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Abstract. Physics simulators have shown great promise for conveniently
learning reinforcement learning policies in safe, unconstrained environ-
ments. However, transferring the acquired knowledge to the real world
can be challenging due to the reality gap. To this end, several methods
have been recently proposed to automatically tune simulator parameters
with posterior distributions given real data, for use with domain random-
ization at training time. These approaches have been shown to work for
various robotic tasks under different settings and assumptions. Neverthe-
less, existing literature lacks a thorough comparison of existing adaptive
domain randomization methods with respect to transfer performance and
real-data efficiency. This work presents an open benchmark for both of-
fline and online methods (SimOpt, BayRn, DROID, DROPO), to investi-
gate current limitations on multiple settings and tasks. We found that on-
line methods are limited by the quality of the currently learned policy for
the next iteration, while offline methods may sometimes fail when replay-
ing trajectories in simulation with open-loop commands. The code used is
publicly available at https://github.com/gabrieletiboni/adr-benchmark.

Keywords: Robot Learning, Sim-to-Real, Domain Randomization, Bench-
mark

1 Introduction

Recent advancements in the field of deep Reinforcement Learning (RL) have
shown promising results for many robotic applications, by allowing to solve
tasks through simple trial-and-error. On one side, this has opened a new path
for collaborative robots that autonomously learn complex skills. On the other,
learning through interactions with the environment still requires a substantially
large number of training data and poses important safety risks [9]. To this end,
researchers have adopted strategies to conveniently train robots for safe optimal
control, such as learning from human demonstrations or by interacting with un-
constrained simulated environments. There has been a growing interest in the
latter approach in recent years, driven by several success stories of robotic tasks
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Fig. 1: Conceptual illustration of online (left) and offline (right) adaptive domain
randomization.

being learned exclusively in simulation, from robotic in-hand manipulation [16],
to drone flight [15] and locomotion for quadruped robots [22]. Albeit promis-
ing, however, the effectiveness of a sim-to-real transfer strongly depends on the
quality and the accuracy of the physics engines that simulate the underlying sce-
nario. Indeed, directly transferring robot policies learned in a poorly calibrated
simulator—a.k.a. the source domain—usually leads to low performance on real
hardware [11]—the target domain. Such discrepancy is commonly known as the
reality gap and represents the main limitation for RL in robotics. Generally
speaking, the reality gap may be attributed to a combination of factors, such
as mismatched dynamics models and unmodeled phenomena. Additionally, hu-
midity and temperature changes, together with wear and tear of robotic setups,
often lead to dynamically changing real-world environments.

To bridge the reality gap and learn more generalizable RL agents, several
works have proposed to train robots over varying simulated environments, i.e.
by randomizing dynamics parameters according to a predefined probability dis-
tribution. This technique, known as Domain Randomization (DR), has demon-
strated to be a promising method to learn robust robot policies that can be
directly transferred to the target domain [28]. More specifically, DR requires
designing a source domain distribution over physical parameters that allow for
both training of a single well-performing policy on varying dynamics, and for
efficient transfer to the real system. This problem attracted researchers to move
from point-estimate tuning techniques to full posterior distribution inference for
use with Domain Randomization. A recent survey [15] refers to such methods as
Adaptive Domain Randomization (ADR), as the primary goal is to automatically
infer source domain distributions, as opposed to using manually engineered static
distributions. Despite the plethora of recently published ADR methods [16, 20,
3, 25, 12, 23], their problem setting, robotic tasks, and imposed assumptions of-
ten differ. Furthermore, each method presents superior performance w.r.t. their
proposed baselines, but these have been hardly ever compared to each other. In
accordance with [15], we claim that while these works have critically different
assumptions, the existing literature lacks a thorough comparison of real-world
transfer performance of existing ADR methods. A similar comparison may shed
light on which methods are more suitable for certain problem settings than oth-
ers, besides investigating current limitations for future studies.

