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A Marriage between Adversarial Team Games and 2-player Games:
Enabling Abstractions, No-regret Learning, and Subgame Solving

Luca Carminati 1 Federico Cacciamani 1 Marco Ciccone 2 Nicola Gatti 1

Abstract

Ex ante correlation is becoming the mainstream
approach for sequential adversarial team games,
where a team of players faces another team in a
zero-sum game. It is known that team members’
asymmetric information makes both equilibrium
computation APX-hard and team’s strategies not
directly representable on the game tree. This
latter issue prevents the adoption of successful
tools for huge 2-player zero-sum games such as,
e.g., abstractions, no-regret learning, and sub-
game solving. This work shows that we can re-
cover from this weakness by bridging the gap be-
tween sequential adversarial team games and 2-
player games. In particular, we propose a new,
suitable game representation that we call team-
public-information, in which a team is repre-
sented as a single coordinator who only knows
information common to the whole team and pre-
scribes to each member an action for any pos-
sible private state. The resulting representation
is highly explainable, being a 2-player tree in
which the team’s strategies are behavioral with
a direct interpretation and more expressive than
the original extensive form when designing ab-
stractions. Furthermore, we prove payoff equiva-
lence of our representation, and we provide tech-
niques that, starting directly from the extensive
form, generate dramatically more compact repre-
sentations without information loss. Finally, we
experimentally evaluate our techniques when ap-
plied to a standard testbed, comparing their per-
formance with the current state of the art.

1Politecnico di Milano 2Politecnico di Torino. Correspon-
dence to: Luca Carminati <luca.carminati@polimi.it>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Research efforts on imperfect-information games custom-
arily focus on 2-player zero-sum games (“2p0s” games
from here on), in which two players act receiving oppo-
site payoffs. In this setting, superhuman performances
have been achieved in real-world instances, such as Poker
Hold’em (Brown & Sandholm, 2017b; 2019; Moravcı́k
et al., 2017) and Starcraft II (Vinyals et al., 2019). The
successful approach for 2p0s games is generally based on
the generation of a game abstraction used offline to find a
blueprint strategy which is refined online during the play.

In our work, we focus on sequential adversarial team
games in which a team of 2 (or more) players cooperates
against a common adversary or team of adversaries. In
particular, we focus on ex ante coordination, in which the
team members agree on a common strategy beforehand and
commit to playing it during the game without communicat-
ing any further. The team members share the same pay-
offs and coordinate against an adversary having opposite
payoffs, in face of private information given separately to
each team member. Examples include collusion in poker
games, bidding in the game of Bridge, and a team of drones
acting against an intruder. Celli & Gatti (2018) show that
the computation of a solution, called Team Maxmin Equi-
librium with Correlation (TMEcor), is APX-hard. Fur-
thermore, team members’ asymmetric information makes
a team equivalent to a single-player without perfect re-
call and therefore, as showed by Kuhn (1953), behavioral
strategies defined on the game tree and normal-form strate-
gies are not realization equivalent. In particular, normal-
form strategies may lead to arbitrarily better outcomes than
behavioral strategies. However, this comes at the cost of an
exponential explosion of the strategy space and the impos-
sibility to use tools for huge 2p0s games as normal-form
strategies are not directly representable on game trees.

Related Work. To the best of our knowledge, Celli & Gatti
(2018) are the first to compute the TMEcor of an adversar-
ial team game by proposing the Hybrid Column Generation
(HCG) algorithm. At each iteration, HCG exploits a Lin-
ear Program (LP) to compute a max-min solution and then
an Integer LP (ILP) to find the team’s best response to be
added to the LP at the next iteration. Successively, Farina
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et al. (2018) propose a variant of HCG, called Fictitious
Team Play (FTP), in which the LP computing the max-min
strategy is replaced by a step of the Fictitious Play algo-
rithm (Brown, 1951). Later, Zhang et al. (2021), Zhang &
An (2020b), Zhang & An (2020a), Farina et al. (2021) pro-
pose more efficient flavours of HCG and FTP algorithms.
Among the above algorithms, the Faster Column Gener-
ation (FCG) algorithm (Farina et al., 2021) provides the
best empirical performance. The rationale behind this class
of approaches is to incrementally expand the LP strategy
space to guess the actions in the equilibrium support with-
out necessarily enumerating an excessively large portion of
the space. The main weakness of this approach is the ne-
cessity to solve an ILP, which severely limits its scalability
to large game instances even for the evaluation of the ex-
ploitability of a suboptimal solution. A recent alternative is
proposed by Zhang & Sandholm (2022). The authors pro-
vide a generalization of the sequence form which, thanks to
a suitable tree decomposition of the constraints, allows the
description of a team’s strategy space by a polytope. Thus,
a TMEcor can be found by linear programming. This ap-
proach outperforms FCG with instances in which the de-
gree of private information is limited. The idea to provide
a convex representation of the strategy space adopted by
Zhang & Sandholm (2022) is closely related to ours. The
main differences reside in a better interpretability of our
representation, together with the possibility to adopt ab-
stractions Sandholm (2015); Gilpin et al. (2007), no-regret
learning (Zinkevich et al., 2007; Celli et al., 2020), and
subgame solving (Brown et al., 2018; Brown & Sandholm,
2017c).

We also mention Multi-Agent Reinforcement Learning
(MARL) approaches proposed by Celli et al. (2019) and
Cacciamani et al. (2021). These algorithms rely on im-
plicit abstractions yielded by deep reinforcement learning
to reduce the complexity of the problem. However, these
approaches provide theoretical guarantees only in games
in which team members have symmetric observability over
other players’ actions (chance included).

Original Contributions. As a preliminary step of our
work, we first enrich the canonical extensive-form repre-
sentation to capture information about public team mem-
bers’ observations. We call it extensive-form game with
visibility (vEFG). Exploiting this representation, we pro-
vide an algorithmic procedure, called PUBLICTEAMCON-
VERSION, to convert an instance of adversarial team games
into a 2p0s game, where a team is represented as a sin-
gle coordinator who only knows information common to
all team members and prescribes to each member an ac-
tion for any possible private state. We formally prove that
a Nash equilibrium of the converted game corresponds to a
TMEcor in the original game and vice versa, thus enabling,
for the first time, to the best of our knowledge, the adoption

of techniques for 2p0s games to adversarial team games.

Differently from the representations previously proposed in
the state of the art, e.g., that by Zhang & Sandholm (2022),
our representation is highly explainable, since the team’s
strategies are behavioral over the game tree with a direct
interpretation. More precisely, the coordination prescrip-
tions sent to the team members in each public state can be
interpreted as shared team conventions. Remarkably, our
representation also extends to adversarial settings the re-
search line previously developed by Nayyar et al. (2013)
and applied to cooperative games by Foerster et al. (2019)
and Sokota et al. (2021), thus bridging the two approaches.

Furthermore, we show that our representation is more ex-
pressive than the extensive form as state/action abstractions
applied to the extensive-form game can be captured by our
representation, while the reverse does not hold. More im-
portantly, the direct interpretability of our representation
allows the design of techniques to prune and abstract the
trees. In particular, we show that our techniques return a
game representation with a size smaller than that generated
by Zhang & Sandholm (2022), while guaranteeing explain-
ability. Finally, we empirically evaluate the performance of
no-regret algorithms applied to our representations.

2. Preliminaries
We introduce the basic concepts and definitions used
throughout this work. For more details, we point an in-
terested reader to Shoham & Leyton-Brown (2008).

