
and bringing them on the market. Using the AUTOSAR trademark implies conformance
to AUTOSAR specifications, which is essential for those products’ interoperability, reuse,
portability, and scalability. Therefore, they have to demonstrate their conformance to
the AUTOSAR standard. Functional safety is one of the main objectives [23], as AU-
TOSAR will support safety-related applications and thereby has to consider the upcoming
ISO 26262 standard.

The AUTOSAR platform is emerging as an open industry standard for developing
in-vehicular systems in the automotive domain. To cope with the growing complexity of
modern vehicles, it provides a modular software architecture with standardized interfaces
and a run time environment (RTE) that separates application-level software components
from the underlying basic software modules and the actual hardware.

AUTOSAR proposes a CFC-like mechanism called watchdog manager (WdM). It pro-
vides the usual watchdog functionalities plus a form of logical monitoring that focuses
on detecting control flow errors, which occur in one or more program instructions that
are either in an incorrect sequence or are not processed at all. A limitation of WdM is
that it is not specified where to put the set and test operation, since the concept of CFG is
not considered.

2.3. Functional Safety in the Automotive Industry

In safety-critical embedded systems, ensuring adequate safety levels represents the
primary factor in the success of these systems. ISO 26262 is an international standard for
the functional safety of electrical and electronic systems titled “Road vehicles—Functional
safety.” It was released in 2011, and the current edition is the second one, released in
2018 [24]. ISO 26262 was derived from the generic functional safety standard IEC 61508
to address the specific needs of electrical and electronic systems, and focuses on malfunc-
tioning behaviors. The standard is divided into eleven parts, covering all activities during
the safety life cycle of safety-related systems, including electrical, electronic, and software
elements that provide safety-related functions. The process prescribed in ISO 26262 uses
a top-down approach in which, first, hazard analysis is conducted to identify potential
hazards and system-level requirements. The most important parts related to our paper are
the third (concept phase), fifth (development at the hardware level), and sixth (development
at the software level).
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The third is the “concept phase”, where the item is defined. From the definition, it is
possible to perform the hazard analysis and risk assessment needed to define the risk level
associated with its functionality (automotive safety integrated level, ASIL), the safety goals
(SGs) to be achieved, and its functional safety concept (FSC).

Based on the obtained SGs and their ASILs, actions that prevent the presence of
systematic failures or mitigate random hardware failures (RHFs) have to be taken in phases
five and six. The fifth one is about product development at the hardware level. An essential
result of this phase is the list of the possible failure modes (FMs) that can affect the designed
item and, in particular, its computation unit. A detailed description of the application of
the safety life cycle to semiconductors is given in part 11 [24].

The design group develops embedded software in parallel to the hardware design.
It shall be developed by following part six of the standard to avoid the presence of defects
(also known as bugs) in the code (prevention against systematic errors). The possibility
of unavoidable RHFs shall be taken into account, hence the need to implement hardening
techniques such as CFC.

3. Case Study

We chose YACCA and RACFED since they are based on different philosophies (bit
mask vs. random numbers, only inter-block vs. intra-block detection capabilities). Due to
these two different philosophies, we chose YACCA due to its extreme simplicity of imple-
mentation, and RACFED since it is the most recent. To harden the code, we instrumented
CFC techniques by hand into the Simulink model representing the application behavior
because, in the automotive industry, the software is usually developed by the model-based
software design approach. Moreover, based on functional safety requirements, it is not
recommended to implement by hand on the assembly code. Regarding our approach, the
hardened C code was obtained from the code generator Embedded Coder. In this way,
modifications of the code generator are not needed since it generates the source code and
CFC directly from the behavioral model. This worsens the impact on the granularity since
statements are added not only once (by the compiler), as if the C code has been hardened by
hands, but twice: by Embedded Coder translating the model in C, and then by the compiler.
From this observation, there is a need to measure the detection rate experimentally.

To assess our proposal, we implemented YACCA [15] and RACFED [19] to compare
two different CFC algorithms. The first is based on bitfields, assigning a single bit signature
to each BB and lacking intra-block detection capability. On the other hand, the latter uses
signatures based on random numbers and features intra-block detection.

