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Finite Sample Analysis of Mean-Volatility Actor-Critic for
Risk-Averse Reinforcement Learning

Khaled Eldowa Lorenzo Bisi Marcello Restelli
Politecnico di Milano, Milan, Italy

Abstract

The goal in the standard reinforcement learn-
ing problem is to find a policy that optimizes
the expected return. However, such an ob-
jective is not adequate in a lot of real-life
applications, like finance, where controlling
the uncertainty of the outcome is impera-
tive. The mean-volatility objective penal-
izes, through a tunable parameter, policies
with high variance of the per-step reward.
An interesting property of this objective is
that it admits simple linear Bellman equa-
tions that resemble, up to a reward transfor-
mation, those of the risk-neutral case. How-
ever, the required reward transformation is
policy-dependent, and requires the (usually
unknown) expected return of the used policy.
In this work, we propose two general meth-
ods for policy evaluation under the mean-
volatility objective: the direct method and
the factored method. We then extend re-
cent results for finite sample analysis in the
risk-neutral actor-critic setting to the mean-
volatility case. Our analysis shows that the
sample complexity to attain an ϵ-accurate
stationary point is the same as that of the
risk-neutral version, using either policy eval-
uation method for training the critic. Finally,
we carry out experiments to test the proposed
methods in a simple environment that ex-
hibits some trade-off between optimality, in
expectation, and uncertainty of outcome.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 INTRODUCTION

Reinforcement Learning has recently gained much at-
tention thanks to the exceptional results obtained
in challenging benchmarks like robotic locomotion
(Schulman et al., 2015, 2017), arcade video games
(Mnih et al., 2013), multi-player games (Berner et al.,
2019) and complex board games (Silver et al., 2016).
Therefore, there is naturally a growing interest in
translating its success from games and virtual domains
to real-world contexts (Bisi et al., 2020a; Castelletti
et al., 2010). In order to fill this gap, however, a num-
ber of issues need to be solved.

A particularly interesting case concerns high-stakes
applications like finance, health and robotics. While in
these domains the application of advanced strategies
obtained with reinforcement learning might produce
dramatic benefits, the sensitivity linked to these top-
ics makes it mandatory to take into account the risk
connected to the employed policies. The risk-averse
reinforcement learning literature has studied the im-
plications of explicitly considering risk in MDPs (So-
bel, 1982) developing several possible solutions (Tamar
et al., 2012; Chow et al., 2015, 2017a; Nass et al.,
2019). Measuring risk is alone an important research
topic, which has been deeply analysed in the financial
mathematics domain (Artzner et al., 1999; Rockafel-
lar et al., 2006). Selecting the correct risk-measure
is, in the end, a task-dependent issue, and its choice
should be a good trade-off between ensuring mathe-
matical properties (Ruszczyński, 2010), allowing ease
of interpretation by stakeholders, and guaranteeing ac-
ceptable optimization performance.

The Mean-Volatility objective, recently introduced by
(Bisi et al., 2020b), has been shown to have these char-
acteristics, and, thanks to its favourable mathemati-
cal properties, it can be optimized with state-of-the
art techniques with slight modifications to the origi-
nal algorithms (Bisi et al., 2020b; Zhang et al., 2021),
thus, empirically enjoying competitive learning perfor-
mance.

The development of novel analysis techniques has al-
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lowed the RL literature to produce a number of inter-
esting results on the finite-sample complexity of many
RL algorithms (Lazaric et al., 2012; Farahmand, 2011;
Liu et al., 2020). Establishing the correct sample com-
plexity of state-of-the-art algorithms as, for instance,
the well-known actor-critic scheme is a hot topic,
which is receiving growing attention (Yang et al., 2018;
Wu et al., 2020; Chen et al., 2021; Wang et al., 2019;
Kumar et al., 2019; Xu et al., 2020). On the other
hand, few works have been dedicated to derive the
complexity of risk-averse approaches (Jiang and Pow-
ell, 2018; Fei et al., 2020). Penalized risk-averse objec-
tives as Mean-Variance and Mean-Volatility (Tamar
et al., 2012; Bisi et al., 2020b) need to estimate the
expected return to compute the policy gradient. How-
ever, how the consequent estimation error translates
in terms of convergence rate is an issue which has
not been investigated yet. How do the various error
sources compound in the gradient estimation? Is it
possible to obtain the guarantees of risk-neutral algo-
rithms in this risk-averse setting? This paper offers an
answer to those questions by means of a finite-sample
analysis of a mean-volatility actor-critic algorithm.

Our contributions are as follows: (i) We propose two
methods (the direct one and the factored one) for
the policy evaluation problem of the mean-volatility.
We provide a finite sample bound for a semi-gradient
TD(0) approach applied to the direct case. (ii) The
previous contribution is used as input for an analysis
on an actor-critic algorithm for which we bound the
sample complexity necessary for reaching a ϵ-accurate
stationary point. All provided bounds are valid in ex-
pectation. (iii) We validate our theoretical results by
means of an empirical study on a stochastic environ-
ment.

2 RELATED WORKS

The mean-volatility objective has been first introduced
in (Bisi et al., 2020b), where it was optimized through
a trust-region approach, but without providing any fi-
nite sample analysis results. The technique has been
extended in (Zhang et al., 2021), where the optimiza-
tion of the same objective was pursued by means of
a framework, which allows to decompose the problem
into a series of standard MDPs. The authors were able
to show the asymptotic convergence of the method to
a local optimum (stationary point), but they did not
provide any convergence rate. Convergence to a local
optimum is typically the best that one can hope for
even for risk-neutral policy optimization approaches,
unless the problem presents particular favourable fea-
tures (Agarwal et al., 2021). For what concerns the
risk-neutral side, several finite sample analyses have
been recently developed for the actor-critic approach

(Yang et al., 2018; Wu et al., 2020; Chen et al., 2021;
Wang et al., 2019; Kumar et al., 2019; Xu et al., 2020).
In this work, we follow the approach suggested in (Xu
et al., 2020) to analyse the mean-volatility case, eval-
uating to which extent our risk-averse extension im-
pacts the risk-neutral convergence rate. This analysis
is interesting because, differently from (Chen et al.,
2021) for instance, it allows to considers the contin-
uous action case. This is important because enabling
the access to continuous actions without losing the ad-
vantages of TD-learning is one of the main advantages
of actor-critic schemes.

As it is the case for (Zhang et al., 2021), many
risk-averse policy gradient approaches offer asymp-
totic convergence guarantees (Tamar et al., 2012, 2015;
Chow et al., 2017b), but they do not provide finite
sample analyses. There are only few works focusing
on this kind of analysis on algorithms optimizing risk-
averse objective. The work in (Jiang and Powell, 2018)
optimizes a dynamic coherent risk-measure that in-
volves as static conditional risk-measure either CVaR
or VaR, by means of an approximated dynamic pro-
gramming approach, similar in spirit to Q-learning.
The authors provide the convergence rate in terms of
the expected deviation from the optimal Q-function.
Recently, in (Fei et al., 2020), the authors analysed the
model-free optimization of the Entropic Risk-Measure,
through two different value-based algorithms. They
prove a sub-linear regret bound which can be used to
derive the finite-sample complexity of the approaches.
While being interesting methods, we remark that these
works are not directly comparable to our analysis,
since they involve value-based approaches and differ-
ent objectives.

3 PROBLEM FORMULATION

3.1 Preliminaries

We assume that our Markov Decision Process
(MDP) is characterized by the following tuple:
⟨S,A, P,R, γ, µ0⟩. Here, S and A are the state and
action spaces, which we assume to be measurable
sets, P : S × A −→ P(S) is the transition kernel,
R : S×A −→ R is the reward function, γ is the discount
factor, and µ0 is the initial state distribution. The
policies we consider are assumed to belong to some
class Π of policies parameterized by a vector θ ∈ Rdθ ,
and πθ(a|s) is continuously differentiable with respect
to θ for any state-action pair. For a policy π, we define
its expected return as follows:

Jπ := (1− γ) E
s0∼µ0

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (1)
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This definition uses the normalization factor (1 −
γ), which ensures that Jπ belongs to the interval
[−Rmax, Rmax], where Rmax is an upper bound on the
absolute value of the reward for any state-action pair.
In this work, we adopt the reward volatility, introduced
in (Bisi et al., 2020b), to measure risk. The reward
volatility is concerned with the variance of the per-step
reward instead of the variance of the return. Firstly,
we define the discounted state distribution as

dµ0,π(s) := (1− γ) E
s0∼µ0(·)

[ ∞∑
t=0

γtpπθ (s0
t−→ s)

]
, (2)

where pπ(s0
t−→ s) is the probability of ending up in s

after t steps starting from s0 and executing policy π.
Using this definition, we can rewrite (1) as:

Jπ = E
s∼dµ0,π(·)
a∼π(·|s)

[R(s, a)].

That is, Jπ can be seen as the expected value of
the step-reward random variable where the states are
drawn from the discounted state distribution (which
depends on the policy) and the actions are drawn ac-
cording to the policy. The reward volatility ν2π is the
variance of this random variable. In other words,

ν2π := E
s∼dµ0,π(·)
a∼π(·|s)

[
(R(s, a)− Jπ)

2
]

(3)

Our goal is to find a policy maximizing the mean-
volatility (Bisi et al., 2020b), which is defined, for a
policy π, as ηπ = Jπ − λν2π, where λ ≥ 0 is a pa-
rameter that penalizes large reward volatility. For
the mean-volatility objective, we can define the trans-
formed state-value function V λπ as:

V λπ (s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γtRλπ(st, at)

∣∣∣∣s0 = s

]
, (4)

where Rλπ(s, a) := R(s, a) − λ(R(s, a)− Jπ)
2
can be

seen as a policy-dependent reward transformation. The
transformed action-value function Qλπ can be defined
in a similar manner. It is easy to see that these trans-
formed value functions, unlike the mean-variance case,
admit simple Bellman expectation equations. For ex-
ample, we have that

V λπ (s) = E
a∼π(·|s)

[
Rλπ(s, a)

]
+ γ E

s′∼Pπ(·|s)

[
V λπ (s

′)
]
.

Unfortunately, since the transformed reward function
is policy-dependent, one cannot directly use classic
tools like policy iteration and value iteration to op-
timize the mean-volatility. This is because results like
the policy improvement theorem (Sutton and Barto,

1998) or the contraction property of the Bellman op-
timality operator (Bertsekas and Tsitsiklis, 1996) do
not necessarily hold anymore.

However, adapting policy gradient methods to the
mean-volatility setting is indeed easier (Bisi et al.,
2020b). When using parameterized policies (in the
manner described before), the gradient of ηθ

1 with
respect to θ can derived as:

∇θηθ = E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
Aλπθ (s, a)∇θ log πθ(a|s)

]
, (5)

where Aλπ(s, a) := Qλπ(s, a)−V λπ (s) is the transformed
advantage function.

3.2 Mean-Volatility Policy Evaluation
Techniques

If we wish to estimate the transformed value func-
tion V λπ for a given policy π, the most immediate idea
is to transform the rewards using Rλπ, and then use
any risk-neutral policy evaluation algorithm. We call
this approach the direct-method. In practice, perform-
ing the aforementioned reward transformation requires
one to first estimate (via sampling) the (normalized)
expected return Jπ of the policy under evaluation. De-
note by Ĵπ our estimate of Jπ, and by R̂λπ the result-
ing reward transformation when using Ĵπ instead of
Jπ. One can then see R̂λπ as an estimator for the true
reward transformation Rλπ. Clearly, this estimator is
biased if Ĵπ is biased. Even if Ĵπ was unbiased, R̂λπ
would still be biased if we do not use two indepen-
dently estimated versions of Ĵπ since it is involved in
a squared term. It is then natural to wonder how us-
ing such an approximate reward transformation affects
the adopted policy evaluation algorithm. One may ask
whether this kind of algorithm converges, and how dis-
tant (according to some measure) the obtained solu-
tion is from the exact one. Answering this question
could enable us to show that the overall algorithm is
consistent when Ĵπ is consistent. This could also en-
able us to infer the order of the number of samples
(used either by the policy evaluation algorithm or the
sampling process for estimating Jπ) needed to keep the
estimation error below some given level ϵ. An alterna-
tive approach, which we will call the factored-method,
relies on the following alternative expression for V λπ
(see Appendix B for the derivation):

V λπ (s) = (1 + 2λJπ)V
π(s)− λMπ(s)− λ

1− γ
J2
π, (6)

1We usually write ηθ instead of ηπθ for notational con-
venience.
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where we call Mπ : S −→ R the second moment value
function2, which is defined as follows:

Mπ(s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)
2

∣∣∣∣s0 = s

]
.

(7)
Squaring the rewards can be seen as a determinis-
tic (policy-independent) reward transformation. Thus,
Mπ can be learned by adapting any algorithm that can
be used for learning V π, and any accuracy guarantees
(e.g. finite-time bounds) on the learned estimate of
V π can be adapted for Mπ; we would just need to
consider that the range of values of the step-reward
is different. A natural choice would be to learn both
functions in parallel using the same algorithm and the
same data. The factored method involves estimating
V π, Mπ, and Jπ, and then plugging them in (6) to ob-
tain an estimate of V λπ . Note that this approach bears
some resemblance to the approach adopted in (Tamar
et al., 2016) for estimating the variance of the reward
to go. However, the approach in our case is simpler.
This is mainly because the three quantities to be esti-
mated (namely V π, Mπ, and Jπ) can be learned sepa-
rately using standard methods, and only combined at
the end via (6).

3.3 Monte-Carlo Estimation of the Expected
Return

No matter which policy evaluation method one chooses
to use, the estimation of the expected return Jπ is
a crucial step. We will adopt a simple Monte-Carlo
procedure for estimating Ĵπ. In this procedure, we
simulate L trajectories each truncated at a fixed hori-
zon of TJ steps, and then average the (normalized)
truncated returns from these trajectories. That is, if
Gi :=

∑TJ−1
t=0 γtR(si,t, ai,t) denotes the truncated re-

turn from trajectory i, then Ĵπ is given by:

Ĵπ :=
1

L

L−1∑
i=0

(1− γ)Gi.

Note that Ĵπ is not necessarily an unbiased estimate
of Jπ since we are truncating the returns. This bias,
however, can be arbitrarily reduced by making the tra-
jectories long enough. Also, we will use only a single
estimate of Jπ in our algorithms, which can introduce
bias due to the involvement of Jπ in squared terms in
both policy evaluation methods. These issues will be
taken into account in our analysis.

2It is the second moment of the step reward R(s′, a′)
(where s′ ∼ dπ(·|s) and a′ ∼ π(·|s′)), not of the return
when starting from s.

3.4 The Critic Algorithm

We will extend the analysis in (Xu et al., 2020) con-
ducted over the actor-critic algorithm in the risk-
neutral setting to our mean-volatility problem. We
start by describing our extension of the critic. In (Xu
et al., 2020), the critic is a temporal difference algo-
rithm that uses linear function approximation. More
specifically, they use a mini-batch version of linear
TD(0) in which a mini-batch of samples is used to per-
form the updates instead of just a single sample. Their
motivation for adopting mini-batch updates is that the
iterates can be driven arbitrarily close, in expectation,
to the TD fixed point by increasing the mini-batch size
while using a fixed step-size. Using this approach, they
were able prove a better sample complexity than that
provided in other works in the literature (e.g. (Bhan-
dari et al., 2018)).

If we are to use the direct method, our aim will be
to use that algorithm to learn V λπ by transforming the
rewards using R̂λπ (which depends on Ĵπ). If we are
to use the factored method instead, we can learn V π

by directly using the algorithm, and learn Mπ in the
same manner except that we square the rewards. For
all three functions, we will consider a linear approx-
imation scheme where candidate functions belong to
the function space {fω : ω ∈ Rdω and fω(.) = ω⊺ϕ(.)},
where φi : S −→ R, i = 1, . . . , dω. are basis functions
defined over the states, and ϕ(.) := (φ1(.), . . . , φdω (.))

⊺

is the corresponding feature mapping.

Algorithm 1 is a generalization of Algorithm 2 in (Xu
et al., 2020)3, where the difference is that we get to
choose the reward function fR to be used in the algo-
rithm. This could be:

• fR(s, a) = R(s, a), if we are learning V π.