This work presents an open benchmark of four ADR methods (SimOpt[3],
BayRn [12], DROID [25], DROPO [23]) tasked with sim-to-sim transfers under
noisy conditions and unmodeled phenomena. We focus on target domain per-
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formance as the metric of interest, rather than inspecting the accuracy of the
inferred parameter posteriors. To further investigate each method’s limitations,
we explore how performances vary according to the amount of data collected
from the target domain, which is often critically limited and expensive to obtain
in robotics scenarios. In particular, we distinguish between online approaches [3,
12], which iteratively gather on-policy data from the target domain, and offline
approaches [25, 23], which rely on fixed offline datasets (see Figure 1). For ex-
ample, offline methods can be fed with human demonstrations which feel more
natural to non-expert users when interacting with the real setup, as opposed
to rolling out RL policies iteratively with careful supervision. However, online
approaches might reach higher performance in the long run by adapting to the
target domain through multiple iterations. To the best of our knowledge, this
is the first work aiming to provide insights into how algorithms from the two
aforementioned ADR settings perform along a variety of axes and tasks.

The contributions of this work are: (1) shedding light on the critically differ-
ent assumptions and limitations of online vs. offline ADR methods; (2) providing
a thorough performance analysis over four ADR methods w.r.t. target domain
performance and data efficiency; (3) investigating how different data collection
strategies affect the performances of offline methods.

2 Related works

Domain Randomization (DR) has been gaining wider adoption in recent years as
a method for sim-to-real transfer, driven by its ease of implementation and effec-
tiveness. Antonova et al. [1] were among the first to show how robust RL policies
may be learned by randomizing parameters in the model of the training envi-
ronment. Soon after, several works have demonstrated impressive robotic skills
trained exclusively in simulation with DR, such as solving the Rubik’s cube [16],
learning locomotion tasks [22], autonomously opening a door [5], or pushing ob-
jects with arbitrary friction properties [17]. Valassakis et al. [26] have further
investigated how DR compares to other sim-to-real transfer techniques for sim-
ple robotic manipulation tasks. Moreover, a recent study [4] has attempted to
provide a theoretical framework around DR for dynamics to explain its impres-
sive empirical results. While not explored in this work, the same concept has also
been applied in the field of deep RL for vision-based policies, by randomizing
appearance properties of the simulated environment [24, 21, 8].

As the complexity of the task increases, the main challenge lies in how to
design source domain distributions to both encompass real-world physical pa-
rameters and make up for mismatched dynamics models [27]. When fixed uniform
distributions are picked, the approach is generally referred to as Uniform Domain
Randomization (UDR). UDR may be the result of prior task-specific knowledge
or tedious back-and-forth tuning until the desired target performance is achieved.

To relax the manual engineering efforts associated with this approach, Adap-
tive Domain Randomization (ADR) methods attempt to automatically infer the
source domain distribution. Early attempts by Rajeswaran et al. [19] in this di-
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rection demonstrated that physical parameters could be inferred by collecting
data from the target domain, despite showing experiments in simulation only.
More recent works gained popularity by applying a similar concept to actual
sim-to-real transfer tasks, and using the inferred source domain distribution for
domain randomization at training time: SimOpt [3] infers dynamics parameters
by minimizing a discrepancy metric between real and simulated trajectories,
while BayRn [12] directly optimizes for real-world returns by framing inference
as an end-to-end Bayesian Optimization problem. While training always happens
in simulation, these methods require iterative target domain data collection—
as they roll out the currently trained policy to ask for real-world feedback—
potentially posing data efficiency concerns and assuming the real hardware to
be available at training time. We refer to these as online ADR methods.

An opposite line of work has been recently proposed by exploiting offline
fixed datasets to infer source domain distributions: DROID [25] minimizes joint
torques when replaying real-world trajectories in simulations, while DROPO [23]
infers dynamics parameters given real-world transitions in a maximum-likelihood
framework. These methods make no assumptions on how the given dataset has
been collected, making them suitable for use with human demonstrations—which
are often conveniently available in many robotic setups—or data collected by
previously trained policies for other tasks. By nature, offline ADR approaches
thrive on safety-critical tasks where rolling out multiple intermediate policies
may be too expensive. On the other hand, these may fall short to readily adapt
to the target domain given limited data, as opposed to online methods.

Our work aims to provide the first empirical insights to support or re-evaluate
the above premises, by comparing the four previously described methods under
noisy conditions and unmodeled phenomena in simulation, by means of tar-
get domain performance and data efficiency. We chose these methods as they
all leverage feed-forward network architectures, gradient-free optimization for
non-differentiable simulators, and parametric source domain distributions. We
acknowledge some similarities with [11], a recent open benchmark on system
identification for physics simulator tuning. However, this study purely focused
on point-estimate parameter inference—i.e. system identification—and did not
discuss the data efficiency requirements. In addition, each algorithm is tested in
direct parameter estimation under noiseless and perfectly modeled conditions.

