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Summary

This thesis has the double objective of proposing new methods, mainly concerning

the safety and stability analyses of nuclear reactors, and, at the same time, of extending

available techniques in order to be compliant with the industrial requirements concern-

ing the adoption of qualified codes.

The development of new methods is mostly carried out in the first part of the thesis,

where they are applied to simplified systems in order to better grasp their physico-

mathematical features, but without loosing track of the real-life applications. In the

first chapter, the classical PN and SN approximations are presented, in order to approach

numerically the solution of the eigenvalue problems arising in neutron transport. Af-

ter addressing some old-fashioned but still relevant questions concerning the angular

parity order, the equivalence between odd and even angular orders and the possibil-

ity to accelerate numerically the angular convergence of these methods, some numer-

ical benchmarks are carried out to check the implementation of these methods in an

in-house Python package, called TEST, which is widely adopted in the course of the

thesis.

Then, the classical eigenvalue formulations to the neutron transport equation are

presented and discussed, focusing on their physico-mathematical peculiarities and on

their eigenvalue spectra. Afterwards, a novel eigenvalue formulation, focused on neu-

tron capture, is introduced and discussed as well. Finally, an example regarding the

application of the eigenvalue spectrum for the optimal selection of the energy group

for the energy collapsing is presented and discussed.

Exploiting the results of the eigenvalue formulation analysis, a possible application

of the eigenfunctions associated to the various formulations are proposed as alternative

weighting functions for the group collapsing procedure. The behaviour of the different

weighting functions is assessed by comparing the main integral parameters obtained

by multi- and few-group calculations. The major outcome of this analysis is that bet-

ter alternatives to the eigenfunction associated to the classic multiplication eigenvalue

exist, despite their performances depend on the calculation parameters.

Then, the first part of the thesis is concluded by proposing a generalisation of the

standard eigenvalue formulations, with the final aim of deriving a new eigenvalue prob-

lem which allows to act on specific portions of the phase space and nuclides, for design-

oriented applications. After discussing the main physico-mathematical aspects of this
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formulation, relevant engineering problems like the determination of the critical boron

concentration are evaluated using this new approach, showing its efficiency and its

capability to find all the possible critical configurations for a given initial off-critical

system. This last feature is particularly important for safety analyses, since it allows

to explore the physical conditions that may lead a system to re-criticality. In the de-

termination of the possible critical configurations of the system, emphasis is also put

on the classical figure of merit used to assess the neutronic stability, i.e. the eigenvalue

separation.

In the remaining chapters, more realistic systems are analysed, focusing on 2D and

3D models of some Gen-III+ and Gen-IV reactor concepts. This last part of the work

mainly aims at proposing computationally efficient methods for the safety analyses of

the neutronic behaviour of the core, trying to reduce as much as possible any interven-

tion in the code. This goal is accomplished by means of Non-Intrusive Reduced-Order

Modelling (NIROM) techniques, which permit a fair reduction of the computational

time without any code modifications at the price of small approximations.

A non-intrusive reduced-order model (NIROM) is presented as an efficient way of

reducing the computational cost of the original, high-fidelity models. Then, this model

is applied to three different industrial application, with the goal of proving the NIROM

effectiveness.

The first application deals with the spatial stability stability of the Gen-III+ core,

with the aim of training an efficient NIROM to analyse the power tilt behaviour at the

full-core level with respect to an input random perturbation. Due to core complexity

and to the great number of free parameters, some extensions of the NIROM are de-

vised, like proposing to use the Polynomial Chaos Method to compute the perturbed

cross sections for the full-core diffusion calculation. Afterwards, the need for a new

metric to evaluate the distance between the training data is highlighted, proposing a

more accurate algorithm to accomplish this task. Finally, the NIROM performances are

successfully tested, both in terms of memory and of computational time.

The second application concerns the parametric safety analysis of accidental tran-

sient scenarios in LFR. Also in this case, some of the NIROM steps are suitably modified

and extended, in order to take into account the time-dependent behaviour of the model.

Finally, the accuracy of the NIROM is proved by comparing its results with a validation

dataset.

In order to show that the methods proposed have a wide applicability range also

outside the nuclear field, this last application focuses on the safety analysis of accidental

high-pressure gas releases in industrial, congested environments.

Finally, the last chapter focuses on the nuclear data uncertainty quantification, which

is a relevant topic in the safety analysis of nuclear system. The chapter focuses both on

methodological aspects and on the nuclear data uncertainty propagation for the lead

fast reactor ALFRED design.
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Chapter 1

Introduction

It is, perhaps, the most remarkable book ever

to come out [...]

of which no Earthman had ever heard either.

Not only is it a wholly remarkable book,

it is also a highly successful one.[...] the Hitch Hiker’s Guide [...]

scores over the older, more pedestrian work in

two important respects.

First, it is slightly cheaper; and secondly it has

the words DON’T PANIC inscribed in large

friendly letters on its cover.

The Hitchhiker’s Guide to the Galaxy,

Douglas Adams

1.1 Overview
The risk perception and, consequently, its public acceptability are probably the as-

pects which limited the most, during the last 40 years, the worldwide diffusion of

nuclear power plants (NPP) as an effective, clean, reliable and carbon-free electricity

source (Buongiorno, Parsons, and Petti, 2019). Despite they were featured by different

initiating events, time evolution and consequences, all the three major accidents in-

volving nuclear power plants, namely Three Mile Island (1979), Chernobyl (1986) and

Fukushima Daiichi (2011), made evident the fact that, to avoid any accidental outbreak,

safety has to be included by design when a new reactor concept is developed (Meshkati,

2007). In particular, Chernobyl pointed out both the dramatic rôle of human errors

in the development of an accident and the difficulty of human intervention to restore

the plant main functionalities in the presence of a severe accident, while Fukushima

demonstrated that, in order to effectively certify the safety of a plant, the probabilistic
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Introduction

risk assessment should demonstrate that the nuclear installations are able to withstand

also very unlikely yet still possible events, which are known as beyond design basis
accidents (BDBA) (IAEA, 2020).

These lessons learnt brought up the need for innovative nuclear fission reactors that

could meet these safety requirements and the ones concerning the fuel cycle sustainabil-

ity, the long-life waste minimisation, the resistance to proliferation and the market com-

petitiveness with the other energy sources. As an immediate, albeit partial, response to

these necessities, it was first proposed to enhance the design of the most popular and re-

liable operating reactors, i.e. the Light Water Reactors (LWRs), including some passive

safety features and improving their economic aspects. These reactor designs belongs

to the so-called Generation-III+ (Gen-III+), which includes the Advanced-Passive 600

(AP-600), the Advanced-Passive 1000 (AP-1000) and the European Pressurised Reactor

(EPR) (Marques, 2011).

For the long term, the ultimate response to these issue should come with the so-

called Generation IV (Gen-IV) reactors, a set of evolutionary concepts heavily based on

the passive safety principles. Among the most promising designs selected in the frame

of the Generation IV International Forum (Locatelli, Mancini, and Todeschini, 2013), it

is possible to mention, for example, the Lead Fast Reactor (LFR) and the Molten Salt

Reactors (MSR).

Gen-III+ and Gen-IV reactors are nowadays featured by different technology readi-

ness levels. Concerning the Gen-III+, the first AP1000, located in China, achieved criti-

cality during the mid of 2018, while the first EPR unit entering commercial operations

was the one of Taishan 1, in China, at the end of 2018
1
. The first unit to achieve crit-

icality in Europe, after several delays, was the one in Olkiluoto, Finland, at the end of

2021
2
. Other units are still under construction in France (Flamanville) and United King-

dom (Hinkley Point). In spite of these construction delays, the Gen-III+ reactors are

now a mature technology. Nevertheless, some design variations with respect to the tra-

ditional PWR concepts, like the larger core size, the adoption of a heavy stainless steel

reflector and the reduction of the in-core equipment, make their operation more deli-

cate in comparison to other LWRs (Sargeni, Burn, and Bruna, 2016). Therefore, there

is a never-ending need for reliable and efficient calculation tools to assess their safe

operation.

On the contrary, most of the Gen-IV systems are currently under different advance-

ment stages of the design, and only a few of them are close to a maturity level sufficient

for the construction of plant demonstrators (Kamide, Rodriguez, et al., 2021). Hence,

the risk assessment for these reactors is currently at a preliminary stage, and mainly

aims at guiding the design development and ensuring the inclusion of the safety aspects

from the early design phases.

1
https://world-nuclear-news.org/Articles/First-EPR-enters-commercial-operation

2
https://www.world-nuclear-news.org/Articles/Europe-s-first-EPR-reaches-criticality

2

https://world-nuclear-news.org/Articles/First-EPR-enters-commercial-operation
https://www.world-nuclear-news.org/Articles/Europe-s-first-EPR-reaches-criticality


1.2 – Motivations

With respect to Gen-III+ reactors, which can benefit from the design and operational

experience coming from the LWRs fleet, Gen-IV reactors are mostly first-of-a-kind sys-

tems, with very limited design and operational experience. Their unique features and

working principles introduced the need for more sophisticated modelling and computa-

tional techniques for both the design and the licensing phases. For example, the inher-

ent multiphysics features of these reactors put a larger emphasis on the multiphysics

simulations, and the presence of uncommon nuclides requires the quantification of the

nuclear data uncertainties on the reactor macroscopic parameters. Hence, the success-

ful deployment of these revolutionary concepts requires the development of new ex-

periments, methods, calculation tools, safety requirements and construction standards

(Driscoll and Hejzlar, 2005).

Given these socio-economic-environmental aspects and the current nuclear indus-

trial framework, it appears evident that both the operation of Gen-III+ reactors and

the design, licensing and construction of Gen-IV reactors entail a keen effort towards

the adoption of state-of-the-art methodologies to perform thorough safety assessments.

One possibility to accomplish this goal could lie in the integration of practices pertain-

ing to the safety and risk analysis into the different aspects of the reactor design and

operation, like neutronics, thermo-hydraulics, fuel performance and system analysis.

Due to the vastness of these disciplines, this Ph.D. thesis focuses mainly on the neu-

tronic aspects and their rôle in the safety studies.

1.2 Motivations
Neutronics is, in a wide sense, a branch of physics dealing with the study of the

neutrons distribution inside a system and their interactions with the medium compos-

ing the system. Thanks to their physical features, the behaviour of these sub-atomic

particles can be effectively represented by the linear Boltzmann transport equation.

The neutron transport model in its general formulation, including delayed emissions

from the fission products decay, consists in the following system of integro-differential

3
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equations, coupled with appropriate boundary and initial conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v(𝐸) 𝜕𝜙(𝑟 , 𝐸, Ω̂, 𝑡)𝜕𝑡 + ∇⃗ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω̂, 𝑡)) + Σ𝑡(𝑟 , 𝐸)𝜙(𝑟 , 𝐸, Ω̂, 𝑡) =+∫ 𝑑𝐸′ ∮ 𝑑Ω̂′ Σ𝑠(𝑟 , 𝐸′)𝜙(𝑟 , 𝐸′, Ω̂′, 𝑡)𝑓𝑠(𝑟 , 𝐸′→𝐸, Ω⃗ ⋅ Ω⃗′)++(1 − 𝛽)𝜒𝑝(𝑟 , 𝐸)4𝜋 ∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ 𝜈Σ𝑓 (𝑟 , 𝐸′)𝜙(𝑟 , 𝐸′, Ω̂′, 𝑡)++ 𝑅∑𝑖=1 𝜒𝑖(𝑟 , 𝐸)4𝜋 𝜆𝑖𝐶𝑖(𝑟 , 𝑡) + 𝑆𝑒𝑥𝑡(𝑟 , 𝐸, Ω̂, 𝑡)
𝜕𝐶𝑖(𝑟 , 𝑡)𝜕𝑡 = 𝛽𝑖 ∫ 𝑑𝐸′ ∮ 𝑑Ω̂′ 𝜈Σ𝑓 (𝑟 , 𝐸′)𝜙(𝑟 , 𝐸′, Ω̂′, 𝑡) − 𝜆𝑖𝐶𝑖(𝑟 , 𝑡), 𝑖 = 1,… , 𝑅.

(1.1)

where the symbols have their standard meaning, as it can be found in most of the nu-

clear reactor physics books (Weinberg and Wigner, 1958; Bussac and Reuss, 1985) and

in chapter 2.

Equation (2.13) is featured by many levels of complexity, which may be roughly dis-

tinguished in physico-mathematical and engineering intricacies. The firsts are mainly

related to its integro-differential nature, which has required the development of several

solution techniques, both analytical and numerical. The second group of intricacies,

strongly linked to the first one, is related to the practical application domain, which is

usually a multi-scale system, e.g. a nuclear reactor. The way these two levels of com-

plexity have been tackled during the years have profoundly influenced the development

of nuclear reactor physics.

At the dawn of the nuclear history, these two aspects were tightly related. On one

side, there was the need to understand the fundamental physical phenomena at the

basis of the fission chain reaction. On the other, there was the technological compe-

tition to control the nuclear energy for military purposes. Enrico Fermi, who was the

first to adopt a mathematical model to study the neutron balance, designed the Chicago

Pile system tackling both physico-mathematical and engineering issues (Fermi, 1947).

Thanks to the fundamental physical knowledge acquired with experiments and the-

ory, he remarkably synthesised the complex phenomena related to fission and neutron

slowing down in his famous four factor formula, which has been used for decades as a

guidance for the design of thermal reactors.

In a somewhat similar way, Allan F. Henry exploited the physico-mathematical fea-

tures of the transport equation to develop the quasi-static method for the solution of

the time-dependent transport equation, inspired by the multi-scale time behaviour of

the reactors that he observed in the experimental data (Henry, 1958). Some years later,

Henry proposed to analyse an engineering problem, i.e. the flux tilts induced by lo-

calised perturbations like control rods adjustments or coolant flow perturbations, using
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a modal expansion based on the so-called 𝜔-modes (Henry, 1964). In this work, Henry

wrote:

The capability of computing detailed transient behaviour in a reactor has in-
creased considerably in recent years. To some extent this advance is associated
with the greater capacity of digital computing equipment;

[. . . ]

However, to a greater extent, the advance has resulted from an improved un-
derstanding of the heat transfer, pressure drop, fluid flow and neutron kinetic
phenomena which interact in the course of a reactor transient. Of course, along
with increased capability has come an obligation for responsible use.

In a few lines concerning the status of the research at his time, Henry prophetically

pointed out some aspects that are still crucial today. First, he recognised the funda-

mental rôle of the computational resources for acquiring the knowledge to understand,

design and operate a reactor. Then, he placed an even greater value on the experimental

works to understand the complex multi-scale, multi-physics phenomena occurring in a

reactor. Finally, he warned that the greater is the power, the greater is the responsibil-

ity: computers are an irreplaceable aid to human activities, but they will hardly replace

the human critical thinking and intuition.

According to the famous Moore’s law (Moore, 1998), nowadays we dispose of a com-

putational power that is roughly 50 million times the one of the 1970s. The existence

of a huge, affordable and handy computational power enabled, in the last decades, the

deployment of high-fidelity simulations, which seem to make some classic issues of

reactor physics a blurred memory, completely disregarding Henry’s "prophecy". In the

frame of neutron transport, this is possible thanks to the Monte Carlo method (Metropo-

lis and Ulam, 1949), which is a stochastic technique allowing the simulation of the neu-

tron transport process in such an excruciating detailed way that the only limit to the ac-

curacy achievable is, probably, the uncertainty in the basic nuclear data used to sample

neutron interaction with matter. It is curious to notice that this method was conceived

during the Manhattan projects, when the computational power was very far from be-

ing sufficient to run even very simple simulations (Metropolis, 1987). Nowadays, this

approach fully exploits the massively parallel features of High Performance Computing

(HPC), allowing, in principle, to solve even the most challenging problems in reactor

physics with high precision (Faucher, Mancusi, and Zoia, 2018).

Analogous considerations cannot be easily extended to other fields of nuclear engi-

neering like thermo-hydraulics and fuel performance, where there still are considerable

knowledge gaps on fundamental phenomena. Therefore, we could claim that, concern-

ing nuclear engineering, the existence of a high-fidelity methodology is an exclusive of

neutronics.

Having a reference model is a blessing for several reasons, e.g., design of experiments

or benchmarking, but this advantage should not be abused mainly for two reasons. First,
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Monte Carlo does not necessarily ensure a better comprehension of the physics. Often,

very detailed calculation provide too much detail, which may be difficult to interpret.

On the contrary, simpler, approximated models (neutron diffusion, asymptotic theory,

point kinetics...) can be much more effective to intuitively deliver the basic knowledge

which can then be extended also to more complex, real-life scenarios. These consid-

erations are indirectly safety-related, because they affect the education and training of

designer and operators of the current and future NPP. Second, a high-fidelity modelling

approach does not always fits the design and safety needs. The core-design is an itera-

tive process, thus it should be based on fast calculation tools. The same applies to the

preliminary safety studies used to support the design phase.

As regards the design licensing, both Probabilistic Risk Assessment (PRA) and Quan-

titative Risk Assessment (QRA) need to rely on a large amount of simulations and, thus,

data, in order to identify with sufficient confidence which are the most safety-critical

physical parameters and system components, and to suggest prevention and mitigation

actions. High-fidelity simulations are very valuable for design verification and licens-

ing studies, for example in the frame of the Best Estimate Plus Uncertainty (BEPU)

approach (Bucalossi, Petruzzi, et al., 2010), which consists in the simulation of design

basis accidents using qualified codes, accepted by the public authority, and providing

an estimate of their overall uncertainties. Despite this approach has proven its effec-

tiveness in the licensing phase, the use of best-estimate tools may not be adequate for

design and preliminary safety studies, which requires accurate but fast running tools.

In this respect, the use of simplified models could be accepted provided that a thorough

evaluation of the epistemic and aleatory uncertainties is given.