The advantage of YACCA is its implementation simplicity usually (in assembly and C
language) leading to small overheads in both instructions and code terms, but it requires a
signature variable with a bit width equal to the number of BBs. It can be challenging to
implement them when there are more than 64 BBs.
RACFED is a more complex method, but due to the usage of random numbers, it can use a
smaller signature (64 bits are sufficient in every case). Moreover, for the reasons mentioned
above, it shall provide better detection capabilities from a theoretical point of view.

The metrics measured on our benchmark application are available in Table 2.

Table 2. Data regarding embedded flash memory occupation and executed instruction. Vanilla refers
to the application that is not hardened against control flow errors, and so in its original form.

Benchmark Text Segment Size [bytes] # of Executed Instructions

Vanilla TS 1736 3991
YACCA TS 6056 (+249%) 10,771 (+170%)

RACFED TS 7320 (+322%) 7492 (+87.7%)
Vanilla T 9012 33,460
YACCA T 10,432 (+15.7%) 33,498 (+0.1%)

RACFED T 12,804 (+42.0%) 33,534 (0.2%)
TS Timeline scheduler. T Tank level controller.
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Moreover, these methods have not been implemented through a traditional high-level
programming language (such as C, C++, or ADA), but resort to a graphical representation
of its functionality in the form of a physical/control model or a finite state machine (FSM).

The common adopted tools used to develop these models are the ones developed by
the company MathWorks [25].

Their popular tool for describing behavior models is Simulink®, whereas its package
StateFlow is used to develop FSMs. Since these are the most commonly implemented
software units, CFC is perfect for hardening them against RHFs.

3.1. Fault Models

For the sake of this work, we considered only faults affecting the program counter (PC)
register, directly or indirectly (for example, the control flow jumps to a location outside the
program area or inside the program area but to a wrong address). We chose this register
since it directly affects the instruction flow.

We used the tool presented in [26] to perform the fault injection campaigns. The fault
injection manager (FIM) described in the paper mentioned above features two fault models:
first, “Permanent” and, second, “PermanentStuckAt”.

The “Permanent” affects only one bit of the register that remains from the injection
fixed to 0 or 1, whereas the “PermanentStuckAt” affects the entire register globally, making
it stuck to a fixed value. Here, we used only the “Permanent”, choosing the injection time,
the affected bit, and its state randomly.

It is possible to choose a subset of bits that can be affected by a bitmask to increase
the injection efficiency. Considering that the benchmark application is a small embedded
software (in this case, some tens of KBytes, but usually no more than some MBytes), in order
to increase the fault injection campaign efficiency, we decided to avoid injecting on higher
bits. This is considering that such injections would cause the PC to immediately move
outside the small (with respect to the addressable space) .text area, triggering hardware
failure detection mechanisms.

We chose the “Permanent” faults because, if we injected a “PermanentStuckAt” fault
on PC, we would only obtain the effect of the processor becoming stuck, thus preventing
the CFC from detecting the errors.

In more detail, since we know that the RV32I has 32 bit long instructions and that it
addresses blocks of 8 bits (for a total addressable memory of 232 Bytes = 4 GBytes, we can
consider that:

• Injecting on the first two bits has no meaning since such an injection raises a hardware
trap for misaligned memory access during the fetching of the instructions;

• Injecting on bits more than the 11th or 12th has no practical meaning due to the small
flash memory installed on embedded systems.

Thus, we decided to start from the third bit, considering that the number of “skipped”
instructions Iskipped when the fault-affected bit at a position N assumes the wrong value
is equal to Iskipped = 2N−2. For example, if the sixth bit is affected, it provokes skipping
26−2 = 16 instructions.

The higher bit of the mask was chosen by considering the benchmark .text area size as
indicated in Section 4.

3.2. Implemented Software-Based Hardening Technique

Simulink allows for code generation starting from models by using Embedded Coder.
This process allows C, C++, optimized MEX functions, and HDL code to be easily generated.
The Target Language Compiler tool (TLC) is included in Simulink, allowing the developer
to customize the generated code accordingly to the requested platform starting from any
model. It is used to convert the model into C code. Our proposal is shown in Figure 1.

We chose these techniques (YACCA and RACFED) for our empirical study.
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Figure 1. Model-based approach for implementing the CFC methods. The benchmarks are ob-
tained by hardened them in the model, then generating the source code automatically thanks to the
Embedded Coder.

