
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PULP-TrainLib: Enabling On-Device Training for RISC-V Multi-core MCUs Through Performance-Driven Autotuning /
Nadalini, Davide; Rusci, Manuele; Tagliavini, Giuseppe; Ravaglia, Leonardo; Benini, Luca; Conti, Francesco. - STAMPA.
- (2022), pp. 200-216. (Intervento presentato al  convegno 22nd International Conference, SAMOS 2022 tenutosi a
Samos, Greece nel July 3–7, 2022) [10.1007/978-3-031-15074-6_13].

Original

PULP-TrainLib: Enabling On-Device Training for RISC-V Multi-core MCUs Through Performance-Driven
Autotuning

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-031-15074-6_13

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Embedded Computer Systems:
Architectures, Modeling, and Simulation. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-031-15074-6_13

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971649 since: 2023-06-21T06:37:39Z

Springer International Publishing



PULP-TrainLib: Enabling On-Device Training for
RISC-V Multi-Core MCUs through
Performance-Driven Autotuning

Davide Nadalini1,2[0000−0002−8003−7633], Manuele Rusci2[0000−0001−7458−4019],
Giuseppe Tagliavini3[0000−0002−9221−4633], Leonardo Ravaglia2, Luca

Benini2,4[0000−0001−8068−3806], and Francesco Conti2[0000−0002−7924−933X]

1 DAUIN, Politecnico di Torino, 10129 Torino, Italy, davide.nadalini@polito.it
2 DEI, University of Bologna, 40136 Bologna, Italy,

{d.nadalini,manuele.rusci,luca.benini,f.conti}@unibo.it
3 DISI, University of Bologna, 40134 Bologna, Italy, giuseppe.tagliavini@unibo.it

4 IIS, ETH Zurich, 8092 Zurich, Switzerland, lbenini@iis.ee.ethz.ch

Abstract. An open challenge in making Internet-of-Things sensor nodes
“smart” and self-adaptive is to enable on-chip Deep Neural Network (DNN)
training on Ultra-Low-Power (ULP) microcontroller units (MCUs). To this
aim, we present a framework, based on PULP-TrainLib, to deploy DNN
training tasks on RISC-V-based Parallel-ULP (PULP) MCUs. PULP-
TrainLib is a library of parallel software DNN primitives enabling the
execution of forward and backward steps on PULP MCUs. To optimize
PULP-TrainLib’s kernels, we propose a strategy to automatically select
and configure (autotune) the fastest among a set of tiling options and
optimized floating-point matrix multiplication kernels, according to the
tensor shapes of every DNN layer. Results on an 8-core RISC-V MCU
show that our auto-tuned primitives improve MAC/clk by up to 2.4×
compared to “one-size-fits-all” matrix multiplication, achieving up to 4.39
MAC/clk - 36.6× better than a commercial STM32L4 MCU executing the
same DNN layer training workload. Furthermore, our strategy proves to
be 30.7× faster than AIfES, a state-of-the-art training library for MCUs,
while training a complete TinyML model.

Keywords: Deep Learning · On-Device Training · Multi-Core MCUs ·
Autotuning

1 Introduction

Deep Neural Network (DNN) inference on ultra-low-power devices has been the
target of an extensive body of research and development in recent years [28, 19, 9,
29]. This disruptive paradigm has provided a critical mass for strong innovation
in the architecture, programming models, and development stacks available for
MicroController (MCU) devices, targeting edge sensors and smart devices.

In this context, the emerging open challenge concerns how to enable on-device
learning and model adaptation directly on this class of devices. The present



2 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

design flow of DNN models for deployment on edge devices is extremely static.
DNN training is performed with a train-once-deploy-everywhere approach, using
GPU-based servers featuring massive computation and memory resources. Only
after training, the DNN model is deployed on edge platforms for inference-only
execution. This static train-once-deploy-everywhere approach prevents adapting
DNN inference models to changing conditions in the deployment environment,
which may impact the statistical distribution of data and lead to significant
in-field accuracy degradation and unreliable predictions [1].

Recently proposed methodologies based on Transfer Learning [21], Continual
Learning [22], or Incremental Learning [16] aim at softening the risks of the
train-once-deploy-everywhere design flow by taking a trained DNN model and
enhancing or adapting it to data collected in-the-field. All of these methods
perform DNN training tasks starting from the trained model and make use
of backpropagation and stochastic gradient descent (SGD) algorithms. The
deployment of these DNN training algorithms on MCU platforms results in a
three-fold challenge. First, each layer of the DNN has to be computed both in
forward and in backward propagation, differently from inference tasks, which
require only the forward computation. Second, SGD demands floating-point
operations, significantly more expensive than heavily quantized ones (8 bits or
less) largely used for edge inference. Third, SGD often needs many iterations
(100 or more) to achieve convergence instead of a single pass for inference - and
contrarily to server training, it typically has to work on a single element, with
little chance to employ batching to boost the training kernels’ parallelism.