Concerning operation, the plant monitoring should provide an exhaustive yet lim-

ited amount of information on the plant status, allowing the operators to understand

what is actually going on in the system. Most of the times it is not possible to have

direct access to all the main plant parameters, therefore the monitoring systems should

be complemented by real-time simulators, like digital twins (Patterson, Taylor, and

Bankhead, 2016). In this perspective, even if huge computational resources were avail-

able, high-fidelity modelling might not be the answer, for at least two reasons: it cannot

provide information in real-time and it often produces unnecessary detail.

The relationship between the high-fidelity simulation, digital twins and reactor de-

sign and operation is nowadays a hot issue, and, as such, it was the leit-motiv of the

international "Frédéric Joliot and Otto Hahn Summer School" 2021, "High-fidelity Mod-
elling and Simulation of Nuclear Reactors: Turning a Promise into Reality". One of the

issues brought up during the school live discussions between panelists and attendees,

both coming from international industries, research centres and universities, was the

current mismatch between the academic research and the industry needs. A significant

amount of the academic efforts is focused on high-fidelity modelling, while the industry

needs reliable but very efficient computational tools, even at the price of a slight over-

conservatism. In spite of some successful examples of high-fidelity modelling, like the

CASL consortium (Cramer and Kropaczek, 2020), the digital twin of a full-scale, nuclear
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plant actually does not currently exist.

Hence, despite the availability of huge computational resources with respect to Fermi’s

and Henry’s times, the development of new methods and models is still of paramount

importance, confirming that the warning given by Henry is valid even nowadays.

1.3 Aim of the work and outline of the thesis
The considerations made in the previous section highlight two current needs of rec-

tor physics, namely:

• the necessity of developing new methods for the fast and accurate analysis of in-

novative Gen-IV systems, with the final aim of incorporate safety since the early

stages of design;

• the need for more efficient computational frameworks to support the core moni-

toring and, consequently, the safe and reliable operation of Gen-III/III+ systems.

Addressing the above issues effectively is extremely challenging from a practical

point of view. As a matter of fact, only a few among the several codes available for re-

actor analysis are accepted by the licensing authority, after having passed a complex set

of qualification steps, which aims at ensuring the quality of the calculation tools (Cour-

tois, Bowell, and Seidel, 2010). Modifying existing codes to make them more efficient

with the implementation of state-of-the-art methods would be unpractical for operat-

ing reactors, while could be feasible for Gen-IV reactors. On one side, the time scale for

the deployment of the Gen-IV reactors would be probably compatible with the quali-

fication procedure needed for the extended codes. On the other side, the peculiarities

of such systems may require too invasive modifications that could make this solution

unworthy, as new reactor concepts may also require new safety regulations, which may

not be based on existing codes. An example of such situation is the EU Molten Salt Fast

Reactor design, which has the peculiarity of having a fluid core: since the coolant and

fuel coincides, the traditional severe accident definition consisting in the core melting

do not have sense and cannot be considered (Gérardin, Uggenti, et al., 2019). Therefore,

the development of new methods and codes is often the only possible approach for the

deployment of these systems.

This thesis has the double objective of proposing new methods, mainly concerning

the safety and stability analyses of nuclear reactors, and, at the same time, of extend-

ing available techniques in order to be compliant with the industrial requirements and

constraints discussed previously.

The development of new methods is mostly carried out in the first part of the the-

sis, where they are applied to simplified systems in order to better grasp their physico-

mathematical features, but without loosing track of the real-life applications. The meth-

ods presented in these chapters are all implemented ex novo in a Python package called

TEST, which is adopted as a test-bench.
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In chapter 2, the classical multi-group PN and PN approximations are presented, in

order to approach numerically the solution of the eigenvalue problems arising in neu-

tron transport. After addressing the old-fashioned question of the siginificativity of

the P parity order, showing the equivalence between odd P orders and the succeedingPN+1 even orders, the numerical implementation of these methods is benchmarked with

respect to some reference solutions, studying the effects of the boundary conditions

on the angular convergence. Finally, convergence acceleration aspects are analysed,

adopting the Wynn-𝜀 scheme.

In chapter 3, the classical eigenvalue formulations to the neutron transport equa-

tion, i.e. the multiplication eigenvalue, the collision eigenvalue, the time eigenvalue

and the density eigenvalue, are presented and discussed, focusing on their physico-

mathematical peculiarities and analysing their eigenvalue spectra. In this chapter, a

novel eigenvalue formulation, the capture eigenvalue, is introduced and discussed as

well. Finally, an example regarding the application of the eigenvalue spectrum for the

optimal selection of the energy group for the energy collapsing is presented and dis-

cussed.

In chapter 4, the eigenfunctions associated to the different eigenvalue formulations

are proposed as alternative weighting functions for the group collapsing procedure. To

assess the behaviour of the different weighting functions, some accidental transients

are first performed in a multi-group framework and then some safety-critical integral

parameters like the total power and the reactivity are compared with those obtained

with the collapsed group constants.

In chapter 5, the standard eigenvalue formulations are generalised in order to de-

rive a new eigenvalue problem which allows to act on specific portions of the phase

space and nuclides, for design-oriented applications. After discussing the main physico-

mathematical aspects of this formulation, relevant engineering problems like the deter-

mination of the critical moderation ratio, the critical boron concentration and the crit-

ical control rod density are evaluated using this new approach, showing its efficiency

and its capability to find all the possible critical configurations for a given initial off-

critical system. This last feature is particularly important for safety analyses, since it

allows to explore the physical conditions that may lead a system to re-criticality. In the

determination of the possible critical configurations of the system, emphasis is also put

on the classical figure of merit used to assess the neutronic stability, i.e. the eigenvalue

separation.

Then, in the remaining chapters, more realistic systems are analysed, focusing on 2D

and 3D models of some Gen-III+ and Gen-IV reactor concepts. This last part of the work

mainly aims at proposing computationally efficient methods for the safety analyses of

the neutronic behaviour of the core, trying to reduce as much as possible any interven-

tion in the code. This goal is accomplished by means of Non-Intrusive Reduced-Order

Modelling (NIROM) techniques, which permit a fair reduction of the computational

time without any code modifications at the price of small approximations.

In chapter chapter 6, after a brief literature overview, a non-intrusive reduced-order
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model based on a combination of Proper Orthogonal Decomposition and Radial Basis

Function techniques is presented as an efficient way of reducing the computational

cost of the original, high-fidelity models. Then, this model is applied to three different

industrial application, with the goal of proving the NIROM effectiveness.

The first application deals with the spatial stability stability of the Gen-III+ core,

which is represented with a 2D model based on the UAM benchmark. The aim of this

application is to develop an efficient NIROM to perform a sensitivity analysis of the

flux and power tilt behaviour at the full-core level with respect to a random, localised

perturbations. Due to core complexity and to the great number of free parameters, some

extensions of the NIROM are devised. First, due to the tight relationship between the cell

and the full-core models, the Polynomial Chaos Method is proposed as an efficient way

of computing the perturbed cross sections, which are then employed in the full-core

two-group diffusion calculation. Afterwards, some sampling strategies are proposed

to perform the calculations needed for training the model, discussing their advantages

and disadvantages. Then, the need for a new metric to evaluate the distance between

the training data is highlighted, proposing an alternative, more accurate algorithm to

accomplish this task. Finally, the NIROM performances are tested, both in terms of

memory and of computational time.

The second application concerns the parametric safety analysis of accidental tran-

sient scenarios in LFR, which require accurate evaluations of the safety-critical param-

eters in different operational and accidental conditions. The case study considered for

this application is the accidental insertion of a single control rod into the ALFRED re-

actor design, i.e. the european LFR demonstrator, which is described thoroughly with

a 3D full-core model. Also in this case, some of the NIROM steps are suitably modi-

fied and extended, in order to take into account the time-dependent behaviour of the

model. Finally, the accuracy of the NIROM is examined referring to some new, valida-

tion points.

In order to show that the methods proposed have a wide applicability range also

outside the nuclear field, this last application presents another variation of the NIROM

approach, which is applied to a novel two-step CFD simulation framework that has

been recently proposed to efficiently model accidental high-pressure gas releases in in-

dustrial, congested environments. Exploiting the two-step nature of this approach, the

chapter presents a methodology that combines statistical methods, namely the boot-

strap and unscented transform, to efficiently estimate the uncertainty of the ROM in

the safety-critical simulation output quantities of interest. This approach is then suc-

cessfully applied to a test case involving a high pressure, accidental gas release in an

off-shore oil&gas plant, to show its main features and to highlight its potential cross-

disciplinary applications.

Then, chapter chapter 7 is focused on a very important aspect related to the safety

analysis of nuclear system, i.e. the uncertainty quantification. More specifically, this

chapter is devoted to perform an assessment of the main techniques used in the Monte

Carlo framework to carry out the sensitivity and uncertainty analysis, focusing on the
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propagation of the uncertainty from the raw nuclear data to some relevant neutronic

output quantities. The uncertainty quantification is usually carried out with the legacy

Generalised Perturbation Theory approach. However, the novel eXtended Generalised

Perturbation Theory, which is a reduced-order modelling technique, has been recently

proposed as a general improvement compared to GPT, and, thus, it has been imple-

mented in the Monte Carlo code Serpent. After discussing the main differences between

these two approaches, the chapter presents the application to an uncertainty quantifi-

cation study on the lead-cooled fast reactor ALFRED design, performed with GPT and

focused on the multi-group cross section generation. Afterwards, the two nuclides that

most contribute to the overall uncertainties, i.e. Pu-239 and U-238, are considered to

compare the GPT results to some XGPT calculations carried out with different multi-

group energy structures. This analysis finally allows to draw some general conclusions

concerning the propagation of the nuclear data uncertainty with methods based on

Monte Carlo.

Finally, in chapter 8, some general conclusions on the thesis work and its possible

impacts are drawn, and some future perspectives on extensions and applications of the

methods presented in this work are given.
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Chapter 2

The PN and SN approximations
of the neutron transport
eigenvalue formulations

γνῶθι σεαυτόν (know thyself)

Temple of Apollo, Delphi

2.1 Introduction
The concepts of eigenvalue and eigenfunction of an operator are fundamental in a

wide range of applications, from basic physics to statistics to engineering. Since their

first appearance in the XIX
th

century, they have rapidly become so popular that they are

now considered a standard tool of applied mathematics. As reported by Trefethen and

Embree (2005), there are at least four main reasons behind the success of the eigenvalues

and eigenfunctions:

1. the possibility to use them as a basis to solve partial differential equations, when

variables can be separated

2. their use in sensitivity analysis, for example in connection to the physical phe-

nomena of mechanical resonances

3. their connection to stability and asymptotic analyses, to determine the dominant

response of a system to a perturbation

4. their ability to provide the personality of an operator by means of its spectrum.
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The PN and SN approximations of the neutron transport eigenvalue formulations

Most of these aspects are particularly relevant in the framework of fission reactor physics.

The first feature is used to approach analytically the solution of the transport equation

(Case and Zweifel, 1967), while the second one is very useful to estimate the sensitivity

of a system with respect to a certain input variation, in order to perform uncertainty

quantification or design optimisation (Cacuci, Ronen, et al., 1982). Concerning the third

feature, the concept of eigenvalue has played a fundamental rôle in the development

of perturbation methods, which are widely employed for stability analysis (Gandini,

1978). All these applications implicitly rely on the fourth aspect, despite its only appar-

ent theoretical nature.

In addition to these applications related to reactor physics, is is convenient to men-

tion here also the fundamental importance of the eigenvalue analysis in the framework

of statistics and, consequently, of machine learning, which heavily leans on the eigen-

value decomposition in order to reduce the data dimensionality to its essential content,

so that the analysis of huge datasets can be handled more efficiently.

This chapter will focus on the different eigenvalue formulations available in the

framework of the neutron transport equation, with a specific focus on its PN and SN
approximations. A new eigenvalue formulation for control-oriented applications will

be introduced. Some new perspectives on old-fashioned, open questions like the impact

of the boundary conditions and of the PN parity-order on the eigenvalue accuracy will

be given, and a thorough numerical assessment will be provided for the solution of the

different eigenvalue problems, comparing the results obtained by an ad hoc computa-

tional code with the data available in the literature. Finally, the outcomes of the nu-

merical and theoretical study on the even-odd angular approximation will be exploited

in a convergence acceleration scheme showing, for the first time, some new accelera-

tion strategies, useful to obtain high-precision eigenvalues approaching some reference

Monte Carlo calculations within their statistical range, minimising the computational

model evaluation.

Most of the content of this chapter has been already published in two conference

proceedings and in two peer-reviewed journal articles: the first one has been published

on the special issue of Journal of Computational and Theoretical Transport dedicated to

the International Conference on Transport Theory (ICTT) 2019, while the second one

has been published on the special issue of Annals of Nuclear Energy dedicated to the

memory of Massimo Salvatores,

• N. Abrate, M. Burrone, S. Dulla, P. Ravetto, P. Saracco, "Study of the eigenvalue
spectra of the neutron transport problem in 𝑃𝑁 approximation", Proceedings of the

Physor 2020 conference in EPJ Web of Conferences, 247, 2020

• N. Abrate, M. Burrone, S. Dulla, P. Ravetto, P. Saracco, "Eigenvalue formulations for
the 𝑃𝑁 approximation to the neutron transport equation", Journal of Computational

and Theoretical Transport, 50, 2020

• N. Abrate, S. Dulla, P. Ravetto, "On some features of the eigenvalue problem for the
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2.2 – The neutron transport model in plane geometry

𝑃𝑁 approximation of the neutron transport equation", Annals of Nuclear Energy,

163, 2021

• N. Abrate, B.D. Ganapol, S. Dulla, P. Ravetto, P. Saracco, A. Zoia, "Convergence
acceleration aspects in the solution of the 𝑃𝑁 neutron transport eigenvalue problem",

Proceedings of the M&C conference 2021, Raleigh, NC, U.S.A., 2021

2.2 The neutron transport model in plane geometry
The neutron transport model, for the case of a one-dimensional cartesian system

in the absence of an external source, is described by the following system of integro-

differential equations,

(2.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v(𝐸) 𝜕𝜙(𝑥, 𝐸, 𝜇, 𝑡)𝜕𝑡 + 𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇, 𝑡)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇, 𝑡) =

∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝜙(𝑥, 𝐸′, 𝜇′, 𝑡)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇𝜇′)+
(1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞

0 𝑑𝐸′ ∫ 1
−1 𝑑𝜇′𝜈Σ𝑓 (𝑥, 𝐸′)𝜙(𝑥, 𝐸′, 𝜇′, 𝑡)+

R∑𝑟=1 𝜒𝑑,𝑟 (𝑥, 𝐸)2 𝜆𝑟𝐶𝑟 (𝑥, 𝑡)
𝜕𝐶𝑟 (𝑥, 𝑡)𝜕𝑡 = 𝛽𝑟 ∫ ∞

0 𝑑𝐸′ ∫ 1
−1 𝑑𝜇′𝜈Σ𝑓 (𝑥, 𝐸′)𝜙(𝑥, 𝐸′, 𝜇′, 𝑡) − 𝜆𝑟𝐶𝑟 (𝑥, 𝑡),𝑟 = 1,… , 𝑅,

subject to appropriate initial and boundary conditions. The symbols have the usual

meaning:

• v(𝐸) is the neutron velocity, expressed in cm s−1;
• 𝜙(𝑥, 𝐸, 𝜇, 𝑡) is the angular neutron flux as a function of the spatial coordinate 𝑥 , the

particle energy 𝐸, the cosine of the flying direction 𝜇 and the time instant 𝑡 . This

quantity is expressed in cm−1 s−2 eV−1 rad−1;
• Σ𝑡(𝑥, 𝐸) is the total macroscopic cross section. It is useful to recall here that this

quantity is given as the sum of total capture, total fission and total scattering in-

teractions, respectivelyΣ𝑡(𝑥, 𝐸) = Σ𝑐(𝑥, 𝐸) + Σ𝑓 (𝑥, 𝐸) + Σ𝑠(𝑥, 𝐸). (2.2)

All macroscopic cross sections are expressed in cm−1
;
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• 𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇𝜇′) is the scattering transfer function, which represents the prob-

ability density function that an incident neutron colliding with the medium is

transferred from the phase space coordinates (𝐸′
, 𝜇′) to (𝐸, 𝜇). It is expressed ineV−1 rad−1.

• 𝛽 is the total neutron delayed fraction, given as

𝛽 = R∑𝑟=1 𝛽𝑟 , (2.3)

where 𝛽𝑟 is the delayed fraction of the 𝑟 th
of the 𝑅 precursor families. These quan-

tities are dimensionless;

• 𝜒𝑝(𝑥, 𝐸) is the prompt fission emission spectrum, while 𝜒𝑑,𝑟 (𝑥, 𝐸) is the delayed

fission emission spectrum for the 𝑟 th
family. Both spectra are expressed in eV−1

.

• 𝜈Σ𝑓 (𝑥, 𝐸) is the neutron fission production macroscopic cross section, measured incm−1
;

• 𝜆𝑟 is the radioactive decay constant for the 𝑟 th
precursor family, measured in s−1;

• 𝐶𝑟 (𝑥, 𝑡) is the density of delayed neutron precursor, measured in cm−3
.