3.3. YACCA

The yet another control-flow checking using assertions (YACCA) technique is an inter-
block CFC, and was proposed in [15]. It assigns two unique compile time variables. The
first variable is a signature, and the second one is ERR_CODE. ERR_CODE is initialized to
zero. In more detail, at the compile time, a unique ID is assigned to each BB; consequently,
to each one of them, a signature corresponding to 2ID is assigned (to have only one 1 in
binary representation). At the beginning of the execution, the signature equals the first BB’s
ID. At the run time, when the program enters into a new BB, a check function is executed.
It compares the current value of the signature with the bit-wise NOT of a mask composed
by the sum of all of the 2ID mask of its legal predecessors. Since the signature shall contain
only one bit corresponding to a legal predecessor, the result of this operation shall be zero.
Otherwise, the signature contains at least one bit set to 1, representing an ID of a BB that is
not a legal predecessor. In this case, the ERR_CODE increases by 1 to indicate the presence
of a CFE. When the BB ends, the signature is updated by a set function. Before jumping
to the next one, it resets the signature content by performing an AND operation between
signature itself and a mask corresponding to the bit-wise NOT of 2I D, and then OR with
the ID of its legal successor. As for the test operation, the signature is set to all zeros by the
AND operation (if the signature is the correct one, the bit-wise NOT of the current state ID
is also the bit-wise NOT of the signature, and hence signature NOT ID = 0) and can be set
to the ID of its legal successor by the OR operation. If a CFE happens, the AND followed
by the OR operations set two different bits to 1, so none of the BBs can successfully pass the
comparison between signature and its ID, causing ERR_CODE to increase.

3.4. RACFED

There are four steps in the process of implementing RACFED:

1. First, all of the needed signatures are defined at the compile time. For each one of
the BB, these are the compile time signature (CTS) and subRanPrevVal. If there are
more than two payload instructions inside the considered BB, a random number is
assigned to each one of them. The CTS is a random number representing the expected
signature value. subRanPrevVal is the sum of all of the chosen compile time random
numbers previously assigned to the payload instructions. In the case of BB with ≤ 2
instructions, subRanPrevVal = 0.

2. Consider now the execution of a BB after the signature check. The run time signature
(RTS) is increased after each payload instruction of the random value assigned to it.
This allows for the detection of intra-block CFEs.
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3. Next, at the end of the considered BB (all payload instructions have been executed), an
adjustment value is computed as the sum of its CTS and the sum of all of the random
numbers assigned to its payload instructions (independently computed at run time),
and then by subtracting the CTS and subRanPrevVal of its successor BB.
Now, the RTS of the yet computed adjustment value is increased.

4. Finally, at the beginning of the successor BB, RTS is updated (concluding the two-
phase RTS update) by subtracting the subRanPrevVal of its predecessor BB, making
it equal to the CTS. If no CFEs happened, this equality is verified, and the process
repeats over and over again from the step 2.

4. Experimental Results

In order to assess the diagnostic coverage obtained with YACCA and RACFED imple-
mented by the MBSD, we hardened the benchmark application with CFC techniques and
validated them with the performance assessment system described in [26]. In this study,
we opted for two benchmarks: (i) timeline scheduler (TS) and (ii) tank level (T). The first
benchmark is a finite state machine (FSM) that implements a timeline scheduler. A timeline
scheduler is a periodic task, executed thanks to a timer triggering an interrupt, in charge of
running a set of tasks in a fixed order defined by the system designer. In our benchmark,
we have 15 tasks that shall be executed in a fixed order, granting each of them a 200 ms
time slot.

Since the scheduler is a needed core component, we chose this application as a case
study. In particular, the timeline is the simplest one that is possible to implement in
order to allow for more than one task to run into an embedded system, allowing us to
share the computation unit between different applications. The second one is a software-
implemented controller in charge of keeping the liquid level contained in a tank at the
desired height with an on–off logic. It takes the liquid level inside the tank alongside the
current absorbed by the pumps. Based on the measured liquid level, it decides when to
turn the pump on and generates an alarm in case of the detection of over-currents, shutting
down the pump to avoid damage to its motor.