This paper addresses these challenges by introducing a framework for the effi-
cient deployment of DNN training tasks on energy-efficient MCU devices. In par-
ticular, we rely on recent architectural advancements, which make multi-iteration
backprop-based training more feasible on MCU-class devices [26, 2]. Among these,
Parallel Ultra-Low-Power (PULP) devices [14] are multi-core MCUs exploiting
architectural parallelism and near-threshold execution to enable high-performance
and low-power processing at the edge. Our work introduces PULP-TrainLib, the
first DNN training software library for RISC-V-based multi-core PULP devices.
Our library consists of latency-optimized and tunable forward and backward
training primitives of DNN layers, with multiple alternative configurations avail-
able for each training primitive tuned to better suit a given tensor shape in
the forward and backward passes. Furthermore, to empower our framework for
on-device DNN-training and optimize performance, we couple PULP-Trainlib
with AutoTuner, an automated tool to select the fastest configuration and tile
partitioning for every DNN layer.

In detail, our work includes the following novel contributions:

– PULP-TrainLib, the first open-source training library for RISC-V-based multi-
core MCUs, including a set of performance-tunable DNN layer primitives to
enable DNN training on ultra-low-power devices;

– AutoTuner, an automated tool exploiting an HW-in-the-loop strategy to
opportunistically select the layer primitive that leads to the lowest latency,
given the DNN structure and the memory constraints of the target device;



PULP-TrainLib 3

– A detailed analysis of PULP-TrainLib and the AutoTuner targeting an 8-Core
RISC-V-based PULP platform, and a comparison with state-of-the-art results
achievable on commercial STM32 MCUs.

Our approach demonstrates that training techniques such as Incremental
and Continual Learning are achievable with realistic latencies (< 1ms to train a
tinyMLPerf’s AutoEncoder5 on a new input) on a device consuming an MCU-
class active power budget (<100mW), without sacrificing full programmability.
The forward and backward primitives of PULP-TrainLib show an almost linear
parallel speed-up on a multi-core RISC-V platform. Benchmarking over individual
PointWise, DepthWise Convolution, and Linear layers, the AutoTuner optimizes
the throughput by up to, respectively, 18.3×, 8×, and 11× compared to a
näıve implementation. This descends from the selection of the fastest matrix
multiplication kernel for each set of tensor shapes, with a top performance of
4.39 Multiply-Accumulate operations per clock cycle (MAC/clk) to execute a
single training step. Our optimized solution outperforms the execution on an
STM32L476RG commercial MCU by 36.6×. Additionally, we benchmark our
methodology on two TinyMLPerf benchmarks, a DS-CNN for Keyword Spotting
(KWS) and a Deep Autoencoder for Anomaly Detection. Results on an 8-core
PULP Platform show that the latency of a complete DNN training step is reduced
to a minimum of 0.39 million clock cycles on the Deep Autoencoder (i.e., < 1 ms
@400 MHz), applying the AutoTuner, 30.7× faster than AIfES, the current state-
of-the-art training library for MCUs. To foster future research on extreme-edge
DNN training, we release PULP-Trainlib as open-source software6.

2 Related Work

While edge DNN inference has been widely explored, on-device training is still
an open problem due to the strict constraints of embedded platforms. To ac-
celerate backprop-based training, Federated Learning [11, 18, 17] distributes the
training process between several agents. TinyTL [5] proposes a lightweight (trans-
fer) learning technique by limiting back-propagation to biases only, which also
prevents the storage of the intermediate tensors required for weight gradient
back-propagation. Compared with these works, we focus on accelerating the
computational primitives of SGD, which can be adopted in the future to bring
these approaches to low-power MCUs.

A limited set of works have already addressed the problem of model adap-
tation on MCUs. In TinyOL [25], the authors propose to use an Arduino Nano
equipped with a 64MHz ARM Cortex-M4 for Transfer Learning, using a single
trainable layer on top of a frozen and quantized inference model. Targeting
the same platform, TinyFedTL [12] extends the concepts of TinyOL with a
Federated approach, aiming at retraining the last layer in a distributed way.
Ravaglia et al. [24] target for the first time Continual Learning [22] on MCUs.

5 TinyML Perf Models: https://github.com/mlcommons/tiny/tree/master/benchmark
6 PULP-TrainLib: https://github.com/pulp-platform/pulp-trainlib



4 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

The proposed HW/SW platform learns the model coefficients of multiple DNN
layers using backpropagation. Our work generalizes this approach into a training
framework that can be used beyond Continual Learning use-cases only, e.g. in an
Incremental or Transfer Learning setting. Moreover, we improve the performances
of the key computational steps by up to 2.3× thanks to novel optimized SW
kernels and the Autotuning functionality. Close to our work, AIfES7 is the only
other publicly-released training software framework for MCUs. More in detail,
such a framework currently enables the training of DNN models composed of
exclusively Fully-Connected (aka Dense or Linear) layers. The software primitives
are optimized on ARM Cortex-M MCUs using kernels of the CMSIS-DSP library,
in particular floating-point matrix multiplications. In contrast, PULP-TrainLib
includes a wider set of DNN layers (like 2D and Depthwise Separable Convo-
lutions) and features a higher optimization level by applying autotuned loop
unrolling and parallelization, requiring 30.7× fewer clock cycles than AIfES to
execute a complete DNN model.