As the lack of a common benchmark for DR has been supported by a recent
survey [15], we encourage future works to extend the comparison to other ADR
methods and settings. For instance, recent approaches have studied the underly-
ing problem from a more general perspective, allowing to infer free-form source
domain distributions given a starting data collection policy [20, 14].

Finally, other works have approached the task in an unsupervised problem
setting, i.e. without making use of target domain data: [10] drives policy train-
ing on progressively harder dynamics parameters to improve generalization, [13]
estimates the transfer performance with reference simulated environments, [16]
encourages wider source domain distributions as long as the training performance
is sufficiently high.
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3 Methodology

This section introduces the formal problem formulation, a detailed overview over
online vs. offline ADR methods, and our experimental setup.

3.1 Problem setup

Problem formulation. Consider the source domain environment to be mod-
eled as a discrete-time dynamical system, defined by a continuous state space
S ∈ Rns , a continuous action space A ∈ Rna , and an initial state distribution
µ(s0). In simulation, the environment can be further parameterized by its dy-
namics parameters ξ ∈ Rnξ , e.g. masses, friction coefficients, robot link sizes.
The system dynamics are therefore described by the transition probability den-
sity function Pξ(st+1|st, at), given the current state st and action taken at, at
time step t. At each step, the agent is given a scalar reward feedback rt according
to the function R(st, at, st+1), assumed to be deterministic for the sake of sim-
plicity. Overall, the source environment forms a Markov Decision Process (MDP)
described by the tuple Mξ = ⟨S,A,Pξ, µ,R⟩. We assume ξ to be random vari-
ables that obey a parametric distribution pϕ(ξ), parameterized by ϕ—e.g. mean
and variance for Gaussian distributions.

Under this formulation, the goal of an RL agent is to maximize the expected
cumulative rewards (i.e. the return), by acting with a stochastic policy π(at|st).
In particular for the domain randomization setting, the goal is to train a robust
policy over the source domain distribution pϕ(ξ),

π∗
ϕ = argmax

π
Eξ∼pϕ(ξ)

[
Eπ,Pξ,µ0

[
T∑

t=0

γtrt

]]
(1)

with discount factor γ ∈ (0, 1]. In practice, DR can be easily implemented into
existing RL algorithms by sampling new dynamics parameters ξ ∼ pϕ(ξ) at
the start of each training episode, resulting in the outer expectation in Eq. 1.
ADR methods further include an inference phase in the overall pipeline to es-
timate the parameters ϕ of the source domain distribution pϕ(ξ). In this work,
we consider Supervised ADR methods, i.e. approaches that use a collection of
state-transitions D = {(s0, a0, s1, r1), . . . , (sT−1, aT−1, sT , rT )} from the target
domain environment Mreal. In particular, we assume that the target MDP
Mreal shares the same state space, action space and reward function of Mξ,
but generally differs by dynamics.

Online ADR methods, such as SimOpt [3] and BayRn [12], rely on iterative
data collection from the target domain at optimization time (see Fig. 1). They
generally involve a bi-level optimization problem where RL policy training with
DR in Eq. 1 is interleaved by policy rollouts in the real setup. At the i-th
iteration, target transitions Di are collected with the currently learned policy
π∗
ϕi

and used to adapt the source domain distribution pϕi+1
(ξ), repeating the

process until convergence.
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While policies are still learned exclusively in simulation, these methods as-
sume the real setup to be available for rolling out intermediate policies. Note
how this assumption may be particularly expensive in robotic tasks, as careful
expert supervision is needed when dealing with real hardware—e.g. for resetting
the episodes, running safety checks, or interpreting and anticipating undesired
behavior. Furthermore, intermediate policies may be the main point of failure
themselves, as things can hardly be recovered if a policy happens to learn un-
wanted behavior in the middle of the process—e.g. it is unsafe to be run on the
real setup, or it is not able to collect informative data, such as in the case of
a robotic arm which moves through air without actually interacting with the
environment. Finally, these approaches may not be fully parallelized and run in
a cluster in an end-to-end fashion, as previously noted by a related work [12].