As this application is widespread in the automotive industry, developers can extend
its idea to other applications, such as the estimated battery level, which is a crucial feature
in modern hybrid cars.

We prepared implementations on the source code that was generated directly from
the Simulink Stateflow chart via Embedded Coder.

Such a benchmark application was chosen since this kind of algorithm is expected
in the automotive environment; for example, battery management during regenerative
braking or in other functional safety environments to keep the right level in fire extin-
guisher plants.

4.1. Target Platform

The target platform, as described in [26], is RISC-V RV32I, simulated at the
instruction-set level thanks to the Quick Emulator (QEMU) [27]. It is an open-source
machine emulator and virtualizer written by Fabrice Bellard. Most parts are licensed under
GNU General Public License (GPL), and others under other GPL-compatible licenses. The
main reason for why QEMU was used in our proposal was to make the test bench agnostic
concerning the specific instruction set, since it can emulate many different ISAs.

The Gnu DeBugger (GDB) was used to interact with QEMU. GDB is an open-source
debugger suitable for various programming languages, such as C. The fault injection is
managed by a fault injection manager that writes the GDB scripts needed to inject the faults.

4.2. Fault Injection Results

The main idea of this classification is to describe the behavior of the application after
the fault has been injected [26].

To carry this out, seven possible outcomes were defined:
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• “Latent after injection”: fault injected and behavior identical with regard to the fault-
free run.

• “Erratic behavior”: behavior different with regard to the fault-free run.
• “Infinite loop”: PC moves in an infinite loop not present in the original program flow

but created by the interaction between the source code and the defective PC register.
• “Stuck at some instruction”: PC remains stuck pointing to a valid instruction.
• (Detected) “by SW hardening”: detected by the software hardening mechanism.
• (Detected) “by HW” (mechanism): PC pointing outside the FLASH/RAM address-

ing space.
• “As golden”: detected and with an output identical to the golden run.

Moreover, the four other outcomes—“latent”, “error”, and “undefined”, not related to
the application by itself but inserted to monitor the classifier, and the “false positives” of
the detection algorithm—are provisioned. We conducted four campaigns, each one with
1000 injections of a “Permanent” fault affecting the program counter (PC) of the target.

All of the faults were injected into the PC since the CFC can detect only those FMs
directly or indirectly affecting the program flow. Considering this known limitation, we
know, without any need for experimental results, that those affecting data or making the
program follow a wrong but legal (present in the CFG) path are not detected; for example,
choosing a wrong path on a conditional assertion (e.g., if-else) due to corruption on the
variable to which the condition will be applied.

The results obtained from the classifier for YACCA implemented on the timeline
scheduler are available in Table 3 and, for the tank level, in Table 4. Moreover, the results
obtained for RACFED for the same benchmarks are reported in Tables 5 and 6.

Table 3. Classifier results obtained from the fault injection campaign assessing the YACCA algorithm
implemented on the timeline scheduler.

Classification Result # of Occurrences

Latent 0
Latent after injection 110
Erratic behavior 0
Infinite loop or Stuck at some instruction 261
(Detected) by SW hardening + Safe 112 + 0
(Detected) by HW mechanism 512
As golden 0
False positive 0
Undefined 0
Error 0

Table 4. Classifier results obtained from the fault injection campaign assessing the YACCA algorithm
implemented on tank level.

Classification Result # of Occurrences

Latent 0
Latent after injection 791
Erratic behavior 0
Infinite loop or Stuck at some instruction 0
(Detected) by SW hardening + Safe 0 + 13
(Detected) by HW mechanism 2
As golden 0
False positive 0
Undefined 0
Error 0
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Table 5. Classifier results obtained from the fault injection campaign assessing the RACFED algorithm
implemented on the timeline scheduler.

Classification Result # of Occurrences

Latent 0
Latent after injection 133
Erratic behavior 0
Infinite loop or Stuck at some instruction 167
(Detected) by SW hardening + Safe 305 + 0
(Detected) by HW mechanism 395
As golden 0
False positive 0
Undefined 0
Error 0

Table 6. Classifier results obtained from the fault injection campaign assessing the RACFED algorithm
implemented on tank level.