Our work combines PULP-TrainLib’s software with an autotuning tool, search-
ing for the software configuration (MM kernel and tiling) that optimizes a cost
function, i.e. minimal latency. Autotuning is a widespread approach in high-
performance, parallel computing (readers may refer to [3, 20]). Representative
examples are FFTW [10] and ATLAS [30], which aim at optimizing FFT and
Basic Linear Algebra Subroutines (BLAS), respectively, using a code-generator
autotuner. They achieve a speed-up of up to 55% and 20%, respectively, compared
to non-optimized algorithms. Halide [23] integrates an autotuner on top of a
stencil pipeline, also leveraging stochastic search to speed up the execution to up
5×. Tensor Comprehensions [27] extends this concept for DNN inference, pro-
viding a Just-In-Time compiler that exploits operator fusion, delegated memory
management, and an autotuner to find the fastest implementation among a vast
search space. To bypass the complexity of hardware-in-the-loop autotuning, the
TVM [6] compiler for DNN inference replaces an autotuner with a learnable cost
model to predict the fastest solution starting from a trial-based approach. The
same authors present an alternative method [7] that learns domain-specific cost
models by exploring the solution space of the target task.

To the best of our knowledge, our work is the first one to target autotuned
hardware-in-the-loop optimization of DNN training on an MCU platform. We
adopt a trial-based approach like FFTW and ATLAS [10, 30]. Compared with
Ragan-Kelley et al. [23], which adopts stochastic search, we prefer an exhaustive
hardware-in-the-loop approach, capable of finding the best optimization for the
problem by direct performance profiling. MCU-oriented autotuning tools, like
uTVM8 and the work of Chen et al. [8], are currently limited to inference –
and currently do not achieve a speed comparable to hand-tuned libraries, like
CMSIS-NN [13] and TinyEngine [15].

7 AIfES for Arduino: https://www.arduino.cc/reference/en/libraries/aifes-for-arduino/
8 Apache µTVM: https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-taming-tiny



PULP-TrainLib 5

Fig. 1: SW primitives of PULP-TrainLib library (left) and corresponding pseudo-
code showing how to train an individual linear layer (right). On the left, elements
in blue show the path of the input tensor’s data and gradient, while the red and
green ones represent the weight and output, respectively.

3 On-Device Training on PULP

3.1 The PULP platform

PULP (parallel ultra-low power) is a computational platform for energy-efficient
and scalable edge computing based on RISC-V cores [26]. In this work, we
consider a PULP SoC instance that includes an MCU for control-related tasks
and a multi-core cluster for parallel computation. The MCU features a single
RISC-V core, a set of IO peripherals, and a 2 MB SRAM memory (L2) accessible
by the cluster side through a DMA engine. The cluster includes 8 RISC-V cores
sharing a 64 kB L1 memory, accessible in a single cycle. Each core implements a
basic set of standard RISC-V extensions (RV32IMFC); additionally, a custom
extension (Xpulp) provides DSP-like features to reduce overhead in highly uniform
workloads, including post-increment load/store operations and 2-level nested
hardware loops. Finally, each CPU is granted access to a private Floating Point
Unit (FPU), capable of performing complex, single-cycle DSP instructions, like
Fused Multiply-Add (FMA).

3.2 PULP-TrainLib Library

PULP-TrainLib is the first software library for DNN training on MCU-class
RISC-V multi-core platforms. More in detail, we provide an optimized software
design for the forward and backward propagation passes of multiple DNN layers,
targeting the execution on the PULP Platform. Our library adopts floating-point
data formats (fp32 and lower) for all the computations of the training steps.

Figure 1 (left) graphically represents the computational flow of the Forward
and Backward training steps of a single DNN layer trained with the backpropaga-
tion algorithm. The Forward (FW) step receives the input tensor X and produces
the output tensor Y based on the trainable weights W. This output propagates
through the model’s layers to compute the loss score with respect to the data
label. Unlike inference, the intermediate tensors computed during the FW pass
must be kept in memory for the Backward (BW) step. For every layer, the
weight gradient dW is computed by the Weight Gradient Backward (WG-BW)



6 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

Fig. 2: DNN training matrix operations of FW and BW steps of a 2D Convolution
(left) and a Fully-Connected layer (right). The tensor (and respective gradient)
shapes involved in 2D Convolution have size Ci·Hi·Wi for the input, Co·Ci·Hk ·Wk

for the weights, Co ·Ho ·Wo for the outputs. In the case of a Fully-Connected,
instead, their shape is Ci, Co·Ci, Co, respectively. The Im2Col operator transforms
the input feature map (FW, WG-BW) or the output gradient (IG-BW) to matrix
form to exploit fast matrix computations.

function based on the stored activation feature map X and the gradient tensor
dY , which is the derivative of the loss function with respect to the activation
tensor. Such gradient signal then propagates to the previous layer by applying
the Input Gradient Backward (IG-BW) step. This latter returns dX based on
the transposed weight tensor W ′. PULP-TrainLib provides a set of SW kernels
that implement these training steps. For instance, Figure 1 (right) illustrates the
pseudo-code for training the coefficients of an individual fully-connected layer
using PULP-TrainLib’s primitives.

Figure 2 shows the implementation details of the training steps in the case
of a 2D Convolution and a Fully-Connected Layer. To leverage computationally
efficient linear algebra kernels, the convolution operations are reshaped as Matrix
Multiplications (MMs). To this aim, the data layout of the input X (or the output
gradient dY ) of a Conv2D layer is reshaped at runtime from a CHW tensor shape
to a matrix form through an im2col transformation. This routine copies the input
data within the receptive field of the filter into column contiguous arrays, stored
into the L1 memory, to feed the MM kernel.

3.3 Accelerating SW Training Primitives

The workload of PULP-TrainLib primitives is dominated by MMs. The pseudo-
assembly on a RISC-V core of a MM näıve kernel is reported in Figure 3 (a).