• fR(s, a) = R2(s, a), if we are learning Mπ.

• fR(s, a) = R(s, a) − λ(R(s, a) − Ĵπ)
2, if we are

learning V λπ using the direct method.4

Note that in the last case, fR is a function of Ĵπ and
λ, which subsequently become parameters of the al-
gorithm. As for the rest of the parameters, Tc is the
number of iterations, M is the mini-batch size, and β
is the step-size.

3Note that, unlike in (Xu et al., 2020), we use ω for the
critic’s parameters and the more common choice of θ for
the policy’s parameters.

4We refer to this version of the algorithm as direct mini-
batch TD.
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Algorithm 1 Mini-batch TD

1: Input: sini, θ, ϕ(·), γ, β, Tc,M, fR
2: Initialize: ω0

3: Set s−1,M = sini
4: for k = 0, . . . , Tc − 1 do
5: sk,0 = sk−1,M .
6: for j = 0, . . . ,M − 1 do
7: ak,j ∼ πθ(sk,j), sk,j+1 ∼ P (.|sk,j , ak,j)
8: R̃k,j = fR(sk,j , ak,j)

9: δk,j = R̃k,j + γϕ(sk,j+1)
⊺ωk − ϕ(sk,j)

⊺ωk
10: end for
11: ωk+1 = ωk + β 1

M

∑M−1
j=0 δk,jϕ(sk,j)

12: end for
13: Output: ωTc , sk,M

3.5 The Actor Algorithm

In (Xu et al., 2020), they adopt an advantage ac-
tor critic (A2C) approach, where they also use mini-
batches to perform the stochastic gradient ascent up-
dates. This means that the policy updates take the
following from:

θt+1 = θt + α
1

B

B−1∑
i=0

δt,i∇θ log πθt(at,i|st,i), (8)

where B is the mini-batch size, α is the step-size,
δt,i = R(st,i, at,i) + γV̂t(st,i+1)− V̂t(st,i) is the tempo-

ral difference (TD) error at the ith step, and V̂t is the
critic learned at iteration t. Note that δt,i is, in effect,
an estimate of the advantage function at (st,i, at,i).
Thanks to the policy gradient expression of the mean-
volatility (see (5)), adapting this approach to our case
would just involve using the (estimated) transformed
reward and the (estimated) transformed value function
in place of their risk-neutral counterparts in the TD-
error. To collect the samples of the mini-batch, the
agent interacts with a slightly modified MDP charac-
terized by the following transition kernel:

P̃ (·|s, a) = γP (·|s, a) + (1− γ)µ0(·),

where P is the transition kernel of the original MDP.
That is, at each step, the next state is sampled accord-
ing to the original kernel with probability γ, while we
draw the next state from the initial state distribution
(i.e. restart) with probability 1−γ. This sampling pro-
cess causes the encountered states to be distributed, at
steady-state, according to the discounted state distri-
bution (Thomas, 2014). While this is indeed the de-
sired distribution of states (see (5)), a side effect is that
the next state (st+1) utilized in the TD-error expres-
sion is now sampled from P̃ (·|st, at), whereas it should
be sampled from P (·|st, at). This introduces a subtle
bias in the algorithm, which is not accounted for in the

analysis of (Xu et al., 2020). To remedy this, we em-
ploy a slightly altered sampling process. At any time
step t, consider two different random variables for the
next state, namely, st+1 and s′t+1, with different dis-
tributions. The latter is distributed according to the
standard kernel (i.e., s′t+1 ∼ P (·|st, at)), while st+1 is
sampled from the following variant of the modified ker-
nel5 P̃ (·|st, at, s′t+1) := γδs′t+1

(·) + (1 − γ)µ0(·). That

is, with probability γ, st+1 is the same as s′t+1, and
with probability 1 − γ, st+1 is drawn from the initial
state distribution. In any case, s′t+1 is the one we use
as the next state in the TD-error, whereas st+1 is the
state from which we resume sampling the rest of the
actor mini-batch6. With the proposed modification,
the analysis of (Xu et al., 2020) remains largely appli-
cable, we just need to account for the extra performed
sampling when we consider the sample complexity of
the algorithm.

Algorithm 2 demonstrates our proposed adaptation
of the mini-batch actor-critic algorithm to the mean-
volatility setting. In the algorithm description, we
used that (for any state-action pair) ψθ(s, a) :=
∇ log πθ(a|s), which is referred to as the score func-
tion of policy πθ. Note that the algorithm leaves the
choice of the critic procedure open. In particular, if we
want to use the direct method, then we can call the
mini-batch TD algorithm with fR(s, a) = R(s, a) −
λ(R(s, a) − Ĵt)

2. If we name the learned parameter
vector ωt, then we can set V̂ λt (s) := ϕ(s)⊺ωt,∀s ∈ S.
If we want to use the factored method, we can call
the mini-batch TD algorithm with fR(s, a) = R(s, a)
and fR(s, a) = R2(s, a) for learning V̂t and M̂t respec-
tively7. If we then denote by ωvt and ωmt the learned
parameter vectors for V̂t and M̂t respectively, we can
set (∀s ∈ S):

V̂ λt (s) = (1 + 2λĴt)ϕ(s)
⊺ωvt − λϕ(s)⊺ωmt − λ

1− γ
Ĵ2
t .

Note that the algorithm takes L and TJ as parame-
ters, which denote the number of trajectories and the
number steps per trajectory used in the Monte-Carlo
estimation of the expected return, which we have de-
scribed before.

3.6 General Assumptions

Before describing our results, we highlight the main
required technical assumptions.

5Here, δ is the Dirac delta function.
6Note that the proposed sampling process does not re-

quire a generative model, it only requires that we can halt
the trajectory at any time and restart from the initial state
distribution.

7In practice, one would use the same sample path for
learning both functions.
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Algorithm 2 Mini-batch Mean-Volatility Actor-
Critic (Mini-batch MVAC)

1: Input: Policy Class πθ, ϕ(·), µ0(·), λ, γ, L, TJ ,
T , B, α.

2: Initialize: θ0, s−1,B ∼ µ0(·)
3: for t = 0, . . . , T − 1 do
4: sini = st−1,B

5: Estimate J:
6: Ĵt = Monte-Carlo-J(πθt , γ, L, TJ).
7: Estimate the Critic V̂ λt (utilizing Ĵt, sini).
8: Set st,0 as last state from the critic sampling.
9: Actor mini-batch sampling:

10: for i = 0, . . . , B − 1 do
11: at,i ∼ πθ(st,i)
12: s′t,i+1 ∼ P (·|st,i, at,i)
13: st,i+1 ∼ P̃ (·|st,i, at,i, s′t,i+1)

14: R̃t,i = R(st,i, at,i)− λ(R(st,i, at,i)− Ĵt)
2

15: δt,i = R̃t,i + γV λt (s
′
t,i+1)− V λt (st,i)

16: end for
17: Actor update:
18: θt+1 = θt + α 1

B

∑B−1
i=0 δt,i ψθt(st,i, at,i)

19: end for
20: Output: θT̂ with T̂ chosen uniformly from

{1, . . . , T}.

Assumption 1. ∀(s, a) ∈ S ×A:

(i) |R(s, a)| ≤ Rmax.

(ii) πθ(a|s) is differentiable w.r.t. θ.

(iii) ∃ Cψ > 0 : ∀θ ∥ψθ(s, a)∥2 ≤ Cψ.

(iv) ∃ Lψ > 0 : ∀θ1, θ2 ∥ψθ1(s, a) −
ψθ2(s, a)∥2 ≤ Lψ∥θ1 − θ2∥2.

(v) ∃ Cπ > 0 : ∀θ1, θ2 ∥πθ1(.|s) −
πθ2(.|s)∥TV ≤ Cπ∥θ1 − θ2∥2,

where, for a probability density function q(.),
∥q(.)∥TV := 1

2

∫
s
|q(ds)|.

Assumptions 1.iii and 1.iv assert that, for any policy in
our class of policies, the score function is bounded and
smooth, while assumption 1.v asserts that the chosen
class of policies is smooth in the described sense. Note
that by Assumption 1.i and the definition of Jπ in (1),
∀(s, a) ∈ S ×A and λ ≥ 0, we have that∣∣R(s, a)− λ(R(s, a)− Jπ)

2
∣∣ ≤ Rλ,max,

where Rλ,max := Rmax + 4λR2
max. We also make the

following assumption on the basis functions and the
feature mapping that we use to learn V λπ .

Assumption 2. ∃ Cϕ > 0 : ∀s ∈ S ∥ϕ(s)∥2 ≤ Cϕ.
Furthermore, the basis functions φi(·), i = 1, ..., dω are
mutually linearly independent.

The following is an assumption on the regularity of the
MDP.

Assumption 3 (Uniform Ergodicity, Adapted from
(Xu et al., 2020)). For any θ ∈ Rdθ , consider the MDP
with policy πθ and the transition kernel P (·|s, a) or
P̃ (·|s, a) = γP (·|s, a) + (1 − γ)ξ(·), where ξ(·) can be
µ0 or P (·|ŝ, â) for any (ŝ, â) ∈ S × A. Let µπθ be the
stationary state distribution of the MDP when acting
with policy πθ. There exists constants κ > 0 and ρ ∈
(0, 1) such that:

sup
s∈S

∥P(st ∈ ·|s0 = s)− µπθ (·)∥TV ≤ κρt,∀t ≥ 0.

4 MAIN RESULTS

In this section, we present the the main finite sample
analysis results. We will first consider the analysis of
the direct mini-batch TD algorithm for learning the
transformed value function, and then we will consider
the full mean-volatility actor-critic procedure, where
the critic is learned using direct mini-batch TD. The
analysis of the factored method case is provided in
Appendix B.

4.1 Direct Mini-Batch TD Analysis

In the direct method, if Ĵ (and subsequently, the
estimated transformed reward function) is fixed, we
can invoke the results from (Tsitsiklis and Van Roy,
1997) about the convergence of TD learning with
linear function approximation. In particular, if we

define8 b(Ĵ) := Eµθ
[
ϕ(st)R

λ(st, at, Ĵ)
]
, and A :=

Eµθ [ϕ(st)(γϕ(st+1)− ϕ(st))
⊺], then the algorithm con-

verges to a point ω∗
Ĵ
such that Aω∗

Ĵ
+ b(Ĵ) = 0. How-

ever, our goal is to describe the convergence rate, in
expectation, of the critic to ω∗

J , where J is the true
expected return of the policy under evaluation, not to
ω∗
Ĵ
. Moreover, Ĵ is not fixed; it is a random variable

whose properties depend on the number of trajecto-
ries L (and their length TJ) used to estimate it. The
main idea of the analysis is thus to bound how far we
expect ω∗

Ĵ
to be from ω∗

J in terms of L and TJ . Before

presenting the bound, we state the following result9,
which is an adaptation of a similar statement in (Xu
et al., 2020). There exists a positive constant χA such
that, for any ω ∈ Rdω and any value of our (bounded)
estimate Ĵ , we have that

⟨(ω − ω∗
Ĵ
), A(ω − ω∗

Ĵ
)⟩ ≤ −χA

2

∥∥ω − ω∗
Ĵ

∥∥2
2
.

8Here, µθ is the stationary distribution of policy πθ,
which is the policy under evaluation. Note that since πθ is
fixed in this subsection, we drop the θ subscripts from the
notation for simplicity.

9This can be seen as a consequence of Lemmas 1 and 3
in (Bhandari et al., 2018).
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Theorem 1 (Critic’s Bound). Suppose Assumptions
1 to 3 hold, and suppose we are given a policy πθ (with
normalized expected return J) and risk parameter λ.
Suppose that a Monte-Carlo estimate Ĵ is obtained for
πθ as described before, and then Algorithm 1 is run
for Tc steps using fR(s, a) = R(s, a)−λ(R(s, a)− Ĵ)2.
Then, for β ≤ min

{
O(χA),O(χ−1

A )
}
, we have that

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤

4∥ω0 − ω∗
J∥

2
2(1−O(χAβ))

Tc +O
(
χ−1
A + β

χAM

)
+

2

σ̄2

[
1 + 2(1−O(χAβ))

Tc
]
O
(
λ2
(
γ2TJ +

1

L

))
,

where ωĴTc is the parameter vector obtained after Tc

iterations of the algorithm while using Ĵ to perform the
reward transformation, σ̄ is the smallest singular value
of the matrix A, and the expectation is over both the
Monte-Carlo estimation of Ĵ and the TD algorithm.
Furthermore, for a sufficiently small ϵ > 0, to achieve
an ϵ-accurate solution, that is,

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ ϵ,

the sample complexity of the algorithm is

TcM + LTJ = O
(
ϵ−1log

(
ϵ−1
))
.

The proof of this theorem and the next one can be
found in Appendix A. The first two terms of the bound
are (up to constants) the risk-neutral bound of (Xu
et al., 2020). The third term primarily quantifies the
inaccuracy of Ĵ , and decays by increasing L and TJ .
Interestingly, the obtained sample complexity is the
same as the risk-neutral version in (Xu et al., 2020).
In fact, only the third term depends on λ, and upon
setting it to zero, the risk-neutral bound is recovered.
Although a higher degree of risk-aversion (i.e., greater
λ) has a negative impact on the bound, it does not
affect the order of the required number of samples.
It is important to note that the conducted analysis
requires that the transformed value function and the
expected return are estimated using different data. We
highlight in Appendix C the challenges that arise when
analyzing the case where the same data is used for
estimating both quantities.

4.2 Mean-Volatility Actor-Critic Analysis

Since η(θ)10 is, in general, a non-concave function of
θ, we do not expect that we reach a global maximum
using a gradient ascent algorithm. Instead, we strive

10η(θ) := ηθ.

to reach a stationary point of η(θ), and the goal of the

analysis is thus to bound E
[∥∥∇η(θT̂ )∥∥22] in terms of

the number of used samples. Crucial to the analysis
of the actor is for the gradient of η(θ) to be Lipschitz
continuous. That is, for any θ1, θ2 ∈ Rdθ , there exists
a real constant Lη ≥ 0 such that

∥∇η(θ1)−∇η(θ2)∥2 ≤ Lη∥θ1 − θ2∥2.

The proof of this statement and other intermediary
results can be found in Appendix A. Since the actor
relies on the critic for the estimation of the gradient,
the convergence of the actor naturally relies on the
accuracy of the critic. However, the analysis of the
last section was only concerned with how far the critic
was from the TD fixed point. We will thus need an
additional notion to describe the approximation error
incurred due to not only using a linear function, but
also for using TD learning, which, in general, leads
to a fixed point different from the best approxima-
tion in our space of candidate function (Tsitsiklis and
Van Roy, 1997). Thus, we define the following quan-
tity to be used in the actor’s bound:

ξappr := sup
θ∈Rdθ

E
s∼dµ0,πθ (·)

[∣∣V λπθ (s)− ϕ(s)
⊺
ω∗
Jθ

∣∣2].
Theorem 2 (Actor’s Bound). Suppose Assumptions 1
to 3 hold, and suppose we run Algorithm 2 for T iter-
ations with the critic learned as described in Theorem
1, then if α = 1

8Lη
, we have:

E
[∥∥∇η(θT̂ )∥∥22] ≤ T−1∑

t=0

E
[
∥ω∗

Jt − ωt∥22
]
O
(
1

T

)
+O

(
1

B

)
+O(ξappr) +O

(
Lη
T

)
+O

(
λ2
(
γ2TJ +

1

L

))
,

where ωt is the parameter vector of the learned critic
at the tth iteration, and ω∗

Jt
is the TD fixed point for

the true transformed value function of policy πθt . Fur-
thermore, for a sufficiently small ϵ > 0, to achieve an
ϵ-accurate stationary point, that is,

E
[∥∥∇η(θT̂ )∥∥22] ≤ ϵ+O(ξappr),

the total sample complexity is:

T ((2− γ)B +MTc + LTJ) = O
(
ϵ−2 log

(
ϵ−1
))
.

