
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Toward a Common Software Reference Architecture for CubeSats / Gagliardini, LORENZO MARIA; Corpino, Sabrina;
Giovanni Villa, Alfredo; Messineo, Rosario; Fischer, Daniel; Merri, Mario. - (2022). (Intervento presentato al  convegno
4S Symposium 2022).

Original

Toward a Common Software Reference Architecture for CubeSats

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971674 since: 2022-09-23T11:53:32Z

ATPI



 

 

 

 Toward a Common Software Reference Architecture for CubeSats 

Mr. L. M. Gagliardini1, Dr. S. Corpino1, Mr. A. G. Villa2, Mr. R. Messineo2, Dr. D. Fischer3, Dr. M. Merri3. 

1) Politecnico d Torino, DIMEAS, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy 
2) Altec S.p.a., Torino, Italy 

3) European Space Operations Centre (ESOC), Darmstadt, Germany 

  



 

 

1 Abstract 
 

 
Ever since the first CubeSat mission was launched, the concept and complexity of CubeSat Missions 
has evolved at a pace that current operational systems cannot match. In an increasingly dynamic 
space economy, where small businesses have become the norm, innovative solutions that abstract 
away complexity and increase autonomy are fundamental to reduce operational costs. It is within 
this frame that the current paper is presented. To address the need for a standardized software 
architecture of NewSpace companies, we first assess the European small satellite market needs 
through a survey with key players in the space sector. From this survey, we derive the high-level 
requirements, functionalities, and interfaces of a software architecture for CubeSats, the preferred 
platform due to its lower cost when compared to traditional platforms.  
NewSpace ventures, ranging from private launch companies, small satellite operators, and bus 
manufacturers, have become the main driver of the space economy and are reinventing the 
traditional space industry supply chain. Among those that were recently born, only a few have 
successfully established themselves in the market, relying on venture capital and proprietary 
software solutions. We might think of Spire, recently acquired by Starlink with its huge nanosatellite 
constellations in LEO, as one of the most representative cases.  
There are many reasons that can be attributed to the lack of market success or the delays that some 
companies experience getting their product to the market, but we can point out to the lack of a 
standardized, open-source software architectural reference for mission operations as one of the main 
obstacles they experience. Without access to proprietary software, these companies are forced to 
develop in-house knowledge and build and design their own software stacks, a lengthy and costly 
process. Moreover, this ad-hoc development further disincentives the development of a common 
architecture; if a company allocates resources to gain a market edge, it is not likely it is interested in 
losing it by making its software available to competitors.  
Within this context, we aim at covering this gap by proposing a software architecture capable of 
satisfying a variety of stakeholder needs. To do so, we first characterize European small-sat operator 
needs through a survey involving both industry and governmental bodies, such as space agencies. 
Then, we address the technical challenges of defining an architecture capable of conciliating and 
satisfying competing operator needs. In this case, we aim not to define the specific architectural 
elements, but to derive the requirements that should be considered when developing such a system. 
  



 

 

2 Market Polling 
 

We started our survey in mid-2019 by submitting a questionnaire to several private companies and 
public bodies in the CubeSat market (“the entities”). Of these, twenty-four expressed their 
perspective on the existing standards and best practices applied to CubeSats. 
 
To guide our work and gauge their interest, our investigation was centred around two topics:  if the 
European standards satisfy their needs and how proposed solutions could bridge that gap, 
discussing how a reference software architecture devoted exclusively to CubeSats should be 
formalized. Particularly, we were concerned with how this architecture differed from their current 
products and whether they would be prone to adopt it in the future. 
After the response period was closed, we reviewed their answers and characterized distributions: 
entity size, mission needs, and unique entity characteristics.  
The first section intended to point out which existing standards, references, and best practices (e.g., 
CCSDS, ECSS standards) freely available to the European market the polled entities are familiar 
with, and which are used by respondents in their CubeSat projects. These  were selected to cover the 
message transport issues both on-board and on-ground, the Space-to-Ground interface, and the 
orchestration of on-board activities, so to cover most of the crucial areas to the CubeSat operations. 
We also asked the companies to point out other references they apply in case these were not reported 
in the questionnaire. The questionnaire itself took into consideration the following standards, 
reported in table below [5], [6], [7] , [8], [9], [10]: 

 

Beside the CCSDS and ECSS standards, the companies mentioned other references applied in their 
CubeSat projects, reported in Table 1. 