PULP-TrainLib 7

Fig. 3: Pseudo-assembly of the inner loops of (a) a naive MM and (b) of an
optimized 2×1 unrolled MM. The matrix dimensions are highlighted on the
top-left of the figure.

This baseline implementation makes use of three nested loops, which iterate over
the matrix dimensions. The inner loop features 3 instructions: the 2 loads of the
MM’s operands and the floating-point FMA. Thus, in this case, the total number
of instructions is N ×M ×K × 3, where N ×M is the size of the output matrix
C = A ·B and K is the size of the shared dimension.

The total number of instructions can be reduced by means of loop unrolling.
This technique leads to a faster implementation by computing multiple outputs
within the inner loop, hence exploiting data reuse. As a convention, we define
the unrolling factor as U × V, where U and V are, respectively, the number of
rows and columns of the output matrix concurrently computed within the inner
loop of the MM. In particular, Figure 3 (b) represents a 2×1 loop unrolling,
which features a 33% higher FMA/Load ratio with respect to the näıve baseline,
therefore reducing the overall number of instructions.

Typically, the instruction count decreases with increasing unrolling factor
U × V. However, because of the limited size of the register file of the CPU, a
spilling effect is observed with a 4×4 or larger unrolling. When this happens,
the compiler generates code to spill accumulation registers that do not fit within
the CPU’s register file to the stack, resulting in a very significant reduction of
efficiency and increased latency. Additionally, a slowdown effect can be observed
if a dimension of the input matrices is not an integer multiple of the unrolling
factor U × V. The computation of the remaining elements that do not fit the
MM’s inner loop, which we call leftover, is handled by different sub-routines
that employ less aggressive unrolling and incur in larger latency. In this case, a
smaller unrolling factor can result in a faster solution. If the input tensors are
smaller than the U × V unrolling size, the MM kernel turns into all-leftover
computation, which greatly slows down the execution.

To address this performance issue, we provide multiple optimized MM func-
tions (listed in Table 1), which can be used within the training primitives of the
PULP-TrainLib to speed up the execution. In addition to unrolling, every MM



8 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

Table 1: PULP-TrainLib’s Optimized MM Kernels

MM Type Unrolling Factor Parallelism Description

mm – N or M Naive MM
mm uJ J = 2 N or M Unroll J inner products in K

mm unroll 1xV U = 2, 4, 8 N or M Unroll U columns of C
mm unroll Ux1 V = 2, 4, 8 N or M Unroll V rows of C
mm unroll UxV U, V = 2, 4 N or M Unroll U,V rows and columns of C

kernel exploits data parallelism to efficiently run on the multi-core PULP cluster.
Two parallelization strategies are proposed: each core can compute different
output rows (mm unroll UxV) by splitting the workload over the N dimension,
or different output columns (mm M unroll UxV), by chunking the M size. Simple
unrolling over the K dimension is also provided (mm uJ) to cover a set of corner
cases in which the reduced sizes of N or M prevent the use of unrolling on both
sizes (e.g., N = 8, M = 1, K >> N , with parallelization on N).

3.4 AutoTuner

As part of PULP-TrainLib, we propose an autotuning flow to optimally configure
the DNN training primitives (e.g., which MM to use) based on (i) the DNN layer
type and training step (e.g., PointWise FW) and (ii) the PULP platform settings
(e.g., the number of cluster’s cores and the L1 memory size). The AutoTuner is
run offline, before the deployment to the MCU and the actual training - the best
(fastest) software setting is identified, then deployed on the target device.

Because of the limited memory footprint, the DNN layer’s input and output
tensors may not entirely fit the on-chip memories, and in particular the L1
memory of the cluster. Therefore, a tiling process is required to partition the
DNN layer’s tensors into smaller sub-tensors, also referred to as Tensor Tiles.
The tiles are transferred from L2 and L1 and processed in sequence. For each
tensor tile requiring an im2col, this transformation is performed in L1, minimizing
the impact on memory. Because the Tensor operand shapes highly impact the
MM optimization, the AutoTuner aims at finding concurrently the optimal Tile
shapes and the MM kernel, indicated as TileShape∗ and MM∗, that lead to the
lowest latency.

Algorithm 1 details the procedure adopted by the AutoTuner to achieve this
objective. To avoid complex and typically imprecise high-level modeling of the
HW/SW platform, our AutoTuner exploits HW-in-the-loop to search for the
optimal solution. In particular, we use GVSoC [4], a behavioural event-based
MCU simulator capable of modeling any PULP-based device with less than 5%
error on estimated cycles. For each training step, the tool measures the latency
on the target HW of a pool of configurations identified by the tuple (MM ,
TileShape) and selects the one leading to the lowest latency.