The bound in Theorem 2 is made up of five terms. The
first is proportional to the average (across iterations)
of how far we expect the critic to be from the TD fixed
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Figure 1: This figures reports the performance of the mini-batch MVAC algorithm in the Point-Reacher envi-
ronment, and a comparison with TRVO on the same environment. Plots (a), (b), and (c) show the progress of
the expected return, reward volatility, and mean-volatility (over 60 runs) as the number of samples increases for
three values of λ. Plots (d), (e), (g), and (h) compare the progress of MVAC and TRVO for two values of λ up
to 3.75e5 samples. Plot (f) shows the approximated Pareto frontiers (for six values of λ between 0 and 1.2) in
terms of expected return and reward volatility, while plot (i) shows the same but for the return variance.

point of the true transformed value function. This is
precisely the quantity bounded in Theorem 1. The sec-
ond term is related to the error due to the variance of
the mini-batch estimates of the gradient, and it decays
by increasing the mini-batch size. The third term is
the approximation error discussed before. The fourth
one is an error term that decays as the number of actor
iterations increases. The last term, much like the third
term in Theorem 2, represents the error due to the in-
accuracy of Ĵ , and it decays by increasing L and TJ .
Compared to the bound in (Xu et al., 2020), our bound
assumes a similar form (albeit some of the quantities
are naturally defined differently in our setting), with
the exception of the last term. Although estimating
the expected return requires extra sampling, the the-

orem asserts that the sample complexity is still not
worsened compared to the risk neutral case.

5 EXPERIMENTS

In this section we empirically validate our algorithms
by means of an experimental analysis on an envi-
ronment called Point-Reacher. In this environment,
the agent controls a point mass that moves along the
real line in the interval [−10, 10], by taking actions
in [−2, 2], denoting the size and the direction of the
desired step. The target location is at point 0, and
the considered problem is of the continuing type. The
closer the agent is to point 0, the larger the received
reward. And while larger actions might take the agent
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faster to the goal zone, they lead to higher variance of
the reached state and the received reward.

We tested11 the performance of Algorithm 2 in this en-
vironment, where the used critic is again direct mini-
batch TD. We considered Gaussian policies, where the
mean and standard deviation are linear functions of
the state. The features we used for the states are
Gaussian radial basis functions. The critic also used
these same features. A more detailed description of
the environment and the used parameters is provided
in Appendix A. The first row of Figure 1 shows the
performance of mini-batch MVAC in terms of expected
return, reward volatility, and mean-volatility for three
values of the risk-aversion parameter lambda. More-
over, in plots (f) and (i) of the same figure, the black
points form approximated Pareto frontiers obtained by
the algorithm for the reward volatility/expected return
and return variance/expected return problems respec-
tively. It has been shown in (Bisi et al., 2020b; Zhang
et al., 2021) that reward volatility minimization can
also be employed as a proxy for return variance reduc-
tion. It can be seen then that the algorithm is able
to obtain different trade-offs between performance (in
terms of expected return) and risk (in terms of either
reward volatility or return variance).

While the algorithms presented in this paper are sim-
ple enough to facilitate the analysis and keep it fo-
cused on the more interesting and less explored aspects
of the problem, it is still interesting to compare our
empirical results with a more advanced algorithm like
TRVO (Bisi et al., 2020b) which optimizes the same
objective. Hence, in plots (d), (e), (g), and (h) we
compare the performance of mini-batch MVAC with
TRVO for two values of lambda but only up to 3.75e5
samples, at which point TRVO has already converged.
It can be easily seen that TRVO converges a lot faster
(mostly due to the fact that MVAC needs a slower
learning rate) and enjoys a smoother learning process.
In plots (f) and (i), the approximated Pareto frontiers
achieved by TRVO are shown in green. Interestingly,
the frontiers obtained by the two algorithms are dif-
ferent although they use the same policy space. Since
we stopped MVAC after 3M steps, we conjecture that
the optimization may have reached a plateau, and not
a stationary point, thus, it could have obtained the
same frontier of TRVO, with a larger number of train-
ing steps.

6 CONCLUSIONS

The goal of this paper was to shed light on the im-
pact of risk-aversion on the sample complexity of RL

11The code of the performed experiments can be found
at https://github.com/Khaled-Eldowa/MVAC.

algorithms. We analysed the mean-volatility case,
focusing, in particular, on an actor-critic algorithm.
We developed two different methods for mean volatil-
ity policy evaluation: the factored method and the
direct method. Firstly, we provided a finite-sample
bound for the critic algorithm, which applied the di-
rect method to a mini-batch TD algorithm. Secondly,
we extended the analysis to the actor procedure, deriv-
ing the sample-complexity of the whole algorithm. Our
results show that while increasing risk-aversion nega-
tively affects the error bounds, the sample complexity
of the algorithms remains of the same order as that
of their risk-neutral counterparts. Finally, we tested
the mini-batch MVAC algorithm on a stochastic envi-
ronment to assess its soundness. We showed that the
algorithm is effective in obtaining different trade-offs
between the expected return and the reward-volatility
according to the desired level of risk-aversion. A chal-
lenging future research direction could be analysing
the case in which a single batch of samples is used for
each iteration, in order to discover the impact of the
resulting bias. Furthermore, it would be interesting to
analyse the performance of more powerful algorithms
like TRVO in order to understand how their empiri-
cally superior performance can be justified by theory.
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A Proofs of the Main Results

A.1 Auxiliary Lemmas

Lemma 1. For a generic random variable X with mean E[X] and sample mean X̂ = 1
N

∑N
i=1Xi, where X1 . . . XN

are i.i.d. copies of X, we have that

Var[X̂2] = 4E[X]2
µ2

N
+

2µ2
2 + 4µ3 E[X]

N2
+
µ4 − 3µ2

2

N3
,

where µi is X
′s ith central moment defined as: µi = E[(X − E[X])i].

Proof.

Var[X̂2] = E[X̂4]− E[X̂2]2

= E[X̂4]− (E[X]2 +Var[X̂])2

= E[X̂4]− E[X]4 − 2E[X]2Var[X̂]−Var[X̂]
2

= E[X̂4]− E[X]4 − 2E[X]2
Var[X]

N
− Var[X]

2

N2

= E[X̂4]− E[X]4 − 2E[X]2
µ2

N
− µ2

2

N2

From (Angelova, 2012), we have:

E[X̂4] = E[X]4 + 6E[X]2
µ2

N
+

3µ2
2 + 4µ3 E[X]

N2
+
µ4 − 3µ2

2

N3
.

The result follows by plugging this back in the previous equation.

Lemma 2. Consider d real valued vectors a1, . . . , ad ∈ Rn, we have that:

(i) ∀i, j ∈ {1, . . . , d} : |⟨ai, bj⟩| ≤ 1
2

(
∥ai∥22 + ∥bi∥22

)
.

(ii)
∥∥∥∑d

i=1 ai

∥∥∥2
2
≤ d

∑d
i=1 ∥ai∥

2
2

Proof. For any i, j we have:

∥ai + aj∥22 = ∥ai∥22 + ∥aj∥22 + 2⟨ai, aj⟩ ≥ 0, and ∥ai − aj∥22 = ∥ai∥22 + ∥aj∥22 − 2⟨ai, aj⟩ ≥ 0,

hence, trivially:

−1

2
∥ai∥22 −

1

2
∥aj∥22 ≤ ⟨ai, aj⟩, and

1

2
∥ai∥22 +

1

2
∥aj∥22 ≥ ⟨ai, aj⟩,

which proves (i).

By repeatedly applying (i) to the cross-terms of
∥∥∥∑d

i=1 ai

∥∥∥2
2
, we obtain:

∥∥∥∥∥
d∑
i=1

ai

∥∥∥∥∥
2

2

=

d∑
i=1

∥ai∥22 + 2

d∑
i>j

⟨ai, aj⟩ ≤
d∑
i=1

∥ai∥22 +
d∑
i>j

(
∥ai∥22 + ∥aj∥22

)
= d

d∑
i=1

∥ai∥22,

since each index is counted d− 1 times in the summation.

Lemma 3. Suppose A is an n× n invertible matrix, then∥∥A−1
∥∥
2
=

1

mini σi
,

where, for a matrix, ∥·∥2 denotes its spectral norm, and σi is the ith singular value of A.
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Proof. 12 By Theorem 4.3 in (Dahleh et al., 2004), we have that

min
i
σi = inf

x ̸=0

∥Ax∥2
∥x∥2

.

And since A is invertible, mini σi > 0. We then have that

1

mini σi
= sup

x ̸=0

∥x∥2
∥Ax∥2

= sup
A−1y ̸=0

∥A−1y∥2
∥y∥2

= sup
y ̸=0

∥A−1y∥2
∥y∥2

= ∥A−1∥2,

where we have made the substitution Ax = y and utilized the fact that A−1y = 0 iff y = 0 since A is invertible.

A.2 Analysing the Monte-Carlo Estimation of the Expected Return

In Subsection 3.3, we described the Monte-Carlo procedure that we adopted for estimating the expected return.
The procedure is summarized in Algorithm 3. The idea is to average the (normalized) returns from L simulated

Algorithm 3 Monte-Carlo-J

1: Input: π, γ, L, TJ
2: Initialize: G̃0, . . . , G̃L−1 = 0
3: for i = 0, . . . , L− 1 do
4: s0 ∼ µ0(·)
5: for t = 0, . . . , TJ − 1 do
6: at ∼ π(st), st+1 ∼ P (·|st, at)
7: G̃i = G̃i + γtR(st, at)
8: end for
9: end for

10: Ĵ = 1
L

∑L−1
i=0 (1− γ)G̃i

11: Output: Ĵ

trajectories each truncated at TJ steps. Our goal here is to derive finite-time bounds on E[(J − Ĵ)2] and
E[(J2 − Ĵ2)2], where J is the true expected return (as defined in (1)) and Ĵ is the estimated one13. That is, we
want to bound these quantities in terms of L and TJ . These bounds shall be used when analyzing both the critic
and the actor algorithms. We can start by defining the following quantities:

• G0:TJ−1: a random variable representing the discounted sum of rewards from the beginning of a trajectory
up to time TJ − 1 multiplied by a factor of 1− γ. That is:

G0:TJ−1 := (1− γ)

TJ−1∑
t=0

γtR(st, at).

We denote its expected value by

G0:TJ−1 := (1− γ) E
st+1∼P (·|st,at)

at∼π(·|st)

[
TJ−1∑
t=0

γtR(st, at)

∣∣∣∣s0 ∼ µ(·)

]
.

Note that we have, by Assumption 1.i, that |G0:TJ−1| ≤ (1− γTJ )Rmax ≤ Rmax.

12The following proof is taken from https://scicomp.stackexchange.com/q/10465.
13To simplify the notation, we drop the dependence on the policy (i.e. π) since it is fixed in this setting.

https://scicomp.stackexchange.com/q/10465


Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning

• ζi: i
th central moment14 of G0:TJ−1.

• Gi : i = 0, . . . , L − 1: i.i.d. versions of G0:TJ−1 corresponding to each of the L simulated trajectory. This
way, we have that:

Ĵ =
1

L

L−1∑
i=0

Gi.

• GTJ :∞ : a random variable representing the discounted sum of rewards collected starting from time TJ
onward multiplied by a factor of γTJ (1− γ). That is:

GTJ :∞ := (1− γ)γTJ
∞∑
t=0

γtR(st+TJ , at+TJ ) = (1− γ)

∞∑
t=TJ

γtR(st, at).

Its expected value can then be defined as:

GTJ :∞ := (1− γ) E
st+1∼P (·|st,at)

at∼π(·|st)

[ ∞∑
t=TJ

γtR(st, at)

∣∣∣∣sTJ ∼
∫
S

p(s0
TJ−−→ ·)µ0(ds0)

]
.

This way, we have that J = G0:TJ−1 +GTJ :∞. Also, by Assumption 1.i, |GTJ :∞| ≤ γTJRmax ≤ Rmax.

The following simple lemma provides upper bounds on the second, third, and fourth central moments of G0:TJ−1.
We will need these bounds in the two forthcoming propositions.

Lemma 4. Suppose that Assumption 1.i holds. With ζi denoting the ith central moment of G0:TJ−1, we have

i. ζ2 ≤ R2
max.

ii. |ζ3| ≤ 4
√
3

9 R3
max ≤ R3

max.

iii. ζ4 ≤ 4
3R

4
max ≤ 2R4

max.

Proof. For a random variable X upper-bounded by M and lower bounded by m, with µi denoting its ith central
moment, we have by Popoviciu’s inequality that

µ2 ≤ (M −m)2

4
.

Thus, we have that

ζ2 ≤ (2Rmax)
2

4
= R2

max,

since we can takeM = Rmax and m = −Rmax, proving the first item. For the second item we have from Theorem
(2.3) in (Sharma et al., 2015) that

|µ3| ≤
(M −m)3

6
√
3

.

Which means that in our case we shall have that

|ζ3| ≤
(2Rmax)

3

6
√
3

=
8R3

max

6
√
3

=
4
√
3

9
R3

max ≤ R3
max.

Finally, for the third item, Theorem (2.1) in (Sharma et al., 2015) states that

µ4 ≤ (M −m)4

12
.

And for us,

ζ4 ≤ (2Rmax)
4

12
≤ 4

3
R4

max ≤ 2R4
max.

14For a random variable X, its ith central moment is E[(X − E[X])i]. Note that the second central moment of X is its
variance.
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Proposition 1. Suppose, for a given policy, an estimate Ĵ is obtained using Algorithm 3, and that Assumption
1.i holds, then we have

E[(J − Ĵ)2] ≤ γ2TJR2
max +

R2
max

L
.

Proof. We begin with a bias-variance decomposition:

E[(J − Ĵ)2] = E[(J − E[Ĵ ] + E[Ĵ ]− Ĵ)2]

= E[(J − E[Ĵ ])2] + E[(E[Ĵ ]− Ĵ)2]

= (J − E[Ĵ ])2 + V ar(Ĵ),

where the second equality holds since 2(J −E[Ĵ ])E[(E[Ĵ ]− Ĵ)] = 0. The first term represents the (squared) bias
of Ĵ , which, in general, is not zero since we are using truncated returns. Since Ĵ is an average of instances of
G0:TJ−1, its expected value is the same as that of G0:TJ−1, which is G0:TJ−1. Moreover, we remarked earlier that
J = G0:TJ−1 +GTJ :∞, this then means that

|J − E[Ĵ ]| = |J −G0:TJ−1| = |GTJ :∞| ≤ γTJRmax,

Thus, (J−E[Ĵ ])2 ≤ γ2TJR2
max. As for the variance, since Ĵ is the mean of L samples ofG0:TJ−1, then V ar(Ĵ) =

ζ2
L .

Combining both terms and applying Lemma 4.i, we get

E[(J − Ĵ)2] ≤ γ2TJR2
max +

ζ2
L

≤ γ2TJR2
max +

R2
max

L
.

Proposition 2. Suppose, for a given policy, an estimate Ĵ is obtained using Algorithm 3, and that Assumption
1.i holds, then we have

E[(J2 − Ĵ2)2] ≤ 4R4
maxγ

2TJ + 4R2
max

ζ2
L

+
3ζ22 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ22
L3

≤ 4R4
maxγ

2TJ +R4
max

(
4

L
+

7

L2
+

5

L3

)
.

Proof. We, again, start with a bias-variance decomposition:

E[(J2 − Ĵ2)2] = E[(J2 − E[Ĵ2] + E[Ĵ2]− Ĵ2)2]

= E[(J2 − E[Ĵ2])2] + E[(E[Ĵ2]− Ĵ2)2]

= (J2 − E[Ĵ2])2 + V ar(Ĵ2).

Starting with the bias term, we proceed as follows:

|J2 − E[Ĵ2]| =
∣∣∣∣J2 − E[Ĵ ]2 − ζ2

L

∣∣∣∣
≤ |J2 − E[Ĵ ]2|+ ζ2

L

=
∣∣∣(G0:TJ−1 +GTJ :∞)2 −G

2

0:TJ−1

∣∣∣+ ζ2
L

=
∣∣GTJ :∞(2G0:TJ−1 +GTJ :∞)

∣∣+ ζ2
L

≤ γTJRmax

(
2(1− γTJ )Rmax + γTJRmax

)
+
ζ2
L

= γTJ (2− γTJ )R2
max +

ζ2
L

≤ 2γTJR2
max +

ζ2
L
,
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where the first equality holds since, for a random variable X, E[X2] = E[X]2 + V ar(X). We then have that

(J2 − E[Ĵ2])2 ≤ (2γTJR2
max +

ζ2
L
)2 = 4γ2TJR4

max + 4γTJR2
max

ζ2
L

+
ζ22
L2
.