Extensive-form Games and Adversarial Team Games
The basic model for sequential interactions among a set N
of N players with private information is the Extensive-
Form Game with imperfect information (EFG). An EFG
is a tuple (N ,H,Z, ι,A, A, I, {up}p∈N ) defining a tree
where the set of nodes is denoted byH and the set of leaves
(a.k.a. terminal nodes) is denoted by Z ⊆ H. The player
acting at node h ∈ H is returned by function ι(h) ∈ N .
Set A = ∪p∈NAp contains all the possible actions, where
Ap is the set of actions available to player p ∈ N . Given
a node h, the set of available actions at h is A(h). We also
refer to a node h as a history, meaning the sequence of all
the actions from the root to node h. Let up : Z → R be the
payoff function of player p mapping every terminal node
to a utility value. In order to account for imperfect infor-
mation, we use information sets (for brevity, infosets). An
infoset (also called private state) I ⊆ H \ Z is a partition
of the player p’s nodes that are indistinguishable to p. We
denote the set of player p’s infosets as Ip and the set of
all information sets as I = ∪p∈NIp. With notation over-
load, we use ι(I) and A(I) in place of ι(h) and A(h) where
h ∈ I and we denote as I(h) the infoset corresponding to
node h, for any h ∈ H.
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We focus on Adversarial Team Games (ATGs). An ATG is
an N -player EFG in which a team of players T ⊆ N plays
against an opponent o (or a team of players). If chance
player c is present, we enrich the set of players with it.
Thus, N = T ∪ {o} ∪ {c}. A team is a set of play-
ers sharing the same utility function. Formally, ∀p ∈ T ,
up = uT for some function uT . We restrict our analy-
sis to zero-sum ATGs, in which uT = −uo. Note that
since chance c is a non-strategic player, its payoff is not
defined. For an EFG, a deterministic timing is a labeling
of the nodes in H with natural numbers such that the label
of any node is strictly higher than the label of its parent.
A deterministic timing is exact if all nodes in the same in-
formation set have the same label, and the game is called
timeable. Furthermore, an EFG is 1-timeable, when ad-
mitting an exact timing where the difference between the
labels of the nodes and their parents is one. Furthermore,
we focus on perfect recall games, in which no player for-
gets information. Exploiting the property of 1-timeability,
we can define an ordering between different nodes. In par-
ticular, for two nodes h, h′ ∈ H we say that h precedes h′

(denoted as h ≼ h′) if the label assigned to h is smaller
than the label assigned to h′ and in the path from the root
of the game tree to h′, node h is encountered. With a slight
abuse of notation, for two infosets I, J ∈ I, we write that
I ≼ J if there exists h ∈ I, h′ ∈ J such that h ≼ h′.
In addition, given an infoset I , the set of team members
that will play in some infoset following I is denoted with
TI := {p ∈ T | ∃J ∈ Ip s.t. I ≼ J}.

Strategies and Nash Equilibrium Game theory pro-
vides various strategy representations in EFGs. A be-
havioral strategy σp : Ip → ∆|A(I)| is a function that
maps each infoset h to a probability distribution over avail-
able actions A(h). A normal-form plan (or pure strat-
egy) πp ∈ Πp := ×I∈Ip

A(I) is a tuple specifying
one action for each infoset, while a normal-form strategy
µp ∈ ∆|Πp| is a probability distribution over normal-form
plans. Kuhn (1953) show that behavioral and normal-form
strategies are equivalent in perfect-recall games, while this
does not hold with imperfect recallness where normal-
form strategies are (usually) more expressive than behav-
ioral. A reduced normal-form strategy µ⋆

p is obtained from
a normal-form strategy µp by aggregating plans distin-
guished by action played in unreachable nodes. With a
slight abuse of notation, ∀p ∈ N , we denote with σp[z] (re-
spectively µp[z]) the probability of reaching terminal node
z ∈ Z when following strategy σp (resp. µp). A strategy
profile is a tuple associating a strategy to each player in the
game. We denote normal-form strategy profiles with µ and
behavioral strategy profiles with σ. Given a strategy pro-
file µ, we denote with µp the strategy of player p ∈ N
and with µ−p the strategies of all the other players. With
an abuse of notation, the expected utility for player p when

she plays strategy µp and all the other players play strat-
egy µ−p is up(µp,µ−p). Furthermore, we define the best
response of player p to strategy profile µ−p as the strat-
egy that maximizes player p’s utility against strategy µ−p.
Formally, BRp(µ−p) := argmaxµ up(µ,µ−p). A strategy
profile µ is a Nash Equilibrium (NE) if it is stable with re-
spect to unilateral deviations of a single player. Formally,
µ is a NE if and only if ∀p ∈ N , µp ∈ BRp(µ−p).

Ex ante Coordination in ATGs Basilico et al. (2017)
show that the team’s expected payoff in a Nash equilibrium
can be arbitrarily smaller than the payoff in a Team Maxmin
Equilibrium, introduced by Von Stengel & Koller (1997),
which in its turn can be arbitrarily smaller than the payoff
in a Team Maxmin Equilibrium with Correlation strategies.
The TMEcor can be computed through a LP formulated
over the joint normal-form plans of the team players:

max
µT

min
µo

∑
z∈Z

µT [z]µo[z]uT (z)

s.t. µT ∈ ∆(×
p∈T

Πp)

µo ∈ ∆(Πo).

(1)

The team strategy space×p∈T Πp can grow exponentially
in the size of the game tree, thus making Problem (1) unaf-
fordable in practice except for toy games.

3. Extensive-Form Games with Visibility
Representation

We introduce the concept of Extensive-Form Game with
visibility. This representation allows us to explicitly cap-
ture the information common to a set of players (e.g., team
members) and to extend the notion of infoset accordingly.

Public Function. We first introduce a function Pubp :
A → {obs, unobs}, ∀p ∈ N , specifying whether action
a ∈ A is observable or unobservable, respectively, by a
single player p when a is played by another player. Note
that our definition of Pubp does not depend on the nodes
in which player p plays, and therefore it cannot capture po-
tential imperfect recallness in which p forgets actions ob-
served before. Trivially, the information structure of every
perfect-recall game is induced by some {Pubp}p∈N :
Proposition 3.1. Any pair of histories h, h′ of
player p belong to the same infoset when the ac-
tions a in h observable by p and the actions a′

in h′ observable by p are the same, formally, when
(a)a∈h:Pubp(a)=obs = (a′)a′∈h′:Pubp(a′)=obs.

With notation overload, the definition of function Pub can
be extended to a set of players P (e.g., a team) as PubP :
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A → {pub,priv,hidden}, ∀P ⊆ N :
PubP(a) = pub ⇐⇒ ∀p ∈ P : Pubp(a) = obs;

PubP(a) = hidden ⇐⇒ ∀p ∈ P : Pubp(a) = unobs;

PubP(a) = priv otherwise.
Informally, action a is called pub for a set of players P ,
when it is observable by all the players of that set; hidden,
when it is not observable by all these players (notice that
in this case a is played by a player not belonging to P);
and priv when some player(s) in P can observe it, while
some other player(s) in P cannot. Finally, we can extend
the standard definition of Extensive-Form game:
Definition 3.2 (Extensive-Form Game with Visibility). An
Extensive-Form Game with Visibility (vEFG) is a tuple
defined as (N ,H,Z, ι,A, A, I, {up}p∈N , {Pubp}p∈N )
where I is induced by {Pubp}p∈N as discussed above, and
therefore every player is with perfect recall.

3.1. Beyond Infoset: Public State

By means of PubP , we can introduce the notion of public
state for a set of players P ⊆ N , which extends the notion
of infoset to a set of players.
Definition 3.3 (Public State). A public state S is a sub-
set of nodes H such that any pair of histories h, h′ of
potentially different players in P belong to S when the
actions a in h that are public for P and the actions
a′ in h′ that are public for P are the same, formally,
(a)a∈h:PubP(a)=pub = (a′)a′∈h′:PubP(a′)=pub.

In other words, two histories belong to the same public state
if they share the same public actions and differ only for
their private actions. We call S the set of all public states. It
can be easily seen that, if the node h of an infoset I belongs
to a public state S, then S also contains all the other nodes
of I , and the notion of public state reduces to the notion of
infoset whenP is composed of a single player. In principle,
a public state can contain multiple infosets, that can be of
the same player and/or of different players in P . In the case
in which P is a team of players, we call a public state for
P as a team-public infoset. With an abuse of notation, for
any set of players P ⊆ N , we denote as SP(h) the set of
all infosets belonging to players in P that are in the same
public state as node h.

3.2. Public-turn-taking Games

We focus on a class of games, called public-turn-taking,
in which every player knows, at every infoset she plays, the
sequence of players acted from the root to that infoset. This
property refines 1-timeability as it requires that, in addition
to the length of the history, even the sequence of players
is common knowledge. In public-turn-taking games, the
public states have a specific structure that is central in our
results, allowing the translation of an ATG as a 2p0s game.

More precisely, every public state is composed of nodes of
a single player whose histories have the same length.
Definition 3.4 (Public turn-taking property). A vEFG is
public turn-taking if:

∀I ∈ I,∀h, h′ ∈ I : (ι(g))g⊑h = (ι(g′))g′⊑h′ .

Interestingly, we can show that, given an extensive-form
game satisfying perfect recallness and timeability, we can
generate a strategically equivalent game satisfying public-
turn-taking property, whose size is polynomially upper
bounded in the size of the original game (proofs omitted
in the main paper are in Appendix A).
Theorem 3.5 (Transformation into a public-turn-taking
game). Given any timeable vEFG with players N and
nodes H, there is a strategically equivalent (admitting
the same reduced normal form) public-turn-taking vEFG
whose size is O( |N | |H|2 ).