PULP-TrainLib 9

Algorithm 1: AutoTuner for PULP-TrainLib

Input: PULP L1 Memory Size L1MemSize and #cores; DNN Training Layer;
Tensors’ Shapes: TensorShape; Table 1

Output: PULP-TrainLib config: MM∗, T ileShape∗

Parameter: KT : max tiling solutions to evaluate on HW
1 Function Tiler(L1MemSize, T):
2 TensorList = ∅
3 for each T ile of T do
4 if Mem (T ile) < L1MemSize then
5 TensorList += (T ile, Mem (T ile))

6 TensorList = sort (TensorList); // Decreasing Mem

7 return Top-KT (TensorList); // KT Entries

8

9 AutoTuner:
10 if Mem (TensorShape) < L1MemSize then
11 TensorList = TensorShape // Single Entry

12 else
13 TensorList = Tiler (L1MemSize, TensorShape)

14 for each TensorShape in TensorList do
15 for each MM in Table 1 do
16 Lat = RunHW (DNN Train Layer, MM , TensorShape, #cores)
17 PerfLog += { Lat, TensorShape, MM }

18 return MM∗, T ileShape∗ = Top(PerfLog); // Lowest Latency

The AutoTuner conducts a grid search to find the optimal tuple (MM∗,
TileShape∗). Based on the layer type and the L1 memory size, a Tiler function
computes all the possible tiling solutions and discards those exceeding the size
constraint. The KT feasible TileShape featuring the largest memory occupations
are selected and coupled with the MM kernels of Table 1 to form the pool of
configurations to be tested on HW. For example, in the case of KT = 5, used
in all our experiments, the autotuning of the PointWise FW kernel demands
5 × 24 = 120 simulations on GVSoC (one for each of the 24 optimized MM
kernels), which can run in parallel. Our AutoTuner setup exploits an Intel Xeon-
equipped node running up to 64 simulations in parallel and takes less than 15
minutes to return the optimal configuration for all three training steps of the
mentioned kernel. We remark that this process needs to be performed only once
before the deployment on the target. On the contrary, if the Tensor shape fits
the L1 memory entirely, the Tiler module can be bypassed, and the AutoTuner
directly measures on HW the fastest MM kernel.

Thanks to the AutoTuner tool, we can effectively deploy full DNN model
training on the PULP platform using PULP-TrainLib’s primitives. After the
autotuning, every forward and backward function of the pipeline invokes specific



10 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

0,04 0,06 0,07

0,38 0,39

0,0

0,4

0,8

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,04 0,06 0,07

0,40 0,42

0,0

0,4

0,8

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,02 0,04 0,05
0,29 0,32

0,0

0,4

0,8

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,10 0,24 0,53
1,87

3,96

0

3

6

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,12 0,24 0,56
1,85

4,39

0

3

6

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,10 0,20 0,20
1,44 1,44

0

2

4

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,10 0,24 0,43
1,52

2,66

0

2

4

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,09 0,21 0,36
1,33

2,61

0

2

4

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

0,09 0,21 0,47
1,60

3,59

0

3

6

STM32
NAIVE

PULP 1C
NAIVE

PULP 1C
OPT

PULP 8C
NAIVE

PULP 8C
OPT

M
AC

/c
lk

PointWise
Convolution 

INPUT: 64x25x5 
WEIGHTS:
64x1x1x16 

OUTPUT: 16x25x5

Ideal: 7.37 MAC/clk Ideal: 7.37 MAC/clk Ideal: 7.37 MAC/clk

Ideal: 5.29 MAC/clk Ideal: 5.29 MAC/clkIdeal: 5.29 MAC/clk

Ideal: 3.88 MAC/clk Ideal: 3.88 MAC/clk Ideal: 3.88 MAC/clk

DepthWise
Convolution 

INPUT: 16x27x3 
WEIGHTS: 16x3x3 
OUTPUT: 16x25x1

Fully-Connected 
INPUT: 640 

WEIGHTS: 640x16 
OUTPUT: 16

FW WG-BW IG-BW

Fig. 4: Execution of the DNN training steps for a PointWise Convolution Layer
(upper), a DepthWise Convolution Layer (middle), and a Fully-Connected Layer
(lower), using the primitives from PULP-TrainLib library. Experiments are
performed on an STM32L476RG and on PULP GVSoC.

MM kernels to achieve a computation faster than a “one-size-fits-all” setting, in
which all the primitives are using the same MM function.

4 Experimental Results

In this section, we evaluate the effectiveness of the training primitives of PULP-
TrainLib and the autotuning flow. First, we benchmark the training kernels
of single layers on both the PULP Platform and a commercial STM32 MCU.
Second, we analyze the outcome of our AutoTuner given multiple DNN layer
steps and shapes. Third, we demonstrate how our methodology enhances on-
device adaptation, by benchmarking the training procedure on full TinyML DNN
models. Last, we compare the performances of PULP-TrainLib with AIfES, a
state-of-the-art SW library targeting on-device training on embedded devices.

4.1 Latency Optimization on PULP-TrainLib

We evaluate the proposed PULP-TrainLib library by running experiments on the
GVSoC simulator. Figure 4 reports the latency, expressed as the ratio between
MAC operations and clock cycles (MAC/clk), of the forward and backward
passes of multiple DNN layers fitting into the L1 memory: PointWise Convolu-
tion, DepthWise Convolution, and Fully-Connected. We compare the baseline
configuration, which uses a naive MM, with the functions tuned by the AutoTuner
in the case of both 1 and 8 cores execution. The figure shows the best kernel
configuration returned by the AutoTuner (indicated as OPT ), i.e., the one with
the highest MAC/clk. Additionally, we report the ideal latency, obtained by
accounting for only the load, store, and MAC operations that would occur in case
of unbounded memory and no stalls. For comparison purposes, we also profile the
PULP-TrainLib primitives on an off-the-shelf STM32L476RG MCU, featuring a



PULP-TrainLib 11

single-core ARM Cortex-M4 CPU with FPU support. All the experiments use
the highest optimization level of the compiler (-O3).