The following operators are now introduced in order to express this model in a more

compact way:

• the streaming operator, �̂� = 𝜇 𝜕𝜕𝑥 ∗; (2.4)

• the removal by collision operator,�̂� = Σ𝑡(𝑥, 𝐸) ∗; (2.5)

• the scattering operator,

�̂� = ∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′ Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′ → 𝐸, 𝜇𝜇′) ∗; (2.6)

• the prompt fission operator,

�̂� 𝑝 = (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′ 𝜈Σ𝑓 (𝑥, 𝐸′) ∗; (2.7)
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• the delayed fission operator for the 𝑖𝑡ℎ delayed precursor family,

�̂� 𝑑,𝑟 = 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′ 𝜈Σ𝑓 (𝑥, 𝐸′) ∗ . (2.8)

In addition to these definitions, other operators that will be adopted later in this

chapter are introduced here. The first one is the total fission production opera-

tor, which is useful for a steady-state system, when the neutron population is in

equilibrium with the precursors concentrations,

�̂� = �̂� 𝑝 + R∑𝑟=1 �̂� 𝑑,𝑟 . (2.9)

Recalling eq. (2.2) the other operators can be defined splitting the removal operator

in (2.5) accordingly to the three sum reactions,

• total capture operator, �̂� = Σ𝑐(𝑥, 𝐸) ∗; (2.10)

• total fission operator, �̂� 𝑇 = Σ𝑓 (𝑥, 𝐸) ∗; (2.11)

• total scattering operator, �̂�𝑇 = Σ𝑠(𝑥, 𝐸) ∗ . (2.12)

These definitions allow the definition of a more compact form of equation (2.1),⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
v

𝜕𝜙𝜕𝑡 + �̂�𝜙 + (�̂� + �̂� 𝑇 + �̂�𝑇 )𝜙 = �̂�𝜙 + �̂� 𝑝𝜙 + R∑𝑟=1 𝜆𝑟𝜖𝑟𝜕𝜖𝑟𝜕𝑡 = �̂� 𝑑,𝑟𝜙 − 𝜆𝑟𝜖𝑟 𝑟 = 1,… , 𝑅, (2.13)

where the flux and precursors dependencies are omitted, for the sake of conciseness,

and we have introduced the delayed emissivity 𝜖𝑟 as:

𝜖𝑟 (𝑥, 𝐸, 𝑡) = 𝜒𝑑,𝑟 (𝑥, 𝐸)2 𝐶𝑟 (𝑥, 𝑡). (2.14)

.

2.3 Eigenvalue formulations in neutron transport
The fundamental problem of reactor physics is to assess the existence of an asymp-

totic, bounded and non-negative solution of Eq. (2.13) for a given multiplying sys-

tem. When such a system is able to reach a steady-state condition, it is said to be
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self-sustaining or critical. From a physical perspective, maybe the most intuitive way

of approaching criticality is to observe the free evolution of the system under examina-

tion, assuming the medium properties to be time-independent, at least on the evolution

time scale.

It has been observed, both experimentally (Henry, 1964) and theoretically (Bell and

Glasstone, 1970), that, under these hypotheses, the neutron flux can be factorised into

a time exponential behaviour and a distribution in the phase space𝜙(𝑥, 𝐸, 𝜇, 𝑡) = 𝜑𝜔(𝑥, 𝐸, 𝜇)𝑒𝜔𝑡 , (2.15)

independently on the initial conditions.

Substituting this physically intuitive factorisation, which is assumed to hold also

for the precursors concentration 𝐶𝑖 , into Eq. (2.13) yields the so-called time eigenvalue

formulation of the transport equation,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜔
v
𝜑𝜔 + �̂�𝜑𝜔 + (�̂� + �̂� 𝑇 + �̂�𝑇 )𝜑𝜔 = �̂�𝜑𝜔 + �̂� 𝑝𝜑𝜔 + R∑𝑟=1 𝜆𝑟𝜖𝑟𝜔𝜖𝑟 = �̂� 𝑑,𝑟𝜑𝜔 − 𝜆𝑟𝜖𝑟 𝑖 = 𝑟 ,… , 𝑅. (2.16)

The solution of this eigenvalue problem, which could be obtained equivalently also tak-

ing the Laplace transform of Eq. (2.13), describes the time frequencies 𝜔 characterising

the system free evolution. Therefore, the eigenstates associated to this problem are usu-

ally identified as the natural modes of the neutron transport operator. Since the Laplace

transform is a common approach to tackle time-dependent problems in both physics

and engineering, it is hard to assess who was the first to derive this eigenvalue problem

in the reactor physics community. Regardless, Henry (1964) was the first to study the

time eigenvalue and to highlight its value for different applications.

When the delayed neutrons contribution is neglected or absent, Eq. (2.16) can be

simplified, removing the precursors balance equations,𝛼
v
𝜑𝛼 + �̂�𝜑𝛼 + (�̂� + �̂� 𝑇 + �̂�𝑇 )𝜑𝛼 = �̂�𝜑𝛼 + �̂� 𝑝𝜑𝛼 , (2.17)

where symbol 𝜔 is replaced by 𝛼 in order to distinguish the two cases. This equa-

tion, usually known as 𝛼- or prompt time eigenvalue formulation, is valid for non-

multiplying system as well, confirming that this formulation arises naturally when deal-

ing with the time-dependent transport equation.

Since the time eigenvalue, say 𝜔 in this case, can be interpreted as a time frequency,

its inverse is related to the system period, say 𝑇 . When the system reaches a steady

state, i.e. it is critical, its time period tends to become infinite, 𝑇→∞. Therefore, to

approach criticality, the dominant time eigenvalue, i.e. the one associated to the non-

negative, non-trivial eigenstate, should tend to zero, 𝜔0→0.

From another perspective, the criticality is achieved when the net number of neu-

trons does not change as time goes by, i.e. the loss and the production terms are the
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same: (�̂� + �̂� − �̂� − �̂� )𝜙 = 0. (2.18)

When Eq. (2.18) is satisfied, the neutron population self-sustains and a steady state

equilibrium is reached. However, in practice, this condition is never fully achieved: even

assuming that the equilibrium is reached at a certain time 𝑡 , the fissile nuclides would

be consumed by fissions at time 𝑡+, changing the material properties of the system and,

thus, its ability to sustain fission. From this perspective, operating a real reactor would

seem barely impossible. In reality, the constraint expressed by Eq. (2.18) should be

interpreted more weakly: in order to achieve and maintain criticality, it is sufficient

that the control actions adopted, i.e. reactivity insertions, are faster than time scale of

the reactor stable period, 𝑇 .

Despite its natural definition and its elegance in connecting an idealised physico-

mathematical condition with engineering aspects, the time eigenvalue is not appropri-

ate for the design of a critical system. In this respect, Eq. (2.18) is useful in order to

formulate design-oriented eigenvalue problems.

2.3.1 Design-oriented eigenvalue formulations
Among its peculiarities, eq. (2.18) is homogeneous. From a mathematical standpoint,

this means that non-trivial steady-state distributions exist only as solutions of an eigen-

value problem, namely �̂��⃗�𝜉 ,𝑛 = 𝜉𝑛�̂��⃗�𝜉 ,𝑛, (2.19)

where �̂� and �̂� are, in principle, any reasonable linear combination of the operators

appearing in eq. (2.18), and {𝜉𝑛, �⃗�𝜉 ,𝑛} is the 𝑛th
eigenpair, constituted by an eigenvalue 𝜉𝑛

and an eigenfunction �⃗�𝜉 ,𝑛, respectively. According to the geometric multiplicity of the

eigenproblem 𝑔(𝜉 ), 𝑛 ranges from 0 to 𝑔(𝜉 ) − 1. To approach the criticality condition,

several design-oriented eigenvalue formulations have been proposed.

Probably because of the peculiarity of the newly discovered fission phenomenon

(Hanh and Strassmann, 1939), Fermi (1942) firstly introduced an eigenvalue, which he

called reproduction factor 𝑘, in front of the total fission operator:�̂�𝜑𝑘,𝑛 + (�̂� + �̂� 𝑇 + �̂�𝑇 )𝜑𝑘,𝑛 − �̂�𝜑𝑘,𝑛 = 1𝑘𝑛 �̂�𝜑𝑘,𝑛. (2.20)

When the system is sub-critical, 𝑘 < 1 in order to increase the neutron production by

fission, while, when the system is super-critical, 𝑘 > 1 in order to decrease the neutron

production. Therefore, a system is critical when no modification of the fission operator

is required, i.e. 𝑘 = 1. To the author’s knowledge, the second eigenvalue formula-

tion proposed is due to Davison and Sykes (1957).They proposed to approach criticality

introducing a collision eigenvalue to modify all the interactions leading to a neutron

emission, i.e. scattering and fission,�̂�𝜑𝛾 ,𝑛 + �̂�𝜑𝛾 ,𝑛 = 1𝛾 (�̂� + �̂�) 𝜑𝛾 ,𝑛. (2.21)
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The third design-oriented eigenvalue formulation present in the literature is due to

Ronen, Shalitin, and Wagschal (1976). In this paper, they cleverly observe that, given a

certain medium, it should be possible to attain criticality varying its density, introducing

an eigenvalue acting on all the material properties of the system,�̂�𝜑𝛿,𝑛 = 1𝛿 (�̂� + �̂� − �̂�) 𝜑𝛿,𝑛𝜑𝛿,𝑛. (2.22)

Due to its collocation in the transport equation, the action of this eigenvalue can be

interpreted in different ways. The most intuitive one is probably the modification of

the medium density, which introduces a “competition” between positive (fission, scat-

tering) and negative (removal) contributions. Because of this aspect, this eigenvalue

is usually known as density eigenvalue. However, multiplying the equation by 𝛿 , this

eigenvalue can be interpreted as well as a streaming eigenvalue, which modifies the

relationship between the angular current spatial derivative and the angular flux. In

this case, the eigenvalue operates a re-scaling of the spatial coordinates, changing the

free-flight kernel of the transport process.

In addition to these formulations, it is also possible to introduce an eigenvalue acting

on the capture cross section. To the best of the author’s knowledge, this eigenvalue

formulation has never been proposed so far. The symbol proposed here to indicate this

capture eigenvalue is taken from the ancient Greek translation of "capture", θηράω,

(�̂� + �̂� 𝑇 + �̂�𝑇 − �̂� − �̂�) 𝜑𝜃,𝑛 = 1𝜃 �̂�𝜑𝜃,𝑛. (2.23)

The eigenvalue problems presented so far can be obtained from a generalisation of

eq. (2.13), 𝜀𝛿 �̂�𝜙(𝑥, 𝜇, 𝐸) + (𝜀𝜃 �̂� + �̂� 𝑇 + �̂�𝑇 + 𝜀𝛼
v ) 𝜙(𝑥, 𝜇, 𝐸) =𝜀𝛾 [�̂� + 𝜀𝑘 (�̂� 𝑝 + R∑𝑟=1 𝜆𝑟𝜆𝑟 + 𝜀𝜔 �̂� 𝑑,𝑟)] 𝜙(𝑥, 𝜇, 𝐸), (2.24)

where the values of the 𝜀 parameters are provided in table 2.1. The symbol 𝜙 is used

to indicate the neutron angular flux for an arbitrary eigenvalue formulation. In the

following, the symbol 𝜑x will be used to indicate the angular flux associated to a specific

eigenvalue formulation x.

2.4 Numerical framework for the solution of the neu-
tron transport eigenvalue problems

From a physico-mathematical perspective, all the formulations illustrated so far are

useful to get a deeper insight of the criticality problem, suggesting different modifi-

cations to the physical parameters featuring the system. Moreover, the spectrum and
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eigenvalue critical value 𝜀𝑘 𝜀𝛼 𝜀𝜔 𝜀𝛾 𝜀𝛿 𝜀𝜃𝑘 1 1/𝑘 0 0 1 1 0𝛼 0 1 𝛼 0 1 1 0𝜔 0 1 𝜔 𝜔 1 1 0𝛾 1 1 0 0 1/𝛾 1 0𝛿 1 1 0 0 1 𝛿 0𝜃 1 1 0 0 1 1 1/𝜃
Table 2.1: The set of 𝜀 parameters to be used in eq. (2.24) to retrieve the different eigenvalue
formulations.

the eigenfunctions obtained solving the different eigenproblems can be extremely rele-

vant for many applications. However, due to its complexity, the solution of the neutron

transport equation (NTE) usually requires, in practice, the adoption of some approxi-

mations, even in this simple plain geometry case (see eq. (2.1)). The first approximation

that is commonly introduced in the integro-differential form of the NTE concerns the

dependence of the flux on the particle flying direction, which can be either expressed

by means of a truncated series of Legendre polynomials, via the PN method (Meghre-

blian and Holmes, 1960), or discretised, via the SN method (Wick, 1943; Chandrasekhar,

1950). Then, these approximate transport models are further simplified, discretising

their energy and space dependencies as well.

In order to study the theoretical, numerical, and engineering peculiarities of the so-

lutions of these eigenvalue problems, the rest of this chapter will be devoted to present

their numerical calculation framework, focusing on the development and verification

of an in-house Python package, denoted in the following as TEST (Transport Equation

Solver in Turin). This code allows first to assemble the spatially discretised operators

of the multi-group NTE, which are then manipulated to construct the desired eigen-

value formulation. Finally, the code can be used to look for the whole spectrum or for

only some of the dominant eigenpairs. Since its primary aim is the investigation of

the basic physical, mathematical and engineering aspects related to these eigenvalue

problems, much of the development effort concerned the treatment of the energy and

angular models and the definition and solution of the eigenvalue problems, rather than

the management of complex geometries. Therefore, the code can currently perform

calculations only for multi-layered cartesian systems, which anyhow should provide a

sufficiently faithful representation of the main physical features of a multiplying sys-

tem.
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2.4.1 The PN equations
The PN model in plane geometry can be retrieved assuming that the angular flux can

be expanded as follows,

𝜙(𝑥, 𝜇, 𝐸) = ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸)𝑃𝑛(𝜇), (2.25)

where 𝜙𝑛 is the 𝑛-th flux moment, obtained projecting the angular flux on the 𝑛-th

Legendre polynomial 𝑃𝑛(𝜇),𝜙𝑛(𝑥, 𝐸) ≡ ∫ 1
−1 𝑑𝜇 𝑃𝑛(𝜇) 𝜙(𝑥, 𝜇, 𝐸). (2.26)

It is noteworthy to recall here that the first two flux moments have a strong physical

meaning: the 0
th

order moment represents the total flux, while the 1
st

order moment is

the neutron net current:𝜙0(𝑥, 𝐸) = Φ(𝑥, 𝐸) ≡ ∫ 1
−1 𝑑𝜇 𝑃0(𝜇) 𝜙(𝑥, 𝜇, 𝐸) = ∫ 1

−1 𝑑𝜇 𝜙(𝑥, 𝜇, 𝐸), (2.27)

𝜙1(𝑥, 𝐸) = 𝐽 (𝑥, 𝐸) ≡ ∫ 1
−1 𝑑𝜇 𝑃1(𝜇) 𝜙(𝑥, 𝜇, 𝐸) = ∫ 1

−1 𝑑𝜇 𝜇 𝜙(𝑥, 𝜇, 𝐸). (2.28)

Substituting eq. (2.25) into the streaming and scattering terms yields,

�̂�𝜙 = 𝜇 𝜕𝜕𝑥 ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸)𝑃𝑛(𝜇)
= ∞∑𝑛=0 2𝑛 + 12 𝜕𝜙𝑛(𝑥, 𝐸)𝜕𝑥 (𝑛 + 1)𝑃𝑛+1(𝜇) + 𝑛𝑃𝑛−1(𝜇)2𝑛 + 1 (2.29)

and �̂�𝜙 = ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′) ∞∑𝑛=0 2𝑛 + 12 𝑓𝑠,𝑛(𝑥, 𝐸′→𝐸)𝜙𝑛(𝑥, 𝐸′)𝑃𝑛(𝜇) (2.30)

where 𝑓𝑠,𝑛 is the 𝑛-th moment of the scattering function, defined as

𝑓𝑠,𝑛 ≡ ∫ 1
−1 𝑑𝜇 𝑃𝑛(𝜇) 𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇). (2.31)

Similarly, the time, removal and fission terms yield,

�̂� 𝜙 = 1
v(𝐸) 𝜕𝜕𝑡 ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸)𝑃𝑛(𝜇), (2.32)

�̂�𝜙 = Σ𝑡(𝑥, 𝐸) 𝜕𝜕𝑡 ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸)𝑃𝑛(𝜇), (2.33)
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�̂� 𝑝𝜙 = (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸′)𝑃𝑛(𝜇), (2.34)

and�̂� 𝑑,𝑟𝜙 = 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) ∞∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸′)𝑃𝑛(𝜇), 𝑟 = 1,… , 𝑅. (2.35)

Projecting each term on 𝑃𝑚(𝜇), exploiting the orthogonality property and the recurrence

relations of the Legendre polynomials (Abramowitz and Stegun, 1964), a set of coupled

partial differential equations, known as PN equations, can be finally obtained. Similarly

to eq. (2.24), the general PN eigenvalue problem yields,𝜀𝛿 [ 𝑛 + 12𝑛 + 1 𝜕𝜙𝑛+1(𝑥, 𝐸)𝜕𝑥 + 𝑛2𝑛 + 1 𝜕𝜙𝑛−1(𝑥, 𝐸)𝜕𝑥 ] + (𝜀𝜃 �̂� + �̂� 𝑇 + �̂�𝑇 + 𝜀𝛼
v ) 𝜙𝑛(𝑥, 𝐸) =

𝜀𝛾 [�̂�𝑛 + 𝜀𝑘 (�̂� 𝑝,𝑛 + R∑𝑟=1 𝜆𝑟𝜆𝑟 + 𝜀𝜔 �̂� 𝑑,𝑟 ,𝑛)] 𝜙𝑛(𝑥, 𝐸), 𝑛 = 0,… ,N, (2.36)

where N is the truncation order chosen to approximate the expansion. The �̂�𝑛, �̂� 𝑝,𝑛 and𝐹𝑑,𝑟 ,𝑛 operators are defined, respectively, as�̂�𝑛 = ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′)𝑓𝑠,𝑛(𝑥, 𝐸′→𝐸) ∗

�̂� 𝑝,𝑛 = (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′)𝛿𝑛0 ∗ (2.37)

𝐹𝑑,𝑟 ,𝑛 = 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′)𝛿𝑛0 ∗ , 𝑟 = 1,2,… , 𝑅 ,

where 𝛿𝑛0 is the Kronecker symbol. It should be noticed that the definition of the �̂� , �̂�𝑇
and �̂� 𝑇 operators has been omitted since it only amounts to change the reaction channel

of the cross section appearing in eq. (2.33).