3.3. Completely inflated games

Another important class of team games for the ex ante co-
ordination scenario is called completely inflated games.
In this class of games, every team member knows the ex-
act action played by another team member at any informa-
tion set. This property allows us to explicitly represent that
teammates share their strategies before starting the game.
Definition 3.6 (Completely inflated vEFG (Kaneko &
Kline, 1995)). A vEFG G is completely inflated with re-
spect to a team of players T if:

PubT (a) = pub ∀a ∈ Ap∀p ∈ T (2)

In the following, we focus on completely inflated vEFGs
for the team T . This can be ensured for a generic vEFG
by modifying the function Pubt(a) in such a way that
Pubt(a) = obs ∀t ∈ T ∀a ∈ At′∀t′ ∈ T .

4. Team-Public-Information Conversion
Algorithm

4.1. Conversion Procedure

We present the algorithmic procedure to convert an ATG
into a 2p0s game, denoted as Team-Public-Information
(TPI) game, in which a coordinator player takes the strate-
gic decision on behalf of the team. The pseudo-code is
provided in Algorithm 1.
Definition 4.1 (Team-Public-Information game). Given a
completely inflated vEFG G that satisfies the public turn-
taking property, the corresponding TPI game G′1 is de-
fined as the output of the function CONVERTGAME(G) de-
scribed in Algorithm 1.

The algorithm recursively traverses the extensive-form
game tree in a depth-first post-order fashion: for each tra-

1Superscript ′ denotes the elements of the converted game.
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Algorithm 1 Team-Public-Information Conversion
1: function CONVERTGAME(G)

▷ G = (N ,H,Z, ι,A, A, I, {up}p∈N , {Pubp}p∈N )

2: initialize G′ new game
▷ G′ = (N ′,H′,Z′, ι′,A′, A′, I′, {u′

p}p∈N′ , {Pub′p}p∈N′ )

3: N ′ ← {t, o, c}
4: h′

∅ ← PUBTEAMCONV(h∅,G,G′) ▷ new game root
5: return G′

6: function PUBTEAMCONV(h, G, G′)
7: initialize h′ ∈ H′

8: if h ∈ Z then ▷ terminal node
9: Z ′ ← Z ′ ∪ {h′}

10: u′
p(h

′)← up(h) ∀p ∈ N
11: u′

t(h
′)←∑

p∈T up(h)

12: u′
o(h

′)← −u′
t(h

′)
13: else if ι(h) ∈ {o, c} then ▷ opponent or chance
14: ι′(h′)← ι(h)
15: A′(h′)← A(h)
16: if ι(h) = c then
17: σ′

c(h
′) = σc(h)

18: for a′ ∈ A′(h′) do
19: Pub′t(a

′)← obs if PubT (a′) = pub else unobs
20: Pub′o(a

′)← Pubo(a
′)

21: h′a′ ← PUBTEAMCONV(ha′, G, G′)
22: else ▷ team member
23: ι′(h′) = t
24: I ← I(h)

25: A′(h′)←×J∈STI
(h)

A(J) ▷ prescriptions

26: for Γ′ ∈ A′(h′) do
27: Pub′t(Γ

′)← seen, Pub′o(Γ
′)← unseen

28: a′ ← Γ′[I(h)] ▷ extract chosen action
29: initialize h′′ ∈ H′

30: A′(h′′)← {a′}
31: ι(h′′) = c
32: Pub′t(a

′)← seen
33: Pub′o(a

′) = Pubo(a
′)

34: σ′
c(h

′′) = play a′ with probability 1
35: h′′a′ ← PUBTEAMCONV(ha′, G, G′)
36: h′Γ← h′′

37: return h′

versed node, some corresponding nodes are instantiated
in the converted game as follows. The chance, terminal,
and adversary nodes are copied unaltered as the coordina-
tor player t has only access to the public information ob-
servable to the team members. Each team member node
of the extensive form is instead mapped to a new coordina-
tor node, in which she plays a prescription Γ among all the
combinations of possible actions for each information state
I belonging to the public team state. In other words, given
a public state S, the coordinator issues to the players differ-
ent recommendations for every possible information set be-
longing to S. For example, in Fig. 1(a), players 1 and 2 are
team members, and the decision nodes compose a unique
public state, therefore there is a single information set for
the coordinator player in the converted game depicted in
Fig. 1(b). In particular, the actions available to the coordi-

nator are prescriptions specifying an action per information
set of the extensive form (equivalently, an action per private
state). See Appendix B on how private information affects
the construction of our conversion, and Appendix D for a
richer conversion example.

4.2. Strategic Equivalence

The central result of the present paper is the proof that the
transformed Team Public Information game is strategically
equivalent to the extensive form. In particular, we show the
equivalence between a Nash Equilibrium in the converted
game and the TMEcor in the extensive form. Before prov-
ing such a result, we introduce the following instrumental
lemmas. We also remark that, while we make use of re-
duced normal-form plans, for simplicity, we refer to them
as plans and pure strategies, dropping the superscript “⋆”.
Lemma 4.2. Given a public-turn-taking vEFG G, and the
corresponding TPI game G′ = CONVERTGAME(G), each
joint pure strategy πT in G can be mapped to a strategy πt

in G′, such that the traversed histories have been mapped
by PUBTEAMCONV. Formally, ∀πT , there is a πt such that
∀πo, πc the following holds:

(PUBTEAMCONV(h))h reached by playing (πT ,πo,πc) in G
≡

(h′)h′ reached by playing (πt,πo,πc) in G′ .

Lemma 4.3. Given a public-turn-taking vEFG G, and the
corresponding TPI game G′ = CONVERTGAME(G), each
coordinator pure strategy πt in G′ can be mapped to a strat-
egy πT in G, such that the traversed histories have been
mapped by PUBTEAMCONV. Formally, ∀πt, there is πT
such that ∀πo, πc the following holds:

(PUBTEAMCONV(h))h reached by playing (πT ,πo,πc) in G
≡

(h′)h′ reached by playing (πt,πo,πc) in G′ .

We can now define the following functions to map strate-
gies from the extensive form game to the converted game.

Definition 4.4 (Mapping functions). We define:

• ρ : ΠT → Πt maps each πT to the πt specified by the
procedure described in the proof of Lemma 4.2;

• σ : Πt → ΠT maps each πt to the πT specified by the
procedure described in the proof of Lemma 4.3.

Those two functions can also be extended to mixed strate-
gies, by converting each pure plan and summing the prob-
ability masses of the converted plans. Formally, we have:

∀µT ∈ ∆ΠT : ρ(µT )[πt] =
∑

πT :ρ(πT )=πt

µT (πT ),

∀µt ∈ ∆Πt : σ(µt)[πT ] =
∑

πt:σ(πt)=πT

µt(πt).
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Chance

Player 1

Player 20

A B

1

C D

... ... ... ...

(a) Example of extensive form of an ad-
versarial team game (only the first three
levels are depicted; the symbol “. . . ” de-
notes that the game continues below).
Player 1 and Player 2 are in the same
team and have different visibility over
the chance actions.

Chance

Coordinator

0

0:A
1:C

A

0:A
1:D

A

0:B
1:C

B

0:B
1:D

B

1

0:A
1:C

C

0:A
1:D

D

0:B
1:C

C

0:B
1:D

D

... ... ... ... ... ... ... ...

(b) Team-public-information representa-
tion of the extensive-form game depicted
in (a).

Figure 1: Example of game conversion: from extensive form to team-public-information representation.

We can now state the payoff-equivalence between a game
G and the corresponding TPI game G′ as follows.
Theorem 4.5. A public-turn-taking vEFG G and its TPI
game G′ = CONVERTGAME(G) are payoff-equivalent, i.e.

∀πT ∀πo, πc : uT (πT , πo, πc) = ut(ρ(πT ), πo, πc),

∀πt ∀πo, πc : uT (σ(πt), πo, πc) = ut(πt, πo, πc).

The correspondence between the strategies of the two rep-
resentations is used to derive the main result of this work
that shows the equivalence between a NE of the converted
2p0s game and a TMEcor of the original ATG.
Theorem 4.6. Given a public-turn-taking vEFG G, and
the corresponding TPI G′ = CONVERTGAME(G), a Nash
Equilibrium µ∗

t in G′ is realization equivalent to a TMEcor
µ∗
T = σ(µ∗

t ) in G.