The baseline PointWise and Fully-Connected kernels, when executed on a
single core, achieve 0.24 MAC/clk during the forward step because they feature
the same computational kernel (as shown in Fig. 2b). Also, the corresponding
backward passes with naive MM show a similar performance level. On the contrary,
the training steps of the DepthWise layers are > 4× slower than PointWise,
mainly because of the overhead introduced by the im2col transformation and
due to their inherently lower parallelism and possibility for data reuse.

When running on 8 cores, the parallel speedup of the baseline version is
greater than 7.5 for all the training steps of a PointWise or a Fully-Connected
Layer, thanks to the highly parallelizable nature of the MM kernel. Differently,
the top speed-up for the training steps of the DepthWise Convolution is limited
to 7 because of the im2col overhead. If compared with the STM32L476RG
implementation, the execution of the baseline kernels on a single-core of PULP
results to be up to 2.4 faster because of the low-latency FMA instructions,
which take only 1 clock cycle to execute, 2× lower than the ARM-Cortex M4
implementation. Furthermore, the execution on PULP is accelerated thanks to
PULP’s Hardware Loops, which reduce the branching overhead of the inner loop.

By leveraging the optimized matrix multiplication kernel, the OPT solution
speeds up the execution by up to 2.4× with respect to the baseline version, for
both a single core and 8 parallel cores. In particular, the AutoTuner selects the
2×4 unrolled MM kernel for the training steps of the PointWise Layer in Fig. 4,
mainly because the input matrices are significantly larger than the unrolling
factor of the MM’s inner loop. When combining the 8-core execution and the
autotuned MM, the latency gain on PULP vs the STM32L476RG implementation
grows up to 36.6×.

In the case of a Fully-Connected Layer, instead, the Autotuner selects the
mm unroll 1x4, mm or mm M unroll 1x8 for, respectively, the FW, the WG-BW,
and IG-BW steps, with a performance of 2.66, 2.61, and 1.44 MAC/clk on 8 cores.
Since a Fully-Connected Layer mainly relies on matrix-vector and vector-vector
multiplications (as shown in Fig. 2), the most effective unrolling schemes feature
a dimension of size 1 on the vector’s sides.

Overall, if compared with the ideal scenario, the autotuned solution signifi-
cantly increases FPU utilization, computed as the ratio between real and ideal
MAC/clk performance, from 0.25 to 0.54 in the case of PointWise FW execution.

4.2 Effect of tensor shapes on AutoTuning

To better explore the output of the AutoTuner with respect to the tensor shapes,
Figure 5 shows the latency on 8 cores of two training primitives (PointWise
FW and FC IG-BW) applied on multiple tensor Shapes. The tested shapes are
detailed in the Figure and fit the L1 memory. Every plot reports the latency of
the Top-5 fastest kernel configurations normalized and compared to the baseline
performance.



12 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

Fig. 5: Evaluation of the AutoTuner on a Pointwise Convolution Layer perform-
ing a Forward step (upper) and a Fully-Connected Layer performing an Input
Gradient backpropagation step (lower) using multiple tensor Shapes (1-4). Every
plot shows the latency measurements normalized with respect to the baseline,
when using different optimized MM kernels.

In PointWise convolution, the top AutoTuner solution outperforms the base-
line by 1.6-2.2×. The fastest solutions feature 2×4 or 4×2 unrolled MM kernels
because the sizes of the involved matrices exceed both the number of cores and
the maximum unrolling factors. An exception is represented by the Shape 3
case: the presence of a tight input matrix, with shape 512×1×1, leads to the
computation of a high number of consecutive elements in the inner loop but a
single iteration for each outer loop. For this reason, the only MM capable of
accelerating the execution is mm u2, which unrolls two successive products in K,
reducing the data dependencies from adjacent FMA and LD which are present in
the inner loop of the näıve implementation. On the other hand, the matrix-vector
or vector-vector products featured by the Fully-Connected primitives result faster
in the case of 1×V unrolling. As can be seen by comparing Shapes 1, 2 and 3, 4,
Fully-Connected Layers with tighter input sizes privilege 1×4 unrolling, while
wider ones benefit from 1×8 unrolling.

4.3 TinyML Benchmark Training

To assess the effectiveness of our approach on real DNN models, we deploy on
PULP a forward and a backward pass of a Deep Autoencoder for Anomaly Detec-
tion and a DS-CNN for Keyword Spotting. Differently from previous experiments,
the AutoTuner concurrently searches for both the fastest MM kernels and the
layer-wise tile shapes. Figure 6 shows the latencies of a forward and a backward
pass obtained by applying the AutoTuner over the two considered benchmarks
(OPT bars). These solutions are compared with other implementations featuring
the same tiling configuration but using fixed MM kernels, i.e., a “one-size-fits-all”
approach.



PULP-TrainLib 13

Fig. 6: Training time of two TinyML benchmarks - a Deep AutoEncoder (left)
and a DS-CNN (right) - running on 8 cores and using 64 kB of L1 memory.
The plot compares the autotuned vs ”one-size-fits-all” solutions, agnostic to the
DNN’s structure.

Observing Figure 6, the usage of a “one-size-fits-all” approach is particularly
weak in the case of a Deep Autoencoder, which is composed of a sequence of
Fully-Connected layers. In this case, the usage of 2×2 or 2×4 unrolling implies
the presence of all-leftover computation, leading to a slow-down of 12% in the
case of a fixed 2×2 optimization, and a very limited speed up of 1% in the case of
a 2×4, when executing on 8 cores. Instead, the usage of autotuned kernels, which
are mainly represented by 1×2, 1×4, and 1×8 unrolling, with both parallelism
in N and M depending on the training step, introduces a high performance gain
of 31% on 8 cores.