Offline ADR methods make use of previously collected target domain data D
to infer an optimal source domain distribution pϕ∗(ξ), and later train a single
policy π∗

ϕ∗ that can be directly transferred to the real world. An illustration of
the pipeline of such methods is depicted in Fig. 1, on the right.

In contrast to online methods, these make no assumptions on how real data
has been collected. For this reason, offline ADR methods can be fed with human
demonstrations, or data collected by previously trained policies for similar tasks.
As such, previous studies in this line of work [25, 23] claim to adopt a safer and
less restrictive pipeline. Note, indeed, how offline methods can potentially be
run in online fashion—by collecting novel data with the newly learned policy
and repeating the process—while the opposite is not always possible. Moreover,
this approach allows for end-to-end parallelization—without expert personnel
in the middle—and easier benchmarking of different algorithms by keeping a
fixed shared dataset. Despite the promising assumptions, these methods are
by definition limited to the information provided by the previously collected
trajectories, and may fail to readily adapt to the real domain.

3.2 Benchmark methods

Uniform Domain Randomization. We implement static domain random-
ization as a baseline, also known as Uniform Domain Randomization (UDR).
Instead of manually tuning uniform distributions—which would be hard to fairly
and systematically benchmark—we followed the same approach proposed by pre-
vious works [12, 23]: we average the results of 10 policies trained on randomly
sampled uniform bounds, within a predefined search space over the dynamics
parameters. This would essentially reflect the performances of a random search,
allowing up to 10 evaluations.

Bayesian Domain Randomization (BayRn) [12] was introduced as an
affordable extension to UDR for adapting source domain distributions. BayRn
optimizes the parameters ϕ through Bayesian Optimization (BO), using the
final target domain return as optimization metric. By definition, BayRn falls
under the area of online ADR methods. We parameterize source distributions
as uniform when implementing BayRn, and we initialize the Gaussian Process
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with the results of the 10 UDR policies, as suggested by the authors. This makes
BayRn slightly less comparable to the other ADR methods tested, which do
not receive initial information. However, as we only allow a maximum of 5 real-
world iterations in our benchmark protocol, we believe this step to be crucial for
obtaining meaningful results through BO. Note that BayRn does not explicitly
use sensor measurements from the target domain, but critically requires reward
computation on real hardware.

SimOpt [3] uses a discrepancy metric between real and simulated trajectories
to progressively optimize pϕ(ξ), with a trust region in the dynamics parameter
space to stabilize the optimization process. Data is iteratively collected on the
real setup with the currently trained policy, and later replayed in simulation
with closed-loop actions from the same policy. We implement SimOpt using
the Relative Entropy Policy Search (REPS) implementation by [6]. In order to
maximize data efficiency, we only collect a single target trajectory per policy
and perform multiple REPS updates at each iteration. A hyperparameter search
is carried out over the number of intermediate REPS updates and number of
sampled parameters per update, and we end up using 5 and 1000, respectively.

Finally, we implement a variant of SimOpt to investigate its performances
when only a single real-world iteration is allowed, similarly to offline methods.
Throughout the experiments, we refer to this variant as SimOpt-1, which is
implemented by executing the total number of REPS updates (25) during the
first and only iteration.

DROID [25] proposes to use expert human demonstrations for adapting source
domain distributions pϕ(ξ). Demonstrations are replayed in simulation by exe-
cuting the same actions as in the real setup, allowing to regress dynamics pa-
rameters in simulation through CMA-ES [7]. As we only show experiments on
torque-control tasks, we adapt the original algorithm to minimize the L2-norm
between observations rather than joint torques. Moreover, we don’t assume to
provide optimal offline data for the underlying task, therefore we don’t consider
the penalty factor in the original objective function.

DROPO [23] proposes to optimize pϕ(ξ) with a maximum-likelihood approach,
based on offline-collected data. Under this formulation, CMA-ES is used to
regress both means and variances of the source domain distribution, by replaying
offline data in simulation similarly to DROID. Nevertheless, DROPO further as-
sumes that sensor measurements from the real setup give access to the full state
configuration, in order to reset the simulated environment arbitrarily along the
trajectory. We test DROPO using the open-source implementation [23], and tune
the hyperparameter ϵ as suggested by the authors. Moreover, we set the sam-
ple size to be 10 times larger the dimensionality of tested dynamics parameter
spaces, to allow for meaningful likelihood inference.