ISO Standards [11] Compass Stack 
OMG Standards [12] Other ECSS Standards (tailored and non-) 
MISRA Coding Standards Non-disclosed in-house developed reference 
CubeSat Space Protocol (CSP) [13] UNISEC Global 

Table 1: Other adopted standards, references, best practices 

According to our survey, 67% of the entities adopt the CCSDS Space Packet protocol (SPP) in their 
CubeSat project as a solution at the network layer, showing that it has become the de-facto standard 
even though most of them are not developing projects in collaboration with a public space agency. 
This provides a common baseline mission information exchange. At the same time, ECSS PUS and 
CCSDS MO services are adopted by respectively the 29% and the 42% of the entities as they provide 
a reference for managing data at application (operation) level. Of these entities, 43% and 50% 
respectively are contractors of the European Space Agency, which demands the use of these 
standards. Nevertheless, this suggests the CCSDS MO Services are more widely spread among 
CubeSat missions than ECSS PUS Services. Focusing on the second half of the questionnaire, we 
were interested in understanding how many companies are adopting ‘a’/’their own’ reference 
architecture (REFA) in their project development process and 
to which extent. The majority (83%), of the polled companies 
say they use a reference architecture developed in house or outsourced. Of those, 25% use an 
architecture that covers software interfaces while 35% apply a reference architecture for 
communication protocols. Indeed, they tend to take advantage of existing standards as a starting 
point for their in-house designs, despite not being mandatory (i.e., imposed by a contract).

The polled entities were then asked to deepen the software REFA topic about the possibility to adopt 
a common CubeSat reference architecture. We were interested in understanding how this choice 
would impact their business model, and what should the reference architecture encompass to add 
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value to them. We first evaluate at what level the reference should be designed (e.g., 
software/hardware interfaces/protocols), tackling technology gaps. The second inquiry is made to 
understand how the reference involving existing and innovative technologies should be proposed 
(e.g., as a paper-only design, in the form of Open-Source artefacts). What is immediately clear is that 
the request for an architecture covering on-board and on-ground functional components is, by far, 
the solution that best fits market needs. It is then followed by the request for a communication 
protocol level reference. The common opinion is that if a reference architecture were available, it 
would completely change their development process, allowing them to avoid incurring costly 
software development expenses. This leads us to the question: how far such a CubeSat REFA should 
go to provide a concrete benefit to your future business? According to the polling, 46% of the entities 
ask for an architecture involving the core functional components, to be presented as a non-
mandatory reference. This aligns with what we reported before, showing companies and public 
entities taking advantage of existing technologies as a starting point for their internal design process, 
which in most cases results into an ad-hoc reference architecture. This further highlights the market 
need for a REFA and provides a line of research to further develop our study. Moreover, from the 
buyer’s perspective, the presence of an open-source reference implementation would mean greater 
competitiveness and higher quality products, with vendors offering their own design, but still 
compliant with the reference architecture lest for implementation details. 

The identification of the proper level of details in the architecture definition can be considered as the 
main driver of the design process. The aim at becoming a spread de-facto standard, implies the 
capability of reducing at most the unnecessary constraints coming from the design process while 
providing a solid baseline that serves as a common reference. The identification of such aspects 
whose definition is deemed relevant and those who can instead be accounted for tailoring processes 
is of paramount importance. The entire set on User Needs evolves around this hinge concept and 
underlines it in any treated aspect. It is worth to bear in mind that such needs do not constitute by 
any means a technical description of the architecture, and their lack of technicality would not allow 
this purpose. The statements reported in Table 2 are only intended to resume the user needs as they 
resulted from the questionnaire. The translation to an applicable set of requirements is then 
described, in the present chapter, and the list of High-Level Requirements is reported in Table 3. 

User Need ID User Need 

UN-001 The architecture shall take advantage of existing standards, references, and best practices. 

UN-002 The architecture shall allow the usage/introduction of other standards. 

UN-003 The architecture shall offer a baseline on top of which further solutions can be developed. 

UN-004 The architecture shall avoid unnecessary constraints. 

UN-005 The architecture shall be easily tailorable. 

UN-006 The architecture shall balance the proper level of details 



 

 

UN-007 The architecture shall allow vendors offering compliant and competing implementations of 
elements of the REFA. 