Concerning the DS-CNN, the large tensor sizes encourage the use of wide
unrolling factors. However, 2×2 or 2×4 unrolling factors with parallelism in N
are 6% and 3% slower than the autotuned execution. The use of 2×4 and 4×2
for Convolutions and of 1×4 and 1×8 for the last Fully-Connected classifier, each
with both parallelism in N and M , produces a significant and uniform speed up.

Lastly, the introduction of autotuning on full DNN training steps of TinyML
benchmarks enables real-time network updates, with a top performance of 0.4
million cycles for a Deep Autoencoder and 1.3 million cycles for a DS-CNN.

On a PULP-based device like Vega [26], running at 450 MHz, these perfor-
mances result in 0.9 ms and 3 ms to execute a single training step. These latencies
prove to be 15× and 108× faster, respectively, than the results available over
the same models on a RISC-V MCU on MLCommons 9, which on the contrary
performs a single inference step only, i.e no backpropagation.

4.4 Comparison with the State of the Art

As a comparison with the current state-of-the-art, we profile the same-task per-
formances of PULP-TrainLib and AIfES10, Fraunhofer IMS’s on-device learning
software library. For this purpose, we configure AIfES to use the MM kernels
provided by the optimized ARM CMSIS library. Since the current version of
AIfES does not provide Convolutional Layers, we profile its performances over

9 TinyMLPerf results: https://mlcommons.org/en/inference-tiny-05/
10 AIfES for Arduino: https://www.arduino.cc/reference/en/libraries/aifes-for-arduino/



14 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

the Deep Autoencoder of Figure 6, which is composed of Fully-Connected layers.
The execution of AIfES kernels is measured, in clock cycles, on an ARM Cortex-
M4-based STM32F407VGT6 MCU.

Figure 7 presents the results of a training step of the Deep Autoencoder with
a batch size of 1 (i.e., the model forwards and backwards a single image at a
time). With this setup, a complete model training with AIfES takes about 12
million clock cycles to execute (71.9 ms on an STM32F4 at 168 MHz), 3.3×
higher than a non-optimized single-core training with PULP-TrainLib.

Compared to PULP-TrainLib, we notice a high slowdown in the execution
of the IG-BW step. This is due to to the vector-vector product on which this
step relies, which induces an all-leftover computation on the CMSIS-NN unrolled
kernels, requiring 19 instructions to execute each MM inner-loop iteration (2 ld,
1 fma, 2 add/sub, 1 branch, and 13 others to monitor the state of the computa-
tion and iterate over the outer loops). For this reason, this step suffers a 5.9×
slowdown with respect to our baseline, single-core implementation, which is built
to handle vector-vector and vector-matrix products with less overhead.

Furthermore, the vector-matrix products of the FW and IG-BW steps require
roughly 2× the clock cycles of our single-core execution with AIfES. Even with
unrolled CMSIS MM kernels, DNN kernels on the STM32F407 require 19 instruc-
tions to execute (8 ld, 4 fma, 6 add/sub, 1 branch). On the PULP RISC-V cores,
the branching overhead can be avoided employing Hardware Loops.

Overall, we observe that the application of the AutoTuner leads to a 4.5×
performance increase with respect to AIfES. On 8 parallel cores, we achieve an
average parallel speedup of over 6.5× over each tile and layer of the DNN model,
with respect to both our non-optimized and optimized single-core execution.
Therefore, we verify that our AutoTuner is able to effectively achieve the same
degree of optimization on both a single and a multicore training setup, for each
tile and layer of the DNN model. This results in a 30.7× higher performance
with respect to AIfES, on 8 parallel RISC-V cores.

5 Conclusion

In this paper, we presented PULP-TrainLib, the first software library for DNN
on-device training on multi-core RISC-V-based MicroController Units (MCUs).
Included into PULP-TrainLib, we introduced an AutoTuner, capable of jointly
selecting the fastest matrix multiplication kernel optimization and tile size for
a given DNN layer configuration. By applying the AutoTuner on the training
primitives of PULP-TrainLib, we are able to run complete training steps of
TinyML DNN models in almost real-time.

6 Acknowledgements

This work was supported in part by the EU Horizon 2020 Research and Innovation
Project WiPLASH under Grant 863337 and in part by the ECSEL Horizon 2020
Project AI4DI under Grant 826060.



PULP-TrainLib 15

Fig. 7: Comparison of PULP-TrainLib with Fraunhofer IMS’s AIfES training
library for MCUs, using CMSIS as computational backend on a complete Deep
Autoencoder model. AIfES’ layer tiles are executed on an STM32F407VGT6
MCU.