4.3. Games with Compact TPI

The procedure to convert an extensive-form game into the
equivalent TPI game exploits the information structure of
the team to prescribe to the team players an action for ev-
ery possible private state. In general, this makes the size
of the TPI to grow exponentially with the number of possi-
ble private states belonging to a public state. However, we
can find a class of games in which their information struc-
ture allows the generation of a TPI game with a size upper
bounded by a polynomial in the size of the extensive form:

Definition 4.7 (Games with common external informa-
tion). A vEFG G has common external information for a
set of players T ⊆ N if all the actions performed by the
other players (chance included) have the same visibility for
all players in T , formally, ∀p ∈ N \ T , ∀a ∈ Ap:

PubT (a) ̸= priv.

Theorem 4.8. Given a public-turn-taking vEFG G with

common external information for the team T , the tree of
corresponding TPI game G′ has a number of nodes linear
in the nodes of G.

Intuitively, Theorem 4.8 states that if the game has com-
mon external information for the team, then it is possible to
find the TMEcor in polynomial time. This result matches
what was previously known in literature. When common
external information is satisfied, one can, indeed, resort
to Kaneko & Kline (1995) to find a polynomial-time al-
gorithm to find an equilibrium. This is the case, e.g., of
Goofspiel game (Ross, 1971) which admits a compact TPI.

4.4. TPI Expressivity and Abstractions

Abstractions demonstrated to be a successful tool to tackle
real-world 2p0s game (Sandholm, 2015). Generally, these
are obtained by merging different infosets of the same
player (state abstractions) and/or different actions of the
same player at the same infoset (action abstractions).
However, despite their importance, the use of abstrac-
tions in ATGs has remained unexplored so far. By defin-
ing the team’s strategies as behavioral, the Team-Public-
Information representation provides a suitable and direct
tool for designing abstractions for ATGs, while we can
show that the extensive-form is not sufficiently expressive.
Proposition 4.9. Any action or state abstraction that,
once applied to an extensive-form game G, returns
a perfect-recall timeable game can be mapped specu-
larly in the team-public-information representation G′ =
CONVERTGAME(G). The reverse is not true.

It can be observed that the properties required by the above
proposition are satisfied by most of the abstractions, e.g.,
by Gilpin & Sandholm (2007) and Gilpin et al. (2007).
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4.5. TPI and Subgame Solving

Subgame solving (Moravcı́k et al., 2016; Brown & Sand-
holm, 2017a) demonstrated to be a central technique to
face huge imperfect-information 2p0s games, such as, e.g.,
poker games (Moravcı́k et al., 2017; Brown & Sandholm,
2017b). More precisely, subgame solving takes as input a
strategy (usually called blueprint) computed with a coarse
abstraction of the game and refines it in the neighborhoods
of the currently reached information set while playing (in-
tuitively, subgame solving algorithms perform a sequence
of local reoptimizations). The basic idea is to extract a por-
tion (called subgame) of the original game and generate on-
the-fly an auxiliary game to solve just in time. The solving
algorithm is initialized with the blueprint mapped to the
auxiliary game and then it refines such a strategy. In partic-
ular, in every information set a player moves, the strategy
refinement algorithm is performed. A notable example of
subgame solving technique is depth-limited subgame solv-
ing (Brown et al., 2018). In this algorithm, the auxiliary
game is built starting from the subgame rooted at the pub-
lic state corresponding to the infoset in which the player
is playing. The subgame is truncated at a given depth,
after which the players are assumed to play according to
the blueprint. As widely shown in real-world applica-
tions (Brown & Sandholm, 2017b), depth-limited subgame
solving can dramatically reduce the players’ exploitability.

Since our TPI conversion generates a 2p0s game preserving
the public structure of the original game, subgame solving
techniques, including, e.g., depth-limited solving, can be
applied directly. The only caveat concerns the size of the
auxiliary game, which is exponentially larger than the size
of the subgame in the extensive form. Developing efficient
subgame-solving techniques for the TPI game is an inter-
esting line of research and is left as future work.

5. Experimental Evaluation
5.1. Experimental Setting

Game Instances. We conduct our experimental activity
with a subset of instances customarily adopted as testbed
for adversarial team games, e.g., by Zhang & Sandholm
(2022). More precisely, we use multi-player parametric
versions of Kuhn (Kuhn, 1950) and Leduc (Southey et al.,
2005) poker where one player is the adversary and the re-
maining players collude against him. We use the following
values for the parameters. In Kuhn poker, team members
are from 2 to 3, ranks are from 3 to 6. In Leduc poker, team
members are from 2 to 3, the maximum number of bets al-
lowed in each betting round is from 1 to 5, ranks are from
2 to 5, suits are 3. Details are provided in Appendix E.

Representations. By exploiting the interpretability of our
representation, we design pruning and/or abstraction tech-

niques reducing the tree size. In our experiments, we focus
on the following reduced representations (more details on
the conversions are in Appendix C, while Appendix D pro-
vides a conversion example per representation).

Basic: it is the game returned by Algorithm 1.

Pruned: The play of a public action by a team member al-
lows to prune, in the following part of the tree, the private
states with a different recommendation. Thus, we safely
discard a subset of the private states reducing the number
of possible prescriptions in subsequent nodes. The pseu-
docode is in Algorithm 2 in Appendix C.

Folded: while pruned representation allows to safely re-
duce the number of possible private states, it does not ad-
dress the large number of nodes in the converted game.
This is due to the fact that Algorithm 1 preserves the chance
sampling as in the original game. However, we can avoid
to sample a private state and instead keep a belief over the
private states of the team members.

Imperfect-recall abstraction of folded: the folded represen-
tation may include multiple replicas of the same subgames
reachable from different histories. We connect the corre-
sponding infosets in the subgames over all the replicas, thus
leading to an imperfect-recall game that is well-formed in
the sense of Lanctot et al. (2012b).

Lossy imperfect-recall abstraction of folded: we discard all
coordinator’s prescriptions recommending the same action
(Fold or Raise or Call) to every private state. The resulting
game keeps to be well-formed.

Algorithms. We test our representations with state-of-the-
art no-regret algorithms for 2p0s games as Counter Fac-
tual Regret plus (CFR+) (Tammelin, 2014) and Outcome
Sampling Monte Carlo Counter Factual Regret (OS-MC-
CFR) (Lanctot et al., 2009). We recall that, as showed
by Lanctot et al. (2012b), CFR-based algorithms converge
to the equilibrium even with imperfect-recall games satis-
fying well-formed properties as for the case of our repre-
sentations. To abstract from the specific implementation
details, we use OpenSpiel (Lanctot et al., 2019a).

5.2. Experimental Results

Representation Size and Game Value. In Tab. 1, we re-
port the size of the game instances obtained by our conver-
sions, and we compare them with the size of the representa-
tion used by Zhang & Sandholm (2022). Although it is not
based on a tree, there is a strict connection between their
representation and ours. In particular, their locally feasible
sets are strictly related to our actions, as they are two dif-
ferent approaches to describe the Cartesian product of the
team members’ actions given their possible private states.
Both locally feasible sets and actions determine the size of
the two representations and are helpful to analyze how their
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Table 1: Size of the game trees returned by the different favours of our conversion (basic, pruned, folded, imperfect-recall abstraction
of folded, and lossy imperfect-recall abstraction of folded) and by the tree decomposition by Zhang & Sandholm (2022); size of the
reduced normal form. We use the following notation: mnKr is Kuhn poker with a team of m players facing a team of n player and
r ranks; mnLbrc is Leduc poker with a team of m players facing a team of n players, a maximum number b of bets allowed in each
betting round, a number of ranks r, and a number of indistinguishable suits c). Game values are provided both for the exact case (in
white) and when using our abstraction (in red). The empty cells are due to instances with more than 2 · 109 nodes or out-of-memory.