For the variance, we apply Lemma 1:

V ar(Ĵ2) = 4G
2

0:TJ−1

ζ2
L

+
2ζ22 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ22
L3

.

Putting everything together, we have

E[(J2 − Ĵ2)2] ≤ 4γ2TJR4
max + 4γTJR2

max

ζ2
L

+
ζ22
L2

+ 4G
2

0:TJ−1

ζ2
L

+
2ζ22 + 4ζ3G0:TJ−1

L2
+
ζ4 − 3ζ22
L3

≤ 4γ2TJR4
max + 4(G

2

0:TJ−1 + γTJR2
max)

ζ2
L

+
3ζ22 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ22
L3

≤ 4γ2TJR4
max + 4R2

max((1− γTJ )2 + γTJ )
ζ2
L

+
3ζ22 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ22
L3

= 4γ2TJR4
max + 4R2

max(1 + γ2TJ − γTJ )
ζ2
L

+
3ζ22 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ22
L3

≤ 4γ2TJR4
max + 4R2

max

ζ2
L

+
3ζ22 + 4|ζ3|Rmax

L2
+
ζ4 − 3ζ22
L3

.

Furthermore, we can apply Lemma 4 and get

E[(J2 − Ĵ2)2] ≤ 4γ2TJR4
max +

4R4
max

L
+

3R4
max + 4R4

max

L2
+

2R4
max + 3R4

max

L3

= 4γ2TJR4
max +

(
4

L
+

7

L2
+

5

L3

)
R4

max.

A.3 Proof of the Critic’s Bound

In this section, we develop the proof of Theorem 1, which provided a finite time bound for the direct mini-batch
TD algorithm15. In Section 4.1, we defined the two quantities A and b(Ĵ), where Ĵ is some estimate of the
expected return. These quantities are relevant for describing the expected behaviour of the algorithm at steady-
state, and characterizing its fixed point. Analogously, we can define the following quantities (for the ith sample
in the mini-batch of the tth iteration) bi,t(Ĵ) := ϕ(si,t)R

λ(si,t, ai,t, Ĵ), and Ai,t := ϕ(si,t)(γϕ(si,t+1) − ϕ(si,t))
⊺.

Using these definitions, the update rule at the ith iteration of the algorithm can be written as

ωi+1 = ωi + β

(
1

M

M−1∑
t=0

bi,t(Ĵ) +
1

M

M−1∑
t=0

Ai,t ωi

)
.

To be able to leverage the risk-neutral results in (Xu et al., 2020), we make the following assumption:

Assumption 4. For any triple (si,t, ai,t, si,t+1) ∈ S × A × S and any Ĵ estimate bounded, in absolute value,

by Rmax, there exists real constants CA and Cb such that ∥Ai,t∥F ≤ CA and ∥bi,t(Ĵ)∥2 ≤ Cb, where ∥·∥F is the
Frobenius norm16 of a matrix.

While stated as an assumption, the previous statement is justified since Assumptions 1.i and 2 state that,
respectively, the reward function and the norm of the feature vectors are bounded. Also, note that Ĵ is bounded,

15That is, Algorithm 1 with fR(s, a) = R(s, a)− λ(R(s, a)− Ĵ)2.
16For an m×n matrix X, its Frobenius norm (Golub and Van Loan, 1996) is defined as ∥X∥F :=

√∑m
i=1

∑n
j=1|aij |2 =√∑min{m,n}

i=1 σ2
i (A), where σi(A) are the singular value of A.
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in absolute value, by Rmax if it is learned using Algorithm 3. Our assumptions should also guarantee that
for any such Ĵ , ∥ω∗

Ĵ
∥2 is uniformly upper bounded by some positive constant Cω. To see this, first note that

∥ω∗
Ĵ
∥2 = ∥A−1b(Ĵ)∥2. For an n × m matrix A, its spectral norm (or induced l2 norm) is defined as ∥A∥2 =

supx ̸=0
∥Ax∥2

∥x∥2
. This means that ∥Ax∥2 ≤ ∥A∥2∥x∥2, for any vector x ∈ Rm. For us, this means that ∥A−1b(Ĵ)∥2 ≤

∥A−1∥2∥b(Ĵ)∥2 ≤ Cb
σ̄ := Cω, where we denote by σ̄ the smallest singular value of A, and the last inequality follows

by Assumption 4 and Lemma 3. Note that, unlike CA and Cb, the matrix A and consequently σ̄ and Cω all
depend on the policy πθ under evaluation. We don’t make this dependence explicit in the notation to keep it
simple. However, since the critic’s bound is expressed in terms of these quantities, we need to define two further
quantities in order to make the bound of critic meaningful for the analysis of the full algorithm later on. Namely,
define σ̃ := infθσ̄θ and C̃ω := Cb

σ̃ , assuming of course that (for our policy class Π) σ̃ > 0. Finally, the following
assumption serves to simplify the expressions of the bounds, without loss of generality17.

Assumption 5. (i) Cψ = 1. (ii) Cϕ = 1.

In our proof, we will make use of the critic bound of (Xu et al., 2020) for the risk-neutral case. We will not
reiterate their proof here, but we can briefly mention the main idea of their approach. Suppose we are at iteration
t + 1 of the critic’s algorithm, they start by bounding18 E[∥ωt+1 − ω∗∥22] in terms of the expected error at the
previous iteration (i.e. E[∥ωt−ω∗∥22]) and the expected19 value of the squared norm of the difference between the
performed update from ωt to ωt+1 and its expected value at steady state. The latter quantity is then bounded in
terms of the mixing properties of the MDP (see Assumption 3), the mini-batch sizeM , and again, E[∥ωt−ω∗∥22].
By recursively repeating the same analysis on E[∥ωt − ω∗∥22] and the resulting terms, they obtain the following
bound (under some conditions that we will mention later on the mini-batch size and the step-size):

E[∥ωTc − ω∗∥22] ≤
(
1− χA

8
β
)Tc

∥ω0 − ω∗∥22 +
(

2

χA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM
.

The first term, which depends on the initial value of the parameter vector, decays geometrically with the number
of iteration. The second term decays with a rate of 1

M , where M is the size of the mini-batch of samples used at
each iteration. Note that the step-size is kept constant across the iterations.

As we discussed in the main paper, if we imagine using the reward transformation performed using some fixed
estimate Ĵ of the expected return, the problem at hand is akin to the risk neutral one, just with a different
reward function. We can then directly leverage a form of the bound above to establish the convergence rate
to the TD fixed point under the this reward transformation (i.e. to ω∗

Ĵ
). The proof of the next theorem uses

this idea, along with (among other things) the bounds in Propositions 1 and 2, to establish the convergence
rate of the critic to the true fixed point ω∗

J (i.e. under the true reward transformation) when Ĵ is learned using
Algorithm 3. The following theorem is a restatement of Theorem 1 which presents the bound in a explicit form.
That the algorithm has the sample complexity stated in Theorem 1 is demonstrated in a designated corollary.

Theorem 3 (Explicit Statement of the Bound in Theorem 1). Suppose Assumptions 1 to 5 hold, and suppose
we are given a policy πθ (with normalized expected return J) and risk parameter λ. Suppose that a Monte-Carlo
estimate Ĵ is obtained for πθ using Algorithm 3, and then Algorithm 1 is run for Tc steps with fR(s, a) =

R(s, a)− λ(R(s, a)− Ĵ)2. Then, for M ≥
(

2
χA

+ 2β
)

192C2
A[1+(κ−1)ρ]
(1−ρ)χA and β ≤ min

{
χA
8C2

A
, 4
χA

}
, we have that

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ 4∥ω0 − ω∗

J∥
2
2

(
1− χA

8
β
)Tc

+

(
2

χA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+
2

σ̄2

[
1 + 2

(
1− χA

8
β
)Tc]

ξJ ,

where ωĴTc is the parameter vector obtained after Tc iterations of the algorithm while using Ĵ to perform the

17Cψ and Cϕ were introduced in Assumptions 1 and 2.
18We remind the reader that, unlike in (Xu et al., 2020), we use ω for the critic’s parameters and the more common

choice of θ for the policy’s parameters.
19Note that the performed updates are random due to the stochasticity of the sampling process.
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reward transformation, ξJ := 2λ2R4
max

(
8γ2TJ + 8

L + 7
L2 + 5

L3

)
, σ̄ is the smallest singular value of the matrix A,

and the expectation is over both the Monte-Carlo estimation of Ĵ and the TD algorithm.

Proof. We begin by adding and subtracting ω∗
Ĵ
, which is the TD fixed point when using Ĵ . Note that, at this

point, ω∗
Ĵ
is a random variable due to its dependence on the estimator Ĵ .

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
= E

[∥∥∥ωĴTc − ω∗
Ĵ
+ ω∗

Ĵ
− ω∗

J

∥∥∥2
2

]
≤ 2E

[∥∥∥ωĴTc − ω∗
Ĵ

∥∥∥2
2

]
+ 2E

[∥∥ω∗
Ĵ
− ω∗

J

∥∥2
2

]
. (9)

where the inequality follows from Lemma 2.ii. Focusing on the first term, we have

E
[∥∥∥ωĴTc − ω∗

Ĵ

∥∥∥2
2

]
= E

[
E
[∥∥∥ωĴTc − ω∗

Ĵ

∥∥∥2
2

∣∣∣∣Ĵ]]. (10)

For the inner expectation, as remarked before, we can apply the risk-neutral bound from theorem 4 in (Xu et al.,

2020). Namely for M ≥
(

2
χA

+ 2β
)

192C2
A[1+(κ−1)ρ]
(1−ρ)χA and β ≤ min

{
χA
8C2

A
, 4
χA

}
, we have

E
[∥∥∥ωĴTc − ω∗

Ĵ

∥∥∥2
2

∣∣∣∣Ĵ] ≤ (1− χA
8
β
)Tc∥∥ω0 − ω∗

Ĵ

∥∥2
2
+

(
2

χA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM
,

where CA, Cb, and Cω have been defined in Assumption 4 and the paragraph that followed. Note that ∥ω0−ω∗
Ĵ
∥22

is the only part that depends on Ĵ in the previous bound. Plugging back in (10), we get that

E
[∥∥∥ωĴTc − ω∗

Ĵ

∥∥∥2
2

]
≤
(
1− χA

8
β
)Tc

E
[∥∥ω0 − ω∗

Ĵ

∥∥2
2

]
+

(
2

χA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

≤
(
1− χA

8
β
)Tc

E
[∥∥ω0 − ω∗

J + ω∗
J − ω∗

Ĵ

∥∥2
2

]
+

(
2

χA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

≤ 2
(
1− χA

8
β
)Tc

∥ω0 − ω∗
J∥

2
2 +

(
2

χA
+ 2β

)
192(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+ 2
(
1− χA

8
β
)Tc

E
[∥∥ω∗

Ĵ
− ω∗

J

∥∥2
2

]
,

where the last inequality again follows from Lemma 2.ii. Plugging back in (9), we get that

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ 4
(
1− χA

8
β
)Tc

∥ω0 − ω∗
J∥

2
2 +

(
2

χA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+

[
2 + 4

(
1− χA

8
β
)Tc]

E
[∥∥ω∗

Ĵ
− ω∗

J

∥∥2
2

]
.

(11)

Thus, we need to bound E
[∥∥∥ω∗

Ĵ
− ω∗

J

∥∥∥2
2

]
. We proceed as follows20:

E
[∥∥ω∗

Ĵ
− ω∗

J

∥∥2
2

]
= E

[∥∥∥A−1b(J)−A−1b(Ĵ)
∥∥∥2
2

]
= E

[∥∥∥A−1
(
b(J)− b(Ĵ)

)∥∥∥2
2

]
≤ 1

σ̄2
E
[∥∥∥b(J)− b(Ĵ)

∥∥∥2
2

]
, (12)

where σ̄ is the smallest singular value of A, and the last inequality holds since, as demonstrated before, for an
m×n matrix X and a vector y ∈ Rn, ∥Xy∥22 ≤ ∥X∥22∥y∥

2
2, where ∥X∥2 is the spectral norm of X. Furthermore,

20Note that our assumptions ensure that A is negative definite (Tsitsiklis and Van Roy, 1997), and the existence and

uniqueness of ω∗
Ĵ
(for any fixed Ĵ) and ω∗

J .
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we used that, by Lemma 3,
∥∥A−1

∥∥
2
= 1

σ̄ . Moving on, recall that µθ is the stationary distribution of the MDP
when using policy πθ.

Define Rλ(s, a, Ĵ) := R(s, a)− λ(R(s, a)− Ĵ)2. We then have that

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2
2
= E

[∥∥∥∥Eµθ[ϕ(st)Rλ(st, at, J)]− E
µθ

[
ϕ(st)R

λ(st, at, Ĵ)
]∥∥∥∥2

2

]

= E

[∥∥∥∥Eµθ[ϕ(st)(Rλ(st, at, J)−Rλ(st, at, Ĵ)
)]∥∥∥∥2

2

]

= E

[∥∥∥∥Eµθ[ϕ(st)(2λR(st, at)(J − Ĵ
)
+ λ

(
Ĵ2 − J2

))]∥∥∥∥2
2

]

= E

[∥∥∥∥2λ(J − Ĵ
)
E
µθ
[ϕ(st)R(st, at)] + λ

(
Ĵ2 − J2

)
E
µθ
[ϕ(st)]

∥∥∥∥2
2

]

≤ E

[
2

∥∥∥∥2λ(J − Ĵ
)
E
µθ
[ϕ(st)R(st, at)]

∥∥∥∥2
2

+ 2

∥∥∥∥λ(Ĵ2 − J2
)
E
µθ
[ϕ(st)]

∥∥∥∥2
2

]

= 8λ2 E

[(
J − Ĵ

)2∥∥∥∥Eµθ[ϕ(st)R(st, at)]
∥∥∥∥2
2

]
+ 2λ2 E

[(
Ĵ2 − J2

)2∥∥∥∥Eµθ[ϕ(st)]
∥∥∥∥2
2

]

≤ 8λ2R2
max E

[(
J − Ĵ

)2]
+ 2λ2 E

[(
Ĵ2 − J2

)2]
, (13)

where the first inequality follows from Lemma 2, and the last inequality follows (keeping in mind Assumptions
1.i, 2, and 5) since

∥∥∥∥Eµθ[ϕ(st)R(st, at)]
∥∥∥∥2
2

≤ E
µθ

[
∥ϕ(st)R(st, at)∥22

]
≤ R2

max,

and ∥∥∥∥Eµθ[ϕ(st)]
∥∥∥∥2
2

≤ E
µθ

[
∥ϕ(st)∥22

]
≤ 1.

Now, we can plug the results of Propositions 1 and 2 in inequality (13) to get that

E
[∥∥∥b(J)− b(Ĵ)

∥∥∥]2
2
≤ 8λ2R2

max E
[(
J − Ĵ

)2]
+ 2λ2 E

[(
Ĵ2 − J2

)2]
≤ 8λ2R2

max

(
γ2TJR2

max +
R2

max

L

)
+ 2λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
= 8λ2γ2TJR4

max +
8λ2

L
R4

max + 8λ2γ2TJR4
max + 2λ2

(
4

L
+

7

L2
+

5

L3

)
R4

max

= 16λ2γ2TJR4
max + 2λ2

(
8

L
+

7

L2
+

5

L3

)
R4

max.

Plugging back in (12), we get

E
[∥∥ω∗

Ĵ
− ω∗

J

∥∥2
2

]
≤ 2λ2

σ̄2

(
8γ2TJR4

max +

(
8

L
+

7

L2
+

5

L3

)
R4

max

)
=
ξJ
σ̄2
,

where ξJ := 2λ2R4
max

(
8γ2TJ + 8

L + 7
L2 + 5

L3

)
. We can now plug back the last result into (11) to get the desired
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bound:

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ 4∥ω0 − ω∗

J∥
2
2

(
1− χA

8
β
)Tc

+

(
2

χA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+
2

σ̄2

[
1 + 2

(
1− χA

8
β
)Tc]

ξJ .