Table 2: User Needs 

  



 

 

3 Devised Architecture 
In response to the market needs reported in Table 2, a list of high-level requirements was derived 
(Table 3), describing the key drivers of a software reference architecture capable of best satisfying 
market needs. Having defined the requirements, we present the core components of REFA and a 
description of their interfaces and basic functionalities. Three different components are proposed 
and described: one On-Board component devoted to a specific on-board functionality; a Generic 
Component Model providing generic interfaces playing as a common software API for different on-
board platforms and the functional components on-ground. 

Req. ID Req. Title High Level Requirement Text Traceability 

SYS-0100 System’s Domain The architecture shall define functional on-board and on 
ground components 

UN-001 

SYS-0200 Implementation The architecture shall not tie users to a specific 
technology/implementation 

UN-002 

SYS-0300 Component 
Functionalities 

The architecture shall provide a framework of core 
functionalities 

UN-003 

SYS-0400 Adaptability The architecture shall allow the user to replace the composing 
elements depending on the specific mission’s needs 

UN-004 

SYS-0500 Inter Process 
Communication 

The architecture shall not define the inter-process 
communication technology/implementation 

UN-004 

SYS-0600 Inter Component 
Communication 

The functional components’ interactions shall be expressed in 
terms of abstract interfaces 

UN-005 

SYS-0700 System 
Composability 

The internal modification of any functional component shall 
be transparent to other components 

UN-005 

SYS-0800 System 
Compositionality 

The composition of the core functional components shall 
ensure the overall system’s functionality 

UN-005 

SYS-0900 Component 
Decomposition 

Each functional component shall be internally decomposed 
into the different processes taking part to the activity 

UN-006 

SYS-1000 Architectural 
structure 

Each system functionality shall be mapped to a different 
functional component 

UN-006 

SYS-1100 Market Model The architecture shall not be mandatorily adopted. UN-007 

SYS-1200 Licencing The architecture shall provide Open-Source Reference 
Implementations of the core elements of the REFA. 

UN-007 

SYS-1300 Documentation The architecture shall be presented as a high-level descriptive 
standard with guidelines for its adoption and tailoring. 

UN-007 

Table 3: High-Level Requirements 

 

The architecture shall represent a unified reference to which the companies can refer, as required by 
user needs. At first, we propose the architecture as a high-level design, i.e. System Requirements 
Document (SRS) and technical description of architectural components.  

 

 



 

 

A brief list of existing technologies can be considered as a starting point for the definition of a 

software reference architecture targeting CubeSat-sized missions. We report some hereafter: 

1) SAVOIR On-board Software Reference Architecture (OSRA) 

2) The core Flight Software (cFS) developed by NASA 

3) The CCSDS Mission Operations Services 

The reported technologies cover quite well the higher levels of the architecture, from the application 

layer down to the transport layer. Among those, the cFS is probably the only providing a complete 

stack of functionalities. The cFS consists in an OS abstraction layer (OSAL) upon which the actual 

architecture is built. The OSAL provides a common reference layer for further developments. Right 

on top of this, a set of re-usable core components exist, providing basic functionalities, necessary for 

further, more complex components development and execution. Together with the core components, 

a set of re-usable applications built on top of the OSAL and taking advantage of the core components 

offer higher-level capabilities for orchestrating mission activities. It is possible to depict general pros 

and cons offered by the cFS. Among the pros we find the intuitive architectural structure, the 

segregation between functionalities, the fast deployment orientation thanks to self-standing library-

oriented components and the strict reduction of functional overheads. On the cons we can observe 

that, beside the OSAL, little abstraction is provided with the core components and applications. This 

implies the need for mutual awareness when two applications are communicating, due to the lack of 

an internal service standardisation, intended in terms of operation’s interaction patterns and data 

structures. This means that any operations provided by the core components requires the 

applications for an ad-hoc API integration. 

From this point of view, the CCSDS Mission Operations services provide the abstraction needed for 

making the service user/provider transparent to each other.  Each service provides a set of specific 

on-board functionalities, offered in terms of interaction patterns and data structures. The interaction 

patterns, namely Submit, Send, Request, Invoke and Publish Subscribe, are limited in number. 

Moreover, each service defines a data structure specific to the operation. In other terms, the interface 

is not imposed by the service provider but rather by the service itself. The pros of this concept are 

clear if we refer to a spread architecture where replaceable, plug-and-play components are 

subordinate w.r.t. the information framework itself. Among the cons we see the overhead introduced 

by the abstraction which guarantees such generalisation. 