Classification Result # of Occurrences

Latent 0
Latent after injection 771
Erratic behavior 0
Infinite loop or Stuck at some instruction 0
(Detected) by SW hardening + Safe 1 + 34
(Detected) by HW mechanism 0
As golden 0
False positive 0
Undefined 0
Error 0

4.3. Diagnostic Coverage

To obtain diagnostic coverage (DC), two steps are needed.
In the first step, it is necessary to express the simulation results, shown in Section 4.2,

in terms of “detected” if an embedded mechanism can find the presence of the considered
RHF, or “undetected” otherwise.

Considering the “detected” class, it is possible to split it into two subclasses:

• “safe” if the RHF cannot have dangerous effects on the user of the item or the sur-
rounding environment;

• “detected” if it is not possible to make such an assumption (like in the case of this
paper, where the mitigation strategies are not considered).

On the other hand, also considering the “undetected” class, it is possible to define two
subclasses:

• “latent” if the RHF does not have any effect on the behavior of the item;
• “residual” otherwise.

A third (not defined by the ISO 26262) subclass, called “false positive”, was defined to
describe the probability that the detection mechanism is wrongly triggered. In any case, on
an excellent detection mechanism, the frequency of this subclass is 0%.

The results expressed in these terms, now ISO 26262-compliant, are presented in Table 7.
From this table, it is possible to perform the second step to compute the DC.

We considered as “detected”:

• All of the faults that ended up with detection by the software;
• Those that caused a timeout after the last SET instruction (miming the behavior of a

windowed watchdog);
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• The one detected by the hardware (PC pointing outside the limits of the instruc-
tion memory).

Table 7. ISO 26262-compliant classification of the results obtained from the fault injection campaign.

Detected Undetected
False PositiveAlgorithm

Safe Detected Latent Residual

YACCA TS 0.00% 51.80% 9.10% 39.10% 0.00%
RACFED TS 0.00% 70.00% 13.30% 16.70% 0.00%
YACCA T 1.61% 0.25% 98.14% 0.00% 0.00%

RACFED T 4.22% 0.12% 95.66% 0.00% 0.00%
TS Timeline scheduler. T Tank level controller.

For YACCA, we obtained a DC of 51.8% for the timeline scheduler (TS) and 1.86% for
the tank level (T).
For RACFED, we obtained a DC of 70.0% for the TS and 4.34% for T.

Regarding the CFC algorithms that we opted for, we can say that RACFED is more
effective than YACCA. This is an expected result since it also provides, alongside intra-block
detection not exploited in our benchmark, a two-phase signature update.

For both cases, it is evident how the DC lowers for the T benchmark compared with
the one obtained on the TS due to both algorithms’ different natures.

The TS, due to its scheduler nature, performs a state transition every time its step()
function (the function that is called at a fixed rate to make it behave as a periodic task) is
called, whereas this is not true for the T, since its transitions depend on the level of the
liquid inside a slow-changing physical system (a tank), leading to a relatively lower number
of transitions.

Analyzing the experiments where the CFC is not able to detect the injected failure
(infinite loop or stuck at some instructions results in Tables 3 and 5), it is possible to observe
a known limitation of those algorithms experimentally. Since the application and the CFC
are executed on the same computation unit, no detections are possible if the error prevents
the TEST instructions from executing. In the ISO26262, these cases are indicated as not
“free from interferences”, since the same root cause can affect both. This is an important
point when designers choose to adopt such solutions, since CFC by itself is incapable
of detecting 100% of faults: this highlights the need to combine this type of algorithm
with other techniques, such as watchdog or the execution of tests on other cores if they
are available.

The last observation is that there are no “Infinite loop” or “Stuck at some instruction”
outcomes for the T benchmark. This, alongside the very high rate of “Latent after the
injection” with respect to the TS results, shows how the nature of the application to
be hardened is essential in a real use case: if no change in decision is needed in the
time window between the injection and the end of the simulation, the behavior remains
accidentally correct.

A possible proposal for such applications, in the case of sufficient spare execution time,
can be to add a dummy control flow to check if the computation unit is working correctly.
This solution can be adopted when an online test is unavailable for the target platform, or
the application should not depend on any specific platform for commercial or intellectual
property protection reasons.