Corollary 3.1 (Restatement of the Sample Complexity Result in Theorem 1). Suppose we are again in the
same setting of Theorem 3, and suppose the assumptions mentioned therein hold. Then, for a sufficiently small

ϵ > 0, if β ≤ min
{
χA
8C2

A
, 4
χA

}
, and

• TJ ≥
log

(
192λ2R4

max
ϵσ̄2

)
2(1−γ) ,

• L ≥ 576λ2R4
max

ϵσ̄2 ,

• Tc ≥
8 log( 24

ϵ ∥ω0−ω∗
J∥

2
2)

χAβ
,

• M ≥
(

2
χA

+ 2β
)

2304(C2
AC

2
ω+C

2
b )[1+(κ−1)ρ]

(1−ρ)χAϵ ,

then

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ ϵ,

and the total sample complexity is

TcM + LTJ = O
(
ϵ−1 log

(
ϵ−1
))
.

Proof. By expanding and rearranging the bound in Theorem 3, we have that

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ 4∥ω0 − ω∗

J∥
2
2

(
1− χA

8
β
)Tc

+

(
2

χA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+
32λ2R4

max

σ̄2
γ2TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
γ2TJ

(
1− χA

8
β
)Tc

+
8λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)(
1− χA

8
β
)Tc

.

Note that
(
1− χA

8 β
)Tc ≤ e−

χA
8 βTc . This holds since (1− x) ≤ e−x, and if x ≤ 1, then (1− x)r ≤ e−rx for r ≥ 0.

The claim then follows since β < 8
χA

and Tc ≥ 0. By a similar argument, γ2TJ = (1− (1− γ))2TJ ≤ e−2(1−γ)TJ .
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Plugging back these bounds, we get

E
[∥∥∥ωĴTc − ω∗

J

∥∥∥2
2

]
≤ 4∥ω0 − ω∗

J∥
2
2 e

−χA
8 βTc

+

(
2

χA
+ 2β

)
384(C2

AC
2
ω + C2

b )[1 + (κ− 1)ρ]

(1− ρ)χAM

+
32λ2R4

max

σ̄2
e−2(1−γ)TJ

+
4λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
+

64λ2R4
max

σ̄2
e−2(1−γ)TJ e−

χA
8 βTc

+
8λ2R4

max

σ̄2

(
8

L
+

7

L2
+

5

L3

)
e−

χA
8 βTc .

To bound the whole expression by ϵ, we can bound each of the six terms by ϵ
6 . By rearranging each of the

resulting inequalities, we obtain, by the conditions on the parameters indicated in the statement, the desired
error, provided that ϵ is sufficiently small. Thus, the sample complexity is given by

TcM + LTJ = O
(
1

ϵ
log

(
1

ϵ

))
+O

(
1

ϵ
log

(
1

ϵ

))
= O

(
1

ϵ
log

(
1

ϵ

))
.

A.4 Smoothness Proofs

As remarked in the main paper, for the analysis of the actor, it is necessary to establish the Lipschitz continuity
of ∇η(θ), analogous to what was done in (Xu et al., 2020) for ∇Jθ. The following four lemmas fulfill this purpose.

Lemma 5. Suppose Assumptions 1 and 3 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

∥dI,θ1(., .)− dI,θ2(., .)∥TV ≤ Cd∥θ1 − θ2∥2,

where Cd := Cπ

(
1 + ⌈logρκ−1⌉+ 1

1−ρ

)
, and dI,θ(s, a) := dI,θ(s)π(a|s), where dI,θ(·) is the (normalized) dis-

counted state distribution when using policy πθ and starting from I(·), which is an initialization distribution over
the states; it can be taken as µ0(.) (the initial state distribution) or P (.|s′, a′) for any fixed state-action pair
(s′, a′).

Proof. See Lemma 3 in (Xu et al., 2020).

Lemma 6. Suppose Assumptions 1 and 3 hold, then ∀ θ1, θ2 ∈ Rdθ , we have

|Jθ1 − Jθ2 | ≤ LJ∥θ1 − θ2∥2,

where LJ := 2Rmax(Cd + Cπ).
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Proof.

|Jθ1 − Jθ2 | =
∣∣∣∣(1− γ)

∫
s

(Vθ1(s)− Vθ2(s))µ(ds)

∣∣∣∣
≤ (1− γ)

∫
s

|Vθ1(s)− Vθ2(s)|µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a

Qθ1(a, s)πθ1(da|s)−
∫
a

Qθ2(a, s)πθ2(da|s)
∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∣∣∣∣∫
a

Qθ1(a, s)πθ1(da|s)±
∫
a

Qθ2(a, s)πθ1(da|s)−
∫
a

Qθ2(a, s)πθ2(da|s)
∣∣∣∣µ(ds)

≤ (1− γ)

∫
s

∫
a

|(Qθ1(a, s)−Qθ2(a, s))|πθ1(da|s)µ(ds)

+ (1− γ)

∫
s

∫
a

|Qθ2(a, s)| |πθ1(da|s)− πθ2(da|s)|µ(ds)

By Lemma 4 in (Xu et al., 2020), |Qθ1(s, a)−Qθ2(s, a)| ≤ 2RmaxCd
1−γ ∥θ1 − θ2∥2 ∀ (s, a) ∈ S × A. Using this, and

assumption 1.v, we have that

|Jθ1 − Jθ2 | ≤ 2RmaxCd∥θ1 − θ2∥2 +Rmax

∫
s

∫
a

|πθ1(da|s)− πθ2(da|s)|µ(ds)

≤ 2RmaxCd∥θ1 − θ2∥2 + 2RmaxCπ∥θ1 − θ2∥2
= 2Rmax(Cd + Cπ)∥θ1 − θ2∥2

Lemma 7. Suppose Assumptions 1 and 3 hold, then ∀ θ1, θ2 ∈ Rdθ and ∀ (s, a) ∈ S ×A, we have

∣∣Qλθ1(s, a)−Qλθ2(s, a)
∣∣ ≤ LQλ∥θ1 − θ2∥2,

where LQλ :=
2CdRλ,max+4λLJRmax

1−γ =
2CdRmax+8λR2

max(2Cd+Cπ)
1−γ , and λ ≥ 0.

Proof. By definition,

Qλθ (s, a) =
1

1− γ
E

s′∼dθ(·|s,a)
a′∼πθ(·|s′)

[
Rλθ (s, a)

]
=

1

1− γ

∫
s′

∫
a′
Rλθ (s

′, a′)dθ(ds
′|s, a)πθ(da′|s′)

=
1

1− γ

∫
(s′,a′)

Rλθ (s
′, a′)dθ(ds

′, da′|s, a),

where dθ(s
′, a′|s, a) := dθ(s

′|s, a)πθ(a′|s′), and dθ(·|s, a) is the (normalized) discounted state distribution when
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using policy πθ after taking action a in state s. We then have that

(1− γ)
∣∣Qλθ1(s, a)−Qλθ2(s, a)

∣∣
=

∣∣∣∣∣
∫
(s′,a′)

[
Rλθ1(s

′, a′)dθ1(ds
′, da′|s, a)−Rλθ2(s

′, a′)dθ2(ds
′, da′|s, a)

]∣∣∣∣∣
=

∣∣∣∣∣
∫
(s′,a′)

[
Rλθ1(s

′, a′)dθ1(ds
′, da′|s, a)±Rλθ1(s

′, a′)dθ2(ds
′, da′|s, a)−Rλθ2(s

′, a′)dθ2(ds
′, da′|s, a)

]∣∣∣∣∣
=

∣∣∣∣∣
∫
(s′,a′)

Rλθ1(s
′, a′)(dθ1(ds

′, da′|s, a)− dθ2(ds
′, da′|s, a))

∣∣∣∣∣+
∣∣∣∣∣
∫
(s′,a′)

(Rλθ1(s
′, a′)−Rλθ2(s

′, a′))dθ2(ds
′, da′|s, a)

∣∣∣∣∣
≤
∫
(s′,a′)

∣∣Rλθ1(s′, a′)∣∣ |dθ1(ds′, da′|s, a)− dθ2(ds
′, da′|s, a)|+

∫
(s′,a′)

∣∣Rλθ1(s′, a′)−Rλθ2(s
′, a′)

∣∣ dθ2(ds′, da′|s, a)
≤ Rλ,max

∫
(s′,a′)

|dθ1(ds′, da′|s, a)− dθ2(ds
′, da′|s, a)|

+

∫
(s′,a′)

∣∣2λR(s′, a′)(Jθ1 − Jθ2)− λ(J2
θ1 − J2

θ2)
∣∣ dθ2(ds′, da′|s, a)

≤ 2CdRλ,max∥θ1 − θ2∥2 +
∫
(s′,a′)

|2λR(s′, a′)(Jθ1 − Jθ2)− λ(Jθ1 + Jθ2)(Jθ1 − Jθ2)| dθ2(ds′, da′|s, a)

≤ 2CdRλ,max∥θ1 − θ2∥2 +
∫
(s′,a′)

|λ(2R(s′, a′)− (Jθ1 + Jθ2))| |Jθ1 − Jθ2 | dθ2(ds′, da′|s, a)

≤ 2CdRλ,max∥θ1 − θ2∥2 + 4λRmax|Jθ1 − Jθ2 |
≤ 2CdRλ,max∥θ1 − θ2∥2 + 4λLJRmax∥θ1 − θ2∥2
= (2CdRλ,max + 4λLJRmax) ∥θ1 − θ2∥2
= (2CdRmax + 8λR2

max(2Cd + Cπ)) ∥θ1 − θ2∥2.

Lemma 8. Suppose Assumptions 1 and 3 hold, then ∀ θ1, θ2, we have

∥∇ηθ1 −∇ηθ2∥2 ≤ Lη∥θ1 − θ2∥2,

where Lη :=
2Rλ,maxCψCd

1−γ + CψLQλ +
Rλ,maxLψ

1−γ , and λ ≥ 0.

Proof.

∥∇ηθ1 −∇ηθ2∥2 =

∥∥∥∥∥
∫
(s,a)

[
ψθ1(s, a)Q

λ
θ1(s, a)dµ,θ1(ds, da)− ψθ2(s, a)Q

λ
θ2(s, a)dµ,θ2(ds, da)

]∥∥∥∥∥
2

≤
∫
(s,a)

∥∥Qλθ1(s, a)ψθ1(s, a)∥∥2 |dµ,θ1(ds, da)− dµ,θ2(ds, da)|

+

∫
(s,a)

∣∣Qλθ1(s, a)−Qλθ2(s, a)
∣∣∥ψθ1(s, a)∥2 dµ,θ2(ds, da)

+

∫
(s,a)

∣∣Qλθ2(s, a)∣∣∥ψθ1(s, a)− ψθ2(s, a)∥2 dµ,θ2(ds, da)

≤ 2Rλ,maxCψCd
1− γ

∥θ1 − θ2∥2 + CψLQλ∥θ1 − θ2∥2 +
Rλ,maxLψ
1− γ

∥θ1 − θ2∥2

=

(
2Rλ,maxCψCd

1− γ
+ CψLQλ +

Rλ,maxLψ
1− γ

)
∥θ1 − θ2∥2,

where the last inequality follows from Assumption 1, Lemma 5, and Lemma 7.
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A.5 Proof of the Actor’s Bound

In this section, we develop the proof of Theorem 2, which provided a finite time bound for Algorithm 2, where
the critic is learned using direct mini-batch TD, whose analysis was the subject of Theorem 1 and Section A.3.

Remember that our aim is to bound E
[∥∥∇η(θT̂ )∥∥22]. To do this, we will extend the analysis in (Xu et al., 2020)

to our risk-averse case. We first define the following quantities, which will help us in the analysis21:

• the TD-error22 δω(s, a, s
′) = Rλ(s, a, J) + γϕ(s′)⊤ω − ϕ(s)⊤ω, which employs the exact expected return J ;

• the approximated TD-error δ̂ω(s, a, s
′) = Rλ(s, a, Ĵ) + γϕ(s′)⊤ω − ϕ(s)⊤ω, which employs, instead, the

current Monte-Carlo estimate of the expected return Ĵ ;

• vt(ω, θ) =
1
B

∑B−1
i=0 δω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which would have been the estimated gradient at time t

(using a critic with parameters ω) if we had access to the true Jθ;

• v̂t(ω, θ) =
1
B

∑B−1
i=0 δ̂ω(st,i, at,i, s

′
t,i+1)ψθt(st,i, at,i), which is the estimated gradient at time t (using a critic

with parameters ω) based on Ĵθ;

• Aω(s, a) = Es′∼P (·|s,a)[δω(s, a, s
′)], which is the expected value of the TD-error δω at a given state-action

pair when the next state is sampled from the transition kernel of the original MDP;

• g(ω, θ) = Es∼dµ0,πθ (·)
a∼πθ(·|s)

[Aω(s, a)ψθ(s, a)], which is the expectation of the estimated gradient when using a

critic with parameter vector ω and the true expected return Jθ.

Next, we prove two propositions, which will be combined to bound the expectation on the gradient norm.

Proposition 3. Suppose Assumption 1 holds, then the following holds at the tth iteration of Algorithm 2:(α
2
− 2Lηα

2
)
∥∇η(θt)∥22 ≤ η(θt+1)− η(θt) +

(α
2
+ 2Lηα

2
)
∥v̂t(ωt, θt)−∇η(θt)∥22.

Proof. By applying the Mean-Value Theorem, for some 0 ≤ ∆ ≤ 1 there is some θ̃ = ∆θt + (1 − ∆)θt+1 such
that:

η(θt+1) = η(θt) + (θt+1 − θt)
⊤∇η(θ̃) = η(θt) + (θt+1 − θt)

⊤∇η(θ̃)± (θt+1 − θt)
⊤∇η(θt)

= η(θt) + (θt+1 − θt)
⊤
(
∇η(θ̃)−∇η(θt)

)
+ (θt+1 − θt)

⊤∇η(θt).

By using Cauchy-Schwarz we also have:

(θt+1 − θt)
⊤
(
∇η(θ̃)−∇η(θt)

)
≥ −∥θt+1 − θt∥2∥∇η(θ̃)−∇η(θt)∥2

≥ −Lη∥θt+1 − θt∥2∥θ̃ − θt∥2
≥ −Lη∥θt+1 − θt∥22

where we also used that the gradient of η is Lipschitz (Lemma 8).

We exploit this relationship in the previous equation, together with the definition of the policy parameters

21Remember that Rλ(s, a, Ĵ) := R(s, a)− λ(R(s, a)− Ĵ)2.
22Note that the δω(s, a, s

′) and δ̂ω(s, a, s
′) do depend on the current policy since they depend on its expected return, or

an estimate of it. However, we do not explicitly express this dependence as to not burden the notation since it is usually
clear from the context.
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update:

η(θt+1) ≥ η(θt)− Lη∥θt+1 − θt∥22 + (θt+1 − θt)
⊤∇η(θt)

= η(θt)− α2Lη∥v̂t(ωt, θt)∥22 + αv̂t(ωt, θt)
⊤∇η(θt)

= η(θt)− α2Lη∥v̂t(ωt, θt)±∇η(θt)∥22 + α⟨v̂t(ωt, θt)±∇η(θt),∇η(θt)⟩
(1)

≥ η(θt)− 2α2Lη∥∇η(θt)∥22 − 2α2Lη∥v̂t(ωt, θt)−∇η(θt)∥22
+ α∥∇η(θt)∥22 + α⟨v̂t(ωt, θt)−∇η(θt),∇η(θt)⟩

(2)

≥ η(θt)− 2α2Lη∥∇η(θt)∥22 − 2α2Lη∥v̂t(ωt, θt)−∇η(θt)∥22
+ α∥∇η(θt)∥22 −

α

2
∥v̂t(ωt, θt)−∇η(θt)∥22 −

α

2
∥∇η(θt)∥22,

where in the last two steps we used, respectively, Lemma 2.ii and Lemma 2.i in (1) and (2). By re-ordering terms
we obtain the desired result.