One more example is provided by the SAVOIR On-board Software Reference Architecture. OSRA 

provides an avionics-oriented component definition, expressed in terms of its interfaces. Each 

component interface is defined by set/get functions, component specific actions, event emitters and 

data emitters. Moreover, the functional properties of each component are segregated from the 

interface properties, by the introduction of containers. The containers provide the peer-to-peer 

components interaction capabilities for those functionalities offered by the component. Needless to 

say, the interface’s interaction patterns and data structures are component specific. 

A study for seizing the pros of several existing technologies was produced in 2015, with the objective 

of consolidating an architecture involving the CCSDS MO Services, the OSRA and the SOIS Services. 

The result of the study highlighted some commonalities between the different technologies and 

proposed a high-level description of a, so-called, consolidated architecture describing how the OSRA 

component interfaces could be mapped to existing MO Services and, below these, how the SOIS 

service could provide the component’s access. Such consolidation has been done at application-level 

entities, by providing hypothesis of how components interfaces could be generalised into specific 

MO Services. Next step of the study was to harmonise such mapping. Nevertheless, an actual 

harmonisation would investigate the lower architectural levels of such architecture. Mapping a 

component to a service now implies to express such mapping in terms of data structures, data types, 

interaction patters and component’s transactions. 



 

 

The main body of this works defines therefore two aspects: as first, the provision of a methodology 

for harmonising the application-level components’ interfaces, inherited by the OSRA, and the 

Service/Transport-level interfaces, as defined by MO. As second, the definition of application-level 

components’ functionalities, providing a set of core components, whose definition takes advantage 

of the harmonisation methodology. 

The harmonisation methodology focusses on the information exchange patterns, both on the service 

side and on the component side. While for the MO services a set of interaction patterns has been 

defined by the MAL14, for the components, an entire interaction pattern set has to be defined, 

reflecting the interface properties of the OSRA components. The so-called Transactions define the 

input-output data type of a component interaction, depending on the different combination of input 

and output data (e.g. parameters, data sets, events, actions, etc). Any application-level component 

exposes interfaces in terms of such data types and, depending on the operation, a mapping to an 

interaction pattern is possible. 

An adaptation component is responsible for making translating and segregating the Service-level 

concerns from the application-level environment and vice versa. By providing a strict definition of 

interfaces and rules for translation from one interaction pattern to a transaction, it is possible to 

automate the adaptation component generation. 

 

Figura 1: Component Action adaptation component handling errors coming from Invoke interaction pattern 

The same translation is done for the data structures composing the interactions. It was chosen, for 

harmonisation purposes, to define component interface’s data structure, taking the MO Services’ 

data structure as a starting reference. MO Services provide a well-defined structure of data, derived 

from the MAL definition, for each Service’s operation. Doing this requires a strict alignment with 

MO data structures definition in order to avoid custom-made harmonisation, therefore making the 

harmonisation process worthless. 

 

  



 

 

4 Discussion 
Addressing the need for an on-board software reference architecture oriented to the CubeSat 

market, implies considerations about the target entities of such harmonisation effort. A complete 

harmonisation process would tend to align all the architecture components to a same interface 

convention. Nevertheless, the aim for abstraction obstacles the process of minimising adaptation 

components among the architectural stacks. When talking about software architecture, every 

additional component/middleware and layer implies the need for maintenance activities. Long way 

has yet to come for a complete harmonisation in CubeSat software, which cannot avoid considering 

the overhead such harmonisation introduces.  

  



 

 

5 Conclusions 
The reported survey shows that a software reference architecture (REFA) devoted to CubeSats can 
be a game-changer for private and public companies in the small-sat market. Currently adopted 
solutions and new technologies in the CubeSat sector can be a baseline for an architecture that would 
be welcome by companies that are unable to implement it by themselves. Starting from this baseline, 
we propose a design that continues the harmonisation process as left over by the MOSS study. 
Abstraction implies a remarkable overhead in terms of system complexity, implementation cost and 
maintenance. If abstraction, as introduced by the MO, has to be imported also at component level, 
the discussion falls into the optimisation of the adaptation components/middleware. In conclusion, 
the good balancing between component abstraction and overhead reduction constitutes the game-
changing parameter to be addressed by next development.   
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