4.4. Overheads

Table 2 presents the data on the overhead of the hardening techniques considering
two different aspects: the increase in the program size (evaluated in terms of the increase in
its text segment) and the number of actually executed machine-code instructions (a reliable
metric to estimate its effect on its execution time).
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It is possible to see that the explanation on the lower DC for the T benchmarks is
confirmed considering the overhead in terms of the executed instructions number: for both
the hardening techniques, we have a stronger impact. This result is expected: the more
the signature is tested, the greater the probability that it detects CFEs. Considering the T
benchmark, the impact of the CFCs in terms of executed instructions is almost negligible (a
small number of BBs transitions happen).

The huge difference in terms of text segment sizes between the two benchmarks can
be explained in terms of the number of BBs present: the functions related to the hardening
techniques are implemented with the inline option of Embedded Coder, so a greater number
of BBs requires, in a proportional way, more C language statements and then more machine
code ones.

Regarding the main memory occupation, our implementation of the YACCA algorithm
requires three unsigned 64-bit variables for a total of 24 bytes for each execution flow. The TS
has only one execution flow, whereas T has two execution flows (one for the decision based
on the tank level, the other to implement the overcurrent protection) with an occupation of
48 bytes. Considering RACFED, it needs four 64-bit variables for the execution flow. Hence,
the overhead is 32 bytes for TS and 64 bytes for T.

5. Conclusions

This paper has presented the diagnostic performances of two case studies.
Following a model-based software design approach, the hardening against RHFs was

implemented at a high level of abstraction directly into the behavioral models, and then
automatically translated to a high-level language (in this case, C). This allowed for the
implementation of the CFC directly within the Simulink Stateflow environment.

For this study, we considered YACCA and RACFED as the CFC algorithms. These
allow the program behavior to be observed with effective and cost-efficient error detection.

Table 7 demonstrates that the diagnostic coverage (safe + detected) achieved depends
on the nature of the hardened algorithm. If the number of BB transitions increases, the CFC
methods can more efficiently detect RHFs.

The TS performed transitions continuously, reaching a DC of 51.8% for YACCA and
70.0% for RACFED. On the contrary, for the T benchmark, where only external events
trigger the transitions, the DC dropped to 1.86% and 4.40%, respectively. In both cases,
RACFED performed better than YACCA.

Another evident phenomenon related to the TS benchmark shows that the executed
instruction overheads for the CFC methods (both YACCA and RACFED) were similar to
the assembly level (obtained from the literature and reported in column EO of Table 1).
For YACCA, we observed + 170% in the MBSD implementation and + 203.2% in the
assembly experimental, whereas, for RACFED, +87.7% and +81.5%, respectively.

This empirical study of CFC could benefit software developers and researchers, es-
pecially those involved in the automotive industry, in identifying the most appropriate
techniques for RHF detection. Of course, an accurate analysis shall be conducted to guaran-
tee sufficient freedom from interference as required by the ISO26262 standard.

In future works, we would like to analyze and benchmark different implementations of
these algorithms on a multi-core system or by resorting to external hardware. Another point
can be to compare the effectiveness of dummy execution flow for cases similar to the T
benchmark compared to a state-of-the-art online test.
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Abbreviations
The following abbreviations are used in this manuscript:

ACFC Assertions for Control Flow Checking
BB Basic Block
CEDA Control-flow Error Detection using Assertions
CFC Control Flow Checking
CFCET Control Flow Checking by Execution Tracing
CFCSS Control Flow Checking by Software Signatures
CFE Control Flow Error
CFG Control Flow Graph
COTS Commercial Off-The-Shelf
DC Diagnostic Coverage
DWC Duplication With Comparison
ECC Error Correcting Code
ECCA Enhanced Control Flow Checking using Assertions
FI Fault Injection
FIM Fault Injection Manager
FM Failure Mode
FMEDA Failure Mode, Effects, and Diagnostic Analysis
FSC Functional Safety Concept
FSM Finite State Machine
FTA Fault Tree Analysis
FTTI Fault Tolerance Time Interval
GDB. Gnu DeBugger
HSI Hardware/Software Interfaces
I-IP Infrastructure Intellectual Properties
IP Intellectual Property
ISA Instruction Set Architecture
ISO International Standard Organization
MBSD Model-Based Software Design
NMR N modular redundancy
OSLC Online Signature learning and Checking
PC Program Counter
PLD Programmable Logic Device
RACFED Random Additive Control Flow Error Detection
RHF Random Hardware Failure
RISC Reduced Instruction Set Computing
RSCFC Relationship Signatures for Control Flow Checking
SEooC Safety Element out of Context
SETA Software-only Error-detection Technique using Assertions
SG Safety Goal
SIED Software Implemented Error Detection
SIHFT Software Implemented Hardware Fault Tolerance
SS Standby-sparing
TLC Target Language Compiler Tool
TMR Triple Modular Redundancy
TSC Technical Safety Concept
TSR Technical Safety Requirements
WdM (AUTOSAR) Watchdog Manager
WDP Watchdog Direct Processing
YACCA Yet Another Control-Flow Checking using Assertions