game instances

21K3 21K4 21K5 21K6 21K8 31K5 21L133 21L143 21L153 21L223 21L523 31L133

no
rm

al

fo
rm

plans team ∼ 106 ∼ 108 ∼ 109 ∼ 1011 ∼ 1015 ∼ 1020 ∼ 1070 ∼ 10126 ∼ 10197 ∼ 10252 ∼ 103200 ∼ 10283

plans adversary ∼ 103 ∼ 104 ∼ 106 ∼ 107 ∼ 109 ∼ 1010 ∼ 1054 ∼ 1096 ∼ 10150 ∼ 10134 ∼ 103900 ∼ 10152

ba
si

c

nodes 7336 200,681 3,714,326 35,140,264 6,140,623

infosets team 888 10,661 117,938 1,625,647 427,984

infosets adversary 12 16 20 228 630

actions team 2,101 24,641 265,517 4,135,497 1,287,852

actions adversary 25 33 41 457 1,443

pr
un

ed

nodes 4,360 95,225 324,766 15,007,117 35,140,264 724,009

infosets team 495 4,505 35,943 267,229 101,389 45,440

infosets adversary 12 16 20 24 228 630

actions team 1,087 9,849 77,947 574,709 339,243 127,352

actions adversary 25 33 41 49 457 1,443

fo
ld

ed

nodes 4,108 66,349 740,406 7,002,763 488,157,721 202,660,366 1,691,158 61,983,093 1,973,610,366 538,111 222,239,487 277,714,570

infosets team 495 4,505 35,943 267,229 13,194,833 11,783,620 96,115 2,625,209 67,400,747 44,252 18,308,851 17,403,080

infosets adversary 12 16 20 24 32 40 228 400 620 630 49,584 816

actions team 1,086 9,849 77,947 574,709 27,978,929 25,689,691 208,136 5,736,593 147,671,105 106,963 45,969,475 37,743,473

actions adversary 24 32 41 49 65 81 457 801 1,241 1,443 123,153 1,633

im
pe

rf
ec

t-
re

ca
ll

ab
st

ra
ct

io
n

of
fo

ld
ed nodes 4,108 66,349 740,406 7,002,763 488,157,721 202,660,366 1,691,158 61,983,093 1,973,610,366 538,111 222,239,487 277,714,570

infosets team 81 321 1,213 4,585 68,321 108,480 23,071 4,600 105,742 4,522 361,969 184,394

infosets adversary 12 16 20 24 32 40 228 400 620 630 49,584 816

actions team 253 1,433 8,237 48,341 1,710,449 886,591 13,659 97,577 682,095 13,646 1,261,733 568,211

actions adversary 25 32 41 49 65 81 800 457 1,241 1,443 123,153 1,633

tr
ee

de
co

m
po

si
tio

n sequences team 91 177 not available 433 801 2,611 2,725 6,377 12,361 5,765 492,605 42,361

sequences adversary 25 33 not available 49 65 81 457 801 1,241 1,433 123,143 1,633

loc. feas. sets team 351 1,749 not available 52,669 1,777,061 974,470 17,718 115,281 757,884 21,729 2,042,641 703,390

loc. feas. sets adversary 25 33 not available 49 65 81 703 1,225 1,891 3,123 305,835 2,479

exact game value 0.000 -0.0416 -0.0251 -0.0236 -0.0392 0.2148 0.1072 0.0240 0.5155 0.9520 0.1894

lo
ss

y
im

pe
rf

ec
t-

re
ca

ll

ab
st

ra
ct

io
n

of
fo

ld
ed game value -0.166 -0.0450 -0.0271 -0.0262 -0.0392 0.0888 0.0623 0.0004 0.3642 0.5858 0.1894

nodes 1,480 36,429 512,766 5,574,547 445,611,353 92,309,616 184,729 7,502,765 298,052,671 36,269 3,073,197 7,203,775

infosets team 64 287 1,146 4,453 67,803 91,021 1,930 11,981 70,636 2.513 198,329 37,435

infosets adversary 12 16 20 24 32 40 228 400 620 630 49,584 816

actions team 145 899 5,721 37,231 1,517,163 518,591 3,913 30,263 281,981 5,759 492,599 75,499

actions adversary 25 33 41 49 65 81 457 801 1,241 1,443 123,153 1,633

sizes grow as the size of the extensive form increases.

Interestingly, our basic representation is exponentially
smaller than the reduced normal form. Furthermore, our
information-lossless general-purpose techniques allow a
dramatic reduction of the size of the tree up to 3 orders
of magnitude. Furthermore, by using the imperfect-recall
abstraction of the folded representation, we obtain a num-
ber of actions smaller than the number of locally feasible
sets, suggesting that our representation is more efficient
than that by Zhang & Sandholm (2022), while guarantee-
ing explainability and the possibility of designing abstrac-
tions. In particular, in some instances (e.g., 21L523), the
number of actions in our representation is almost the half
than the locally feasible sets. We also observe that our
lossy imperfect-recall abstraction of the folded represen-
tation dramatically reduces the game size suffering from a
small loss in terms of game value, averagely, 0.086.

Exploitability vs. Iterations/Running Time. We show
in Fig. 2 the dependency of the exploitability with CFR+

and OS-MC-CFR on the iterations and time for instance
21L133. Considering the number of iterations, except for
a negligible term, the exploitability with CFR+ is the same
for all the information-lossless representations, while the
convergence of the lossy abstraction is slightly faster. How-
ever, considering the execution time, we can fully appreci-
ate the importance of developing techniques to reduce the
representation size. Indeed, CFR+ applied to our lossy ab-
straction is more than one order of magnitude faster than
the other representations, and even three order of magni-
tude faster than the basic one. This is due to the need for
performing full traversals of the tree at every iteration. At
the same time, a trajectory sampling algorithm like OS-
MC-CFR benefits when reducing the number of infosets,
as the variance of the estimates on the regret reduces. Re-
markably, the adoption of abstractions unlocks a significant
scale-up the algorithms in practice.

Finally, we remark that we cannot directly compare the run-
ning time of our algorithms with that by Zhang & Sand-
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Figure 2: Exploitability of CFR+ and OS-MC-CFR with 21L133
game in the number of iterations and time (seconds).

holm (2022) due to the use of different technologies and
implementation details. Notably, our approach and that
by Zhang & Sandholm (2022) take in input representations
whose size increases with the same dependency in the size
of the extensive form, suggesting that, abstracting from im-
plementation details, the relative perfomances of these two
approaches are similar to those of no-regret learning and LP
with 2p0s games, see, e.g., Zhang & Sandholm (2020). We
point the reader to Appendix E.3 for a detailed discussion.

6. Conclusions and Future Work
We bridge the realm of sequential 2-player zero-sum games
with that of adversarial team games. In particular, we show
that any sequential adversarial team game satisfying mild
assumptions can be converted into a suitable sequential 2-
player zero-sum game such that a Nash Equilibrium in the
converted game is strategically equivalent to a TMEcor in
the original game. This equivalence enables the adoption of
successful tools for solving huge 2-player zero-sum games
to adversarial team games. Furthermore, thanks to the high
explainability of our representation, pruning and abstrac-
tion techniques can be easily designed to dramatically re-
duce the size of the tree. In particular, we empirically show
that we can produce a game representation smaller than
that provided by the current state of the art without any
loss of information while guaranteeing explainability. Fur-
thermore, we provide, to the best of our knowledge, the
first example of abstractions for adversarial team games,
showing that it allows a remarkable reduction of the tree
size suffering from a small loss, and the first attempt to
use no-regret learning with this class of games. Open chal-
lenges include the design of ad hoc algorithms for abstrac-
tions, no-regret learning, and subgame solving (whose po-
tential impact needs to be evaluated) capable of exploiting
the structure of these games to scale up to huge instances.

References
Basilico, N., Celli, A., De Nittis, G., and Gatti, N. Team-

maxmin equilibrium: efficiency bounds and algorithms.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 31, 2017.

Brown, G. Iterative solution of games by fictitious play.
Activity Analysis of Production and Allocation, 13, 01
1951.

Brown, N. and Sandholm, T. Safe and nested subgame
solving for imperfect-information games. In NIPS,
2017a.

Brown, N. and Sandholm, T. Libratus: The superhuman
AI for no-limit poker. In Sierra, C. (ed.), Proceedings of
the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pp. 5226–5228. ijcai.org, 2017b.
doi: 10.24963/ijcai.2017/772. URL https://doi.org/10.
24963/ijcai.2017/772.

Brown, N. and Sandholm, T. Safe and nested subgame
solving for imperfect-information games. Advances in
neural information processing systems, 30, 2017c.

Brown, N. and Sandholm, T. Superhuman ai for multi-
player poker. Science, 365(6456):885–890, 2019. ISSN
0036-8075. doi: 10.1126/science.aay2400. URL https:
//science.sciencemag.org/content/365/6456/885.

Brown, N., Sandholm, T., and Amos, B. Depth-limited
solving for imperfect-information games. In NeurIPS,
2018.

Cacciamani, F., Celli, A., Ciccone, M., and Gatti, N. Multi-
agent coordination in adversarial environments through
signal mediated strategies. In AAMAS, 2021.

Celli, A. and Gatti, N. Computational results for extensive-
form adversarial team games. In AAAI, 2018.

Celli, A., Ciccone, M., Bongo, R., and Gatti, N. Coordina-
tion in adversarial sequential team games via multi-agent
deep reinforcement learning. ArXiv, abs/1912.07712,
2019.

