
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software Reference Architecture for CubeSats – A Direct Approach / Gagliardini, LORENZO MARIA; Corpino, Sabrina;
Arcieri, Alessandro. - In: NEW SPACE. - ISSN 2168-0256. - 11:2(2023). [10.1089/space.2021.0069]

Original

Software Reference Architecture for CubeSats – A Direct Approach

Mary Ann Liebert postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1089/space.2021.0069

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971672 since: 2022-09-30T16:01:43Z

Mary Ann Liebert

O R I G I N A L A R T I C L E

Open camera or QR reader and
scan code to access this article

and other resources online.

Software Reference Architecture for CubeSats:
A Direct Approach

AU1 Lorenzo M. Gagliardini, Sabrina Corpino, and Alessandro Arcieri

AU2 DIMEAS, Politecnico d Torino, Torino, Italy.

AU3 ABSTRACT
Ever since the first CubeSat mission was launched, the concept

and complexity of CubeSat missions has evolved at a pace that

current operational system/doctrine cannot match. In an increas-

ingly dynamic space economy, where small businesses have

become the norm, innovative solutions that abstract away com-

plexity and increase autonomy are fundamental to reduce oper-

ational costs. It is within this frame that the current study is

presented. To address the need for a standardized software archi-

tecture of NewSpace companies, we first assess the European

small satellite market needs through a survey with key players

in the space sector. From this survey, we derive the high-level

requirements, functionalities, and interfaces of a software archi-

tecture for CubeSats, the preferred platform due to its lower cost

when compared with traditional platforms. Finally, we report the

implementation results of a set of these components and show

how they reflect design drivers.

Keywords: reference architecture, CubeSat, software

INTRODUCTION

N
ewSpace ventures, ranging from private launch

companies, small satellite operators, and bus man-

ufacturers, have become the main driver of the space

economy1 and are reinventing the traditional space

industry supply chain. Among those that were recently born,

only a few have successfully established themselves in the

market, relying on venture capital and proprietary software

solutions. We might think of Spire2 and Swarm, the latter

recently acquired by Starlink3 with its huge nanosatellite

constellations in low Earth orbit, as one of the most repre-

sentative cases.

There are many reasons that can be attributed to the lack of

market success or the delays that some companies experience

getting their product to the market, but we can point out to

the lack of a standardized, open-source software architectural

reference for mission operations (MO) as one of the main

obstacles they experience. Without access to proprietary

software, these companies are forced to develop in-house

knowledge and build and design their own software stacks,

a lengthy and costly process. Moreover, this ad hoc devel-

opment further disincentives the development of a common

architecture; if a company allocates resources to gain a market

edge, it is not likely that it is interested in losing it by making

its software available to competitors.

Within this context, we aim at covering this gap by pro-

posing a software architecture capable of satisfying a variety

of stakeholder needs. To do so, we first characterize European

small-sat operator needs through a survey involving both

industry and governmental bodies, such as space agencies.

Then, we address the technical challenges of defining an

architecture capable of conciliating and satisfying competing

operator needs. In this case, we aim not to define the specific

architectural elements, but to derive the requirements that

should be considered when developing such a system. Finally,

we provide a proof of concept to guide designers aiming to

put this concept in production.

MARKET POLLING
We started the survey in mid-2019 by submitting a ques-

tionnaire to several private companies and public bodies in

the CubeSat market (‘‘the entities’’). Of these, 24 expressed

DOI: 10.1089/space.2021.0069 ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 1

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 1

SPACE-2021-0069-ver9-Gagliardini_1P

Type: research-article

their perspective on the existing standards and best practices

when applied to CubeSats. To guide our work and gauge their

interest, our investigation is centered around two topics: if

the European standards satisfy their needs and how proposed

solutions could bridge that gap, discussing how to formalize a

reference software architecture devoted exclusively to Cube-

Sats operations. Particularly, we are concerned with how this

architecture would differ from their current adopted solutions

and whether they would be prone to adopt it in the future.

After the response period closed, we reviewed their answers

and characterized their distributions: entity size, mission

needs, and unique entity characteristics.

The first questions (Figs. 1 and 2F1

F2

) intend to point out

which existing standards, references, and best practices (e.g.,

Consultative Committee for Space Data Systems [CCSDS],

European Cooperation for Space Standardization [ECSS]