3.3 Benchmark Tasks

We test the aforementioned ADR methods in four OpenAI gym [2] environ-
ments, depicted in Figure 2. These robotic tasks are commonly used to bench-
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(a) (b) (c) (d)

Fig. 2: Illustration of the four OpenAI gym tasks used in this benchmark: (a)
Hopper, (b) HalfCheetah, (c) Walker2D, and (d) Humanoid.

mark sim-to-real transfer methods in the absence of real hardware [11]. To fur-
ther simulate the reality gap, we consider each environment in three different
versions: vanilla, noisy, and unmodeled. The first case corresponds to the basic
condition with no mismatch between source and target. The other two allow
us to compare performances under noisy conditions—by injecting noise during
target domain data collection—and in presence of unmodeled phenomena—by
misidentifying a subset of dynamics parameters. More specifically, we simulate
unmodeled phenomena as in [19, 23]: a selected number of parameters is taken
out of the optimization problem and underestimated by 20% w.r.t. their original
ground truth values. Note that the environments are designed by increasing dif-
ficulty, by progressively expanding the state space, dynamics parameter space,
and number of unmodeled parameters. As the Humanoid environment contains
a richer state space which includes masses and constraint forces, we only feed
inference methods with the main bodies kinematics properties—i.e. the first 45
dimensions—while leaving full information to policies at training time. An over-
all description of the benchmark tasks is reported in Table 1.

Environment S A ξ Unmod. ξ Noise Parameters

Hopper 11 3 4 1 10−4 Link masses

HalfCheetah 17 6 8 3 10−4 Link masses, friction

Walker2d 17 6 13 4 10−3 Link masses and lengths, friction

Humanoid 376 17 30 7 10−3 Link masses, joint damping

Table 1: List of OpenAI gym [2] environments used in this benchmark. The
dimensionality of the state space, action space, dynamics parameter space, and
unmodeled parameter space is reported, together with the noise level.

3.4 Benchmark Protocol

As ADR methods share the same final goal, we propose a systematic frame-
work to compare online vs. offline approaches by means of target domain policy
performance and data efficiency. However, given the different assumptions and
requirements highlighted in Sec. 3.2, these metrics should by no means be consid-
ered as the sole axes of evaluation. Nevertheless, this work may help identifying
which method is most suitable for a given problem setting, and how these algo-
rithms perform when all requirements are fulfilled.
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We benchmark online methods by allowing a maximum of 5 iterations. At
each iteration, we limit data collection to a single trajectory clipped to a length
of 200 transitions. This way, we keep the size of target datasets limited to a
maximum of 1000 transitions, amounting to about 10 seconds-worth of locomo-
tion data. We feed offline methods with the cumulative trajectories collected by
online methods up until the current iteration. In particular, we use data from
SimOpt, as, similarly to DROID and DROPO, it makes use of sensory measure-
ments from the target domain. By doing so, we ensure that SimOpt, DROID and
DROPO have access to the same type and amount of information at all times.

Dynamics parameters are normalized to the interval [0, 4], according to a
predefined bounded search space. All methods start from a conservative prior
source domain distribution centered in 2 with identity covariance matrix. An
exception to this is BayRn, which deals with uniform distributions and gets
initialized with the results of the random search by UDR. In the case of the
SimOpt single-iteration variant (SimOpt-1), we use the initial distribution to
train a data collection policy, which is later used to collect the same amount
of data used by offline methods, respectively for each iteration. We report the
performances at the zero-th iteration as the target return of a policy trained on
the initial conservative guess, marked as the starting point for all methods.

For policy training with Reinforcement Learning, we use the Soft Actor-Critic
(SAC) implementation by stable-baselines3 [18]. We parametrized both actor and
critic policies as 3-layer MLP neural networks, with 128 neurons in the hidden
layers. We train each policy on 12 parallel environments, for a maximum of 5M
timesteps overall. All SAC hyperparameters are kept at default values, except
for the learning rate which is tuned separately for each environment by training
on ground truth dynamics. To ensure fair comparison among different policies,
we stop the training process when a task-specific reward threshold is reached.

Finally, we report returns as the average performance over 3 random seeds—
by repeating both the inference phase and policy training—normalized by the
training reward threshold for the sake of clarity.