The last term in the bound of the last proposition represents how far the estimated gradient is from the true
one. Analogous to the approach in (Xu et al., 2020), the next proposition bounds the expected value of this
quantity.

Proposition 4. Suppose Assumptions 1 to 5 hold, then the following holds for Algorithm 2 (when using direct
mini-batch TD for the critic), where Ft is the filtration on the samples up to iteration t:

E
[
∥v̂t(ωt, θt)−∇η(θt)∥22|Ft

]
≤24(Rλ,max + 2C̃ω)

2[1 + (k − 1)ρ]

B(1− ρ)

+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24∥ω∗

Jt − ωt∥22 + 12 ξappr,

where Jt is short for Jπθt , ω
∗
Jt

is the TD fixed point for the transformed value function of policy πθt , and ωt is
its learned estimate.

Proof. Consider ∥v̂t(ωt, θt)−∇η(θt)∥22, we can decompose it in the following way (followed by an application of
Lemma 2.ii):

∥v̂t(ωt, θt)−∇η(θt)∥22
=
∥∥v̂t(ωt, θt)± vt(ω

∗
Jt , θt)± g(ω∗

Jt , θt)−∇η(θt)
∥∥2
2

≤ 3
∥∥v̂t(ωt, θt)− vt(ω

∗
Jt , θt)

∥∥2
2︸ ︷︷ ︸

(a)

+3
∥∥vt(ω∗

Jt , θt)− g(ω∗
Jt , θt)

∥∥2
2
+ 3

∥∥g(ω∗
Jt , θt)−∇η(θt)

∥∥2
2︸ ︷︷ ︸

(b)

. (14)
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We now focus on (a):

∥∥v̂t(ωt, θt)− vt(ω
∗
Jt , θt)

∥∥2
2
=

∥∥∥∥∥ 1

B

B−1∑
i=0

ψθt(st,i, at,i)
[
δ̂ωt(st,i, at,i, s

′
t,i+1)− δω∗

Jt
(st,i, at,i, s

′
t,i+1)

]∥∥∥∥∥
2

2

≤ 1

B

B−1∑
i=0

∥ψθt(st,i, at,i)∥
2
2︸ ︷︷ ︸

≤Cψ=1

∣∣∣δ̂ωt(st,i, at,i, s′t,i+1)− δω∗
Jt
(st,i, at,i, s

′
t,i+1)

∣∣∣2

≤ 1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J) + γ
(
ϕ(s′t,i+1)

⊤ωt − ϕ(s′t,i+1)
⊤ω∗

Jt

)
+

+
(
ϕ(st,i)

⊤ω∗
Jt − ϕ(st,i)

⊤ωt
) ∣∣∣∣2

(1)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 2
∣∣(γϕ(s′t,i+1)− ϕ(st,i))

⊤(ωt − ω∗
Jt)
∣∣2

(2)

≤ 1

B

B−1∑
i=0

2
∣∣∣Rλ(st,i, at,i, Ĵ)−Rλ(st,i, at,i, J)

∣∣∣2 + 8
∥∥ω∗

Jt − ωt
∥∥2
2

(3)
=

1

B

B−1∑
i=0

2λ2
∣∣∣2R(st,i, at,i)(J − Ĵ) + Ĵ2 − J2

∣∣∣2 + 8
∥∥ω∗

Jt − ωt
∥∥2
2

(4)

≤16λ2R2
max|J − Ĵ |2 + 4λ2|Ĵ2 − J2|2 + 8∥ω∗

Jt − ωt∥22.

where (1) is an application of Lemma 2.ii, (2) is due to Cauchy–Schwarz, Lemma 2.ii, and Assumption 5.ii, (3)
to definition of Rλ, and in (4) Lemma 2.ii is applied again.

We can then exploit results from Theorem 5 in Xu et al. (2020), to bound (b) as:∥∥g(ω∗
Jt , θt)−∇η(θt)

∥∥2
2
≤ 4ξappr.

Substituting back to inequality (14) and taking the expectation w.r.t. the filtration Ft, we get:

E
[
∥v̂t(ωt, θt)−∇η(θt)∥22|Ft

]
≤ 3E

[∥∥vt(ω∗
Jt , θt)− g(ω∗

Jt , θt)
∥∥2
2
|Ft
]

+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24∥ω∗

Jt − ωt∥22 + 12 ξappr.

To bound the conditional expectation on the RHS, we follow again the proof in Xu et al. (2020) to have:

E
[∥∥vt(ω∗

Jt , θt)− g(ω∗
Jt , θt)

∥∥2
2
|Ft
]
≤ 8(Rλ,max + 2C̃ω)

2(1 + (k − 1)ρ)

B(1− ρ)
,

where Rλ,max + 2C̃ω serves23, in our case, as a uniform (over any policy πθ) upper bound for the TD-error (or
estimated transformed advantage function) evaluated at any state-action pair using the estimated transformed
value function at its fixed point.

Similar to what we did in the critic’s section, the following theorem is an explicit restatement of the bound in
Theorem 2, while the sample complexity derivation is shown in a separate corollary.

Theorem 4 (Explicit Statement of the Bound in Theorem 2). Suppose Assumptions 1 to 5 hold, and suppose
we run Algorithm 2 for T iterations with the critic learned as described in Theorem 1, then if α = 1

8Lη
, we have:

E
[∥∥∇η(θT̂ )∥∥22] ≤ 64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[∥ω∗

Jt
− ωt∥22]

T
+ 36ξappr,

23See the beginning of Section A.3 for the definition of C̃ω.



Khaled Eldowa, Lorenzo Bisi, Marcello Restelli

where ωt is the parameter vector of the learned critic at the tth iteration, ω∗
Jt

is the TD fixed point for the true
transformed value function of policy πθt , ξJ is the same as the one defined in Theorem 3, and

ξdistr :=
72(Rλ,max + 2C̃ω)

2(1 + (k − 1)ρ)

B(1− ρ)
.

Proof. Taking the conditioned expectation on the result of Proposition 3 and plugging what we obtained with
Proposition 4 we obtain the following:(α

2
− 2Lηα

2
)
E
[
∥∇η(θt)∥22|Ft

]
≤ E [η(θt+1)| Ft]]− η(θt) +

(α
2
+ 2Lηα

2
)[24(Rλ,max + 2C̃ω)

2[1 + (k − 1)ρ]

B(1− ρ)

+ 48λ2R2
max E

[
|J − Ĵ |2|Ft

]
+ 12λ2 E

[
|Ĵ2 − J2|2|Ft

]
+ 24∥ω∗

Jt − ωt∥22 + 12 ξappr

]
≤ E [η(θt+1)| Ft]]− η(θt) +

(α
2
+ 2Lηα

2
)[24(Rλ,max + 2C̃ω)

2(1 + (k − 1)ρ)

B(1− ρ)

+ 48λ2R2
max

(
γ2TJR2

max +
R2

max

L

)
+ 12λ2

(
4γ2TJR4

max +

(
4

L
+

7

L2
+

5

L3

)
R4

max

)
+

+ 24∥ω∗
Jt − ωt∥22 + 12 ξappr

]
,

We let α = 1
8Lη

and we multiply both sides by 32Lη to get:

E
[
∥∇η(θt)∥22|Ft

]
≤ 32Lη (E [η(θt+1)|Ft]]− η(θt)) + ξdistr + 18ξJ + 72∥ω∗

Jt − ωt∥22 + 36ξappr,

with

ξdistr :=
72(Rλ,max + 2C̃ω)

2(1 + (k − 1)ρ)

B(1− ρ)
,

which bounds the variance of the mini-batch estimate of the gradient if the critic was at the TD fixed point,
while ξJ , the error arising from the expected return estimation, has been already defined in Theorem 3.

We take the expectation w.r.t. Ft to both sides to yield:

E
[
∥∇η(θt)∥22

]
≤ 32Lη(E [η(θt+1)]− E [η(θt)]) + ξdistr + 18ξJ + 72E[∥ω∗

Jt − ωt∥22] + 36ξappr.

Taking the summation of the last result over t = 0, . . . , T − 1 and dividing both sides by T gives:

E
[∥∥∇η(θT̂ )∥∥22] = 1

T

T−1∑
t=0

E
[
∥∇η(θt)∥22

]
≤ 32Lη

E [η(θT )]− η(θ0)

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[∥ω∗

Jt
− ωt∥22]

T
+ 36ξappr

≤ 64LηRλ,max

T
+ ξdistr + 18ξJ + 72

∑T−1
t=0 E[∥ω∗

Jt
− ωt∥22]

T
+ 36ξappr.

Corollary 4.1 (Restatement of the Sample Complexity Result in Theorem 2). Suppose we are in the same setting

of Theorem 4, and assume that the parameters used in the critic are conditioned as to make E
[∥∥ωt − ω∗

Jt

∥∥2
2

]
≤ ϵ

360

for all t = 0, . . . , T − 1. Then, if additionally

• T ≥ 320Lη(Rmax+4λR2
max)

ϵ ,
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• B ≥ 360((Rmax+4λR2
max)+2C̃ω)

2(1+(k−1)ρ)
(1−ρ)ϵ ,

• TJ ≥
log

(
1440λ2R4

max
ϵ

)
2(1−γ) ,

• L ≥ 3600λ2R4
max

ϵ ,

we have that
E
[∥∥∇η(ωT̂ )∥∥22] ≤ ϵ+O(ξappr),

with the total sample complexity given by:

T ((2− γ)B +MTc + LTJ) = O
(
ϵ−2 log

(
ϵ−1
))
.

Proof. In order to compute the different contributions to sample complexity, we will split the error bound
obtained in Theorem 4 in its components. We then bound the components in the following way:

• 64Lη(Rmax+4λR2
max)

T ≤ ϵ1,

• 72(Rmax+4λR2
max+2C̃ω)

2(1+(k−1)ρ)
B(1−ρ) ≤ ϵ2,

• 288λ2R4
maxγ

2TJ ≤ 288λ2R4
maxe

−2(1−γ)TJ ≤ ϵ3,

• 36λ2R4
max(

8
L + 7

L2 + 5
L3 )

L>1
≤ 36λ2R4

max(
20
L ) ≤ ϵ4,

• 72
∑T−1
t=0 E[∥ω∗

Jt
−ωt∥2

2]

T ≤ ϵ5,

where we have split 18ξJ in two parts, and we have ignored the approximation error ξappr, which is irreducible. We
set, then, each ϵi to

ϵ
5 . Rearranging terms in each inequality, we obtain then, by the conditions on the parameters

indicated in the statement24, the desired error. In order to obtain it, the following sample complexity is incurred:

T ((2− γ)B +MTc + LTJ) = O
(
1

ϵ

(
1

ϵ
+

1

ϵ
log

(
1

ϵ

)
+

1

ϵ
log

(
1

ϵ

)))
= O

(
ϵ−2 log

(
ϵ−1
))

where the (2− γ) extra factor is due to the actor sampling process, which needs to sample twice at each restart,
which can happen at each step with probability 1− γ.

A.6 A Note About the Critic’s Sampling Process

In this section, we highlight a subtle point about the sampling process of the critic. The following applies both
to our analysis and to that of (Xu et al., 2020). We start by recalling our definition of the approximation error:

ξappr := sup
θ∈Rdθ

E
s∼dµ0,πθ (·)

[∣∣V λπθ (s)− ϕ(s)
⊺
ω∗
Jθ

∣∣2],
which represents, for the worst possible policy, the mean squared error, over the discounted state distribution,
between the true transformed value function and the approximated transformed value function at the TD fixed
point. We use the discounted state distribution in the definition as this quantity is used in the analysis of the
actor, whose mini-batches (used to estimate the gradient) are sampled from the modified transition kernel:

P̃ (·|s, a) = γP (·|s, a) + (1− γ)µ0(·),

which causes the encountered states to be distributed, at steady-state, according to the discounted state distri-
bution of the policy. Thus, ξappr is a convenient representation of the approximation error of the critic. However,

24And the conditions adapted from Corollary 3.1 needed to make E[∥ωt − ω∗
Jt∥

2
2] ≤ ϵ

360
(instead of just ϵ) for all

t = 0, . . . , T − 1.
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the mini-batches used for training the critic are sampled from original kernel, and the encountered states are
thus distributed, at steady-state, according to the ordinary stationary distribution of the policy. And thus, the
TD fixed point is naturally characterized using that distribution (see Section 4.1). The issue then is that the
ξappr not only conceals the approximation error incurred due to using TD learning with linear function approxi-
mation, but also conceals some notion of divergence between the ordinary stationary distribution of a policy and
its discounted state distribution.

A simple way to deal with this issue is to adopt, for the critic, the same sampling scheme that we use for the
actor (see Section 3.5), which also ensures that the next state used in the TD-error is still sampled correctly
from the original transition kernel. One would then characterize the TD fixed point (i.e., the definitions of A
and b(Ĵ)) using the discounted state distribution. Fortunately, the analysis of the critic is still applicable after
this modification. This is because the uniform Ergodicity assumption (Assumption 3, which is adapted from
(Xu et al., 2020)) readily considers the case when the modified kernel is used (at which case the steady-state
distribution is the discounted state distribution), which was already needed for the analysis of the actor. The
incurred cost, much like in the actor’s case, is that the number of sampled interactions per mini-batch is now,
on average, (2 − γ)M since two states are sampled whenever we restart, which can happen at any step with
probability 1− γ. Note that this additional cost diminishes as γ approaches 1.

B Analysis of the Factored Method

B.1 Deriving The Factored Method Formula

We can start by recalling the definition of the transformed value function:

V λπ (s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γt
(
R(st, at)− λ(R(st, at)− Jπ)

2
)∣∣∣∣s0 = s

]
.

By expanding the squared term and using the linearity of the expected value, we get:

V λπ (s
′) = E

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣s0 = s

]
− λ E

at∼π(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR2(st, at)

∣∣∣∣s0 = s

]

+ 2λJπ E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣s0 = s

]
− λJ2

π

1− γ
.

Then, by the definitions of V π and Mπ (see (7)), we get that:

V λπ (s) = (1 + 2λJπ)V
π(s)− λMπ(s)− λ

1− γ
J2
π.

B.2 Analyzing MVAC With a Factored Mini-Batch TD Critic

The goal in this section is to derive a finite time bound for Algorithm 2 when the critic is trained using the
factored method where V π and Mπ are learned using Algorithm 1. We have remarked before that the most
natural and efficient way to do this is to learn both V π and Mπ in parallel using the same sample path. As
the scheme in Algorithm 1 does not allow us to represent this case, we state the desired scheme explicitly in
Algorithm 4. For a given policy, after estimating V π andMπ using Algorithm 4, we can obtain Ĵ using Algorithm
3 as usual, and then set (∀s ∈ S):

V̂ λ(s) = (1 + 2λĴ)ϕ(s)⊺ωv − λϕ(s)⊺ωm − λ

1− γ
Ĵ2,

as the critic to be used in Algorithm 2 for estimating the mean-volatility gradient at the given policy. Contrary
to the direct case, we do not need extra effort for analyzing the critic, thanks to the (almost complete) separation
between the estimators in the factored method. We will directly leverage the bound in (Xu et al., 2020) for V π,
and a small variant of it forMπ, along with the results in Propositions 1 and 2. To do this, we state the following
assumption, which is analogous to Assumption 4.
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Algorithm 4 Mini-batch Factored Mean-Volatility TD (Mini-batch F-MVTD)

1: Input: sini, θ, ϕ, γ, β, Tc,M
2: Initialize: ωv0 , ω

m
0

3: Set s−1,M = sini
4: for k = 0, . . . , Tc − 1 do
5: sk,0 = sk−1,M

6: for j = 0, . . . ,M − 1 do
7: ak,j ∼ πθ(sk,j), sk,j+1 ∼ P (.|sk,j , ak,j)
8: δvωk(sk,j , ak,j , sk,j+1) = R(sk,j , ak,j) + γϕ(sk,j+1)

⊺ωvk − ϕ(sk,j)
⊺ωvk

9: δmωk(sk,j , ak,j , sk,j+1) = R2(sk,j , ak,j) + γϕ(sk,j+1)
⊺ωmk − ϕ(sk,j)

⊺ωmk
10: end for
11: ωvk+1 = ωvk + β 1

M

∑M−1
j=0 δvωk(sk,j , ak,j , sk,j+1)ϕ(sk,j)

12: ωmk+1 = ωmk + β 1
M

∑M−1
j=0 δmωk(sk,j , ak,j , sk,j+1)ϕ(sk,j)

13: end for
14: Output: ωvTc , ω

m
Tc
, sk,M

Assumption 6. For any triple (si,t, ai,t, si,t+1) ∈ S ×A×S, there exists real constants Cv,b and Cm,b such that
∥ϕ(si,t)R(si,t, ai,t)∥2 ≤ Cv,b and ∥ϕ(si,t)R2(si,t, ai,t)∥2 ≤ Cm,b.