standards) freely available to the European market the polled

entities are familiar with, and which the respondents currently

use in their CubeSat projects. We selected such list to cover the

message transport issues both on-board and on-ground, the

Space-to-Ground interface, and the orchestration of on-board

activities, so to cover most of the macro-areas touched by

the CubeSat operations. We also asked the companies to point

out other references they apply in case we did not report these

in the questionnaire. The questionnaire itself takes into

consideration the following standards, AU4reported below in the

graphs.5–10 AU0
Beside the CCSDS and ECSS standards, the companies

mentioned other references11–13 they adopt in their CubeSat

projects, reported in Table 1 T1. According to our survey, 67% of

the entities adopt the CCSDS Space Packet Protocol (SPP) in

their CubeSat project as a solution at the network layer,

showing that it has become a de facto standard, even though

most of them are not developing projects in collaboration

with a public space agency. This provides a common baseline

mission information data exchange. At the same time, 29%

Fig. 1. Standards familiarity: Are you familiar with any of the
following? (1) CCSDS Space Packet Protocol; (2) CCSDS Mission
Operations Services; (3) CCSDS Spacecraft On-board Interface
Services; (4) CCSDS Space Link Extension; (5) ECSS Packet Utili-
zation Standard; (6) Savoir-Fair OBSW REFA. CCSDS, Consultative
Committee for Space Data Systems; ECSS, European Cooperation
for Space Standardization;AU31 OBSW; REFA, reference architecture.

Fig. 2. Standards usage: Have you used any of the following in
your projects? (1) CCSDS Space Packet Protocol; (2) CCSDS Mis-
sion Operations Services; (3) CCSDS Spacecraft On-board Interface
Services; (4) CCSDS Space Link Extension; (5) ECSS Packet Utili-
zation Standard; (6) Savoir-Fair OBSW REFA.

Table 1. Other Adopted Standards, References, and Best
Practices

ISO Standards11 Compass Stack

OMG Standards12 Other ECSS Standards (AU27tailored and non-)

MISRA Coding Standards Nondisclosed in-house developed reference

CSP13 UNISEC Global

CSP, CubeSat Space Protocol; ECSS, European Cooperation for Space

Standardization; AU28ISO; MISRA; OMG; UNISEC.

GAGLIARDINI ET AL.

2 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 2

and 42% of the entities adopt the ECSS Packet Utilization

Standard (PUS) and CCSDS MO services, respectively, as these

provide a reference for managing data at application (opera-

tion) level. Of these entities, 43% and 50% are contractors of

the European Space Agency, which demands the use of these

standards.AU0
Nevertheless, this suggests that the CCSDS MO services are

more widely spread among CubeSat missions than ECSS

PUS services. Focusing on the second half of the question-

naire, we are interested in understanding how many compa-

nies are adopting ‘‘a’’/‘‘their own’’ reference architecture

(REFA) in their project development process and to which

extent. As shown in Figure 3F3 , the majority (83%) of the polled

companies reveal that they use a REFA developed in-house or

outsourced. Of those, 25% use an architecture that covers

software interfaces, while 35% apply a REFA for communi-

cation protocols. Such a result aligns with Figures 1 and 2,

which highlights the application-level software (i.e., MO

services, PUS services) and communication protocols (i.e.,

SPP, CubeSat Space Protocol) as the most adopted technolo-

gies by the polled entities. AU0
Indeed, they tend to take advantage of existing standards as

a starting point for their in-house designs, notwithstanding

their non-mandatory adoption (i.e., imposed by a contract).

We finally asked the polled entities to deepen the software

REFA topic (Figs. 5 and 6 F5 F6), about the possibility to adopt a

common CubeSat REFA. We are interested in understanding

how this choice would impact their business model, and what

should the REFA encompass to bring an added value. This first

question evaluates what design level the reference should

Fig. 3. REFA usage distribution: Do you apply ‘‘a’’/‘‘your own’’ REFA
in your projects?

AU32 Fig. 4. REFA covered areas: At what level do you apply ‘‘a’’/’’your
own’’ REFA? (1) At hardware interface level; (2) at software inter-
face level; (3) at communication protocol level; (4) at operational
concept level.

Fig. 5. REFA perspective distribution: Would a CubeSat REFA bring
value and facilitate your business model. (1) No; (2) yes, if it is at
hardware mechanical interface level; (3) yes, if it is extended at
device interface level in form of APIs; (4) yes, if it is at on-board
communications protocol level; (5) yes, if it is at space to ground
interface level; (6) yes, if it also encompasses the composition of
functional components on-board and on the ground; (7) yes, help
in research or in student recruitment or in academic purposes.
APIs, Application Programming Interfaces.

Fig. 6. How far shall a REFA go? (1) Tools for autogeneration of
code; (2) high-level architectural design—paper only; (3) open-
source reference implementation of the core elements of the REFA
(as reference not mandatory to take); (4) Market Place with com-
petitive vendors offering compliant and competing implementa-
tions of elements of the REFA.

CUBESAT SOFTWARE REFA

ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 3

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 3

target (e.g., software/hardware interfaces/protocols), for tack-

ling technology gaps. The second inquiry we make is to

understand how to propose such a reference (e.g., as a paper-

only design, in the form of Open-Source). What is immediately

clear is that the request for an architecture covering on-board

and on-ground functional components is, by far, the solution

that best fits market needs.

According to the polling, 46% of the entities ask for an

architecture involving the core functional components as a

non-mandatory reference. This aligns with what we repor-

ted before, showing companies and public entities taking

advantage of existing technologies as a starting point for

their internal design process, which in most cases results

into an ad hoc REFA. This further highlights the market need

Fig. 7. Command dispatcher.