4 Results

4.1 Vanilla Parameter Estimation

As a starting point, we benchmark the outlined methods in a direct parameter es-
timation setting. Under this formulation, the two domains are solely mismatched
by discrepancies in dynamics parameter values. ADR methods thus attempt to
estimate source domain distributions that resemble the ground truth parameters,
by collecting data from the target environment. While previous works mostly in-
vestigated the inference results under this setting [11], we directly focus on the
policy performance in the ground truth environment, with respect to the amount
of data seen by each algorithm.

The results are depicted in Fig. 3, in terms of returns normalized by the
training reward threshold. We observe that all methods are able to successfully
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Fig. 3: Policy returns in the target domain (normalized by training reward thresh-
old) in the vanilla parameter estimation sim-to-sim setting.

transfer in the low-dimensional Hopper task, while some discrepancy is noted
for more complex environments. In particular, we found that open-loop replay-
ing of target trajectories by DROID generally leads to less stable results, with
respect to SimOpt’s approach of collecting sim trajectories by rolling out the cur-
rently converged policy. This effect is particularly visible in the Walker2D task
where multiple trajectories lead to lower performances for DROID, e.g. if the
Walker-agent happens to fall down while executing the target actions, the tra-
jectory discrepancy metric may get uninformative. SimOpt authors have stated
similar observations when experimenting with open-loop replaying in their ex-
periments (see Appendix A in [3]). We suspect that the trust region imposed
by SimOpt may further prevent diverging trajectories, as the next-iteration pa-
rameter search likely falls closer to the current policy training dynamics w.r.t.
CMA-ES unconstrained search. Moreover, we noticed that, while executing ac-
tions in the same way as DROID, DROPO does not suffer from this. To this
end, we found that intermediately resetting the simulator state is crucial to pre-
vent sim trajectories to diverge from real ones, and provide informative distance
measures.

Overall, we observe that SimOpt is able to progressively get better results
and solve the task in all cases within 5 iterations, i.e. with 5 or less trajectories
collected from the target domain. Interestingly enough, the quality of the policy
also matters for SimOpt, as SimOpt-1 fails in the Walker2D task when collecting
all trajectories with the poorly performant initial policy. On the other hand,
BayRn fell short on higher-dimensional tasks when only 5 iterations are allowed,
as Gaussian Processes are notoriously problematic to scale to high parameter
dimensions (≥ 8 in our case). Due to this, we do not report results for Bayesian
Optimization on the Humanoid environment.
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Fig. 4: Normalized returns in the target domain under noisy observations.

Finally, we found that DROPO is able to solve all tasks and match the long-
term results of SimOpt in this setting, even with a single target trajectory.

4.2 Observation noise

We test the transfer performance of all benchmark methods when the target do-
main is assumed to provide noisy measurements, as in the case of real hardware.
For this purpose, we feed each algorithm with target observations containing
injected noise according to the predefined values in Table 1.

We report the results for this setting in Fig. 4. In general, we draw similar
conclusion as in the direct parameter estimation setting: (i) all methods succeed
on the Hopper task, (ii) DROID and SimOpt-1 may fail unexpectedly when sim
trajectories diverge during replay (see Walker2D in Fig. 4), (iii) BayRn fails
to transfer on problems with higher-dimensional dynamics parameter spaces.
Moreover, in this setting we experienced generally lower SimOpt performances,
especially for harder tasks: we found that SimOpt’s intermediate policies may at
times fail to transfer in noisy conditions and hinder the overall iterative process
(see SimOpt on Humanoid in Fig. 4 after the first iteration). This is in line with
the statements by [12] during their experimental evaluation.

We finally observe that DROPO is still able to transfer across all tasks given a
single trajectory of 200 transitions, showing slight improvements as more (noisy)
data becomes available.

4.3 Unmodeled phenomena

Finally, we report each method’s performance in presence of unmodeled phenom-
ena (see Sec. 3.3). This approach would reflect a more realistic transfer scenario
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Fig. 5: Normalized returns in the target domain in presence of unmodeled phe-
nomena.

where not all physical parameters are considered during the inference phase and
potentially mismatched from true real-world values.