Celli, A., Marchesi, A., Farina, G., and Gatti, N. No-regret
learning dynamics for extensive-form correlated equilib-
rium. Advances in Neural Information Processing Sys-
tems, 33:7722–7732, 2020.

Farina, G., Celli, A., Gatti, N., and Sandholm, T. Ex
ante coordination and collusion in zero-sum multi-player
extensive-form games. In NeurIPS, 2018.

https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.24963/ijcai.2017/772
https://science.sciencemag.org/content/365/6456/885
https://science.sciencemag.org/content/365/6456/885


Team-Public-Information Representation for Adversarial Team Games

Farina, G., Celli, A., Gatti, N., and Sandholm, T. Connect-
ing optimal ex-ante collusion in teams to extensive-form
correlation: Faster algorithms and positive complexity
results. In ICML, 2021.

Foerster, J., Song, F., Hughes, E., Burch, N., Dunning, I.,
Whiteson, S., Botvinick, M., and Bowling, M. Bayesian
action decoder for deep multi-agent reinforcement learn-
ing. pp. 1942–1951, 2019.

Gilpin, A. and Sandholm, T. Lossless abstraction of imper-
fect information games. J. ACM, 54(5):25–es, 2007.

Gilpin, A., Sandholm, T., and Sørensen, T. B. Potential-
aware automated abstraction of sequential games, and
holistic equilibrium analysis of texas hold’em poker.
In Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence, July 22-26, 2007, Vancou-
ver, British Columbia, Canada, pp. 50–57. AAAI Press,
2007.

Kaneko, M. and Kline, J. Behavior strategies, mixed strate-
gies and perfect recall. International Journal of Game
Theory, 24:127–145, 1995.

Kuhn, H. W. A simplified two-person poker. Contributions
to the Theory of Games, 1:97–103, 1950.

Kuhn, H. W. Extensive games and the problem of informa-
tion. Princeton University Press, Princeton, NJ, 1953.

Lanctot, M., Waugh, K., Zinkevich, M. A., and Bowling,
M. Monte carlo sampling for regret minimization in ex-
tensive games. In NIPS, 2009.

Lanctot, M., Gibson, R., Burch, N., Zinkevich, M., and
Bowling, M. No-regret learning in extensive-form games
with imperfect recall. arXiv:1205.0622 [cs], May 2012a.
URL http://arxiv.org/abs/1205.0622. arXiv: 1205.0622.

Lanctot, M., Gibson, R. G., Burch, N., and Bowling, M.
No-regret learning in extensive-form games with imper-
fect recall. In Proceedings of the 29th International Con-
ference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012, 2012b.

Lanctot, M., Lockhart, E., Lespiau, J., Zambaldi, V. F.,
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A. Proofs Omitted from the Main Paper
Theorem 3.5 (Transformation into a public-turn-taking game). Given any timeable vEFG with players N and nodes
H, there is a strategically equivalent (admitting the same reduced normal form) public-turn-taking vEFG whose size is
O( |N | |H|2 ).

Proof. We provide the following procedure which returns in output a public-turn-taking game. This is achieved by assign-
ing each level of the converted game to a player, alternating between them (chance included). Then, we add all the histories
of the original game one by one, while forcing that at each level only the player corresponding to that level can play. If the
history has no action assigned to the level’s player, then we can add a dummy player node, with only a single action, and
try to prosecute with the actions of the original history in the next node. The visibility of the added action is “unseen” for
all players except the one playing it.

This procedure guarantees to get a strategically equivalent game by adding at most O((|N | + 1)|H|) for any of the |H|
histories in the original game. This proves that the number of histories in the converted game is O((|N |+ 1)|H|2).

Lemma 4.2. Given a public-turn-taking vEFG G, and the corresponding TPI game G′ = CONVERTGAME(G), each
joint pure strategy πT in G can be mapped to a strategy πt in G′, such that the traversed histories have been mapped by
PUBTEAMCONV. Formally, ∀πT , there is a πt such that ∀πo, πc the following holds:

(PUBTEAMCONV(h))h reached by playing (πT ,πo,πc) in G
≡

(h′)h′ reached by playing (πt,πo,πc) in G′ .

Proof. To show that 4.2 holds, we show how for any pure joint strategy πT for the team in G it is possible to construct an
equivalent pure strategy πt in G′. Such goal can be achieved by recursively by traversing both G and G′ while constructing
πt.

First, consider the empty histories h∅ and h′
∅ for which it trivially holds that h′

∅ = PUBTEAMCONV(h∅).

Let h and h′ = PubTeamConv(h,G,G′) be the nodes currently reached by the algorithm PUBTEAMCONV respectively in
G and G′. We thus have the guarantee that h and h′ are both terminal or both share the same player (thanks to public turn
taking). Therefore, we can differentiate between the following cases:

• Case team member node
Let a = πT [I(h)] be the action specified by πT to be taken at I(h). We can construct a prescription Γ = (πT [I])I∈S[h]

equivalent to the pure strategy πT in this public state. We set πt[I
′(h′)] = Γ, and prosecute our proof from

the two reached nodes h′Γ and ha. The construction procedure PUBTEAMCONV guarantees in fact that h′Γa =
PUBTEAMCONV(ha).

• Case chance or opponent node
πo and πc are common to both the traversals. This guarantees that the action a suggested by the policy is equal, and by
construction of the conversion procedure h′a′ = PUBTEAMCONV(ha). We can thus proceed considering h′a and ha.

• Case terminal node
By construction, they have the same value for all players.

This concludes the proof.

Lemma 4.3. Given a public-turn-taking vEFG G, and the corresponding TPI game G′ = CONVERTGAME(G), each
coordinator pure strategy πt in G′ can be mapped to a strategy πT in G, such that the traversed histories have been
mapped by PUBTEAMCONV. Formally, ∀πt, there is πT such that ∀πo, πc the following holds:

(PUBTEAMCONV(h))h reached by playing (πT ,πo,πc) in G
≡

(h′)h′ reached by playing (πt,πo,πc) in G′ .

Proof. We can prove Lemma 4.3 recursively by traversing both G′ and G while constructing the equivalent pure strategy
in the original game. We start by h′

∅ and h∅. We know that h′
∅ = PUBTEAMCONV(h∅).

As in the proof of Lemma 4.2 let h and h′ = PubTeamConv(h,G,G′) be the nodes currently reached by the algorithm
PUBTEAMCONV respectively in G and G′. We thus have the guarantee that h and h′ are both terminal or both share the
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same player (thanks to public turn taking). Hence, we can differentiate between the following cases:

• Case team member node
Let Γ = πt[I

′(h′)]] be the prescription specified by πt to be taken at I ′(h′). We can extract the prescribed action a = Γ[I]
to be played in history h. We set πT [I(h)] = a, and prosecute our proof from the two reached nodes h′Γ and ha. The
PUBTEAMCONV procedure guarantees, indeed, that h′Γ = PUBTEAMCONV(ha).

• Case chance or opponent node
πo and πc are common to both the traversals. This guarantees that the action a suggested by the policy is equal, and by
construction of the conversion procedure h′a′ = PUBTEAMCONV(ha). We can thus proceed with the proof considering
h′a and ha.

• Case terminal node
By construction, they have the same value for all players.

This concludes the proof.

Theorem 4.5. A public-turn-taking vEFG G and its TPI game G′ = CONVERTGAME(G) are payoff-equivalent, i.e.

∀πT ∀πo, πc : uT (πT , πo, πc) = ut(ρ(πT ), πo, πc),

∀πt ∀πo, πc : uT (σ(πt), πo, πc) = ut(πt, πo, πc).

Proof. The proof follows trivially from Lemmas 4.2 and 4.3. Indeed, one can resort to the proof of Lemma 4.2 to obtain,
for each strategy πT in G, a payoff-equivalent strategy πt in G′. The other direction can be obtained by following the proof
of Lemma 4.3.

Theorem 4.6. Given a public-turn-taking vEFG G, and the corresponding TPI G′ = CONVERTGAME(G), a Nash Equi-
librium µ∗

t in G′ is realization equivalent to a TMEcor µ∗
T = σ(µ∗

t ) in G.

Proof. By hypothesis that µ∗
t is a NE, we have that:

µ∗
t ∈ arg max

µt∈∆Πt

min
µo∈∆Πo

∑
πt∈Πt
πo∈Πo
πc∈Πc

µt(πt)µo(πo)µc(πc)ut(πt, πo, πc).

We need to prove:

σ(µ∗
t ) ∈ arg max

µT ∈∆ΠT
min

µo∈∆Πo

∑
πT ∈ΠT
πo∈Πo
πc∈Πc

µT (πT )µo(πo)µc(πc)uT (πT , πo, πc)

Let minTMEcor(µT ) and minNE(µt) be the inner minimization problem in the TMECor and NE definition respectively.