GAGLIARDINI ET AL.

4 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 4

for a REFA and provides a line of research for a further

development in our study. Moreover, from the buyer’s per-

spective, the presence of an open-source reference imple-

mentation would mean greater competitiveness and higher

quality products, with vendors offering their own design, but

still compliant with the REFA differing for implementation

details.

HIGH-LEVEL REQUIREMENTS DERIVATION
AND DISCUSSION

The identification of the proper level of details in the

architecture definition can be considered the main driver of

the design process. The aim for becoming a spread de facto

standard implies the capability of reducing at most the

unnecessary constraints coming from the design process while

providing a solid baseline that serves as a common reference.

The identification of such aspects whose definition is deemed

relevant for the architecture and those who can instead be

accounted for tailoring processes is of paramount importance.

The entire set on User Needs (UNs) evolves around this hinge

concept, which we meet by making strategic choices in the

design process, as we will sudden describe.

It is worth to bear in mind that such Needs we are proposing

do not constitute by any means a technical description of the

architecture, and their lack of technicality would not allow

such purpose. The statements reported in Table 2 T2are solely

intended to resume the UNs as they result from the ques-

tionnaire. The present section provides a discussion focused

on the system level, to better understand the considerations,

which led the requirements’ derivation. An explanation of

the derived requirements is provided, and a 1-to-N mapping

from the UNs to the applicable set of high-level requirements,

reported in Table 3 T3, is described hereafter.

By the elicited UN-100, reported in Table 2, we do not

intend to specify which of the existing standards to make use

of and which to discard. Such indication serves instead for

identifying the areas this architecture will span. Taking

advantage of the existing standards, references, and best

Fig. 8. Generic component model. AU33HW; SW.

CUBESAT SOFTWARE REFA

ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 5

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 5

practices, forces such an architecture span over the diverse

functionalities of the architecture. Such architecture shall

not limit the specification to the only on-board segment but

shall address on-board, on-ground, and Space-to-Ground

functionalities.

In System (SYS)-0100, defining an on-board and on-

ground architecture results in multiple achievements, both

from the UNs alignment perspective and from the analysis

done on the proposed questionnaire’s results. The on-board

segment constitutes the focus of the present work. Never-

theless, a functional set of core on-board components cannot

be considered a self-standing entity. By defining SYS-0100,

we intend here to guarantee that the provision of those

ground components, needed for run-time control, make the

architecture an effective, functional set of tools for engineers

operating the spacecraft.

UN-002 constitutes the other face of the medal for UN-001,

and it was indeed important, in the interpretation of UN-001,

not to impose a selection of applicable technologies/

standards. In seeking flexibility, by fixing the requirement

Table 3. High-Level Requirements

Req. ID Req. Title High-Level Requirement Text Reference UN ID

SYS-0100 System’s domain The architecture shall define functional on-board and on-ground components. UN-001

SYS-0200 Implementation The architecture shall not tie users to a specific technology/implementation. UN-002

SYS-0300 Component functionalities The architecture shall provide a framework of core functionalities. UN-003

SYS-0400 Adaptability The architecture shall allow the user to replace the composing elements depending on the

specific mission’s needs.

UN-004

SYS-0500 Interprocess communication The architecture shall not define the interprocess communication technology/implementation. UN-004

SYS-0600 Intercomponent communication The functional components’ interactions shall be expressed in terms of abstract interfaces. UN-005

SYS-0700 System composability The internal modification of any functional component shall be transparent to other

components.

UN-005

SYS-0800 Architectural structure The composition of the core functional components shall ensure the overall system’s

functionality.

UN-005

SYS-0900 Component decomposition Each functional component shall be internally decomposed into the different processes

taking part to the activity.

UN-006

SYS-1000 System compositionality Each system functionality shall be mapped to a different functional component. UN-006

SYS-1100 Market model The architecture shall not be mandatorily adopted. UN-007

SYS-1200 Licensing The architecture shall provide open-source reference implementations of the core elements

of the REFA.

UN-007

SYS-1300 Documentation The architecture shall be presented as a high-level descriptive standard with guidelines

for its adoption and tailoring.

UN-007

Table 2. User Needs

UN ID UN

UN-001 The architecture shall take advantage of existing standards,

references, and best practices.

UN-002 The architecture shall allow the usage/introduction of other

standards.

UN-003 The architecture shall offer a baseline on top of which further

solutions can be developed.

UN-004 The architecture shall avoid unnecessary constraints.

UN-005 The architecture shall be easily tailorable.

UN-006 The architecture shall balance the proper level of details.

UN-007 The architecture shall allow vendors offering compliant

and competing implementations of elements of the REFA.

REFA, reference architecture; UN, User Needs.

GAGLIARDINI ET AL.