The results are depicted in Fig. 5. In comparison to the vanilla parameter es-
timation setting, we observe that offline ADR methods behaved similarly, while
SimOpt and its single-iteration variant struggled to solve the task in the Hu-
manoid environment. We believe this to be caused by intermediate ill-performing
policies which prevented a successful parameter estimation and hindered the
overall process. Besides this occurrence, SimOpt demonstrated stable and suc-
cessful transfers within 5 trajectories in the remaining tasks. Surprisingly, BayRn
was shown to obtain superior performance in the Hopper task than other meth-
ods, likely by avoiding explicit parameter estimation and directly optimizing for
target domain returns. Overall, we found DROPO to be the best performing
method under this setting, despite requiring significantly more resources for hy-
perparameter tuning: DROPO inherently requires multiple runs to decide on
the best regularization value ϵ, which was found to significantly impact on fi-
nal performances. Nevertheless, we stuck to the original suggested procedure for
tuning this parameter [23]. In addition, we experienced noticeably higher infer-
ence times by DROPO, as likelihood estimation requires a considerable amount
of Monte-Carlo sampling. On the other hand, DROID can be run with mini-
mal hyperparameter tuning and faster objective function evaluations, but still
generally suffered from divergent trajectories during parameter search on the
harder tasks. Furthermore, we observed that DROID consistently converged to
nearly zero-variance distributions, as a result of the CMA-ES covariance matrix
decaying to infinitesimal values after finding a local optimum. This behavior
limits the potential of domain randomization, effectively reducing it to system
identification.
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4.4 Off-policy data collection

We designed the main experimental evaluation by feeding offline methods with
the cumulative data collected by SimOpt, in order to compare the methods with
the same target domain trajectories. As this would hardly be the case in a real
application, in this section we investigate how different data collection strategies
impact on offline ADR performances. In particular, we test how target returns
with data from SimOpt compare to (i) randomly collected data, and (ii) data
collected with a policy trained on the prior source distribution N (2,1)—as in
the first iteration of the main results. We test the performances in the Hopper
and Walker2D tasks, under noisy conditions, and report the results in Fig. 6.

We observe that different strategies did not significantly affect the perfor-
mances in the Hopper environment when sufficient transitions are provided.
However, we noticed that DROID is significantly more sensitive to the quality
of collected data in the Walker2D task, with respect to DROPO. As previously
argued, we attribute this phenomenon to DROID’s open-loop replaying of target
actions in simulation, which may lead to uninformative distance measures—e.g.
when the Walker2D-agent falls down, or when the sim trajectories diverge from
the target one due to highly mismatched dynamics parameters. Nevertheless,
we claim that tasks different from locomotion may pose further requirements to
data collection procedures, e.g. robotic manipulation would at least require the
robot to interact with the objects in the scene.

Finally note that, while we could not test this strategy in sim-to-sim settings,
offline methods may still be fed with data collected by kinesthetic guidance—i.e.
human demonstrations—as opposed to online methods.
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Fig. 6: Target domain performance with different data collection strategies under
noisy conditions.

5 Conclusions

In this paper we provide an extensive experimental evaluation of four Supervised
Adaptive Domain Randomization methods in terms of target policy performance
and data efficiency, when tested on challenging sim-to-sim transfer scenarios.
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Additionally, we highlight the different assumptions and requirements of each
benchmark method, while splitting them into online vs. offline settings w.r.t.
to data collection procedures and optimization pipelines. We found that online
methods are able to solve most target tasks within 5 data collection iterations—
i.e. 10 seconds-worth of data—with least hyperparameter tuning and inference
time. Interestingly, we observed that their performance is affected by the quality
of the currently learned policy, as they may sometimes fail unexpectedly due
to intermediate ill-behaving policies, posing it as the main limitation of online
methods. On the other hand, offline methods generally led to better jump-start
performance with fewer target transitions available, even when compared to a
single iteration of SimOpt. In particular, DROPO achieved the highest average
return among the tested tasks, given stricter assumptions—i.e. full knowledge of
real-world state configurations is assumed. In contrast, we observed that open-
loop replaying of trajectories by DROID may lead to divergent sim trajectories
and, in turn, less informative trajectory discrepancy measures.

This work provides the first empirical insights into the performances of cur-
rent ADR algorithms with respect to the type and amount of data required.
These considerations can help researchers in the field to continue on improving
sim-to-real transfer methods with Domain Randomization, and make informed
decisions when applying these in future works.
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