Absurd. Suppose ∃ µ̄T with a greater value than σ(µ∗
t ). Formally:

min
TMEcor

(µ̄T ) > min
TMEcor

(µ∗
t ).

In such a case, we could define µ̄t = ρ(µ̄T ) having value:
min
NE

(µ̄t) = min
TMEcor

(µ̄T ) > min
TMEcor

(σ(µ∗
t )) = min

NE
(µ∗

t ),

where the equalities are due to the payoff equivalence. However this is absurd since by hypothesis µ∗
t is a maximum.

Therefore necessarily:
σ(µ∗

t ) ∈ arg max
µT ∈∆ΠT

min
NE

(µT ).

This concludes the proof.

Theorem 4.8. Given a public-turn-taking vEFG G with common external information for the team T , the tree of corre-
sponding TPI game G′ has a number of nodes linear in the nodes of G.

Proof. Consider first the opponent and chance nodes. Such nodes are copied unaltered, hence this operation does not
increase the total number of nodes. Now, let us focus on team players’ nodes. In order to prove the Theorem we have to
show that, for any h′ ∈ H′, only one infoset of the original game can be mapped to the public state St(h′). This ensures
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that node h′ has the same number of actions in output as infoset to which it is mapped, hence the overall number of nodes
does not increase.

Fix a node h ∈ H and let h′ = PubTeamConv(h,G,G′). The public state is characterized by all the actions publicly
observed by the team. Formally, the set of such actions in G at history h is:

Λ = {a ∈ h | PubT (a) = pub} .
Assume now, by absurd, that the set ST (h) contains two distinct information sets I, J ∈ I. This would mean that there
exists aI ∈ hI \ Λ, aJ ∈ hJ \ Λ for hI ∈ I , hJ ∈ J such that:

Pubp(aI) ̸= Pubp(aJ), (3)
where p = ι(h) ∈ T . Intuitively, the condition expressed by Equation (3) states that the two infosets are distinct.

However, this is impossible as the condition violates the assumption of A-loss refinement and common external informa-
tion. This results in generating a node h′ with the same number of actions as h, hence the dimension of the TPI G′ does
not increase with respect to the dimension of G.

Proposition 4.9. Any action or state abstraction that, once applied to an extensive-form game G, returns a perfect-recall
timeable game can be mapped specularly in the team-public-information representation G′ = CONVERTGAME(G). The
reverse is not true.

Proof. Trivially, any aggregation of states or actions defined in the extensive form leads to a game that can be converted
in the corresponding team-public-information representation by using Algorithm 1. On the other hand, not all abstractions
in the public information game can be reflected in the original one. As an example, consider Figure 1. If we perform
action abstraction in the converted game, by collapsing action ”0:A, 1:C” onto action ”0:A, 1:D”, this abstraction cannot
be remapped onto the original game. This happens because such abstraction corresponds to a constraint on the possible
strategies that Player 1 can choose since we are forbidding him to play any pure strategy that requires to play action A at
infoset 0 and action C at infoset 1. Such an abstraction does not modify the original game structure, since all A, B, C, D
may be played for some specific prescription.

B. Information Structure in Team Games
The core problem of finding a TMEcor in adversarial team games resides in asymmetric visibility since team members have
a private state that does not allow creating a perfect recall joint coordination player by trivially merging the players without
any modification of their information structure.

In the following, we characterize the possible types of asymmetric visibility that may cause imperfect recall for the joint
player, and singularly address them.

• Non-visibility over a team member’s action. If a team member plays an action hidden from another team member, the
joint team player would have imperfect recall due to the forgetting of his own played actions. This source of imperfect
recallness can be avoided in a TMEcor by considering the shared deterministic strategies before the game starts, thanks
to ex-ante coordination. This allows us to know a priori the exact actions played by team members in each node. Thus
it is safe to apply a perfect recall refinement in the original game, which corresponds to always considering the chosen
action of a team member as obs by other team members.

• Non-visible game structure. Consider two nodes in the same information set for a player before which the other team
member may have played a variable number of times, due to a chance outcome non-visible to the team member of these
nodes. In this case, a perfect recall refinement is not applicable to distinguish the nodes, because it would give the joint
coordinator information that is private of the current player. To solve this edge case, we require the property of public
turn-taking.

• Private information disclosed by chance/adversary to specific team members. It is the most complex type of non-
visibility, since in a TMEcor we have no explicit communication channels through which to share information, and
therefore this type of joint imperfect recall can only be addressed by considering a strategically equivalent representation
of the game in which at most one of the team players has private information.
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Algorithm 2 Pruned Public-Team Conversion

1: function CONVERTGAME(G)
2: initialize G′ new game
3: N ′ ← {t, o}
4: h′

∅ ← PUBTEAMCONV(h∅,G,G′) ▷ new game root
5: return G′

6: function PUBTEAMCONV(h, G, G′, X )
7: initialize h′ ∈ H′

8: if h ∈ Z then ▷ terminal node
9: h′ ← h′ ∈ Z ′

10: u′
p(h

′)← up(h) ∀p ∈ N
11: else if P(h) ∈ {o, c} then ▷ opponent or chance
12: P ′(h′)← P(h)
13: A′(h′)← A(h)
14: if h is chance node then
15: σ′

c(h
′) = σc(h)

16: for a′ ∈ A′(h′) do
17: Pub′t(a

′)← obs if PubT (a
′) = pub else unobs

18: Pub′o(a
′)← Pubo(a

′)
19: h′a′ ← PUBTEAMCONV(ha′, G, G′, X )
20: else ▷ team member
21: P ′(h′) = t
22: I ← I(h)
23: A′(h′)←×J∈STI

(h):∄∄∄J′∈X matching J
A(I) ▷ prescriptions

24: for Γ′ ∈ A′(h′) do
25: Pub′t(Γ

′)← seen, Pub′o(Γ
′)← unseen

26: a′ ← Γ′[I(h)] ▷ extract chosen action
27: X ← X ∪ {J : Γ′(J) ̸= a′} ▷ update X removing incompatible private states
28: initialize h′′ ∈ H′

29: A′(h′′)← {a′}
30: P(h′′) = c
31: Pub′t(a

′)← seen
32: Pub′o(a

′) = Pubo(a
′)

33: σ′
c(h

′′) = play a′ with probability 1
34: h′′a′ ← PUBTEAMCONV(ha′, G, G′, X )
35: h′Γ← h′′

36: return h′

C. Pruning and Abstraction Techniques to Generate More Concise Representations
As aforementioned, in the worst case, our representation cannot have a size upper bounded by a polynomial in the size of
the extensive form unless P = NP. Nevertheless, in many cases, the game tree generated by our conversion may contain
redundant information, and thus it can be compressed without any loss of information. In the following, we provide
different procedures to generate a much more concise team-public-information representation of an adversarial team game.

Pruned Representation. Whenever the coordinator prescribes a team member to play an action a such that PubT (a) =
pub, where T is the team, the possible private states in which the player may be can be reduced after observing the action
chosen from the given prescription, and this may also impact on the possible private states of other team members. Since
the number of prescriptions depends on the number of private states, a dramatic reduction of the number of prescriptions
is achieved without any loss of information.

The pseudocode of the procedure to directly generate a TPI in its pruned representation is provided in Algorithm 2. It takes
as input the same vEFG as Algorithm 1. In particular, the procedure is obtained by a simple modification of Algorithm 1,
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adding a parameter X in PUBTEAMCONV which is used to store the private states that can be excluded in the following
part of the tree once played a public action. To ease the visualization, modifications to Algorithm 1 are highlighted in
bold. By excluding every information set in X when building the prescription in Line 23, we can effectively prune the
number of private states to be considered by the coordinator. An example of pruned representation is provided in Figure 5
in Appendix D.

Folded Representation. In the basic TPI game produced by Algorithm 1, chance outcomes are explicitly represented in the
game tree independently of the visibility of the outcomes, thus branching the game tree into different subgames according
to the specific outcome. Consider the case of a chance action that can be observed by a team member and not observed
by the adversary. In the converted game, such an action is not observable to any player, and therefore it can be safely
postponed as long as no specific action depends on it. The folding representation takes advantage of this property to avoid
sampling these types of private states. Instead, it samples an action from the prescription depending on the probability that
a specific private state is present at a given point in the game, given the previous actions of all players and their current
strategies. The dummy chance nodes h′′ instantiated in Algorithm 1 therefore may present different actions, each with a
probability given by the sum of the probabilities of the private states for which that action has been prescribed.