Electronics 2022, 11, 3074 16 of 16

References
1. Abbott, R.J. Resourceful Systems for Fault Tolerance, Reliability, and Safety. ACM Comput. Surv. 1990, 22, 35–68. [CrossRef]
2. Mahmood, A.; McCluskey, E.J. Concurrent error detection using watchdog processors—A survey. IEEE Trans. Comput. 1988, 37,

160–174. [CrossRef]
3. Austin, T.M. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the 32nd Annual

ACM/IEEE International Symposium on Microarchitecture, Washington, DC, USA, 16–18 November 1999; pp. 196–207.
4. Lisboa, C.A.; Erigson, M.I.; Carro, L. System level approaches for mitigation of long duration transient faults in future technologies.

In Proceedings of the 12th IEEE European Test Symposium (ETS’07), Los Alamitos, CA, USA, 20–24 May 2007; pp. 165–170.
5. Dubrova, E. Fault-Tolerant Design; Springer: New York, NY, USA, 2013.
6. Koren, I.; Krishna, C.M. Fault-Tolerant Systems; Morgan Kaufmann: San Mateo, CA, USA, 2007.
7. Eifert, J.B.; Shen, J.P. Processor monitoring using asynchronous signature instruction streams. In Proceedings of the 25th International

Symposium on Fault-Tolerant Computing, Madison, WI, USA, 15–18 June 1995. [CrossRef]
8. Madeira, H.; Silva, J.G. On-line signature learning and checking: Experimental evaluation. In Proceedings of the 5th Annual

European Computer Conference on Advanced Computer Technology, Reliable Systems and Applications (CompEuro’91),
Bologna, Italy, 13–16 May 1991; pp. 642–646. [CrossRef]

9. Li, T.; Shafique, M.; Ambrose, J.A.; Rehman, S.; Henkel, J.; Parameswaran, S. RASTER: Runtime adaptive spatial/temporal
error resiliency for embedded processors. In Proceedings of the 50th Annual Design Automation Conference, Austin, TX, USA,
29 May–7 June 2013; pp. 1–7.

10. Parra, L.; Lindoso, A.; Portela, M.; Entrena, L.; Restrepo-Calle, F.; Cuenca-Asensi, S.; Martínez-Álvarez, A. Efficient mitigation
of data and control flow errors in microprocessors. In Proceedings of the 2013 14th European Conference on Radiation and Its
Effects on Components and Systems (RADECS’13), Oxford, UK, 23–27 September 2013; pp. 1–4. [CrossRef]

11. Rajabzadeh, A.; Miremadi, S.G. CFCET: A hardware-based control flows checking technique in COTS processors using execution
tracing. Microelectron. Reliab. 2006, 46, 959–972. [CrossRef]

12. Michel, T.; Leveugle, R.; Saucier, G. A new approach to control flow checking without program modification. In Proceedings of
the 21st International Symposium on Fault-Tolerant Computing, Madison, WI, USA, 15–18 June 1991.