6 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 6

SYS-0200, we intend to avoid an architecture’s specifica-

tion, which refer to particular implementation choices, for

example, Transport/Network protocols, Java implementation

language. The interprocess communication, that is, component-

to-component communication technology and implementa-

tion choices are left to the customer. Such feature plays a

game-changer role in an architecture definition, which aims

at spreading among the most different customers. Fixing

such choices at a too early stage would instead impact into

its adoptability and would mean a cutoff for potential many

of the customers. SYS-0200 is a direct outcome of this

consideration.AU0
The translation from UN-003 to Requirement is straight-

forward. The identification and definition of a framework of

core functionalities and transport components shall provide a

solid baseline on top of which further solutions can be added.

In SYS-0300, defining a baseline core of functionalities, that

is, application-level components, needed for controlling the

on-board and ground activities shall constitute a minimal, yet

fully functional starting point for further tailored improve-

ments (more granularly specified in the next requirements)

and additional components. Thanks to this core set, required

by SYS-0300, the customer shall avoid re-inventing the wheel

spending time in designing the spacecraft bus, and rather

investing in mission-specific solutions.

The UN-004 balances the detailed level of definition of the

core components of the architecture coming from SYS-0300.

The need for avoiding unnecessary constraints is required by

two main needs. The need for the user to internally replace

specific functionalities of the components, depending on the

mission-specific performances required; and possibility for

the implementer to impose its own transport solution when

getting to the inner components functionalities. Regardless to

the component-to-component communication interfaces, the

intracomponent communications shall remain transparent to

the architecture definition.

This aspect is of paramount importance, and therefore, we

consider that any application-level component aspect, for

example, execution timing and synchronization, will be

potentially compliant with mission-specific requirements.

Bearing in mind such considerations, the flexibility expressed

by SYS-0400 and SYS-0500 foresees the possibility for the

implementer to add and customize application-level compo-

nents and internal components communications.

UN-005 differs from UN-003 for the nontrivial implica-

tions. At first, tailoring the core components means that the

architecture shall allow substitution of existing functional

block, by maintaining the component Application Program-

ming Interface (API). SYS-0600 intends defining a compo-

nent’s interface model the customers can align to, in the

customization process, and focus on the translation to the

mission’s specific and/or customer’s specific technology, which

remains transparent to the architecture specification. By fol-

lowing SYS-0600, it is possible to derive SYS-0700, which

concurs in achieving tailorability.

By maintaining the internal modification of any functional

component transparent to the other components, allows

concurrent developers, working on different components, to

not interfere with each other as long as they comply with the

component model API. SYS-0700 guarantees transparency.

It is important to consider that such internal modification

shall never imply the deletion, omission, of the functions

on which the other core components of the architecture rely,

for example, time-tagged commands parsing, which would

affect the overall system’s functionality. This requirement is

expressed by SYS-0800, and the identification of such core

elements is part of the architecture design process.

UN-006 poses a condition that cannot be directly translated

into requirements, but that rather can further be evaluated

by imposing specific conditions to our architecture. The

proper level of granularity is reached as first by mapping any

architecture macrofunctionality, for example, command in-

gestion, to a unique functional component. By making this

segregation, it is possible to treat separately the granularity

issue for every component, and varying such granularity for

specific components, depending on the customer’s need. For

achieving internal granularity, SYS-0900 allows decompos-

ing each application-level component into lower functional

elements.

From what stated by SYS-0900, it is then possible to sep-

arate design concerns depending on their specific granularity,

for each component. This will provide the means, at further

AU29 Table 4. On-Board and On-Ground Functional Components

On-Board On-Ground

On-board data handling I/O Mission planning system

Command scheduler Mission control system

Command dispatcher Antenna control unit

Parameter monitor and report Radio software modem

Parameter acquisition and pooling Secure remote access

Event report and distribution

Time distribution

AU30 I/O.

CUBESAT SOFTWARE REFA

ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 7

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 7

development times, for identifying the proper level of defi-

nition as we dive deep into each component. It will also be

possible for the customers to impose the needed granularity

level for the tailored component. The same granularity is

ensured by the proper separation of concerns.

As coming from the marked polling analysis, UN-007 shall

be framed into a specific market model. The current work

targets small companies, which can take advantage of the

specification introduced by the architecture design. In such

perspective, the architecture intends to be offered to the cus-

tomers, that is, not imposed as a mission requirement, as

stated by SYS-1100. Therefore, aim of the architecture is not

to reach the rank of a standard. The market model that best

aligns to such doctrine is the open-source model, which

facilitates the adoption process, as remarked by SYS-1200.

As a result, by fixing SYS-1300, the aim for realizing a

common repository where common components can be

chosen/adopted, differing for implementation details as

proposed by the customers’ community, allows a central

entity, that is,AU5 ESA, maintaining the reference guidelines for

adoption.

DEVISED ARCHITECTURE
An example of the criteria adopted for translating requi-

rements, reported in Table 3, into actual design choices is

reported hereafter. Let us make an example by considering the

user perspective:

1. The Market Polling section showed the SPP being the

most spread and adopted technology at network level.