This approach can be considered as a hybrid game-specific representation between the public tree of the team and the
original tree of the adversary, allowing a dramatic reduction of the size of games with private signals such as Poker. To
apply the folded representation to Kuhn and Leduc Poker, we maintain a belief over the possible joint cards assigned
to the team members and perform a Bayesian update whenever new information is disclosed. In Poker, this happens by
choosing a public action after a prescription and drawing a public card. This belief can then be integrated with full history
information (adversary and public card) to determine the probability of picking specific actions from a given prescription,
and to evaluate the payoffs at the terminal nodes. The information state of the coordinator is described by the full sequence
of prescriptions given and public information for the team. This type of belief and reach probability are not novel as they
have been introduced by Foerster et al. (2019) and Sokota et al. (2021) in cooperative multiagent RL settings.

The name Folded Representation is inspired by the fact that trajectories with the same public actions but different private
states are folded one over the other in the converted game. An example of folded representation is provided in Figure 6 in
Appendix D.

Imperfect-Recall Abstraction of the Folded Representation. This representation takes advantage of the fact that sub-
games rooted in information states, whose current belief and public actions are the same, correspond to the same state of
the original game. Therefore those subgames share the same structure and the same payoffs.

Thus, we can avoid including the full sequence of prescriptions in the information set of each player. This does not directly
reduce the number of nodes, but it reduces the number of information sets, simplifying the information structure of the
game. This also reduces the space requirements to represent the strategies and simplifies the information structure of the
coordinator. This abstraction technique is theoretically sound and leads to a well-formed game in the sense by Lanctot et al.
(2012a). Therefore, in these settings, as showed by Lanctot et al. (2012a), no-regret algorithms converge to the equilibrium.
In our experiments, we employ this information state refinement technique on top of the folded representation. An example
of imperfect-recall abstraction of the folded representation is provided in Figure 7 in Appendix D.

Lossy Imperfect-Recall Abstraction of the Folded Representation. The compression techniques used for generating the
pruned and folded representations have a high impact whenever the coordinator’s prescription includes different actions to
different private states. These actions are observable to the team members. Since different actions are played at different
private states, observing an action reveals the private state, thus simplifying the part of the games following such a pre-
scription. On the other hand, whenever the coordinator prescribes the same action to every private state, playing an action
does not reveal any information. Therefore, the public state keeps having a combinatorial size. Intuitively, the higher the
degree of signaling (communication), the smaller the size of the tree.

The main idea behind our lossy abstraction is to discard all the uninformative prescriptions recommending to play the
same card at every private state. More precisely, in our Poker instance, we discard from the game tree all the prescriptions
recommending to play Fold at every private state, and we do the same for the cases of Call and Raise. Notice that such
discarding is equivalent to forcing the coordinator to play those prescriptions with zero probability. Interestingly, this
abstraction cannot be defined on the extensive-form game, while it can be defined on our representation.

In particular, we discard the above coordinator’s actions from the folded representation and apply the imperfect-recall
abstraction described above, thus obtaining a well-formed game as defined in Lanctot et al. (2012a). An example of
imperfect-recall abstraction of the folded representation is provided in Figure 8 in Appendix D.
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D. Comparison among the Representations
We provide an example of extensive-form game and of the three conversions described in the paper in Figs. 3–6. To ease
the visualization, we focus on a cooperative game with no adversary.
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Figure 3: Extensive form of a 2-player team game with chance and without adversary, where Player 2 observes all actions except those
of chance. Nodes of a player with same number are in the same infoset.
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Figure 4: Team-public-information representation of the game depicted in Figure 3. Nodes of a player with same number are in the same
infoset. For the sake of notation, dummy chance nodes are not represented, prescriptions include the action to take for private state 0
and 1, the action taken afterward is in bold in the prescription.
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Figure 5: Pruned team-public-information representation of the game depicted in Figure 3. Nodes of a player with the same number
are in the same infoset. For the sake of notation, dummy chance nodes are not represented, prescriptions include the action to take for
private state 0 and 1, the action taken afterward is in bold in the prescription.
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Figure 6: Folded team-public-information representation of the game depicted in Figure 3. For the sake of notation, prescriptions include
the action to take for private state 0 and 1. Terminal nodes in the form x|y represent a terminal node which has a weighted average value
with respect to the outcomes x and y.
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Figure 7: Imperfect-recall abstraction of the folded team-public-information representation of the game depicted in Figure 3. For the
sake of notation, prescriptions include the action to take for private state 0 and 1. Terminal nodes in the form x|y represent a terminal
node which has a weighted average value with respect to the outcomes x and y. Note that the coordinator has imperfect recall on the
nodes characterized by the knowledge of a specific private state and sharing the same public history of played actions.
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Figure 8: Lossy imperfect-recall abstraction of the folded team-public-information representation of the game depicted in Figure 3.
For the sake of notation, prescriptions include the action to take for private state 0 and 1. Terminal nodes in the form x|y represent a
terminal node which has a weighted average value with respect to the outcomes x and y. In this case, the imperfect recall abstraction
does not coarsen the information structure of the coordinator, since all the nodes at the last level are characterized by a different private
state-public history combination.

E. Experimental settings
E.1. Poker instances

We refer to the three-player generalizations of Kuhn and Leduc poker proposed by (Farina et al., 2018).

Like all poker games, at the start of the game each player antes one to the pot, and receives a private card. Then players
play sequentially in turn. Each player may check by adding to the pot the difference between the higher bet made by other
players and their current bet (i.e. by matching the maximum bet made by others). Each player may fold whenever a check
requires putting more money into the pot and the player instead decides to withdraw. Each player may raise whenever the
maximum number of raises allowed by the game is not reached, by adding to the pot the amount required by a check plus
an extra amount called raise amount. A betting round ends when all non-folded players except the last raising player have
checked.
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In Kuhn poker, there are three players and k possible ranks with k different ranks. The maximum number of raises is one,
and the raising amount is 1. At the end of the first round, the showdown happens. The player having the highest card takes
all the pot as payoff.

In Leduc poker, there are three players, k possible ranks having 3 cards in the deck each, and 1 or 2 raises. The raise
amount is 2 for the first raise and 4 for the second raise. At the end of the first round, a public card is shown, and a new
round of betting starts from the same player starting in the first round. In the end, the showdown happens. Winning players
are having a private card matching the rank of the public card. If no player forms a pair, then the winning player is the one
with the card with the highest rank. In the case of multiple winners, the pot is split equally.

E.2. Implementation details

We implemented the folded representation of both Kuhn and Leduc taking advantage of the OpenSpiel (Lanctot et al.,
2019b) framework. The framework allowed us to specify the game as an evolving state object and provided the standard
resolution algorithms for the computation of a Nash Equilibrium in the converted game.

The experiments have been performed on a machine running Ubuntu 20.04 with a Intel Xeon Platinum 8358 (128) @
3.300GHz CPU with 503 GB of memory. The implementation is single-threaded.

E.3. Design choices

Customarily, researchers developed ad hoc codes with different programming languages, each exploiting various program-
ming optimization. This approach makes the comparison among the different algorithms difficult, hiding their actual scal-
ability and sometimes emphasizing ancillary, non-central issues (e.g., adopting different versions of GUROBI or CPLEX).
For this reason, we opted to adopt a tool publicly available to represent and solve the transformed games (i.e., OpenSpiel
framework). While such a framework is general and readily available, some implementation choices for memory allocation
and game representation slow down the performance with respect to the custom implementation by Zhang & Sandholm
(2021). The only metric allowing us to have a comparison not depending on the specific technology is the size of the
optimization problem. This is the reason why we directly compare the number of variables and constraints of the linear
program used by Zhang & Sandholm (2021) with the number of infosets and actions of our game tree. Interestingly, there
is a strict connection between the variables in Zhang & Sandholm (2021) and our actions, and the number of constraints
in Zhang & Sandholm (2021) and our infosets. The interesting point is that the size of the problem by Zhang & Sandholm
(2021) and the size of problem (produced thanks to abstractions) are asymptotically the same as the size of the instance
increases. This suggests that, asymptotically, the relative performance of solving our tree and the problem by Zhang &
Sandholm (2021) depend only on the two algorithms (as the size of the instances is the same). In particular, the relative
performance between no-regret and linear programming is known (Zhang & Sandholm, 2020).

F. Plots
We report a larger version of the exploitability plots provided in the main body of the paper.
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Figure 9: Exploitability of CFR+ and OS-MC-CFR with 21L133 game in the number of iterations and time (seconds).
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