13. Alkhalifa, Z.; Nair, V.S.; Krishnamurthy, N.; Abraham, J.A. Design and evaluation of system-level checks for online control flow
error detection. IEEE Trans. Parallel Distrib. Syst. 1999, 10, 627–641. [CrossRef]

14. Oh, N.; Shirvani, P.P.; McCluskey, E.J. Control-flow checking by software signatures. IEEE Trans. Reliab. 2002, 51, 111–122.
[CrossRef]

15. Goloubeva, O.; Rebaudengo, M.; Reorda, M.S.; Violante, M. Improved software-based processor control-flow errors detection
technique. In Proceedings of the Annual Reliability and Maintainability Symposium, Alexandria, VA, USA, 24–27 January 2005;
pp. 583–589. [CrossRef]

16. Li, A.; Hong, B. Software implemented transient fault detection in space computers. Aerosp. Sci. Technol. 2007, 11, 245–252.
[CrossRef]

17. Asghari, S.A.; Abdi, A.; Taheri, H.; Pedram, H.; Pourmozaffari, S. SEDSR: Soft error detection using software redundancy. J. Softw.
Eng. Appl. 2012, 5, 664. [CrossRef]

18. Asghari, S.A.; Taheri, H.; Pedram, H.; Kaynak, O. Software-based control flow checking against transient faults in industrial
environments. IEEE Trans. Ind. Inform. 2014, 10, 481–490. [CrossRef]

19. Vankeirsbilck, J.; Penneman, N.; Hallez, H.; Boydens, J. Random Additive Control Flow Error Detection. In Proceedings of the
International Conference on Computer Safety, Reliability, and Security, Västerås, Sweden, 18–21 September 2018; pp. 220–234.

20. Vankeirsbilck, J.; Penneman, N.; Hallez, H.; Boydens, J. Random Additive Signature Monitoring for Control Flow Error Detection.
IEEE Trans. Reliab. 2017, 66, 1178–1192. [CrossRef]

21. Heinecke, H.; Bielefeld, J.; Schnelle, K.P.; Maldener, N.; Fennel, H.; Weis, O.; Kunkel, B. AUTOSAR—Current results and
preparations for exploitation. In Proceedings of the Euroforum Conference, Stuttgart, Germany, 3–4 May 2006.

22. Fennel, H.; Bunzel, S.; Heinecke, H.; Bielefeld, J.; Fürst, S.; Schnelle, K.P.; Kunkel, B. Achievements and Exploitation of the
AUTOSAR Development Partnership. 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.5
164&rep=rep1&type=pdf (accessed on 1 August 2022).

23. AUTOSAR. Main Requirements. Available online: https://www.autosar.org/fileadmin/user_upload/standards/foundation/19
-11/AUTOSAR_RS_Main.pdf (accessed on 1 August 2022).

24. ISO 26262:2018; Road Vehicles—Functional Safety. ISO: Geneva, Switzerland, 2018.
25. Mathworks. Available online: http://www.mathworks.com (accessed on 1 April 2022).
26. Sini, J.; Violante, M.; Tronci, F. A Novel ISO 26262-Compliant Test Bench to Assess the Diagnostic Coverage of Software Hardening

Techniques against Digital Components Random Hardware Failures. Electronics 2022, 11, 901. [CrossRef]
27. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the ATEC ’05 Proceedings of the Annual Conference

on USENIX Annual Technical Conference, Anaheim, CA, USA, 10–15 April 2005.

http://doi.org/10.1145/78949.78951
http://dx.doi.org/10.1109/12.2145
http://dx.doi.org/10.1109/FTCSH.1995.532620
http://dx.doi.org/10.1109/CMPEUR.1991.257464
http://dx.doi.org/10.1109/RADECS.2013. 6937381
http://dx.doi.org/10.1016/j.microrel.2005.07.108
http://dx.doi.org/10.1109/71.774911
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/RAMS.2005.1408426
http://dx.doi.org/10.1016/j.ast.2006.06.006
http://dx.doi.org/10.4236/jsea.2012.59078
http://dx.doi.org/10.1109/TII.2013.2248373
http://dx.doi.org/10.1109/TR.2017.2754548
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.5164&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.5164&rep=rep1&type=pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_RS_Main.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_RS_Main.pdf
http://www.mathworks.com
http://dx.doi.org/10.3390/electronics11060901

	Introduction
	Background
	Hardware-Based Fault Tolerance Techniques
	Redundancy
	CFC Techniques

	Software-Based Hardening Techniques
	Functional Safety in the Automotive Industry

	Case Study
	Fault Models
	Implemented Software-Based Hardening Technique
	YACCA
	RACFED

	Experimental Results
	Target Platform
	Fault Injection Results
	Diagnostic Coverage
	Overheads

	Conclusions
	References