2. The UNs required to take as much advantage as possible

from the existing solutions, yet adopted, so to avoid

reinventing the wheel, UN-001.

Since in defining the architectural framework, we intend

not to tie to a specific transport technology, as previously

expressed by SYS-0200, the mediation between the applica-

tion level and the transport level takes advantage of the

CCSDS MO specifications. This is a valid choice both from the

structural point of view and from the user point of view, that

is, UN-003, since, for example, it does not force the user to

any transport technology. Any MO service is defined by a set

of CCSDS MOAU6 MAL14 compliant objects, defined by the mes-

sage structures, whose encoding choice can be left to the

implementer; by a set of high-level interaction patterns

through which the information travels between functional

components (e.g., Publish-Subscribe); and by an abstract mes-

sage header.

Those can be translated, at implementation time, into dif-

ferent encoding and transport technologies in conformity to

the relative CCSDS specification, including the CCSDS SPP.14

These characteristics of the MO services guarantee the

composability and compositionality properties required by

SYS-0700 and SYS-0800. Finally, the CCSDS MO services

constitute the framework on top of which the architecture’s

core components are deployed.

Having introduced the high-level requirements and the

criteria adopted for their assumption, we present here and in

the next section a set of core components and a description of

their interfaces and basic functionalities. We propose three

different components: an On-Board component devoted to

specific on-board functionalities; a Generic Component

Model (GCM) providing generic interfaces playing as a com-

mon software API for multiple on-board peripherals; and a

set of functional on-ground components. The ground com-

ponents will be the main subject of the AU7Implementation sec-

tion, dedicated to the implementation. We do not discuss here

the completeness of the reported functionalities, as the com-

ponent’s functional refinement is beyond the scope of the

present work. Instead, we show here the consistency of the

structural characteristics of the architecture and discuss how

the design choices reflect the high-level requirements. This is

done by describing a selection of components and, along their

description, highlighting the connection with the require-

ments reported in Table 3.

In our analysis, we consider the component Command

Dispatcher (CD) as a core component of the architecture that

is, a component on whose functionalities other components

rely, as per SYS-0300, and whose inclusion into the archi-

tecture is necessary for orchestrating the system’s function-

alities, as per SYS-0800. Since the CD smoothly aligns with

SYS-0300 and SYS-0800, it can be accounted for providing a

consistent example for the current section. The CD, as sug-

gested by the name, is responsible for the on-board sorting,

addressing, and dispatching of commands originated both on-

board and on-ground.

From a structural point of view, the CD interacts with the

CCSDS MO framework by invoking the CCSDS MO services,

whose implementation is represented in the schematic as a

doubled component: the service instantiation internal to the

CD, and the service interface itself as defined by the CCSDS

blue books. The service instantiation makes the CD logic being

transported into a MO service abstract form, thus staying

compliant to SYS-0600. This consists in formatting the data

both in the abstract structure in accordance with the under-

lying CCSDS MO service specification, and into the mission-

specific encoding convention adopted by the framework itself,

as required by SYS-0200. From a structural perspective, the

segregation between the component-specific implementation,

GAGLIARDINI ET AL.

8 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 8

the common interaction layer, and third party’s components,

introduced by the adaptation element serves the purpose of

SYS-0400 and SYS-0700.

As far as the data structures are compliant to the CCSDS MO

specification, the MO service endpoint of the communication

channel can be invoked for the packets to be dispatched. The

service interaction works both ways, being inward and out-

ward, depending on the role the CD plays, that is, whether it is

a data provider or a data consumer. For aligning the CD with

SYS-0900, we provide here a first distinction between the

‘‘Event Tagged Command Dispatcher’’ (ET-CD) and the ‘‘ASAP

Command Dispatcher’’ (ASAP-CD), as an example of compo-

nent decomposition into internal functional blocks. From a

functional point of view, the ET-CD monitors the incoming

events (in this context an ‘‘event’’ is any happening either

reported by the Event Service or by the closing of a time

deadline) and checks them for on-board dispatchability before

the actual dispatch.

Since the On-Board Mass Memory (OBMM) constitutes by

all means a third party’s component from the CD perspective,

the data exchange with the OBMM occurs via a specific MO

service. Nevertheless, the internal handling of data is left to

the implementer, in accordance with SYS-0500. As the dis-

patchability is asserted, the command can be released on the

bus, being either the hardware or software channel for on-

board data exchange. The ET-CD is also responsible for

keeping track of the managed activities, by saving an on-

board command history via the Persistency Service directly to

the OBMM. The parallel activity to the ET-CD is operated by

the ‘‘ASAP Command Dispatcher.’’

The ASAP-CD monitors and dispatches the ASAP on-

board que and keeps track of the managed activities, via the

Persistency Service, as previously described for the ET-CD.