Again, while stated as an assumption, the previous statement is justified since the reward function and the norm
of the feature vectors are bounded. Analogous to Cω in the direct case, and with a similar justification, we
use Cv,ω and Cm,ω such that ∥ωv∗∥2 ≤ Cv,ω :=

Cv,b
σ̄ and ∥ωm∗∥2 ≤ Cm,ω :=

Cm,b
σ̄ , where ωv∗ and ωm∗ are the

TD fixed points of V π and Mπ respectively. Also, like we did in the direct case (see Section A.3), we define

policy-independent versions of Cv,ω and Cm,ω to be used in the actor’s bound. Namely, we define C̃v,ω :=
Cv,b
σ̃

and C̃m,ω :=
Cm,b
σ̃ .

We can then use the results in (Xu et al., 2020) to state that, for M ≥
(

2
χA

+ 2β
)

192C2
A[1+(κ−1)ρ]
(1−ρ)χA and β ≤

min
{
χA
8C2

A
, 4
χA

}
,

E[∥ωvTc − ωv∗∥22] ≤
(
1− χA

8
β
)Tc

∥ωv0 − ωv∗∥22 +
(

2

χA
+ 2β

)
192(C2

AC
2
v,ω + C2

v,b)[1 + (κ− 1)ρ]

(1− ρ)χAM
,

and

E[∥ωmTc − ωm∗∥22] ≤
(
1− χA

8
β
)Tc

∥ωm0 − ωm∗∥22 +
(

2

χA
+ 2β

)
192(C2

AC
2
m,ω + C2

m,b)[1 + (κ− 1)ρ]

(1− ρ)χAM
.

Also, we will need to express the notion of approximation error for both V π and Mπ. Thus, we define the two
following quantities:

ξvappr := sup
θ∈Rdθ

E
s∼dµ0,πθ (·)

[
|V πθ (s)− ϕ(s)

⊺
ωv∗θ |2

]
,

ξmappr := sup
θ∈Rdθ

E
s∼dµ0,πθ (·)

[
|Mπθ (s)− ϕ(s)

⊺
ωm∗
θ |2

]
.

Armed with these bounds and definitions, we proceed with the analysis of the actor. Naturally, the analysis will
be similar to what we did in Section A.5, so we will omit any repetitions. We will use the definitions stated at
the beginning of that section, but we will modify the first two. In particular, define:

• the TD-error δω(s, a, s
′) = Rλ(s, a, J) + γV̂ λ(s′, ω, J)− V̂ λ(s, ω, J),

• the approximated TD-error δ̂ω(s, a, s
′) = Rλ(s, a, Ĵ) + γV̂ λ(s′, ω, Ĵ)− V̂ λ(s, ω, Ĵ),

where, for compactness, we use ω := [ωv, ωm], and accordingly define

V̂ λ(s, ω, Ĵ) = (1 + 2λĴ)ϕ(s)⊺ωv − λϕ(s)⊺ωm − λ

1− γ
Ĵ2.
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Proposition 3 is still applicable in this case, so we start with the following proposition as an analogue to Propo-
sition 4.

Proposition 5. Suppose Assumptions 1 to 6 hold, then the following holds for Algorithm 2 (when using the
factored method utilizing Algorithm 4 to learn V π and Mπ), where Ft is the filtration on the samples up to
iteration t:

E
[
∥v̂t(ωt, θt)−∇η(θt)∥22|Ft

]
≤ 24

(Rλ,max + 2Cfac)
2(1 + (k − 1)ρ)

B(1− ρ)

+ 36λ2(Rmax + 2C̃v,ω)
2 E
[
|Jt − Ĵt|2|Ft

]
+ 36(1 + 2λRmax)

2∥ωv∗t − ωvt ∥22 + 36λ2∥ωm∗
t − ωmt ∥22

+ 24(1 + 2λRmax)
2ξvappr + 24λ2ξmappr.

where Cfac := (1+ 2λRmax)C̃v,ω + λC̃m,ω + λ
1−γR

2
max, Jt is short for Jπθt , ω

v∗
t and ωm∗

t are the TD fixed points
of V π and Mπ respectively for policy πθt , and ω

v
t and ωmt are their learned estimates.

Proof. In the following we use the compact notation: ωt := [ωvt , ω
m
t ] and ω∗

t := [ωv∗t , ω
m∗
t ].

Consider ∥v̂t(ωt, θt)−∇η(θt)∥22, we can decompose it in the following way (followed by an application of Lemma
2.ii):

∥v̂t(ωt, θt)−∇η(θt)∥22 = ∥v̂t(ωt, θt)± vt(ω
∗
t , θt)± g(ω∗

t , θt)−∇η(θt)∥22
≤ 3 ∥v̂t(ωt, θt)− vt(ω

∗
t , θt)∥

2
2︸ ︷︷ ︸

(a)

+3∥vt(ω∗
t , θt)− g(ω∗

t , θt)∥
2
2 + 3 ∥g(ω∗

t , θt)−∇η(θt)∥22︸ ︷︷ ︸
(b)

. (15)

We now focus on (a):

∥v̂t(ωt, θt)− vt(ω
∗
t , θt)∥

2
2 =

∥∥∥∥∥ 1

B

B−1∑
i=0

ψθt(st,i, at,i)
[
δ̂ωt(st,i, at,i, s

′
t,i+1)− δω∗

t
(st,i, at,i, s

′
t,i+1)

]∥∥∥∥∥
2

2

≤ 1

B

B−1∑
i=0

∥ψθt(st,i, at,i)∥
2
2︸ ︷︷ ︸

≤Cψ=1

∣∣∣δ̂ωt(st,i, at,i, s′t,i+1)− δω∗
t
(st,i, at,i, s

′
t,i+1)

∣∣∣2

≤ 1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵt)−Rλ(st,i, at,i, Jt) + γ
(
V̂ λ(s′t,i+1, ωt, Ĵt)− V̂ λ(s′t,i+1, ω

∗
t , Jt)

)
−
(
V̂ λ(st,i, ωt, Ĵt)− V̂ λ(st,i, ω

∗
t , Jt)

) ∣∣∣∣
≤ 1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵt)−Rλ(st,i, at,i, Jt)

+ γ

(
ϕ(s′t,i+1)

⊺ωvt + 2λĴtϕ(s
′
t,i+1)

⊺ωvt − λϕ(s′t,i+1)
⊺ωmt − λ

1− γ
Ĵ2
t

)
− γ

(
ϕ(s′t,i+1)

⊺ωv∗t + 2λJtϕ(s
′
t,i+1)

⊺ωv∗t − λϕ(s′t,i+1)
⊺ωm∗

t − λ

1− γ
J2
t

)
+ ϕ(st,i)

⊺ωv∗t + 2λJtϕ(st,i)
⊺ωv∗t − λϕ(st,i)

⊺ωm∗
t − λ

1− γ
J2
t

− ϕ(st,i)
⊺ωvt − 2λĴtϕ(st,i)

⊺ωvt + λϕ(st,i)
⊺ωmt +

λ

1− γ
Ĵ2
t

∣∣∣∣2
=

1

B

B−1∑
i=0

∣∣∣∣Rλ(st,i, at,i, Ĵt)−Rλ(st,i, at,i, Jt)

+ (ϕ(st,i)
⊺ − γϕ(s′t,i+1)

⊺)(ωv∗t − ωvt )
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+ 2λ(Jtϕ(st,i)
⊺ωv∗t ∓ Ĵtϕ(st,i)

⊺ωv∗t − Ĵtϕ(st,i)
⊺ωvt )

+ 2λγ(Ĵtϕ(s
′
t,i+1)

⊺ωvt ∓ Ĵtϕ(s
′
t,i+1)

⊺ωv∗t − Jtϕ(s
′
t,i+1)

⊺ωv∗t )

+ λ(γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)(ωm∗
t − ωmt ) + λ(Ĵ2

t − J2
t )

∣∣∣∣2
=

1

B

B−1∑
i=0

∣∣∣∣2λR(st,i, at,i)(Ĵt − Jt) + λ(J2
t − Ĵ2

t )

+ (1 + 2λĴt)(ϕ(st,i)
⊺ − γϕ(s′t,i+1)

⊺)(ωv∗t − ωvt )

+ 2λ(ϕ(st,i)
⊺ − γϕ(s′t,i+1)

⊺)ωv∗t (Jt − Ĵt)

+ λ(γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)(ωm∗
t − ωmt ) + λ(Ĵ2

t − J2
t )

∣∣∣∣2
=

1

B

B−1∑
i=0

∣∣∣∣2λ[R(st,i, at,i) + (γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)ωv∗t ](Ĵt − Jt)

+ (1 + 2λĴt)(ϕ(st,i)
⊺ − γϕ(s′t,i+1)

⊺)(ωv∗t − ωvt )

+ λ(γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)(ωm∗
t − ωmt )

∣∣∣∣2
≤ 1

B

B−1∑
i=0

3

∣∣∣∣2λ[R(st,i, at,i) + (γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)ωv∗t ](Ĵt − Jt)

∣∣∣∣2
+ 3

∣∣∣∣(1 + 2λĴt)(ϕ(st,i)
⊺ − γϕ(s′t,i+1)

⊺)(ωv∗t − ωvt )

∣∣∣∣2
+ 3

∣∣∣∣λ(γϕ(s′t,i+1)
⊺ − ϕ(st,i)

⊺)(ωm∗
t − ωmt )

∣∣∣∣2
≤12λ2(Rmax + 2C̃v,ω)

2|Ĵt − Jt|2 + 12(1 + 2λRmax)
2∥ωv∗t − ωvt ∥22 + 12λ2∥ωm∗

t − ωmt ∥22,

where the penultimate inequality is an application of Lemma 2.ii, and the last inequality uses Cauchy-Schwarz,
and Assumptions 1.i, 2, and 5.

As for (b), we proceed as follows:

∥g(ω∗
t , θt)−∇η(θt)∥22

=

∥∥∥∥ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[Aω∗
t
(s, a)ψθt(s, a)]− E

s∼dµ0,πθ (·)
a∼πθ(·|s)

[
Aλθt(s, a)ψθt(s, a)

]∥∥∥∥2
2

=

∥∥∥∥ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[(
Aω∗

t
(s, a)−Aλθt(s, a)

)
ψθt(s, a)

]∥∥∥∥2
2

≤ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[∥∥(Aω∗
t
(s, a)−Aλθt(s, a)

)
ψθt(s, a)

∥∥2
2

]

= E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[∣∣Aω∗
t
(s, a)−Aλθt(s, a)

∣∣2 ∥ψθt(s, a)∥22︸ ︷︷ ︸
≤Cψ=1

]

≤ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[∣∣∣∣ E
s′∼P (·|s,a)

[
Rλ(s, a, Jt) + γV̂ λ(s′, ω∗

t , Jt)− V̂ λ(s, ω∗
t , Jt)

]

− E
s′∼P (·|s,a)

[
Rλ(s, a, Jt) + γV λt (s

′)− V λt (s)
]∣∣∣∣2]
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≤ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[∣∣∣∣V λt (s)− V̂ λ(s, ω∗
t , Jt) + γ E

s′∼P (·|s,a)

[
V̂ λ(s′, ω∗

t , Jt)− V λt (s
′)
]∣∣∣∣2]

≤ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[∣∣∣∣(1 + 2λJt)(Vt(s)− ϕ(s)⊺ωv∗t ) + λ(ϕ(s)⊺ωm∗
t −Mt(s))

+ γ E
s′∼P (·|s,a)

[
(1 + 2λJt)(ϕ(s

′)⊺ωv∗t − Vt(s
′)) + λ(Mt(s

′)− ϕ(s′)⊺ωm∗
t )

]∣∣∣∣2]
(1)

≤ E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
4|1 + 2λJt|2|Vt(s)− ϕ(s)⊺ωv∗t |2 + 4λ2|ϕ(s)⊺ωm∗

t −Mt(s)|2

+ 4γ2|1 + 2λJt|2 E
s′∼P (·|s,a)

[
|ϕ(s′)⊺ωv∗t − Vt(s

′)|2
]

+ 4γ2λ2 E
s′∼P (·|s,a)

[
|Mt(s

′)− ϕ(s′)⊺ωm∗
t |2

]]
≤ 4(1 + 2λRmax)

2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|Vt(s)− ϕ(s)⊺ωv∗t |2

]
+ 4λ2 E

s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|ϕ(s)⊺ωm∗

t −Mt(s)|2
]

+ 4γ(1 + 2λRmax)
2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
γ E
s′∼P (·|s,a)

[
|ϕ(s′)⊺ωv∗t − Vt(s

′)|2
]]

+ 4γλ2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
γ E
s′∼P (·|s,a)

[
|Mt(s

′)− ϕ(s′)⊺ωm∗
t |2

]]
.

≤ 4(1 + 2λRmax)
2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|Vt(s)− ϕ(s)⊺ωv∗t |2

]
+ 4λ2 E

s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|ϕ(s)⊺ωm∗

t −Mt(s)|2
]

+ 4γ(1 + 2λRmax)
2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
γ E
s′∼P (·|s,a)

[
|ϕ(s′)⊺ωv∗t − Vt(s

′)|2
]
+ (1− γ) E

s′∼µ0(·)

[
|ϕ(s′)⊺ωv∗t − Vt(s

′)|2
]]

+ 4γλ2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
γ E
s′∼P (·|s,a)

[
|Mt(s

′)− ϕ(s′)⊺ωm∗
t |2

]
+ (1− γ) E

s′∼µ0(·)

[
|Mt(s

′)− ϕ(s′)⊺ωm∗
t |2

]]
.

(2)
= 4(1 + 2λRmax)

2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|Vt(s)− ϕ(s)⊺ωv∗t |2

]
+ 4λ2 E

s∼dµ0,πθ (·)
a∼πθ(·|s)

[
|ϕ(s)⊺ωm∗

t −Mt(s)|2
]

+ 4γ(1 + 2λRmax)
2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
E

s′∼P̃ (·|s,a)

[
|ϕ(s′)⊺ωv∗t − Vt(s

′)|2
]]

+ 4γλ2 E
s∼dµ0,πθ (·)
a∼πθ(·|s)

[
E

s′∼P̃ (·|s,a)

[
|Mt(s

′)− ϕ(s′)⊺ωm∗
t |2

]]
.

(3)

≤ 8(1 + 2λRmax)
2ξvappr + 8λ2ξmappr,

where (1) is an application of Lemma 2.ii and Jensen’s inequality, (2) holds by the definition of the modified
transition kernel P̃ , and (3) holds by the definitions of ξvappr and ξ

m
appr, and the fact that dµ0,πθ is the stationary

distribution of the Markov chain with the modified transition kernel P̃ when acting with policy πθ (Xu et al.,
2020).
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Substituting back to inequality (15) and taking the expectation w.r.t. the filtration Ft, we get:

E
[
∥v̂t(ωt, θt)−∇η(θt)∥22|Ft

]
≤ 3E

[
∥vt(ω∗

t , θt)− g(ω∗
t , θt)∥

2
2|Ft

]
+ 36λ2(Rmax + 2C̃v,ω)

2 E
[
|Jt − Ĵt|2|Ft

]
+ 36(1 + 2λRmax)

2∥ωv∗t − ωvt ∥22 + 36λ2∥ωm∗
t − ωmt ∥22

+ 24(1 + 2λRmax)
2ξvappr + 24λ2ξmappr.