2.4.1.1 The multi-group approach for the energy discretisation

As mentioned, the next approximation level usually deals with the discretisation of

the energy variable by means of the multi-group approach. A rigorous derivation of

the multi-group equations would require the integration of the continuous-energy PN
model ( eq. (2.36)). In this way, it would be possible to derive a set of equations featured

by energy-integrated flux moments, but the the group-averaged cross sections, which

preserves the reaction rates being weighted on the flux moments, would depend on the

spherical harmonics order 𝑛 as follows (Bell, Hansen, and Sandmeier, 1967),

Σ𝑡,𝑔,𝑛(𝑥) = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑡(𝑥, 𝐸) 𝜙𝑛(𝑥, 𝐸)

∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜙𝑛(𝑥, 𝐸) , (2.38)
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Σ𝑠,𝑔′→𝑔,𝑛(𝑥) = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 ∫ 𝐸′𝑔+1

𝐸′𝑔 𝑑𝐸′ Σ𝑠(𝑥, 𝐸′)𝑓𝑛(𝐸′ → 𝐸) 𝜙𝑛(𝑥, 𝐸′)
∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜙𝑛(𝑥, 𝐸) , (2.39)

except for the production by fission cross section, which would depend only on the total

flux,

(𝜈Σ𝑓 )𝑔,𝑛(𝑥) = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜈(𝑥, 𝐸)Σ𝑓 (𝑥, 𝐸) 𝜙0(𝑥, 𝐸)

∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜙0(𝑥, 𝐸) . (2.40)

As a first approximation, the angular dependence is often omitted, assuming that

energy and angle are independent. This approach, known as 𝑃𝑁 inconsistent (Bell and

Glasstone, 1970), allows to express the continuous-energy cross sections as discrete

values obtained preserving the reaction rates 𝑦 over each energy bin [𝐸𝑔 , 𝐸𝑔+1] by inte-

gration over the total flux,

Σ𝑦,𝑔(𝑥) = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑦(𝑥, 𝐸) Φ(𝑥, 𝐸)

∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Φ(𝑥, 𝐸) . (2.41)

Thus, the continuous-energy flux can be expressed as a G-dimensional vector, where G

is the total number of groups selected,

�⃗� = ⎡⎢⎢⎣
𝜙1(𝑥, 𝜇)…𝜙G(𝑥, 𝜇)⎤⎥⎥⎦ =

N∑𝑛=0 2𝑛 + 12 ⎡⎢⎢⎣
𝜙1,𝑛(𝑥)…𝜙2,𝑛(𝑥)⎤⎥⎥⎦ 𝑃𝑛(𝜇) == N∑𝑛=0 2𝑛 + 12 �⃗�𝑛(𝑥)𝑃𝑛(𝜇). (2.42)

It is then possible to express the streaming and scattering terms as:

�̂��⃗� = N∑𝑛=0 2𝑛 + 12 𝑑𝑑𝑥 ⎡⎢⎢⎣
𝜙1,𝑛(𝑥)…𝜙2,𝑛(𝑥)⎤⎥⎥⎦ (𝑛 + 1)𝑃𝑛+1(𝜇) + 𝑛𝑃𝑛−1(𝜇)2𝑛 + 1 , (2.43)

�̂��⃗� = N∑𝑛=0 2𝑛 + 12 ⎡⎢⎢⎣
Σ𝑠,1𝑓1→1,𝑛 … 0⋮ ⋱ ⋮Σ𝑠,1𝑓1→G,n … Σ𝑠,G𝑓G→G,n

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜙1,𝑛(𝑥)…𝜙2,𝑛(𝑥)⎤⎥⎥⎦ 𝑃𝑛(𝜇), (2.44)
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where 𝑓𝑔′→𝑔,𝑛 indicates the transfer from group 𝑔′ to 𝑔. Similarly, the following matrix

operators can be defined,

�̂� G = ⎡⎢⎢⎢⎢⎣
1
v1

… 0⋮ ⋱ ⋮0 … 1
vG

⎤⎥⎥⎥⎥⎦ (2.45a)

�̂�G = ⎡⎢⎢⎣
Σ𝑡,1(𝑥) … 0⋮ ⋱ ⋮0 … Σ𝑡,G(𝑥)⎤⎥⎥⎦ (2.45b)

�̂�𝑛,G = ⎡⎢⎢⎣
Σ𝑠,1(𝑥)𝑓1→1,𝑛(𝑥) … 0⋮ ⋱ ⋮Σ𝑠,1(𝑥)𝑓1→G,n(𝑥) … Σ𝑠,G(𝑥)𝑓G→G,n(𝑥)⎤⎥⎥⎦ (2.45c)

�̂� 𝑝,𝑛,G = ⎡⎢⎢⎣
𝜈1Σ𝑓 ,1(𝑥)𝜒𝑝,1(𝑥) … 𝜈𝐺Σ𝑓 ,G(𝑥)𝜒𝑝,1(𝑥)⋮ ⋱ ⋮𝜈1Σ𝑓 ,1(𝑥)𝜒𝑝,G(𝑥) … 𝜈𝐺Σ𝑓 ,G(𝑥)𝜒𝑝,G(𝑥)⎤⎥⎥⎦ (1 − 𝛽)𝛿𝑛0 (2.45d)

�̂� 𝑑,𝑟 ,𝑛,G = ⎡⎢⎢⎣
𝜈1Σ𝑓 ,1(𝑥)𝜒𝑟 ,1(𝑥) … 𝜈𝐺Σ𝑓 ,G(𝑥)𝜒𝑟 ,1(𝑥)⋮ ⋱ ⋮𝜈1Σ𝑓 ,1(𝑥)𝜒𝑟 ,G(𝑥) … 𝜈𝐺Σ𝑓 ,G(𝑥)𝜒𝑟 ,G(𝑥)⎤⎥⎥⎦ 𝛽𝑟𝛿𝑛0, 𝑟 = 1, ..., 𝑅. (2.45e)

Finally, the multi-group, PN eigenvalue generalised equation yields

𝜀𝛿 [ 𝑛 + 12𝑛 + 1 𝑑�⃗�𝑛+1(𝑥)𝑑𝑥 + 𝑛2𝑛 + 1 𝑑�⃗�𝑛−1(𝑥)𝑑𝑥 ] + (𝜀𝜃 �̂�𝐺 + �̂� 0,G + �̂�0,G + 𝜀𝛼
v ) �⃗�𝑛(𝑥) =

𝜀𝛾 [�̂�𝑛,G + 𝜀𝑘 (�̂� 𝑝,𝑛,G + R∑𝑟=1 𝜆𝑟𝜆𝑟 + 𝜀𝜔 �̂� 𝑑,𝑟 ,𝑛,G)] �⃗�𝑛(𝑥), 𝑛 = 0,… ,N, (2.46)

where the 𝜀 parameters are provided in table 2.1. Also in this case, the definition of the�̂�𝐺 , �̂�0,G and �̂� 0,G operators requires to change the reaction channel of the cross section

appearing in eq. (2.45b).

2.4.1.2 The finite difference scheme for the spatial discretisation

The final step to solve eq. (2.46) numerically is the identification of an appropriate

spatial discretisation scheme and of an adequate spatial grid. Since the PN equations

are coupled through the previous and the succeeding adjacent moments, the choice of

the grid needs special handling in order to avoid the so-called checkerboard instability,

which is a well known numerical issue in the field of Computational Fluid-Dynamics

(Ferziger and Peric, 1999). The standard way to avoid this issue is to rely on a staggered
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spatial grid, like the one sketched in fig. 2.1: the integer nodes are associated to even

equations, while the half-integer nodes are used for the odd equations. The same ap-

proach is presented also in Bell and Glasstone (1970) for the numerical solution of theP1 model, although without any reference to the stability problem mentioned so far.

As a confirmation to the instabilities arising from the use of a trivial co-located grid,

𝑥𝑖−1 𝑥𝑖−1/2 x𝑖 𝑥𝑖+1/2 𝑥𝑖+1

Δ𝑥 Δ𝑥

Δ𝑥

Figure 2.1: Sketch of the staggered grid with mesh size Δ𝑥 adopted for the spatial discreti-
sation of the PN equations.

i.e. even and odd equations are discretised on the same meshes, the resulting discretePN equations are featured by a strong oscillating behaviour. A simple proof of the in-

consistencies of the co-located central finite differences is the fact that the well-known

equivalence between 𝑃1 and the diffusion model does not hold: substituting the dis-

cretised equation for the 1
st

order moment, i.e. Fick’s law, into the total flux equation

yields a discretised Laplacian term that is not defined on the adjacent preceding and

succeeding neighbours. Combining the P1 equations for the one-speed, homogeneous

case, the co-located grid would yield− 13Σ𝑡 Φ𝑖−2 − 2Φ𝑖 + Φ𝑖+22Δ𝑥2 + (Σ𝑡 − Σ𝑠)Φ𝑖 = 𝜈Σ𝑓𝑘 Φ𝑖 𝑖 = 0,… , I, (2.47)

instead of − 13Σ𝑡 Φ𝑖−1 − 2Φ𝑖 + Φ𝑖+1Δ𝑥2 + (Σ𝑡 − Σ𝑠)Φ𝑖 = 𝜈Σ𝑓𝑘 Φ𝑖 𝑖 = 0,… , I. (2.48)

As an example, the 𝑘 eigenvalue problem cast in a multi-group P3 model, discretised via

the central finite differences on a staggered mesh and featured by linearly anisotropic

scattering, yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�⃗�𝑘,1,𝑖+ 12 − �⃗�𝑘,1,𝑖− 12𝑥𝑖+ 12 − 𝑥𝑖− 12 + �̂�G,i�⃗�𝑘,0,𝑖 = �̂�0,G,i�⃗�𝑘,0,𝑖 + 1𝑘 �̂� 0,G,i�⃗�𝑘,0,𝑖13 �⃗�𝑘,0,𝑖+1 − �⃗�𝑘,0,𝑖𝑥𝑖+1 − 𝑥𝑖 + 23 �⃗�𝑘,2,𝑖+1 − �⃗�𝑘,2,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,1,𝑖+ 12 = �̂�1,G,i+ 12 �⃗�𝑘,1,𝑖+ 1225 �⃗�𝑘,1,𝑖+ 12 − �⃗�𝑘,1,𝑖− 12𝑥𝑖+ 12 − 𝑥𝑖− 12 + 35 �⃗�𝑘,3,𝑖+ 12 − �⃗�𝑘,3,𝑖− 12𝑥𝑖+ 12 − 𝑥𝑖− 12 + �̂�G,i�⃗�𝑘,2,𝑖 = 037 �⃗�𝑘,2,𝑖+1 − �⃗�𝑘,2,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,3,𝑖+ 12 = 0, 𝑖 = 0,… , I.
(2.49)
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2.4.2 The SN equations
The SN model can be obtained assuming that the neutron flying direction can be

described by a set of discrete ordinates 𝜇𝑗 , with 𝑗 = 1,… ,N.

By expanding the scattering operator in series of Legendre polynomials 𝑃𝓁 (𝜇) and

by performing the integration over the angle with the Gauss-Legendre quadrature rule,

which allows to integrate exactly polynomials with degree ⩽ 2N-1 using a set of sym-

metric weights 𝑤𝑗 , ∫ 1
−1 𝑑𝜇 𝑓 (𝜇) ≈ N∑𝑗=1 𝑤𝑗𝑓 (𝜇𝑗), (2.50)

it is possible to get the SN form of the streaming, prompt and delayed fission operators,

respectively,

�̂�𝐿,𝑗 �⃗�𝜇(𝑥, 𝐸) = ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′) L∑𝓁=1 2𝓁 + 12 𝑓𝓁 ,𝑗(𝑥, 𝐸→𝐸′)𝑃𝓁 (𝜇𝑗) N∑𝑛=1 𝑤𝑛𝑃𝓁 (𝜇𝑛)𝜙(𝑥, 𝜇𝑛, 𝐸),

(2.51)�̂� 𝑝,𝑗 �⃗�𝜇(𝑥, 𝐸) = (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) N∑𝑛=1 𝑤𝑛𝜙(𝑥, 𝜇𝑛, 𝐸), (2.52)

and �̂� 𝑑,𝑟 ,𝑗 �⃗�𝜇(𝑥, 𝐸) = 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) N∑𝑛=1 𝑤𝑛𝜙(𝑥, 𝜇𝑛, 𝐸), (2.53)

where L in �̂�𝐿,𝑗 indicates the scattering anisotropy order. It should be noticed that, be-

cause of the Gauss-Legendre scheme, which involves a sum over the discrete angular

fluxes, these operators are applied to the column vector containing the flux along each

discrete direction, �⃗�𝜇(𝑥, 𝐸) = [𝜙(𝑥, 𝜇1, 𝐸),… , 𝜙(𝑥, 𝜇N, 𝐸)]T, yielding the incoming flux in

the 𝑗-th direction. Therefore, the SN form of eq. (2.24) is

𝜀𝛿𝜇𝑗 𝜕𝜙(𝑥, 𝜇𝑗 , 𝐸)𝜕𝑥 + (𝜀𝜃 �̂� + �̂� 𝑇 + �̂�𝑇 + 𝜀𝛼
v ) 𝜙(𝑥, 𝜇𝑗 , 𝐸) =𝜀𝛾 [�̂� 𝑗 + 𝜀𝑘 (�̂� 𝑝,𝑗 + R∑𝑟=1 𝜆𝑟𝜆𝑟 + 𝜀𝜔 �̂� 𝑑,𝑟 ,𝑗)] �⃗�𝜇(𝑥, 𝐸), 𝑗 = 1,… ,N. (2.54)

Also in this case, the practical solution of the SN model requires the introduction of

energy and spatial approximations. Since the application of the multi-group formalism

yield the same group-wise operators appearing in eq. (2.45e), except for the angular

terms, they will be omitted for the sake of brevity.

Concerning space, also in this case the central finite differences are applied as a

second order approximation of the spatial derivative. Contrarily to the previous case,

the same grid can be used for both positive and negative directions, although ensuring

that the node order follows the streaming direction.
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The 𝑘 eigenvalue problem cast in a multi-group S4 model, discretised via the central

finite differences on a co-located mesh and featured by linearly anisotropic scattering,

yields ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇1 �⃗�𝑘,1,𝑖+1 − �⃗�𝑘,1,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,1,+1/2 = �̂�1,1,G,i+ 12 �⃗�𝑘,𝑖+ 12 + 1𝑘 �̂� 1,G,i+ 12 �⃗�𝑘,𝑖+ 12𝜇2 �⃗�𝑘,2,𝑖+1 − �⃗�𝑘,2,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,2,𝑖+ 12 = �̂�1,2,G,i+ 12 �⃗�𝑘,𝑖+ 12 + 1𝑘 �̂� 2,G,i+ 12 �⃗�𝑘,𝑖+ 12−𝜇3 �⃗�𝑘,3,𝑖+1 − �⃗�𝑘,3,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,3,𝑖+ 12 = �̂�1,3,G,i+ 12 �⃗�𝑘,𝑖+ 12 + 1𝑘 �̂� 3,G,i+ 12 �⃗�𝑘,𝑖+ 12−𝜇4 �⃗�𝑘,4,𝑖+1 − �⃗�𝑘,4,𝑖𝑥𝑖+1 − 𝑥𝑖 + �̂�G,i+ 12 �⃗�𝑘,4,𝑖+ 12 = �̂�1,4,G,i+ 12 �⃗�𝑘,𝑖+ 12 + 1𝑘 �̂� 4,G,i+ 12 �⃗�𝑘,𝑖+ 12𝑖 = 0,… , I,
(2.55)

where the pedixes in the scattering operator have the meaning of anisotropicity order,

emission direction, energy group and spatial node, respectively, while the vector �⃗�𝑘,𝑖 is

obtained stacking the group-wise fluxes in each flying directions. Since this set of al-

gebraic equations is undetermined, the well-known diamond difference scheme (Lewis

and Miller, 1984), which assumes a linear variation of the angular flux between two

nodes, is introduced as an auxiliary relationship to close the system,

�⃗�𝑘,𝑗,𝑖+ 12 = �⃗�𝑘,𝑗,𝑖+1 + �⃗�𝑘,𝑗,𝑖2 . (2.56)

It is noteworthy to mention that the solution of this edge-based numerical setup is more

efficient than the usual centre-based SN formulation, which yields a matrix with a denser

sparsity pattern.