Both the dispatched commands originated by the ET-CD

and by the ASAP-CD flow in the Command Sequence Sorting,

responsible for separating in time the Bus access so to avoid

the time overlapping that the Mission Planning System on

ground would not consider. A note shall be marked here:

while showcasing the connection between the high-level

requirements expressed in the previous section and the pres-

ent components, it is unavoidable to provide a hypothetical

logical structuring. In our case, an operation such as the

internal functional decomposition of the CD is rather intended

to reflect requirements, that is, SYS-0900, instead of con-

straining the implementer to a specific implementation.

In parallel to the architecture’s functional components, a

second kind of components is defined whose role is interfac-

ing the architecture’s components, defined above, with any

physical on-board peripheral (aka payload). These compo-

nents are named GCM and their role consists in mediating

between the platform-specific API, as offered by the pay-

load manufacturer, and the underlying CCSDS MO framework

itself. The GCM plays a key role in achieving the segrega-

tion and abstraction properties expressed by SYS-0400 and

SYS-0700.

The GCM can be considered a Class to instantiate as a new

peripheral (at design time) is deployed on-board so to make

it interacting with the other architecture’s components.

Therefore, we can refer to any GCM as an instantiation of the

GCM class. The component itself is decomposed into simpler

functionalities, covering three main roles, as per SYS-0900.

The first is the interaction with the underlying MO framework,

as described for the paragraph above. Key aspect to consider

for the GCM is that the MO services on which it relies are

selected to be generic enough for managing any on-board

deployed platform.

Those are: the Hardware Configuration Service for setting

the operative configurations; the Event service which is

intended for raising events in case of issues or malfunction-

ing; and a Hardware-Specific Service in case the implementer

provides a customized service implementation accordingly

to CCSDS MAL specification. In the GCM, each service’s

implementation is composed of the service instantiation

and the service interface. On the other side of the GCM, there is

the platform-specific API. This is the set of commands as

provided by the platform manufacturer and is usually repre-

sented as a library or set of libraries.

To mediate between the Service implementation and

the Platform API, an adaptation element is needed, working

as a middleware. The adaptation element is responsible for

translating the platform logic into the service logic, both in

terms of data and functions. By these means, it is possible

to operate any on-board peripheral by MO services, thanks

to the adaptation layer performing the translation between

the platform agnostic MO services and the platform-specific

API.

IMPLEMENTATION
Focusing on the ground segment, we highlight that the

conceptual architecture envisaged for the on-board compo-

nents can be easily translated for ground components. We

discuss here how to implement them so to demonstrate that

the implementation criteria reflect in facts the design drivers

previously discussed. Again, as described in the previous

sections, the system architecture is based on the concept of

multiple modules, SYS-1000, connected via well-defined

loose-coupled interfaces, SYS-0600. Starting from soft-

ware architecture, in computer science, we can easily find a

CUBESAT SOFTWARE REFA

ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 9

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 9

paradigm based on the same principles: microservice archi-

tecture. It is possible to realize such kind of architecture using

multiple software solutions.

One of the most famous and well-known solutions is the

Docker Container Engine. Docker Container Engine (also

referred to simply as ‘‘Docker’’)15 is a Platform as a Service

open-source tool designed to manage and create containers.

Containers are a form of light virtualization based on name-

space features provided by a Linux kernel. Each container is

an isolated environment, as per SYS-1000, with its own per-

sistence (file system) and network stack, meaning that mul-

tiple instances of the same ‘‘image’’ (container root file system)

can run at the same time without interacting with each other,

as per SYS-0700.

These features make it possible to decompose a monolithic

application into multiple simple components, as per SYS-

0400, that can be packaged as containers, and then orches-

trate them as atomic entities, each one with its specific

multiplicity and execution environment.16 The decomposition

pattern is the base of our proposal, as any component is

packaged and deployed as a container, that we connect to the

others via network sockets, as displayed in Figure 9F9 . In the

current implementation, there are three principal components

we provide:

1. Secure Remote Access Gateway

2. Digital Signal Process Service

3. Antenna Control Service

The first one consists of a virtual private network (VPN)

access gateway with a public key infrastructure (PKI) auth-

entication based on the OpenVPN software. This represents the

main entrance point for the Ground station operators, as all

communications and interactions with the station subsystems

are managed in a controlled and secure way. Such ground

component devoted to security is not part of the core set of

components for the architecture. These are rather introduced

as custom components, showcasing, as per SYS-0400, the

possibility for the user to add mission-specific elements as

needed. The PKI is self-hosted. Other subsystems (that will be

referred to as ‘‘services’’ later on) are organized in ‘‘stacks,’’

which are sets of containers connected via internal networks.

The second subsystem, the Antenna Control Service, is

composed of three containers: the main one hosts an instance

of AU8GPredict,17 which is responsible for propagating the sat-

ellite orbit and the relative position to the ground station at a

specified time. GPredict then converts the position in azimuth

and elevation parameters and sends them to a ‘‘driver’’ con-

tainer (AU9HAMlib18) that translates them into real commands to

Fig. 9. Ground component software implementation. AU34ARM; CMP; CRL; CTRL; EJBCA; GNURadio; GPredict; HAMlib; HTTP; IP; PKI, Public Key
Infrastructure; SDR, Software Defined Radio; UDP; USB; VNC; VPN, Virtual Private Network.