To bound the first term on the RHS, we follow the related passage in the proof of Theorem 5 in Xu et al. (2020)
to have:

E
[
∥vt(ω∗

t , θt)− g(ω∗
t , θt)∥

2
2|Ft

]
≤ 8(Rλ,max + 2Cfac)

2(1 + (k − 1)ρ)

B(1− ρ)
,

where Cfac := (1 + 2λRmax)C̃v,ω + λC̃m,ω + λ
1−γR

2
max, which serves as an upper bound on V̂ λ(s, ω∗

t , Jt).

We then conclude with the following theorem.

Theorem 5 (Bound for MVAC with Factored Critic). Suppose Assumptions 1 to 6 hold, and suppose we run
Algorithm 2 for T iterations while using the factored method and utilizing Algorithm 4 to learn V π and Mπ, then
if α = 1

8Lη
, we have:

E
[∥∥∇η(θT̂ )∥∥22] ≤ 64LηRλ,max

T
+ 108(1 + 2λRmax)

2

∑T−1
t=0 E[∥ωv∗t − ωvt ∥22]

T

+ 108λ2
∑T−1
t=0 E[∥ωm∗

t − ωmt ∥22]
T

+ ξfacdistr + ξfacJ + ξfacappr,

where ωv∗t and ωm∗
t are the TD fixed points of V π and Mπ respectively for policy πθt , and ω

v
t and ωmt are their

learned estimates. Furthermore:

ξfacdistr := 72
(Rλ,max + 2Cfac)

2(1 + (k − 1)ρ)

B(1− ρ)
,

ξfacappr := 72(1 + 2λRmax)
2ξvappr + 72λ2ξmappr,

ξfacJ := 108λ2(Rmax + 2C̃v,ω)
2

(
γ2TJR2

max +
R2

max

L

)
.

Proof. The result can be obtained by following the same steps of the proof of Theorem 4, but using the results
of Proposition 5 instead of Proposition 4.

From the result of the last theorem, one can obtain the same sample complexity (i.e., O
(
ϵ−2 log

(
ϵ−1
))
) as that

shown in Corollary 4.1 for MVAC when using the direct method.

C Reusing Samples

Our results showed that we can achieve, with our modified objective, the same sample complexity as the risk
neutral case. However, estimating the expected return still requires an extra batch of samples per iteration.
Towards alleviating this extra burden, we briefly discuss two possible approaches for future work, and highlight
their challenges.

C.1 Estimating the Expected Return and the Critic Using the Same Data

We can consider a variant of the algorithm in which we use the trajectories collected to estimate J as the mini-
batches for training the critic. One negative consequence of the naivety of this approach is that the derived
sample complexity of the algorithm will be worsened since we are forcing the number of steps in the trajectories
to be the same as the mini-batch size of the critic. Nonetheless, it is a simple approach that allows us to see
the main challenges of reusing samples in our algorithm. To this end, we will only focus in this section on the
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direct mini-batch TD algorithm. More specifically, it suffices to discuss the issues that arise when attempting to
bound the following quantity (at the tth iteration of the critic, which uses as mini-batch the tth trajectory used
for estimating Ĵ):

E
[∥∥∥b̂t(Ĵ)− b(Ĵ)

∥∥∥2
2

]
. (16)

We remind the reader that b(Ĵ) = E s∼µθt (·)
a∼πθt (·|s)

[
ϕ(s)Rλ(s, a, Ĵ)

]
, where ϕ is a feature mapping for the states,

µθ is the stationary state distribution of policy πθ, and Rλ(s, a, Ĵ) = R(s, a) − λ(R(s, a) − Ĵ)2. Furthermore,

b̂t(Ĵ) =
1
TJ

∑TJ−1
i=0 bt,i(Ĵ) is the average (over the mini-batch) of bt,i(Ĵ) = ϕ(st,i)R

λ(st,i, at,i, Ĵ), where (st,i, at,i)

is the state-action pair in the ith step of the tth mini-batch (or, in this case, the tth trajectory). The risk-neutral
equivalent of (16) (i.e., with R(s, a) instead of Rλ(s, a, Ĵ), and thus no dependence on Ĵ) is bounded in Lemma
2 in (Xu et al., 2020) in terms of the mini-batch size and the mixing properties of the MDP. However, since the
expectation is also over Ĵ , the same procedure cannot be applied in our case. Even if we condition on Ĵ (like
we do at some point in the proof of Theorem 3) and attempt to mirror the derivation in (Xu et al., 2020), we
will not reach a form that will allow us to leverage the mixing assumption. This is because we have conditioned
on Ĵ , which conveys extra information about the distribution of the states encountered in the trajectory as it is
one of the trajectories used in the calculation of Ĵ in the first place. We thus need to take a different route.

One such route is an information-theoretical one, which is inspired by the approach adopted in (Bhan-
dari et al., 2018) to analyze TD learning with Markovian sampling. Denote the tth trajectory by τt =
(st,0, at,0, st,1, at,1, . . . , st,TJ ). Note that the random variables Ĵ and τt (for any t ∈ {1, . . . , N}) are not in-
dependent. Define

v(τt, Ĵ) :=
∥∥∥b̂t(Ĵ)− b(Ĵ)

∥∥∥2
2
,

which is a deterministic function of τt and Ĵ . We can then rewrite (16) as E[v(τt, Ĵ)]. Let τ ′t and Ĵ ′ be two
independent copies of τt and Ĵ . That is:

P (τ ′t = ·, Ĵ ′ = ·) = P (τt = ·)P (Ĵ = ·).

By adding and subtracting E[v(τ ′t , Ĵ ′)], we can rewrite (16) as:

E[v(τt, Ĵ)]− E[v(τ ′t , Ĵ ′)] + E[v(τ ′t , Ĵ ′)].

Due to the Independence of τ ′t and Ĵ ′, we can use Lemma 2 in (Xu et al., 2020) to bound the last term (after
conditioning on Ĵ ′). As for the first two terms, we can leverage the following variational representation of the
total variation distance (Bhandari et al. (2018) or Theorem 6.3. in Ajjanagadde et al. (2017)):

DTV(P∥Q) =
1

2
sup

∥f∥∞≤1

∣∣∣∣EP [f(x)]− E
Q
[f(x)]

∣∣∣∣.
And thus,

E[v(τt, Ĵ)]− E[v(τ ′t , Ĵ ′)] ≤ 2∥v∥∞DTV(p(τt,Ĵ)∥pτtpĴ).

The ∥v∥∞ coefficient can be easily bounded using some constants that we defined in the analysis of the original
algorithm. The problematic part is obviously the total variation distance. One way to deal with it is to relate it
to the KL-divergence. This can be either done using Pinsker’s inequality:

DTV(P∥Q) ≤
√

1

2
DKL(P∥Q),

or by this inequality (Inequality (2.25) in Tsybakov (2008)):

DTV(P∥Q) ≤ 1− 1

2
e−DKL(P∥Q).

The latter is upper bounded by 1, so it provides a non-vacuous bound for the total variation even if the KL-
divergence is large (unlike Pinsker’s inequality). However, it is lower bounded by 1

2 , which makes it unsuitable if
we are to show that the bound can be reduced arbitrarily by using enough samples. In any case, our focus now
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becomes bounding DKL(p(τt,Ĵ)∥pτtpĴ), which is the same as the mutual information between τt and Ĵ : I(τt; Ĵ).

To simplify the problem, we can construct the following Markov chain25:

τt −→ Gt −→
N∑
i=1

Gi −→ Ĵ .

We can then use the data processing inequality to deduce that

I(τt; Ĵ) ≤ I

(
Gt;

N∑
i=1

Gi

)
.

That is, we have reduced our task to bounding the mutual information between a sum of N i.i.d. random
variables and one of these random variables. Note that choosing to work with the sum instead of the average is
just for convenience; both the sum and the average provide the same information about the individual samples.
The ideal goal would be to show that this mutual information term can be reduced arbitrarily by making N
large enough.

Before proceeding, we can frame the problem in more generic terms. Let Y = X0 + X1 + . . . + XN−1, where
X0, . . . , XN−1 are (continuous) i.i.d. random variables. Furthermore, let Z = X1 + . . . + XN−1 such that
Y = X0 + Z. The goal is to bound I(X0;Y ). We start by the following decomposition (Madiman, 2008):

I(X0;Y ) = H(Y )−H(Y |X0)

= H(Y )−H(Z), (17)

where H(·) is the differential entropy. The next step is to bound H(Y ), but first we highlight some relevant
terminology adapted from (Madiman, 2008). Let [N ] be a shorthand for {1, . . . , N}. Moreover, for a collection
C of subsets of [N ], define:

• A fractional covering α : C −→ R+ is a function that associates to every set in C, a number in R+ such that
∀i ∈ [N ] :

∑
s∈C:i∈s αs ≥ 1.

• For any i ∈ [N ], its degree is defined as r(i) = |{s ∈ C : i ∈ s}|, i.e. the number of sets that i belongs to.

• For a set s ∈ C, r−(s) = mini∈s r(i) (the minimum degree among the elements of s). One way to obtain a
simple fractional covering function is to set αs =

1
r−(s) (Madiman, 2008).

For any collection C of subsets of [N − 1] and any associated fractional covering α, we have the following bound
(Theorem 3 in Madiman (2008)):

H(Y ) = H

X0 +
∑

i∈[N−1]

Xi

 ≤
∑
s∈C

αsH

(
X0 +

∑
i∈s

Xi

)
−

(∑
s∈C

αs − 1

)
H(X0).

In particular, we define C to be the collection of all subsets of [N − 1] with N − 2 elements. There are N − 1
such sets, and each element occurs in N − 2 sets. Thus, if we set αs =

1
r−(s) , then αs =

1
N−2 for every s ∈ C,

and
∑
s∈C αs =

N−1
N−2 . We can then write

H(Y ) ≤
∑
s∈C

1

N − 2
H

(
X0 +

∑
i∈s

Xi

)
−
(
N − 1

N − 2
− 1

)
H(X0),

for N > 2. Since X0, . . . , XN−1 are i.i.d., the specific labels in the first entropy term on the R.H.S. are irrelevant;
all that matters is that we have N − 1 different i.i.d. random variables. We can then simplify the bound in the
following way:

H(Y ) ≤ N − 1

N − 2
H(Z)−

(
N − 1

N − 2
− 1

)
H(X0).

25In the following, we use N instead of L to denote the number of trajectories. This way, the notation is closer to that
in (Madiman, 2008), from which we will use some results.
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Therefore, from (17), we have that

I(X0;Y ) ≤
(
N − 1

N − 2
− 1

)
H(Z)−

(
N − 1

N − 2
− 1

)
H(X0)

=
1

N − 2
(H(Z)−H(X0)),

for N > 2. We note the following property of differential entropy (first statement in Theorem 1.6. in Ajjanagadde
et al. (2017)): if W is a random variable taking values only in the interval [−M,+M ], then

H(W ) ≤ log(2M).

Then, if we assume that our random variables X0, . . . , XN−1 take values only in the interval [−M,+M ], we can
then write:

I(X0;Y ) ≤ 1

N − 2
(log(2(N − 1)M)−H(X0))

=
1

N − 2
(log(2(N − 1)) + log(M)−H(X0)),

for N > 2. Another property of differential entropy (second statement in Theorem 1.6. in Ajjanagadde et al.
(2017)) is that H(aW ) = H(W ) + log|a|, where W is a random variable and a is a scalar. Denote by X̃0 a
normalized version of X0 taking value between [−1, 1], then

H(X0) = H(MX̃0) = H(X̃0) + log(M).

Then we have that:

I(X0;Y ) ≤ 1

N − 2

(
log(2(N − 1)) + log(M)−H(X̃0)− log(M)

)
=

log(2(N − 1))−H(X̃0)

N − 2
,

for N > 2. Note that differential entropy can be negative, so we cannot eliminate the negative entropy term from
the numerator. We can see from the last expression that, as long as H(X̃0) is finite, the mutual information can
be reduced arbitrarily by making N large enough.

Returning to our original problem, we now have that

I(τt; Ĵ) ≤
log(2(N − 1))−H(G̃t)

N − 2
.

And consequently

E[v(τt, Ĵ)]− E[v(τ ′t , Ĵ ′)] ≤ 2∥v∥∞

√
1

2

log(2(N − 1))−H(G̃t)

N − 2
,

for N > 2, which is added as an extra term to the bound that we can obtain from Lemma 2 in (Xu et al., 2020).

The main issue with this result is the presence of the negative differential entropy term, which is likely an artifact
of the adopted methodology. More specifically, we need to understand what properties of the MDP and/or the
policies affect this term. At the very least, we need to impose sufficient assumptions on the MDP and/or the
policies to ensure that this term is finite, lest we end up with a vacuous bound. Another side effect is that the
derived sample complexity of the algorithm is worsened yet again due to the square root in Pinsker’s equality.
One has to wonder if this is necessary, or again an artifact of the performed analysis.

C.2 Leveraging Previous Expected Return Estimates

Another possible approach consists in still reusing the trajectories collected for estimating J as mini-batches for
the critic, but at each iteration of the algorithm, employing the estimated J of the previous iteration, instead of
the current one. This can help mitigate some of the issues highlighted in the previous section. However, doing so



Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning

introduces an extra source of error, which depends on how much the expected return changes between successive
iterations. This difference, in turn, is proportional to the difference between the parameters of the two successive
policies, thanks to the Lipschitz continuity assumption. In practice, to control this extra error, we can try to
guarantee that the policy updates diminish with the number of iterations. One way to achieve this is to use a
decreasing step-size, which might, however, negatively affect the sample complexity of our algorithm.

As an alternative (only concerned with the estimation of J , without necessarily reusing samples) one could
use less trajectories for estimating J , but employ an incremental averaging scheme across iterations, controlled
with a step-size parameter. This can, in effect, allow us to take advantage of the sampled trajectories from
previous iterations as well. Still, to understand the effect of this approach, one needs to understand how much
the expected return of the policies changes between successive iterations.

Adopting a schedule of step-sizes which allows to take advantage of these ideas, while minimizing the negative
effects, is an interesting direction for future work.

D Details of the Experiments

D.1 Description of the Environment

We now provide the exact description of the dynamics of the Point-Reacher environment. As mentioned before,
the agent controls a point mass that moves along the real line in the interval [−10, 10], by taking (continuous)
actions in [−2, 2], denoting the size and the direction of the desired step. If the agent is in state s and takes
action a, the new state26 is s′ ∼ N (s + a, 4

√
|a|+ 0.01) and the immediate reward is r = −[ 4

√
0.1|s′| + 0.25p],

where p ∼ N (0, |a|3). The initial state is drawn uniformly in [−5,−4.9] ∪ [4.9, 5]. The version we considered
is of the continuing type. One can see that taking larger steps can, on average, take the agent faster towards
the 0 point (around which the agent can, on average, collect higher rewards). However, taking larger steps also
leads to higher variance of the immediate reward and the reached next state (which also affects the immediate
reward).

D.2 Implementation Details

We detail here some of the implementation details of MVAC. As mentioned in the main paper, we considered
Gaussian policies, where the mean and standard deviation are linear functions of the states. The features we
used for the states are Gaussian radial basis functions with 4 means spread uniformly over the state space, and
a width of 8. The critic also used these same features, but with a width of 10. The following is a summary of
the used parameters:

• Discount factor: γ = 0.9.

• Number of trajectories for estimating J : L = 100.

• Length of the trajectories for estimating J : TJ = 50.

• Critic batch size: M = 10.

• Number of critic iterations: Tc = 60.

• Critic step-size: β = 0.1.

• Actor batch size: B = 400.

• Number of actor iterations: T = 500.

• Actor step-size: α = 0.03.

One enhancement that was adopted for the actor is the usage of root mean square propagation (RMSprop) for
smoother and faster learning.

26The new state is clipped back into [−10, 10] if it gets outside this interval.
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The approximated Pareto frontiers in plot (f) of Figure 1 were obtained by plotting the expected return and
the reward volatility (or return variance in the case of plot (i)) corresponding to the points with the highest
mean-volatility (on the averaged curves) for each of the six values of λ chosen uniformly between 0 and 1.2.
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