2.4.3 The boundary conditions
A common feature to both the PN and the SN methods is the fact that a finite number

of degrees of freedom related to the flying direction is introduced in the system, making

thus impossible to satisfy exactly the boundary conditions of the original transport

model, which involves all the incoming directions. In the presence of vacuum, the exact

boundary condition would be{𝜙(𝑥 = −H, 𝜇 > 0,E) = 0 ∀ 𝜇 > 0𝜙(𝑥 = +H, 𝜇 < 0,E) = 0 ∀ 𝜇 < 0, (2.57)

i.e. the angular flux should vanish for all the positive directions at a left boundary and

for all the negative ones at a right boundary. Since the exact fulfillment of this condition

is not mathematically possible, also the boundary conditions are approximated.
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Mark (Mark, 1945a; b) was the first suggesting to make the angular flux to vanish in

a specific set of directions. When these directions are taken as the roots 𝜇𝑖 of the even

Legendre polynomial PN(𝜇), i.e. they are symmetric with respect to zero, these boundary

conditions turn out to be the most natural way to satisfy the vacuum condition in theSN framework, {𝜙(𝑥 = −H, +𝜇i,E) = 0, i = 1,… , N2𝜙(𝑥 = +H, −𝜇i,E) = 0, i = 1,… , N2 . (2.58)

In the case of PN equations, these conditions may not appear very intuitive. For example,

the boundary condition for the left edge of the slab in a P3 framework yield,

𝜙(𝑥 = −H, 𝜇i,E) = N=3∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥, 𝐸)𝑃𝑛(𝜇𝑖) =
= 12𝜙0(𝑥, 𝐸) + 32𝜙1(𝑥, 𝐸)𝑃1(𝜇𝑖) + 52𝜙2(𝑥, 𝐸)𝑃2(𝜇𝑖)+ 72𝜙3(𝑥, 𝐸)𝑃3(𝜇𝑖) = 0 𝑖 = 1,… , N + 12 ,

(2.59)

which is a linear combination of the flux angular moments. Nevertheless, the use of

Mark conditions can be more flexible than for the discrete ordinates model. In SN, the

directions for Mark conditions are determined by the choice of the quadrature scheme,

typically Gauss-Legendre, while in PN it is possible to select a different set. Because

of their nice properties, the roots of Legendre polynomials are usually taken as well

for the PN approach. However, when an even value of N is used, one can could either

compute the roots of 𝑃N+1(𝜇), removing the zero solution, which is the direction parallel

to the boundary surface, or the roots of 𝑃N(𝜇). As it will be shown, the choice of the

roots for even N can seriously affect the angular convergence. In the following, option

A will indicate the roots of 𝑃N+1(𝜇) excluding zero, while option B will indicate the roots

of 𝑃N(𝜇).
A more intuitive boundary condition for the PN model was proposed by Marshak

(Marshak, 1947). By substituting the flux angular expansion, eq. (2.25), into the exact

boundary condition, eq. (2.57), projecting over the 𝑚-th odd Legendre polynomial and

integrating over the incoming directions, the following involving the odd flux moments

is obtained, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1
0 𝑑𝜇𝜙(𝑥 = 0, 𝜇, 𝐸)𝑃𝑚(𝜇) = 0, 𝑚 = 1,3,… ,N

∫ 0
−1 𝑑𝜇𝜙(𝑥 = 0, 𝜇, 𝐸)𝑃𝑚(𝜇) = 0, 𝑚 = 1,3,… ,N. (2.60)

When 𝑚=1, the Marshak formalism yields a zero incoming partial current, consistently

with the exact boundary condition.

It should be remarked here that, in spite of their simplicity, both boundary conditions

could yield negative values at the boundaries for some directions of the angular flux,

especially for optically thin systems.
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2.5 The PN - SN+1 equivalence
The PN and the SN equations are certainly the most popular transport models used

to solve the NTE in its integro-differential form. Despite it is possible to prove that they

are equivalent under certain hypotheses, these methods have important differences.

The PN approach is very elegant and has a rich physical meaning, since the equation

for the 0
th

order moment represents the neutron balance. When the system is trun-

cated at N=1 and a steady state is assumed, the first moment equation provides Fick’s

law, which can be combined with the balance equation to yield the diffusion model,

which is thus a first-order transport model. From a mathematical standpoint, the PN
equations are weakly coupled, as in each equation only the preceding and succeeding

moments appear. Thanks to this structure, the resulting discretised operator is featured

by a nice sparsity pattern, which can be exploited to solve the PN system using direct

methods (e.g., Gauss-Seidel) quite easily even for relatively large values of N. However,

the implementation of the PN method is rather involved: its complexity may become

prohibitive for 2D or 3D geometries.

On the contrary, the SN model derivation is more intuitive and its implementation is

much easier even in presence of complex geometries. These are the main reasons that

justify its implementation in the first computational codes for neutron transport (Lath-

rop and Carlson, 1964), despite the presence, in multi-dimensional systems, of the ray-
effect, which is an unpleasant numerical effect inducing an artificial anisotropy in the

angular flux (Lathrop, 1968) in the presence of absorbing media and localised sources.

From a mathematical standpoint, the system of SN equations is tightly coupled by the

scattering and fission operators. Thus, the resulting sparsity pattern of the discretisedSN model is not suitable for an efficient solution via direct methods, making the use of

an iterative, matrix-free procedure, known as transport sweep, more preferable for both

memory consumption and computational burden (Lewis and Miller, 1984).

Despite these differences, for a one-dimensional system it is possible to prove that,

selecting the discrete ordinates to coincide with the roots of the Legendre polynomials𝑃N(𝜇), the SN+1 approach is equivalent to the corresponding PN model.

Exploiting the Gauss-Legendre (G-L) quadrature rule, it is possible to evaluate the

projection of the SN equations on the 𝑛-th Legendre polynomial,

∫ 1
−1 𝑑𝜇 𝑃N(𝜇) ∗ ≈ N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) ∗, (2.61)

where the symbol ∗ represents eq. (2.54). Thanks to this procedure, a set of PN-like

equations can be constructed for the flux angular moments approximated with G-L

formula,

𝜙𝑛(𝑥, 𝐸) ≡ ∫ 1
−1 𝑑𝜇 𝑃N(𝜇) 𝜙(𝑥, 𝜇, 𝐸) ≈ N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗)𝜙(𝑥, 𝜇𝑗 , 𝐸) = 𝜙𝑛(𝑥, 𝐸). (2.62)
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It is important to remark that, since the flux in the 𝑗-th direction is not a polynomial

in general, the moment evaluation may not be computed exactly. Using eq. (2.62), it is

possible to get the different PN-equivalent operators:

• the streaming operator can be obtained using the Legendre polynomials recur-

rence formula 𝑛𝑃𝑛−1(𝜇) + (𝑛 + 1)𝑃N+1(𝜇) = (2𝑛 + 1)𝜇𝑃𝑛(𝜇),N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [𝜇𝑗 𝜕𝜙(𝑥, 𝜇𝑗 , 𝐸)𝜕𝑥 ] = 𝜕𝜕𝑥 N∑𝑗=1 𝑤𝑗𝜙(𝑥, 𝜇, 𝐸) [𝑛𝑃𝑛−1(𝜇𝑗) + (𝑛 + 1)𝑃𝑛+1(𝜇𝑗)2𝑛 + 1 ]
= 𝑛2𝑛 + 1 𝜕𝜙𝑛−1(𝑥, 𝐸)𝜕𝑥 + 𝑛 + 12𝑛 + 1 𝜕𝜙𝑛+1(𝑥, 𝐸)𝜕𝑥 .

(2.63)

• the derivation of the time and "interaction" terms is straightforward,

N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [1v 𝜕𝜕𝑡 𝜙(𝑥, 𝜇𝑗 , 𝐸)] = 1
v

𝜕𝜕𝑡 𝜙𝑛(𝑥, 𝐸), (2.64)

N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [Σx(𝑥, 𝐸)𝜙(𝑥, 𝜇𝑗 , 𝐸)] = Σx(𝑥, 𝐸)𝜙𝑛(𝑥, 𝐸), (2.65)

where x can indicate capture, total scattering or total fission.

• the scattering operator is obtained exploiting the orthogonality property of Leg-

endre polynomials,

N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′) L∑𝓁=1 2𝓁 + 12 𝑓𝓁 ,𝑗(𝑥, 𝐸→𝐸′)𝑃𝓁 (𝜇𝑗) N∑𝑚=1𝑤𝑚𝑃𝓁 (𝜇𝑚)𝜙(𝑥, 𝜇𝑚, 𝐸)] =

= ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′) L∑𝓁=1 [ N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗)2𝓁 + 12 𝑃𝓁 (𝜇𝑗)] 𝑓𝓁 ,𝑗(𝑥, 𝐸→𝐸′) N∑𝑚=1𝑤𝑚𝑃𝓁 (𝜇𝑚)𝜙(𝑥, 𝜇𝑚, 𝐸) =

= ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′)𝛿𝑛𝓁 𝑓𝓁 ,𝑗(𝑥, 𝐸→𝐸′) N∑𝑚=1𝑤𝑚𝑃𝓁 (𝜇𝑚)𝜙(𝑥, 𝜇𝑚, 𝐸) =

= ∫ ∞
0 𝑑𝐸′Σ𝑠(𝑥, 𝐸′)𝛿𝑛𝓁 𝑓𝓁 ,𝑗(𝑥, 𝐸→𝐸′)𝜙𝑙(𝑥, 𝐸).

(2.66)
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• the prompt and delayed fission can be obtained using the fact that 𝑃0(𝜇) ≡ 1,

N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [(1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) N∑𝑛=1 𝑤𝑛𝜙(𝑥, 𝜇𝑛, 𝐸)] == (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞

0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′)𝜙0(𝑥, 𝐸) N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗)𝑃0(𝜇𝑗) =
= (1 − 𝛽)𝜒𝑝(𝑥, 𝐸)2 ∫ ∞

0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′)𝜙0(𝑥, 𝐸)𝛿𝑛0
(2.67)

and

N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗) [𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞
0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) N∑𝑛=1 𝑤𝑛𝜙(𝑥, 𝜇𝑛, 𝐸)] == 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞

0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′) N∑𝑗=1 𝑤𝑗𝑃𝑛(𝜇𝑗)𝑃0(𝜇𝑗) N∑𝑛=1 𝑤𝑛𝜙(𝑥, 𝜇𝑛, 𝐸) =
= 𝛽𝑟 𝜒𝑑,𝑟 (𝑥, 𝐸)2 ∫ ∞

0 𝑑𝐸′𝜈Σ𝑓 (𝑥, 𝐸′)𝜙0(𝑥, 𝐸)𝛿𝑛0.
(2.68)

Since the maximum degree that can be integrated exactly by the G-L scheme is 2N-

2, and the anisotropy order L should be less or equal than N to have a non-vanishing

integral in the scattering operator, the exact integration of eq. (2.54) can occur only if𝑛 + L = n + N ⩽ 2N − 2, thus implying that 𝑛 ⩽ N − 1. Since the PN−1 equations are

defined for 𝑛 ranging from 0 up to N-1, the projection of the SN operators with the G-L

scheme is exact. Moreover, since the discrete ordinates are taken as the roots of 𝑃N(𝜇),
the moment 𝜙𝑁 (𝑥, 𝐸) vanishes,

𝜙𝑁 (𝑥, 𝐸) = N∑𝑗=1 𝑤𝑗𝜙(𝑥, 𝜇𝑗 , 𝐸)𝑃𝑁 (𝜇𝑗) = 0, (2.69)

meaning that the equations for 𝜙𝑛(𝑥, 𝐸) coincide with the ones for 𝜙𝑛(𝑥, 𝐸).
The formal equivalence of these methods is a fundamental result for many reasons.

First, it links two different approaches, showing their mutual consistency. Moreover,

since the two approaches lead to the same result, the choice of the method to be adopted

could be made regardless of the computational accuracy, but according to other require-

ments, e.g., the memory consumption (in favour of the SN method). Then, despite this

equivalence is valid only for one-dimensional systems, it is helpful for the code verifi-

cation and validation stages. Finally, the relationship between the two methods could

be helpful to transfer physico-mathematical considerations pertaining to one model to

the other.
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2.5.1 Even-to-odd order reduction
In this last sense, the PN-SN+1 equivalence is fundamental in order to understand

the underpinning reasons for the historical disfavour towards the even (odd) PN (SN+1)
approximations (Case and Zweifel, 1967; Faris, 2005). When an odd order SN+1 is chosen,

one of the roots of 𝑃N+1(𝜇) is always equal to zero. In this case, one of the equations

appearing in the SN+1 system would be no more differential, as a consequence of the

fact that the streaming along the direction 𝜇=0, parallel to the boundaries, would not

add further physical detail on the system boundaries (see fig. 2.2). Thanks to the PN-SN+1
equivalence, the same consideration should hold for the even-order PN as well, despite

its less intuitive behaviour.

-H +H

x

𝜇1
𝜇2

𝜇3

Figure 2.2: Sketch of a one-dimensional slab with the three discrete directions featuring
the S3 model.

Inspired by this physico-mathematical fact, a more formal investigation could be

performed on this old fashion even-vs.-odd dispute, showing that an even PN model

can be always cast in a form similar to the preceding PN−1 model, which is odd, with

modified coefficients.

This fact can be appreciated explicitly by simply analysing the P2 case. Taking eq.

(2.36) and omitting the angular flux space and energy dependencies,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (23 𝜕𝜙2𝜕𝑥 + 13 𝜕𝜙0𝜕𝑥 ) + �̂�1𝜙1 = 0𝜀𝛿 25 𝜕𝜙1𝜕𝑥 + �̂�2𝜙2 = 0 (2.70)

where �̂�0 and �̂�𝑛 for 𝑛 = 1,2 are defined as follows,

�̂�0 = 𝜀𝜃 �̂� + �̂� 𝑇 + �̂�𝑇 + 𝜀𝛼
v
− 𝜀𝛾 [�̂�0 + 𝜀𝑘 (�̂� 𝑝,0 + R∑𝑟=1 𝜆𝑟𝜆𝑟 + 𝜀𝜔 �̂� 𝑑,𝑟 ,0)]�̂�𝑛 = 𝜀𝜃 �̂� + �̂� 𝑇 + �̂�𝑇 + 𝜀𝛼

v
− 𝜀𝛾 �̂�𝑛, (2.71)
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it is possible to manipulate the system substituting the equation for 𝜙0 into the equation

for 𝜙1 and then the equation for 𝜙2 into the equation for 𝜙1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (+ 415�̂�−10 �̂�2 + 13) 𝜕𝜙0𝜕𝑥 + �̂�1𝜙1 = 0−25�̂�0𝜙0 + �̂�2𝜙2 = 0. (2.72)

This system is equivalent to a set of P1 equations, with the replacement13 ⟶ 13 + 415�̂�−10 �̂�2. (2.73)

Since the P1 equations can be cast into the diffusion model by defining𝐷𝑃1 = 13�̂�−11 , (2.74)

the same equivalence should hold for the P2 case as well (Heizler and Ravetto, 2012).

Indeed, this relationship is valid taking a different definition of the coefficient, namely𝐷′ = 13�̂�−11 + 415�̂�−10 �̂�2�̂�−11 = 𝐷𝑃1 + 𝐷𝑃2 . (2.75)

A similar procedure can be applied to the succeeding even-order case, P4,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (23 𝜕𝜙2𝜕𝑥 + 13 𝜕𝜙0𝜕𝑥 ) + �̂�1𝜙1 = 0𝜀𝛿 (35 𝜕𝜙3𝜕𝑥 + 25 𝜕𝜙1𝜕𝑥 ) + �̂�2𝜙2 = 0𝜀𝛿 (47 𝜕𝜙4𝜕𝑥 + 37 𝜕𝜙2𝜕𝑥 ) + �̂�3𝜙3 = 0𝜀𝛿 49 𝜕𝜙3𝜕𝑥 + �̂�4𝜙4 = 0.
(2.76)

Similarly to the previous case, in order to reduce the P4 system to an equivalent P3 one

the spatial gradient of 𝜙4 should disappear from the equation for 𝜙3. This objective can

be achieved substituting the equation for 𝜙0 into the equation for 𝜙2 and then substitute

this equation into the one for 𝜙4, obtaining

𝜙4 = − 1𝜀𝛿 49 𝜕𝜙3𝜕𝑥 �̂�−14 = 2027 (−25�̂�0𝜙0 + �̂�2𝜙2) �̂�−14 . (2.77)

As for P2, the highest order even moment turns out to be a linear combination of the

lower-order even moments. It is intuitive that, due to the structure of the PN model, the
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set of preceding equations for the even moments can be used recursively to express the

odd-order spatial gradient as a function of the lower-order even moments.

However, contrarily to the previous case, the substitution of eq. (2.77) into the 𝑛 = 3
equation is not sufficient to obtain the required P3-like system, due to the appearance

of 𝜙0, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (23 𝜕𝜙2𝜕𝑥 + 13 𝜕𝜙0𝜕𝑥 ) + �̂�1𝜙1 = 0𝜀𝛿 (35 𝜕𝜙3𝜕𝑥 + 25 𝜕𝜙1𝜕𝑥 ) + �̂�2𝜙2 = 0𝜀𝛿 80189 (−25�̂�0 𝜕𝜙0𝜕𝑥 + �̂�2 𝜕𝜙2𝜕𝑥 ) �̂�−14 + 𝜀𝛿 37 𝜕𝜙2𝜕𝑥 + �̂�3𝜙3 = 0.
(2.78)

To obtain the desired equivalent form, the gradient of 𝜙0 is first made explicit from the

equation for 𝑛 = 1, 𝜕𝜙0𝜕𝑥 = −2𝜕𝜙2𝜕𝑥 − 3𝜀𝛿 �̂�1𝜙1, (2.79)

and then substituted into eq. (2.78),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (23 𝜕𝜙2𝜕𝑥 + 13 𝜕𝜙0𝜕𝑥 ) + �̂�1𝜙1 = 0𝜀𝛿 (35 𝜕𝜙3𝜕𝑥 + 25 𝜕𝜙1𝜕𝑥 ) + �̂�2𝜙2 = 0𝜀𝛿 [( 64189�̂�0 + 80189�̂�2) �̂�−14 + 37] 𝜕𝜙2𝜕𝑥 + 3263�̂�1�̂�−14 𝜙1 + �̂�3𝜙3 = 0.
(2.80)

This operation introduces a term depending on 𝜙1, which should not be present in the

equivalent P3 system. At this point, it is convenient to introduce a new definition for

the third order moment, 𝜙′3 = �̂�3𝜙3 + 3263�̂�1�̂�−14 𝜙1. (2.81)

Thanks to this definition, the coveted equivalent system is finally obtained, replacing𝜙3 with 𝜙′3 into the equation for 𝑛 = 3 and adjusting equation 𝑛 = 2 according to eq.