GAGLIARDINI ET AL.

10 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 10

be sent to the antenna rotator controller: the container in this

case acts as adaptation layer. The operator interacts with the

system (GPredict user interface) using aAU10 VNC remote desktop

session.

The third subsystem, the Digital Signal Process Service,

contains three main components: the frontend, the modem,

and the payload handler. The frontend module is composed of

multiple instances ofAU11 GNURadio responsible for controlling

the Software Defined Radio (SDR) devices, making them

accessible via network sockets. This adaptation layer allows to

decouple the SDR from the software modem. One of the

benefits of this approach is the segregation of the signal

acquisition from the signal processing module, meaning that

the software modem can be modeled as a functional block,

abstracting it from the SDR hardware device and its handling.

Another positive aspect is the fact that the software modem

(which is aAU12 CPU bound workload) can be run on high-

performance host that does not need to be located near the

SDR or the antenna system.

The software modem component is another GNURadio

instance, which implements all the signal processing logic, to

act as a mid-level gateway to communicate to the satellite. At

the end of the pipeline, we can find the last component of the

system, which is the payload handler block. Payload handlers

block implementation will not be part of this description, as it

needs to be designed specifically for the communication

protocol used by the specified satellite. Anyway, our design

allows us to simply change that module on the fly, just run-

ning and stopping the right container, which will be imple-

menting the specific protocol used by the target satellite. The

other modules are in fact common for all satellites and are so

designed to be sufficiently generic to not represent a limit in

the protocols that the AU13GS can handle.

CONCLUSIONS
The reported survey in the AU14Market Polling section shows

that a software REFA devoted to CubeSats can be a game

changer for private and public companies in the small-sat

market. Currently adopted solutions and new technologies in

the CubeSat sector can be a baseline for an architecture that

would be welcome by companies that are unable to implement

it by themselves. Starting from this baseline, the AU15High-Level

Requirements Derivation and Discussion section proposes a

design that translates market needs into a real architecture

Fig. 10. Ground component hardware implementation. AU35ETH; GPIO; HPA, High Power Amplifier; LAN; LNA, Low Noise Amplifier; PWR; UHF,
Ultra High Frequency; VHF, Very High Frequency.

CUBESAT SOFTWARE REFA

ª MARY ANN LIEBERT, INC. � VOL. XX NO. XX 2022 � NEW SPACE 11

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 11

design. Flexibility is a key requirement for standardization

and is thus considered in our architecture, which allows

interaction with a variety of on-board peripherals without

constraining implementation choices. Finally, the adoption

of modular self-contained components reflects the proposed

driving design principles, as shown in theAU16 Devised Archi-

tecture section for the on-ground segment.

AU17 AUTHOR DISCLOSURE STATEMENT
No competing financial interests exist.

AU18 FUNDING INFORMATION
No funding was received for this article.

SUPPLEMENTARY MATERIAL
AU19 Supplementary Data

AU20 REFERENCES

1. OECD. Handbook on Measuring the Space Economy. Paris: OECD Publishing, 2012.

2. Masters D, Duly T, Esterhuizen S, et al. Status and accomplishments of the Spire

Earth observing nanosatellite constellation. Sens Syst Next Gen Satellit XXIV.

2021;11530:115300V.

3.AU21 Crist R. Starlink explained: Everything to know about Elon Musk’s Satellite

Internet Venture. CNET, December 2021. https://www.cnet.com/home/internet/

starlink-satellite-internet-explained

4.AU22 Farrell FJ. A Reference Architecture for CubeSat Development. Farrell F. Thesis

dissertation, March 2020.

5. Space Packet Protocol, CCSDS 133.0-B-2, Blue Book. Issue 2. Washington:

CCSDS Secretariat Publishing, June 2020.

6. Mission Operations Service Concept, CCSDS 520.0-G-3, Magenta Book, Issue 3.

Washington: CCSDS Secretariat Publishing, December 2010.

7. Spacecraft On-Board Interface Services, CCSDS 850.0-G-2, Green Book, Issue 2.

Washington: CCSDS Secretariat Publishing, December 2013.

8. Space Link Extension—Forward Space Packet Service Specification, CCSDS

911.3-B-3, Blue Book, Issue 3. Washington: CCSDS Secretariat Publishing,

August 2016.

9. ESA Requirements and Standards Division, Telemetry and Telecommand Packet

Utilisation—ECSS-E-ST-70-41C. ESA Publishing, April 2016.

10. Savoir-Faire working group, Savoir-Faire On-board software reference

architecture—TEC-SWE/09-289/AJ. ESA Publishing, July 2018.

11. Figueiro Marques RP, Santos C, Inacio H. Organizational Auditing and

Assurance in the Digital Age. Pennsylvania: Hershley Publishing, 2019.