References

1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.:
Concrete problems in ai safety (2016)

2. Ankit, A., Hajj, I.E., Chalamalasetti, S.R., Agarwal, S., Marinella, M., Foltin,
M., Strachan, J.P., Milojicic, D., Hwu, W.M., Roy, K.: Panther: A programmable
architecture for neural network training harnessing energy-efficient reram. IEEE
Transactions on Computers 69(8), 1128–1142 (2020)

3. Ashouri, A.H., Killian, W., Cavazos, J., Palermo, G., Silvano, C.: A survey on
compiler autotuning using machine learning. ACM Comput. Surv. 51(5) (sep 2018)

4. Bruschi, N., Haugou, G., Tagliavini, G., Conti, F., Benini, L., Rossi, D.: Gvsoc: A
highly configurable, fast and accurate full-platform simulator for risc-v based iot
processors. In: 2021 IEEE 39th Intern. Conference on Computer Design (ICCD).
pp. 409–416 (2021)

5. Cai, H., Gan, C., Zhu, L., Han, S.: Tinytl: Reduce activations, not trainable
parameters for efficient on-device learning (2021)

6. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang, L.,
Hu, Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: Tvm: An automated end-to-end
optimizing compiler for deep learning. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). pp. 578–594. USENIX Association,
Carlsbad, CA (Oct 2018)

7. Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., Guestrin, C., Krish-
namurthy, A.: Learning to optimize tensor programs (2019)

8. Chen, Y.R., Liao, H.H., Chang, C.H., Lin, C.C., Lee, C.L., Chang, Y.M., Yang,
C.C., Lee, J.K.: Experiments and optimizations for tvm on risc-v architectures with
p extension. In: 2020 Intern. Symposium on VLSI Design, Automation and Test
(VLSI-DAT). pp. 1–4 (2020)

9. David, R., Duke, J., Jain, A., Reddi, V.J., Jeffries, N., Li, J., Kreeger, N., Nappier,
I., Natraj, M., Regev, S., Rhodes, R., Wang, T., Warden, P.: Tensorflow lite micro:
Embedded machine learning on tinyml systems (2021)

10. Frigo, M., Johnson, S.: Fftw: an adaptive software architecture for the fft. In: Proc.
of the 1998 IEEE Intern. Conference on Acoustics, Speech and Signal Processing,
ICASSP ’98 (Cat. No.98CH36181). vol. 3, pp. 1381–1384 vol.3 (1998)

11. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: Strategies for improving communication efficiency (2017)

12. Kopparapu, K., Lin, E.: Tinyfedtl: Federated transfer learning on tiny devices
(2021)



16 D. Nadalini, M. Rusci, G. Tagliavini, L. Ravaglia, L. Benini, F. Conti

13. Lai, L., Suda, N., Chandra, V.: Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus (2018)

14. Lee, S., Nirjon, S.: Neuro.zero: A zero-energy neural network accelerator for em-
bedded sensing and inference systems. In: Proceedings of the 17th Conference on
Embedded Networked Sensor Systems. p. 138–152. SenSys ’19, Association for
Computing Machinery, New York, NY, USA (2019)

15. Lin, J., Chen, W.M., Lin, Y., Cohn, J., Gan, C., Han, S.: Mcunet: Tiny deep
learning on iot devices (2020)

16. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: A review and
comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

17. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-
Efficient Learning of Deep Networks from Decentralized Data. In: Singh, A., Zhu, J.
(eds.) Proc. of the 20th Intern. Conference on Artificial Intelligence and Statistics.
Proc. of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (20–22 Apr
2017)

18. Mills, J., Hu, J., Min, G.: Communication-efficient federated learning for wireless
edge intelligence in iot. IEEE IoT Journal 7(7), 5986–5994 (2020)

19. Murshed, M.G.S., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., Hussain,
F.: Machine learning at the network edge: A survey. ACM Computing Surveys
54(8), 1–37 (Nov 2022)

20. Mustafa, D.: A survey of performance tuning techniques and tools for parallel
applications. IEEE Access 10, 15036–15055 (2022)

21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans.S on Knowledge
and Data Engineering 22(10), 1345–1359 (2010)

22. Pellegrini, L., Graffieti, G., Lomonaco, V., Maltoni, D.: Latent replay for real-time
continual learning. In: 2020 IEEE/RSJ Intern. Conference on Intelligent Robots
and Systems (IROS). pp. 10203–10209 (2020)

23. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe,
S.: Halide: A language and compiler for optimizing parallelism, locality, and re-
computation in image processing pipelines. SIGPLAN Not. 48(6), 519–530 (jun
2013)

24. Ravaglia, L., Rusci, M., Nadalini, D., Capotondi, A., Conti, F., Benini, L., Benini,
L.: A tinyml platform for on-device continual learning with quantized latent replays.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2021)

25. Ren, H., Anicic, D., Runkler, T.: Tinyol: Tinyml with online-learning on microcon-
trollers (2021)

26. Rossi, D., Conti, F., Eggimann, M., Di Mauro, A., Tagliavini, G., Mach, S., Guer-
mandi, M., Pullini, A., Loi, I., Chen, J., Flamand, E., Benini, L.: Vega: A ten-core
soc for iot endnodes with dnn acceleration and cognitive wake-up from mram-based
state-retentive sleep mode. IEEE Journal of Solid-State Circuits (2021)

27. Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W.S.,
Verdoolaege, S., Adams, A., Cohen, A.: Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions (2018)

28. Wang, F., Zhang, M., Wang, X., Ma, X., Liu, J.: Deep learning for edge computing
applications: A state-of-the-art survey. IEEE Access 8, 58322–58336 (2020)

29. Wang, X., Magno, M., Cavigelli, L., Benini, L.: Fann-on-mcu: An open-source
toolkit for energy-efficient neural network inference at the edge of the internet of
things. IEEE IoT Journal 7(5), 4403–4417 (2020)

30. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: SC ’98:
Proc. of the 1998 ACM/IEEE Conference on Supercomputing. pp. 38–38 (1998)