(2.81), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀𝛿 𝜕𝜙1𝜕𝑥 + �̂�0𝜙0 = 0𝜀𝛿 (23 𝜕𝜙2𝜕𝑥 + 13 𝜕𝜙0𝜕𝑥 ) + �̂�1𝜙1 = 0𝜀𝛿 [35 𝜕𝜙′3𝜕𝑥 + (− 32105�̂�1�̂�−14 + 25) 𝜕𝜙1𝜕𝑥 ] + �̂�2𝜙2 = 0𝜀𝛿 [( 64189�̂�0 + 80189�̂�2) �̂�−14 + 37] 𝜕𝜙2𝜕𝑥 + 𝜙′3 = 0.
(2.82)

These two examples are extremely useful to get some insight into the reduction process,

providing fundamental information to develop a general reduction algorithm:
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• the equation for the highest order even moment is algebraic, being a linear com-

bination of lower order even moments. Consistently, the streaming eigenvalue

placeholder 𝜀𝛿 does not appear in this equation, confirming that the highest-order

even moment is not related to the streaming phenomenon;

• a new definition of the odd-order moments may be required in order to obtain the

equivalence;

• The equivalence with the PN−1 model, intended as obtaining a system with the

same structure of the preceding odd-order, is accomplished by means of a change

in the coefficients of the system.

When larger values of N are considered, the reduction process is more involved,

since the new moment definition depends on the lower, odd-order moments. Despite

these additional intricacies, it is possible to prove by induction that the same reduction

mechanism applies also for arbitrary even values of N thanks to a similarity transfor-

mation based on the Gauss elimination method. This transformation corresponds to

perform left and right matrix multiplications: the first are useful to remove the deriva-

tive terms terms from higher order rows, while the right multiplications are related to

the new definition of the odd-order moment needed to close the process. It is notewor-

thy to remark here that, thanks to the weak coupling of the angular moments, which

makes the PN system lower triangular, this algorithm requires a finite number of steps.

The formal details of this proof, mainly due to Dr. Paolo Saracco, are omitted here for

the sake of brevity, as they can be found in Abrate, Dulla, et al. (2021).

2.6 Numerical benchmark of the eigenvalue formu-
lations to the PN and SN models

In this section, the numerical implementation of the multi-group PN and SN models

in the TEST code, based on a finite difference scheme in space, is benchmarked against

some reference results pertaining to the different eigenvalue formulations presented

in section 2.3.1. Most of these reference values are taken from the literature, but a

comparison with semi-analytical and Monte Carlo calculations is presented as well in

the following. It is important to point out that, due to the scarceness of numerical results

concerning some eigenvalues, e.g., 𝜔 and 𝛿 , the numerical benchmark will be focused

mainly on the eigenvalues available in the literature.

2.6.1 Numerical solvers for the solution of eigenvalue problems
The solution of eigenvalue problems for large matrices is often a very expensive op-

eration, especially when the objective of the calculation is the full set of the eigenpairs,

i.e. the eigenvectors and the associated eigenvalues. According to the application, one
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is generally interested in the evaluation of only one (the fundamental) or a few relevant

eigenpairs, e.g., for modal expansion methods (Gandini, 1978).

Historically, the most popular method employed to find the fundamental eigenpair

for the 𝑘 eigenvalue problem is the power method, which is an iterative algorithm with

a very intuitive physical meaning (Saad, 1992). First, an initial neutron distribution is

guessed. Then, the distribution of the next generation of neutrons is estimated solv-

ing a source-driven problem where the external source is defined applying the fission

operator to the initial neutron generation. Then, the effective multiplication factor 𝑘
is estimated, taking the ratio between the fission productions at different neutron gen-

erations. The procedure is stopped when a certain tolerance on the flux and on the

eigenvalue is met. The convergence of this algorithm is ensured by multiplying the fis-

sion source at each 𝑛-th cycle by a factor 1/𝑘𝑛, thus forcing the system to be critical. The

main advantages of this approach are its easiness of implementation, its natural physi-

cal interpretation and its ensured convergence. However, since the convergence of this

algorithm scales with the dominance ratio (DR) of the matrix, i.e. the ratio between the

first two eigenvalues, the power method can be extremely inefficient for loosely cou-

pled cores, featured by large DRs. Moreover, this approach does not allow to retrieve

eigenvalues other than the fundamental. In spite of its shortcomings, this is currently

the most popular approach for the solution of the criticality eigenvalue problem both in

deterministic (Rimpault, Plisson, et al., 2002) and stochastic codes (Nowak, Miao, et al.,

2016).

To overcome this serious limitation, the so-called filtered power method, also known

as subtraction or elimination method, has been proposed to extend the classical power

method using a filtering technique based on the bi-orthogonality property between the

direct and the adjoint eigenvectors (Vondy and Fowler, 1983). Nevertheless, being an

extension of the power method, this method suffers from the same slow convergence

in case of large DRs, especially for symmetrical system, featured by spectrum degen-

eracies (Tommasi, Maillot, and Rimpault, 2016). Moreover, since both the direct and the

adjoint harmonics are evaluated, this approach is computationally demanding and, as a

consequence of the filtering procedure, its implementation in commercial codes would

require some non-negligible modifications, especially for discrete ordinates codes. In

this case, the fix-up (Lewis and Miller, 1984) usually adopted to correct the negative

values of the flux should be avoided because of the non-uniform sign of the the higher-

harmonics. On top of these considerations, the use of the direct and adjoint lower-order

eigenvectors to filter the higher-order components of the spectrum can introduce ap-

proximation errors in the solution that would in turn propagate this numerical noise

through the whole calculation chain.

Several alternative methods have been proposed during the years, like the use of

subspace iteration methods (Modak and Jain, 1996), or the adoption of boundary con-

ditions to enhance the convergence breaking the spectrum degeneracies (Maillot, Tom-

masi, and Rimpault, 2016). Notwithstanding all these efforts, most of these techniques,

including the power method, are tailored on the calculation of 𝑘, whose spectrum is by
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far the simplest among the ones of the eigenvalue problems presented in sec. 2.3.1.

Specific alternative methods for determination of the time (Modak and A. Gupta,

2003; Singh, Degweker, et al., 2011) and collision (Modak, H. P. Gupta, and Jain, 1994)

eigenvalue have also been proposed, albeit they are not very efficient.

Nowadays, the most efficient and robust algorithms to compute the leading eigen-

pairs of a general eigenvalue problem belong to the class of Krylov-Arnoldi method

(Saad, 1992). The fundamental, basic idea of Krylov, a Russian naval engineer, was to

keep all the vectors generated during the power method iterations, instead of discard-

ing them at each iteration, in order to construct a subspace. It is interesting to notice

that, in full analogy with the power method, this approach could be interpreted from a

physical perspective as a neutron population that is able to reach its eigenstate faster

because it retains the collective memory of all its preceding generations. In addition

to the improved convergence, which scales non-linearly, the methods belonging to this

family require little or no modification to existing codes, as they only need the vectors

obtained applying the operator �̂� to the initial guess �⃗� to construct the subspace �̂� ,�̂� = {�⃗�, �̂��⃗�, �̂�2�⃗�,… , �̂�𝑛�⃗�}. (2.83)

Since this matrix-vector operation is embedded in the original code, the Krylov-Arnoldi

techniques are non-intrusive, as they only require data exchange. Therefore, these

methods are usually implemented in highly efficient numerical libraries and are wrapped

around the existing code. Because of their recent popularity, these methods have been

recently investigated for the solution of eigenvalue problems in the frame of reactor

physics, showing excellent computational performances with respect to the traditional

power methods (Zinzani, Demaziére, and Sunde, 2008; Abrate, Bruna, et al., 2019). The

Krylov-based algorithms have also been successfully applied to other eigenvalue for-

mulations (Carreño, Vidal-Ferrándiz, et al., 2017), due to the possibility to search for

only some specific portions of the eigenvalue spectrum by means of the introduction

of a shift (Saad, 1992).

All the eigenvalue calculations performed throughout this work are performed using

either the ARPACK (ARnoldi PACKage) library (Lehoucq, Sorensen, and Yang, 1998) or

the SLEPc/PETSc (Scalable Library for Eigenvalue Problem Computations and Portable,

Extensible Toolkit for Scientific Computation) libraries (Balay, Abhyankar, et al., 2020;

Hernandez, Roman, and Vidal, 2005), for which ad hoc, open-source Python wrappers

are available in the eigs function of the Scipy package and in the slepc4py package, re-

spectively. ARPACK is a set of numerical routines, initially written in Fortran77 but cur-

rently available also in other languages like C++, implementing the Implicit Restarted

Arnoldi Method (Arnoldi, 1951), which is suitable for the solution of large, sparse ma-

trices. With respect to ARPACK, the SLEPc and PETSc packages, written in Fortran,

C and C++, are more modern and efficient, aiming at parallel and distributed comput-

ing applications. In addition, the SLEPc library offers a vast choice of Krylov subspace

methods, including the Arnoldi methods as well.
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2.6.2 Benchmark with the data available in the literature
The first numerical verifications aimed at verifying the spatial grid independence of

the models for two slab thicknesses, 1 and 8 mfp, respectively, analysing the behaviour

of the eigenvalues for some angular approximation orders. Tables 2.3 and 2.2 compare

the fundamental 𝑐 eigenvalue, which is related to 𝛾 through the following equation:

𝑐𝛾 = Σ𝑠 + 𝜈Σ𝑓Σ𝑡 , (2.84)

with the reference values taken from Modak, Sahni, and Paranjape (1995), where a vari-

ant of the sub-space iteration method is employed to compute the eigenvalues (Modak,

H. P. Gupta, and Jain, 1994). In these tables, the calculations are performed for the two

slab thicknesses employing the same set of one-group cross sections, namely Σ𝑡 = 1,Σ𝑠 = 0.8, Σ𝑎 = 0.2 and 𝜈Σ𝑓 = 1, expressed in mfp
-1

. The PN and SN+1 results computed

by TEST show an increasing good agreement, up to 0.1 pcm for the finest mesh, with

respect to the reference values, for both the slab thicknesses, suggesting that the bound-

ary conditions are handling correctly the transport effects arising in the thinnest slab.

Table 2.2: Convergence of the fundamental collision eigenvalue 𝑐0 to the benchmark values
(Modak, Sahni, and Paranjape, 1995) for increasing number of meshes for PN and SN ap-
proximations with Mark boundary conditions and isotropic scattering. The slab is assumed
to be 8 mfp thick.

spatial

meshes
P63 S64 ref. S64 P127 S128 ref. S128

30 1.0364284 1.0364464 1.0364130 1.0364273 1.0364458 1.0364125
60 1.0364139 1.0364133 1.0364054 1.0364129 1.0364127 1.0364048
100 1.0364083 1.0364066 1.0364038 1.0364074 1.0364060 1.0364032

Table 2.3: Convergence of the fundamental collision eigenvalue 𝑐0 to the benchmark values
(Modak, Sahni, and Paranjape, 1995) for increasing number of meshes for PN and SN ap-
proximations with Mark boundary conditions and isotropic scattering. The slab is assumed
to be 1 mfp thick.

spatial

meshes
P127 S128 ref. S128 P255 S256 ref. S256

60 1.6154789 1.6154505 1.6154165 1.6154607 1.6154302 1.6153960
100 1.6154329 1.6154215 1.6154095 1.6154150 1.6154012 1.6153891
150 1.6154178 1.6154126 1.6154074 1.6153991 1.6153923 1.6153869
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The presence of a certain discrepancy in the eigenvalues computed by solving the PN
and the SN+1 models with Mark boundary conditions seems in contrast with their formal

equivalence, suggesting the presence of one or more inconsistencies in the numerical

code implementation. However, it should be noticed that this equivalence does not

hold anymore when the two models are discretised in space: the SN model employs a

co-located scheme, i.e. the same grid is employed for positive and negative directions,

while the PN model exploits a staggered scheme to avoid numerical instabilities. In

such a case, it would not be possible to retrieve the staggered PN equations starting

from the co-located SN+1 equations coupled with the diamond difference scheme (and

viceversa), due to the mismatch between the two grids. Therefore, also in light of the

excellent agreement with the reference, this disagreement is likely due to this effect.

Consistently, the difference between the fundamental eigenvalues estimated by the two

models diminishes refining the mesh, and, thus, reducing the difference between the

two grids. The break up of the PN-SN+1 equivalence is even more important for the

higher-order eigenvalues, which are associated to eigenfunctions featured by steeper

spatial gradients.

For the same system, the 𝑘 eigenvalue is computed for different angular approxima-

tion orders, with a fixed number of spatial meshes, equal to 200. Table 2.4 provides the

fundamental eigenvalues computed with the PN and SN+1 methods with Mark boundary

conditions, while table 2.5 reports the PN values with Marshak boundary conditions.

Also in this case there is a good agreement between the values computed by TEST and

the reference ones, within 1 pcm. Again, the accuracy seems unaffected by the value

of the slab thickness. For the Marshak case, the agreement between the PN and the

reference SN+1 values is progressively better as the difference between the two models

and the associated boundary conditions is reduced for increasing values of the angular

order.

Table 2.4: Convergence of the fundamental multiplication eigenvalue 𝑘0 to the benchmark
value at increasing orders of PN and SN approximation with Mark boundary conditions.
Reference values are evaluated with S256 (Modak, Sahni, and Paranjape, 1995; Deo, Krish-
nani, and Modak, 2014), using vacuum boundary conditions as well. All calculations are
performed using 200 meshes.

N
1 mfp 8 mfpPN SN+1 ref. SN+1 PN SN+1 ref. SN+1

3 1.129077 1.129073 1.129075 4.225108 4.225092 4.225105
7 1.209379 1.209376 1.209376 4.229059 4.229053 4.229065
15 1.223481 1.223481 1.223479 4.229825 4.229828 4.229840
31 1.225737 1.225738 1.225737 4.229997 4.230008 4.230020
255 1.226402 1.226408 1.226406 4.230050 4.230065 4.230078
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Table 2.5: Convergence of the fundamental multiplication eigenvalue 𝑘0 to the benchmark
value at increasing orders of PN approximation with Marshak boundary conditions. Refer-
ence values are evaluated with S256 (Modak, Sahni, and Paranjape, 1995; Deo, Krishnani,
and Modak, 2014), using vacuum boundary conditions as well. All calculations are per-
formed using 200 meshes.

N
1 mfp 8 mfpPN ref. SN+1 PN ref. SN+1

3 1.171867 1.129075 4.228452 4.225105
7 1.219462 1.209376 4.229717 4.229065
15 1.225369 1.223479 4.229976 4.229840
31 1.226151 1.225737 4.230035 4.230020
255 1.226409 1.226406 4.230051 4.230078

Since one of the objectives of the TEST code is the study of the spectrum of the differ-

ent eigenvalues, the analysis of the accuracy of the PN and SN+1 models in the evaluation

of the higher-order eigenvalues is of the utmost importance. Table 2.6 shows a com-

parison between the two models and the reference values computed by Modak, Sahni,

and Paranjape (1995). The benchmark values are given with a limited number of sig-

nificant digits, probably due to a loss of accuracy in the sub-space iteration eigenvalue

solver. The results in the table shows an overall satisfactory agreement between the

higher-order eigenvalues evaluated by the two models and the reference values, for

both isotropic and linearly anisotropic scattering cases. It is interesting to notice that,

except for the fundamental, the difference in the eigenvalues computed by the PN andSN+1 models is progressively different, suggesting that, due to the spatial discretisation,

the two operators are featured by different spectra.

In addition to 𝑘 and 𝛾 (or its 𝑐 variant), the other eigenvalue formulation widely

present in the literature is the time eigenvalue. Table 2.7 provides a comparison be-

tween the 𝛼 eigenvalues, in ms
-1

, computed with TEST and the reference values, ob-

tained either with a semi-analytical method (Dahl, Protopopescu, and Sjöstrand, 1983)

or with S8 calculations (Modak and A. Gupta, 2003) for the case of non-multiplying slabs

featured by Σ𝑡=1 cm
-1

, Σ𝑠=0.8 cm
-1

, v=1 cm/s and different thicknesses. The agreement

between the 𝛼 eigenvalues computed by TEST and the available semi-analytical ones

is very good, also for the higher-order eigenvalues. Also in this case it is possible to

appreciate the difference, for large frequencies, in the eigenvalues of the PN and SN+1
models due to the different discretisation approaches employed.

The paper by Modak and A. Gupta (2003) presents also a set of extremely useful re-

sults to verify the solution of the 𝛼 eigenvalue for the case of a heterogeneous, 1 cm

thick slab obtained alternating two materials. The first one is a perfect neutron diffuser,

featured by Σ𝑡=Σ𝑠=10 cm
-1

, while the second is a neutron absorber, featured by Σ𝑡=10

cm
-1

and Σ𝑠=0.9 cm
-1

. Table 2.8 presents the first four 𝛼 eigenvalues for different slab
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Table 2.6: Higher-order 𝑘 eigenvalues computed with P63 and S64 models imposing Mark
boundary conditions and reference values (Modak, Sahni, and Paranjape, 1995) for the
1 mfp slab, assuming isotropic and linearly anisotropic scattering. All calculations are
performed using 100 spatial meshes, consistently with the reference values provided.