12. Morales Trujillo ME, Oktaba H, Piattini M. The Making of an OMG Standard.

Comput Stand Interf 2015;42:84–94.

13. GOMspace, CubeSat Space Protocol (CSP), Network-Layer delivery protocol for

CubeSats and embedded systems. GOMSpace Publishing, June 2008.

14. Mission Operations MAL Space Packet Transport Binding and Binary Encoding,

CCSDS 524.1-B-1, Blue Book. Issue 1. Washington: CCSDS Secretariat

Publishing, August 2015.

15. Boettiger C. An introduction to Docker for reproducible research (Special Issue

on Repeatability and Sharing of Experimental Artifacts). ACM SIGOPS Operat

Syst Rev. 2015;49(1):71–79.

16. Jaramillo D, Nguyen DV, Smart R. Leveraging microservices architecture by

using Docker technology. SoutheastCon 2016;2016:1–5.

17. AU23Csete A. GPredict. http://gpredict.oz9aec.net

18. AU24Hamlib Maintenance and Development Team. HAMlib library. https://hamlib

.github.io

Address correspondence to: AU25

Lorenzo M. Gagliardini

DIMEAS AU26

Politecnico d Torino

Corso Duca degli Abruzzi, 24

Torino 10129

Italy

E-mail: lorenzo.gagliardini@ext.esa.int,

lorenzo.gagliardini@polito.it

AU0: The Publisher requests for readability that no paragraph exceeds 20 typeset lines. This paragraph contains 21 lines or
more. Please divide where needed.

AU1: Please identify (highlight or circle) all authors’ surnames for accurate indexing citations.
AU2: Please provide the department in authors’ affiliation.
AU3: Please include IRB approval or waiver statement in the Materials and Methods section. The Clinical Trial Registration

number, if applicable, should be included at the end of the abstract.
AU4: Please consider rephrasing the phrase ‘‘reported below in the graphs’’ with respective figure citations in the sentence ‘‘The

questionnaire itself takes into consideration the following standards, reported below in the graphs.’’
AU5: Please expand ‘‘ESA.’’
AU6: Please define ‘‘MAL.’’
AU7: Please note that ‘‘Chapter 6’’ has been changed to ‘‘the Implementation section.’’ Please check.
AU8: Please define ‘‘GPredict.’’
AU9: Please expand ‘‘HAMlib.’’
AU10: Please expand ‘‘VNC.’’

GAGLIARDINI ET AL.

12 NEW SPACE ª MARY ANN LIEBERT, INC.

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 12

https://www.cnet.com/home/internet/starlink-satellite-internet-explained
https://www.cnet.com/home/internet/starlink-satellite-internet-explained
http://gpredict.oz9aec.net
https://hamlib.github.io
https://hamlib.github.io

AU11: Please define ‘‘GNURadio.’’
AU12: Please expand ‘‘CPU.’’
AU13: Please expand ‘‘GS.’’
AU14: Please note that ‘‘Chapter 3’’ has been changed to ‘‘the Market Polling section.’’ Please check.
AU15: Please note that ‘‘Chapter 4’’ has been changed to ‘‘the High-Level Requirements Derivation and Discussion section.’’

Please check.
AU16: Please note that ‘‘Chapter 5’’ has been changed to ‘‘the Devised Architecture section.’’ Please check.
AU17: Disclosure statement accurate? If not, please amend as needed.
AU18: Funding Information accurate? If not, please amend as needed.
AU19: Please cite ‘‘Supplementary Data’’ in the text.
AU20: Please note that ‘‘Refs. 10 to 27’’ have been renumbered to ‘‘Refs. 1 and 18,’’ respectively, in the reference list. Please

check.
AU21: Please provide the date you last viewed the website for Ref. ‘‘3.’’
AU22: Please cite Ref. ‘‘4’’ in the text.
AU23: Please provide the date you last viewed the website for Ref. ‘‘17.’’
AU24: Please provide the date you last viewed the website for Ref. ‘‘18.’’
AU25: Please confirm the corresponding author’s name and address.
AU26: Please provide the department in the corresponding author’s address.
AU27: Please clarify whether ‘‘tailored and non-’’ can be changed to ‘‘tailored and non-tailored’’ in Table 1.
AU28: Please define ‘‘ISO, MISRA, OMG, and UNISEC.’’
AU29: Please cite Table ‘‘4’’ in the text.
AU30: Please define ‘‘I/O.’’
AU31: Please define ‘‘OBSW.’’
AU32: Please cite Figures ‘‘4, 7, 8, and 10’’ in the text.
AU33: Please define ‘‘HW and SW.’’
AU34: Please define ‘‘ARM, CMP, CRL, CTRL, EJBCA, GNURadio, GPredict, HAMlib, HTTP, IP, UDP, USB, and VNC.’’
AU35: Please define ‘‘ETH, GPIO, LAN, and PWR.’’

SPACE-2021-0069-ver9-Gagliardini_1P.3d 08/08/22 7:17pm Page 13