𝑘
mode

Isotropic scattering Linearly anisotropic scattering�̄�0 = 0 �̄�0 = 0.375P255 S256 ref. S256 P255 S256 ref. S256
0 1.2263693 1.2263901 1.2264084 1.1784718 1.1785020 1.1785157
2 0.2321258 0.2319993 0.232083 0.2176900 0.2175786 0.217653
4 0.1216449 0.1213847 0.12153 0.1169190 0.1166776 0.11681
6 0.0821309 0.0817410 0.08195 0.0798521 0.0794824 0.07968
8 0.0619800 0.0614614 0.06174 0.0606479 0.0601502 0.06041
10 0.0497915 0.0491446 0.0495 0.0489191 0.0482937 0.0486

Table 2.7: First four 𝛼 eigenvalues, in ms-1, evaluated with P15, S32, P255 and P256 approxi-
mations imposing Mark boundary conditions and 100 spatial meshes and compared to the
reference S16 results by Modak and A. Gupta (2003). The semi-analytical results are taken
from Dahl, Protopopescu, and Sjöstrand (1983).

H[cm] 𝛼
mode

P7 S8 ref. S8 P255 S256 semi-

analyt.

5
0 −81.319 −81.322 −81.249 −81.102 −81.100 −81.093
1 −343.777 −343.909 −345.348 −341.239 −341.333 −341.216

10

0 −25.385 −25.386 −25.378 −25.354 −25.353 −25.352
1 −103.143 −103.195 −103.353 −102.984 −103.026
2 −238.497 −238.817 −238.123 −237.907 −238.195 −237.942
3 −443.506 −444.723 −447.714 −439.598 −440.680
4 −889.535 −889.104 −887.349 −723.448 −726.527 −724.185

20

0 −7.186 −7.186 −7.185 −7.182 −7.181 −7.180
1 −28.865 −28.881 −28.897 −28.847 −28.861
2 −65.407 −65.508 −65.449 −65.361 −65.457 −65.376
3 −117.456 −117.804 −118.060 −117.360 −117.696
4 −185.973 −186.874 −186.414 −185.782 −186.659 −185.998
5 −272.330 −274.309 −275.683 −271.927 −273.857
6 −378.684 −382.615 −380.843 −377.537 −381.334 −378.585
7 −511.430 −519.273 −524.560 −504.906 −511.814

arrangements, featured by an increasing heterogeneity level, from two to ten alternat-

ing layers. The results obtained by the TEST code are, once again, consistent with the

reference ones, suggesting the code correct behaviour also for strong heterogeneous
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media.

Table 2.8: First four 𝛼 eigenvalues, in ms-1, for a heterogeneous slab evaluated with P7
and S8 models using 101 spatial meshes and Mark boundary conditions, compared to the
reference results by Modak and A. Gupta (2003).

layer width[mfp] 𝛼
mode

P7 S8 ref. S8
5.0

0 −551.530 −551.528 −551.429
1 −1708.303 −1709.011 −1711.49
2 −2949.523 −2952.764 −2943.99
3 −5231.261 −5244.641 −5282.34

2.5

0 −703.854 −703.803 −703.578
1 −1450.967 −1451.376 −1453.15
2 −3077.478 −3081.021 −3072.82
3 −5218.135 −5231.336 −5269.25

1.0

0 −750.021 −749.926 −749.672
1 −1557.749 −1558.165 −1560.62
2 −2969.154 −2972.262 −2963.23
3 −5138.743 −5151.476 −5187.72

0.5

0 −759.226 −759.151 −758.893
1 −1568.920 −1569.365 −1571.89
2 −2984.970 −2988.137 −2978.99
3 −5167.054 −5179.958 −5217.64

0.1

0 −763.890 −763.901 −763.640
1 −1573.858 −1574.380 −1576.95
2 −2990.283 −2993.509 −2984.29
3 −5172.618 −5185.563 −5223.82

In order to verify the capability of the numerical code to handle also the energy

effects and to check the implementation of the density eigenvalue 𝛿 , the region-wise

integral spectral ratio for the 𝛼 , 𝛾 , 𝛿 and 𝑘 eigenvalue have been benchmarked with

the ones evaluated in Cacuci, Ronen, et al. (1982). In this paper, co-authored by Ronen,

Shayer, Wagschal and Yeivin, who first formulated the density eigenvalue 𝛿 , the en-

ergy spectral effects arising from the solution of the eigenvalues mentioned above are

examined, focusing on the spectrum-hardness hierarchy. In order to better understand

the rôle of the eigenvalues in the neutron balance and, thus, on their energy behaviour,

they examine the effects of a set of perturbations with different features on a reflected,

thermal reactor.

Table 2.9 provides a selection of some cases presented in the paper. For all the cases,
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Table 2.9: Comparison for the spectral ratios of the various eigenvalue formulations for
a two-group, reflected slab subjected to different perturbations. The reference values are
taken from (Cacuci, Ronen, et al., 1982).

perturbation
eigenvalue

formulation

Integral spectral index

% rel. diff. in core % rel. diff. in reflectorP3 S4 ref. S4 P3 S4 ref. S4
-10% reactor

dimensions

𝛼 2.43 2.43 2.41 −3.53 −3.53 −3.47𝛾 1.90 1.90 1.88 −4.29 −4.29 −4.24𝛿 0.00 0.00 0.00 0.00 0.00 0.00𝑘 −0.89 −0.89 −0.90 −7.57 −7.57 −7.52
+10% reactor

dimensions

𝛼 −1.92 −1.91 −1.91 3.51 3.51 3.41𝛾 −1.51 −1.51 −1.50 4.69 4.70 4.14𝛿 0.00 0.00 0.00 0.00 0.00 0.00𝑘 0.64 0.64 0.63 7.41 7.41 7.29
-10% reflector

dimensions

𝛼 −0.05 −0.05 −0.03 −6.57 −6.57 −6.32𝛾 −0.12 −0.12 −0.11 −6.69 −6.69 −6.44𝛿 −0.40 −0.40 −0.38 −6.02 −6.02 −5.78𝑘 −0.54 −0.54 −0.52 −7.18 −7.18 −6.93
+10% reflector

dimensions

𝛼 0.04 0.04 0.06 6.43 6.43 6.54𝛾 0.11 0.11 0.12 6.55 6.55 6.66𝛿 0.37 0.37 0.38 5.86 5.86 5.99𝑘 0.48 0.48 0.48 7.09 7.09 7.19
there is generally a good agreement between the P3 and the S4 models and the refer-

ence S4 calculations, despite no information on the number of spatial meshes and on the

numerical eigenvalue solver is available in the original article. Postponing any consid-

eration on the eigenvalue energy spectra to the next chapter, it is worth noticing that,

when the whole reactor dimensions are varied, the 𝛿 eigenvalue and, thus, the associ-

ated spectral index remains constant, being invariant under the geometrical scaling of

the system. In addition to these numerical data, the benchmark also involves the analy-

sis of the energy spectra hierarchies, which are depicted in 2.3 for a close-to-critical and

an off-critical cases. As expected, the spectral indexes are basically the same when the

system is close to criticality, while the ones for the super-critical case seem to match

the original ones presented in Cacuci, Ronen, et al. (1982).
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Figure 2.3: Local spectral index for 𝛼 , 𝛾 , 𝛿 and 𝑘 eigenvalue problems for a close-to-critical
(left) and a super-critical (right), computed with the P3 model imposing Mark boundary
conditions. The number of spatial meshes adopted in each reflector regions is 150, while
200 are employed in the core region. For the sake of brevity, only the positive half of the
slab is showed.

2.6.3 The influence of boundary conditions and of the parity or-
der on the angular convergence

As mentioned previously, the transport calculations can be strongly affected by both

the boundary conditions and the parity order adopted in the model. In order to shed

some light on these aspects, from both the numerical and the physico-mathematical

standpoints, and to provide some reference data to fill the gap in the literature, this

section reports the eigenvalue calculations pertaining to a two-group homogeneous

slab. To ensure the results reproducibility, table 2.10 provides the physical constants

employed in the calculations, taken from the collection of critical problems available

in Sood, Forster, and Parsons (2003). Since the reference deals with critical systems,

assumed to be in equilibrium, the decay constants of the precursors and the physical

delayed neutron fractions are not provided. Some physically reasonable data for the

missing ones are provided in tables 2.10 and 2.11. For the sake of simplicity, the prompt

and the delayed neutrons are assumed to have equal fission spectra.

The angular convergence trend of the fundamental 𝛼 , 𝛾 , 𝛿 , 𝜃 , 𝑘 and 𝜔 eigenvalues

computed with the PN and SN+1 models are showed in figures 2.4 and 2.5. These two sets

of calculations are obtained imposing Mark boundary conditions and using 121 spatial

meshes. With respect to the SN+1 case, fig. 2.4 shows two sets of bars for the even parity

order, one for each possible set of discrete directions used in the Mark boundary con-

ditions. As mentioned previously (see 2.4.3), option A stands for the non-zero roots of𝑃N+1(𝜇), while option B indicates the roots of 𝑃N(𝜇). This double choice for the discrete

directions is a peculiarity of the PN model, as in the SN+1 case the incoming directions

are enforced by the angular discretisation. By inspection of these figures, it is evident
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𝜈1 Σ1 Σ𝑓 ,1 Σ1→1 Σ1→2 𝜒1 v1
−1

3.1 0.22080 0.09360 0.07920 0.04320 0.575 4.53849E-08𝜈2 Σ2 Σ𝑓 ,2 Σ2→1 Σ2→2 𝜒2 v2
−1

2.93 0.33600 0.08544 0 0.23616 0.425 2.18142E-06

Table 2.10: Two-group constants, taken from Sood, Forster, and Parsons (2003), for the two-
group Pu-239 slab used as the case study presented in this section. The data have their usual
dimensions, i.e. cross sections are given in cm−1. The critical thickness for such system is
approximately equal to to 3.5912040 cm (0.792938 mfp).

𝑖 𝜆𝑖 [𝑠−1] 𝛽𝑖 [−]
1 0.0133826 8.86440 ⋅ 10−05
2 0.0308055 6.75625 ⋅ 10−04
3 0.1170030 5.37368 ⋅ 10−04
4 0.3066840 1.22693 ⋅ 10−03
5 0.8780670 7.10462 ⋅ 10−04
6 2.9378800 2.50592 ⋅ 10−04

Table 2.11: Precursors decay constants and delayed neutron fraction for each family of
precursors.

that the even PN/odd SN+1 overestimate the eigenvalues, while the odd PN/even SN+1 do

the opposite. Due to this behaviour, it can be concluded that, with this setup of the prob-

lem, the odd- and the even-order estimates of the eigenvalues envelop the asymptotic

(N→∞) result. This feature is very important for at least two reasons:

(i) it provides a confidence range for the asymptotic value

(ii) it can be used to accelerate convergence.

Qualitatively, the same behaviour can be observed as well for one-group case, despite

it is not reported here for the sake of conciseness (see Abrate, Burrone, et al., 2021).

A physical justification for this peculiarity can lie in the fact that the directions ob-

tained solving the roots of odd-order 𝑃N+1(𝜇) are more forward peaked than the ones

obtained with the preceding even-order 𝑃𝑁 (𝜇), as visible in table 2.12. Intuitively, the ex-

trapolation distance associated to option A is associated to a larger value, which means

that the leakages through the boundaries are reduced. This explanation is consistent

with both the trend of the eigenvalues, which behave as the system was super-critical,

and the lack of correlation between this phenomenon and the number of energy groups,

as the vacuum boundary conditions are imposed group-wise. As a practical example,
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Figure 2.4: Angular convergence trend for the fundamental values of 𝑘, 𝛾 , 𝛿 , 𝜃 , 𝛼 and 𝜔,
computed with the PN model imposing Mark boundary conditions.

it is possible to look at the one-speed P1 and P2 models. Assuming a non-multiplying

medium featured by isotropic scattering, the two models lead to the following equa-

tions, respectively: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝜙1𝑑𝑥 + Σ𝜙0 = Σ𝑠𝜙013 𝑑𝜙0𝑑𝑥 + Σ𝜙1 = 0, (2.85)
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Figure 2.5: Angular convergence trend for the fundamental values of 𝑘, 𝛾 , 𝛿 , 𝜃 , 𝛼 and 𝜔,
computed with the SN model imposing Mark boundary conditions.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑑𝜙1𝑑𝑥 + Σ𝜙0 = Σ𝑠𝜙023 𝑑𝜙0𝑑𝑥 + Σ𝜙1 + 23 𝑑𝜙2𝑑𝑥 = 025 𝑑𝜙1𝑑𝑥 + Σ𝜙2(𝑥) = 0. (2.86)
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With a limited amount of algebra, the systems can be manipulated to make their equiv-

alence to the diffusion theory explicit,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝜙1𝑑𝑥 = −(Σ − Σ𝑠)𝜙0 = −Σ𝑎𝜙0𝜙1 = − 13Σ 𝑑𝜙0𝑑𝑥 = −𝐷𝑃1 𝑑𝜙0𝑑𝑥 , (2.87)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑑𝜙1𝑑𝑥 = −(Σ − Σ𝑠)𝜙0 = −Σ𝑎𝜙0𝜙1 = −( 13Σ + 415 Σ𝑎Σ2)𝑑𝜙0𝑑𝑥 = −(𝐷𝑃1 + 𝐷𝑃2)𝑑𝜙0𝑑𝑥𝜙2 = − 25Σ 𝑑𝜙1𝑑𝑥 = +25 Σ𝑎Σ 𝜙0,

(2.88)

where 𝐷𝑃1 and 𝐷𝑃2 are defined as in eqs. (2.74) and (2.75), respectively. For such models,

the Mark boundary conditions imposed on the left boundary yields

𝜙(𝑥 = 0, 𝜇1) = 1∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥)𝑃N(𝜇) =
= 12𝜙0(0) + 32𝜇1𝜙1(0) == 12𝜙0(0) − 32𝜇1𝐷𝑃1 𝑑𝜙0𝑑𝑥 ||||𝑥=0 = 0,

(2.89)

𝜙(𝑥 = 0, 𝜇1,∗) = 2∑𝑛=0 2𝑛 + 12 𝜙𝑛(𝑥)𝑃N(𝜇) =
= 12𝜙0(0) + 32𝜇1,∗𝜙1(0) + 52 12(3𝜇∗21 − 1)𝜙2(0)= 12𝜙0(0) − 32𝜇1,∗(𝐷𝑃1 + 𝐷𝑃2) 𝑑𝜙0𝑑𝑥 ||||𝑥=0+ 54 25(3𝜇21,∗ − 1)Σ𝑎Σ 𝜙0(0) = 0,

(2.90)

where 𝜇1 is the positive root of P2 and 𝜇1,∗ can be either the positive root of P3 (𝜇1,𝐴) or

the positive root of P2 (𝜇1,𝐵). Due to the roots symmetry, analogous equations can be

retrieved with the negative roots for the right boundary.

The extrapolated distance is defined as the ratio between the total flux and its deriva-

tive, which yields 𝑑𝑃1 = 3𝜇1𝐷𝑃1 = 𝜇1Σ , (2.91)

𝑑𝑃2 = 32𝜇1,∗(𝐷𝑃1 + 𝐷𝑃2)12(1 + (3𝜇21,∗ − 1)Σ𝑎Σ ) = 𝜇1,∗Σ + 45 Σ𝑎Σ2 𝜇1,∗1 + (3𝜇∗21 − 1)Σ𝑎Σ . (2.92)
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Figure 2.6: Sketch of the one-dimensional slab and the different sets of discrete directions
associated to the Mark boundary conditions applied to the P2 model. The dark blue arrows,
indicated as 𝜇𝐴, are related to the roots of 𝑃3(𝜇), while the light blue one, indicated as 𝜇𝐵,
are related to the non-zero roots of 𝑃2(𝜇).

Figure 2.6 provides a sketch of the incoming directions for options A and B, given

with a slope such that the cosine of the angle between them and the x-axis is equal to𝜇𝐴 and 𝜇𝐵, respectively. In order to help the reader, the colours of the arrows also match

with the colour of the histogram bars. Moreover, table 2.13 provides the trend of the

extrapolated distance in relation to the approximation order and the chosen boundary

condition option. Assuming to have a purely absorbing medium, the largest extrap-

olated distance is retrieved with option B. On the contrary, when a purely scattering

medium is considered, option A provides the largest extrapolation distance, while op-

tion B provides the same distance as P1. In an intermediate case, similar extrapolated

distances are obtained using the two options for the even-order case. Therefore, eqs.

(2.91) and (2.92) suggest that:

• the extrapolation distances are constant when P1 and P2 with option A are consid-

ered,

• 𝑑P1 is always smaller than 𝑑P2 with the same option.

To conclude, these observations induce to conclude that the eigenvalue convergence

trend may be case-dependent when the even-order PN exploits 𝜇𝐵, while, when 𝜇𝐴 are

used as incoming directions, the eigenvalue sequences estimated by an even approx-

imation should converge always from the opposite side of the odd-order sequences.

Similar considerations could be drawn for the SN model, which is featured by the same

behaviour. It is useful to remark here that, for this model, the incoming directions used

to prescribed the Mark boundary conditions are the same set used to discretise the flying

direction, i.e. the roots of 𝑃𝑁 (𝜇), with even N.

In the case the roots of the even-order Legendre polynomial 𝑃N(𝜇) are considered

(option B), the eigenvalues are less accurate than the ones computed with the previousPN order, yielding almost always to higher errors, with the exception of P2 with respect

to P1. This fact may help reconsidering P2 as a viable alternative to P1.
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N

2 0.57735

3 0.77459

4 0.33998 0.86114

5 0.53847 0.90618

6 0.23862 0.66121 0.93247

7 0.40585 0.74153 0.94911

Table 2.12: Positive roots for some Legendre polynomials 𝑃N(𝜇) (Abramowitz and Stegun,
1964).

cm
-1 P1 P2 (A) P2 (B)

Σ𝑎=0

𝑑 0.57735 0.77460 1.03923𝐷 0.33333 0.60000 0.60000𝑑/𝐿 0.99999 1.00000 1.34164

Σ𝑎=0.5

𝑑 0.57735 0.77460 0.80829𝐷 0.33333 0.46667 0.46667𝑑/𝐿 0.70710 0.80179 0.83666

Σ𝑎=1

𝑑 0.57735 0.77460 0.57735𝐷 0.33333 0.33333 0.33333𝑑/𝐿 0 0 0

Table 2.13: Extrapolated distance 𝑑 , expressed in cm-1, diffusion coefficient 𝐷, expressed in
cm-1, and extrapolated distance to diffusion length 𝐿 ratio, for P1 and P2 with options A
and B for a medium with Σ = 1 cm-1.

Among the various eigenvalues, it should be noted the peculiar behaviour of 𝜃 and𝜔. The first one exhibits a quite irregular trend for small values of N, which can be

explained looking at the nature of the capture eigenvalue. For N<5, due to the poor

transport approximation, the system appears to be so sub-critical that negative values

of 𝜃 arise. The physical interpretation of this situation is that the capture operator

should introduce neutrons instead of removing them from the system. When the PN
model becomes sufficiently accurate, the trend becomes similar to the other eigenval-

ues, except for an opposite sign in the residual. Also this aspect can be justified by

means of a physical consideration: when the system is slightly super-critical, the cap-

ture eigenvalue suggests to increase the capture cross sections (𝜃 > 1). On the contrary,

the multiplication/collision/density eigenvalues suggest to decrease the fission produc-

tion/collision production/density (𝑘 > 1/𝛾 > 1/𝛿 > 1) of the system.
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Figure 2.7: Angular convergence trend for the fundamental values of 𝑘, 𝛾 , 𝛿 , 𝜃 , 𝛼 and 𝜔,
computed with the PN model imposing Marshak boundary conditions.

Concerning the delayed time eigenvalue 𝜔, the residual is strongly asymmetric, es-

pecially for negative values. Also this aspect has a physical justification, related to the

existence of clusters of eigenvalues, associated to the delayed neutron precursors, which

push the fundamental eigenvalue on the right of −𝜆1, i.e. the smallest decay constant

with opposite sign (Sanchez, Tomatis, et al., 2017; Sanchez and Tomatis, 2019). To high-

light this constant, a dashed red line is showed on the graphs for 𝜔. The main features
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of each eigenvalue formulations, especially the newly introduced capture eigenvalue,

will be analysed in more detail in chapter 3.

At last, fig. 2.7 provides the convergence trend in the case Marshak boundary con-

ditions are used in the PN model. In this case, a regular convergence pattern can be

observed only for N>5. From this value onward, both even- and odd-order approxima-

tions underestimate the eigenvalues with respect to the reference. For N<5, it is worth

noticing that, contrarily to the historical disfavour for the even-approximations (Davi-

son and Sykes, 1957; Case and Zweifel, 1967), the first four even order approximations

provide better results than the previous odd-order calculation.

N
𝑘 𝛾 𝛿 𝜃 𝛼 𝜔
[-] [-] [-] [-] s

-1 -1

201 0.9999757396 0.9999851980 0.9999636225 1.0007381602 -6.5566304223 -6.243417E-04

202 0.9999798359 0.9999876973 0.9999697648 1.0006134436 -5.4495411470 -5.207699E-04

401 0.9999781586 0.9999866739 0.9999672495 1.0006645059 -5.9028576703 -5.632693E-04

402 0.9999804984 0.9999881015 0.9999707578 1.0005932757 -5.2704980078 -5.039507E-04

601 0.9999786556 0.9999869772 0.9999679947 1.0006493741 -5.7685302820 -5.506890E-04

602 0.9999799800 0.9999877852 0.9999699804 1.0006090570 -5.4106092928 -5.171149E-04

801 0.9999788751 0.9999871111 0.9999683238 1.0006192907 -5.7092086649 -5.451298E-04

802 0.9999796438 0.9999875801 0.9999694764 1.0006426917 -5.5014640514 -5.256448E-04

1001 0.9999789882 0.9999871801 0.9999684934 1.0006392488 -5.6786445762 -5.422648E-04

Table 2.14: Values of fundamental 𝑘, 𝛾 , 𝛿 , 𝜃 𝛼 and 𝜔 for various PN orders and Marshak
boundary conditions using 121 spatial meshes.

To complement the analysis on the angular convergence trend, and to fill a gap in the

data available in the literature, tables 2.15 and 2.14 provides the eigenvalues estimated

computed with the PN approach imposing Mark and Marshak boundary conditions and

using relatively high approximation orders. These tables allow to appreciate the same

convergence trend shown in figs. 2.4-2.7 for large values of N. Up to P202, when using

Mark boundary conditions, option A, 𝑘, 𝛾 and 𝛿 are still larger than the reference, while,

from P401 onward, both options A and B underestimate the reference, suggesting that

there is a certain order for which the error is minimum. A similar behaviour occurs also

for 𝜃 , 𝛼 and 𝜔, although the latter keeps always the same sign. This trend is probably

due to the limited accuracy in the slab critical thickness, which is given in Sood, Forster,

and Parsons (2003) with only 5 significant digits. Finally, it is possible to appreciate that,

due to the presence of the delayed neutron precursors, 𝜔 approaches zero more rapidly

than the prompt time eigenvalue 𝛼 .

2.6.4 Benchmark with the Monte Carlo approach using the Wynn-
ε acceleration scheme

In this section, the possibility of accelerating the convergence of the PN numerical

model using the Wynn-𝜀 (W-𝜀) is investigated, exploiting the observations made about
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N BC
𝑘 𝛾 𝛿 𝜃 𝛼 𝜔
[-] [-] [-] [-] s

-1
s

-1

201 0.9999678725 0.9999803980 0.9999518269 1.0009777748 -8.6828282535 -8.211782E-04

202
A 1.0000077738 1.0000047430 1.0000116573 0.9997637126 2.1009131707 2.057052E-04

B 0.9999622839 0.9999769882 0.9999434487 1.0009841499 -10.1932439604 -9.593605E-04

401 0.9999755828 0.9999851023 0.9999633873 1.0007429337 -6.5990034889 -6.282912E-04

402
A 0.9999879542 0.9999926505 0.9999819373 1.0003663695 -3.2554890613 -3.133042E-04

B 0.9999758138 0.9999852433 0.9999637337 1.0005520931 -6.5365820922 -6.224728E-04

601 0.9999772297 0.9999861072 0.9999658567 1.0006927865 -6.1538958367 -5.867509E-04

602
A 0.9999835466 0.9999899613 0.9999753284 1.0005004937 -4.4466753337 -4.263066E-04

B 0.9999777461 0.9999864223 0.9999666310 1.0004873488 -6.0143364578 -5.737018E-04

801 0.9999779404 0.9999865408 0.9999669223 1.0006711487 -5.9618235960 -5.687884E-04

802
A 0.9999817887 0.9999888887 0.9999726924 1.0005540003 -4.9217874910 -4.711359E-04

B 0.9999783105 0.9999867666 0.9999674772 1.0004686704 -5.8618085744 -5.594263E-04

1001 0.9999783238 0.9999867747 0.9999674972 1.0006594767 -5.8582115034 -5.590894E-04

Table 2.15: Values of fundamental 𝑘, 𝛾 , 𝛿 , 𝜃 , 𝛼 and 𝜔 for some large PN orders and Mark
boundary conditions using 121 spatial meshes.

the angular convergence behaviour with respect to the boundary conditions and to

the parity order. The W-𝜀 acceleration scheme belongs to the family of the so-called

Shanks accelerations (Shanks, 1955), extremely powerful non-linear techniques to es-

timate the asymptotic limit/anti-limit of a numerical convergent/non-convergent se-

quence 𝐴𝑚 more efficiently than a brute-force, consecutive approach. The sequence to

be accelerated can be constituted by the successive truncated sums of series, by the iter-

ative approximations to the roots of a function or by the solutions of a differential equa-

tion via numerical discretisation (Hamming, 1986), as the application presented in this

section. In this last case, it is well-known that, due to the numerical discretization and

to the iterative solution algorithm, the final elements of the sequence will be affected

by both residual errors and by round-off errors. Convergence acceleration is helpful

to "clean" the solution from these errors, acting as a constructive sensitivity study on

the error arising from a certain numerical procedure. Contrarily to standard sensitiv-

ity studies, which only provide general information, the sequence acceleration should

introduce a systematic correction in the solution, thus improving its convergence.

Following the basic idea behind the Padé approximant (𝑚, 𝑛), which yields the best

approximation of a certain function as the ratio of an𝑚-th degree polynomial to an 𝑛-th

degree polynomial, Shanks proposed to apply the following non-linear transformation

in order to enhance the convergence properties of a slowly convergent sequence 𝑆𝑚,

̂𝐴𝑚 = 𝐴𝑚+1𝐴𝑚−1 − 𝐴2𝑚𝐴𝑚+1 − 2𝐴𝑚 + 𝐴𝑚−1 . (2.93)
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Iterative applications of the Shanks operator ̂
𝑅𝐴𝑚 = ̂̂ … ̂𝐴𝑚 increasingly speed up

the convergence, at the price of the calculation of the ratio of two determinants,

̂
𝑅𝐴𝑚 =

|||||||||||
𝐴𝑚−𝑅 ⋯ 𝐴𝑚−1 𝐴𝑚Δ𝐴𝑚−𝑅 ⋯ Δ𝐴𝑚−1 Δ𝐴𝑚Δ𝐴𝑚−𝑅+1 ⋯ Δ𝐴𝑚 Δ𝐴𝑚+1⋮ ⋮ ⋮Δ𝐴𝑚−1 ⋯ Δ𝐴𝑚+𝑅−2 Δ𝐴𝑚+𝑅−1

||||||||||||||||||||||
1 ⋯ 1 1Δ𝐴𝑚−𝑅 ⋯ Δ𝐴𝑚−1 Δ𝐴𝑚Δ𝐴𝑚−𝑅+1 ⋯ Δ𝐴𝑚 Δ𝐴𝑚+1⋮ ⋮ ⋮Δ𝐴𝑚−1 ⋯ Δ𝐴𝑚+𝑅−2 Δ𝐴𝑚+𝑅−1

|||||||||||
, (2.94)

where Δ𝐴𝑚 = 𝐴𝑚+1 − 𝐴𝑚 (Graves-Morris, Roberts, and Salam, 2000).

Thanks to Wynn (1956), the 𝑅-th Shanks transformation can be computed very effi-

ciently exploiting the following recursive formula,

𝜀 (𝑚)𝑟+1 = 𝜀 (𝑚+1)𝑟−1 + 1𝜀 (𝑚+1)𝑟 − 𝜀 (𝑚)𝑟 𝑟 = 0,… , 2𝑅 − 1, (2.95)

with 𝜀 (𝑚)−1 =0. Figure 2.8 provides a graphical sketch reproducing the behaviour of the W-𝜀 algorithm. The first column corresponds to the M elements constituting the sequence,

while the following columns are the elements of the transformed sequence. Since 𝜀 (𝑚)2𝑅 =𝜀2𝑅(𝐴𝑚) is equivalent to ̂
𝑅𝐴𝑚, the last entry of each odd column is, progressively, the

result of the Shanks transformation, which yields a better and better approximation to

the limit of the sequence, until 𝜀 (𝑚)2𝑅 = ̂
𝑅𝐴𝑚. One of the most remarkable features of this

algorithm is that there is no constraint on the sequence index, i.e. irregular strides can

be used. Moreover, thanks to the structure of Wynn’s scheme, the approximation limit

can be updated on-the-fly as more elements of the sequence are provided. However,

since the asymptotic value of the sequence is not known a priori and there is a lack of a

thorough theory on convergence acceleration Sidi, 2003, reference results are needed to

actually verify that the convergence acceleration work for a specific application, despite

the W-𝜀 scheme is considered the best all-purpose acceleration tool currently available

(Graves-Morris, Roberts, and Salam, 2000).

In this specific application, the elements of the sequence are the solutions of a discre-

tised eigenvalue problem, 𝑘 in this specific case,𝐴𝑚 = �̂�−1𝑚 �̂�𝑚�⃗�𝑚 = 𝑘eff,𝑚, for𝑚 = 0,… , 𝑀 .

Since the PN model depends both on the angular convergence order N and on the num-

ber of spatial points Nx, a fully converged solution should involve a sequence depending

on these two parameters, namely 𝑘eff,N,Nx . To the best of the author’s knowledge, this is

the first application of its kind in the field of numerical neutron transport. Therefore,

to check the effectiveness of the whole procedure, the accelerated values are compared
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Figure 2.8: Sketch of the Wynn-𝜀 acceleration scheme based on eq. 2.95.

to the outcome of a Monte Carlo simulation, which is usually taken as a numerical ref-

erence within its statistical uncertainty range. The choice of the 𝑘 eigenvalue is closely

related to the use of Monte Carlo and to a couple of other reasons:

1. concerning the solution of the eigenvalue problem by means of Krylov methods,𝑘, together with 𝛾 , is featured by the largest convergence rate among the ones

described so far. This reduces the computational burden for very large values of

N and Nx;

2. 𝑘 is the most popular eigenvalue, so studying the possibility to achieve high-

precision values by means of the W-𝜀 scheme is of great interest from a practical

point of view;

3. 𝑘 can be obtained quite easily with standard Monte Carlo codes, while the other

formulations are rather uncommon and require ad hoc implementations. As an

example, the 𝛼 eigenvalue can be estimated using a recently developed algorithm

involving the iterative solution of a 𝑘-eigenvalue problem (Zoia, Brun, and Mal-

vagi, 2014; Vitali, 2020).

𝜈 [-] Σ𝑡 [cm
−1

] Σ𝑓 [cm
−1

] Σ𝑠,0 [cm
−1

] Σ𝑠,1 [cm
−1

] Σ𝑠,2 [cm
−1

]

2.5 1 0.266667 0.7333333 0.2 0.075

Table 2.16: One-group constants for a slab with critical thickness equal to 1.54064 cm,
taken from Sood, Forster, and Parsons (2003).

The convergence acceleration involves a quite large number of PN calculations, with

N ranging from 1 through 1000 for each of the seven spatial discretizations adopted
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(Nx=10, 20, 40, 80, 160, 320, 640). These calculations are performed for the one- and

two-group instances of the same critical slab, made of Pu-239, imposing both Marshak

and Mark (A and B) boundary conditions. The group constants featuring the slab are

taken again from Sood, Forster, and Parsons (2003) and reported in tables 2.10 and 2.16.

One of the challenges of this novel application of the W-𝜀 algorithm is the definition

of a suitable acceleration strategy that takes into account both the discretisation-related

indexes of the 𝑘 sequence. Since the scheme is non-linear, multiple acceleration strate-

Table 2.17: Example of the dataset constructed to test the W-𝜀 scheme, for the one-group
case imposing Mark A boundary condition.

N
Nx 10 20 … 320 640

1 0.82077525 0.82136798 … 0.82153805 0.82153851

2 1.12788208 1.12838748 … 1.12853252 1.12853291… … … … … …
999 0.99782830 0.99937270 … 1.00001709 1.00002071

1000 0.99783010 0.99937445 … 1.00001848 1.00002180

gies can be devised. The most intuitive are probably to accelerate along N and then

Nx, or vice-versa. Alternatively, the acceleration could be performed along the diago-

nal of the dataset, combining the two indexes. An example of the dataset is displayed

in table 2.17. The accelerations presented in this sections are all performed using the

open-source mpmath Python package (Johansson et al., 2013) and verified against a

Fortran77 code written by Prof. B. D. Ganapol (Ganapol, 2013).

Before performing the double accelerations, it is worth to compare the convergence

history of the original and the accelerated sequences for the angle parameter. Figures
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Figure 2.9: Relative difference between two successive iterates for the original (solid) and
accelerated (scatter) sequences on the left, original-to-accelerated sequences ratio on the
right, for the two-group case imposing Mark A boundary conditions.
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Figure 2.10: Relative difference between two successive iterates for the original (solid) and
accelerated (scatter) sequences on the left, original-to-accelerated sequences ratio on the
right, for the two-group case imposing Mark B boundary conditions.
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Figure 2.11: Relative difference between two successive iterates for the original (solid) and
accelerated (scatter) sequences on the left, original-to-accelerated sequences ratio on the
right, for the two-group case imposing Marshak boundary conditions.

2.9 to 2.11 provide useful information on the convergence acceleration process, consid-

ering the different boundary condition options. To this aim, the dataset is accelerated

using moving windows that span 10 elements each, advancing one term at a time, e.g.,{𝑘eff,1,… , 𝑘eff,10} for the first window, {𝑘eff,2,… , 𝑘eff,11} for the second one, and so on.

This approach allows to distinguish the less precise, early elements from the more pre-

cise, following ones, aiming at reducing the numerical noise. The left graphs represent

the relative residual 𝑟 between two consecutive elements of the non-accelerated (solid

line) and accelerated (coloured dots) sequences for every spatial discretizations case,𝑟𝑖+1 = 𝑘eff,i+1 − 𝑘eff,i𝑘eff,i+1 100, (2.96)

while the graphs on the right show the convergence gain (CG), defined as the ratio

between the residual of the non-accelerated sequence and the residual of the accelerated

one, 𝑟PN/𝑟𝑊−𝜀 . This last quantity is an important figure of merit to appreciate the effect

of the convergence acceleration, which occurs when this ratio is larger than 1.
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When Mark A boundary conditions are imposed, the residual for the original se-

quence, 𝑟PN , presents a quite smooth behaviour, with an unnoticeable difference con-

cerning the spatial discretisation, while the W-𝜀 residual initially exhibits a strong de-

cay, below N=200, and then a significant spreading, probably due to the effect of the

truncation error. Nevertheless, the effect of the W-𝜀 acceleration can be appreciated ictu
oculi looking at the CG, which yields values of 𝑟𝑊−𝜀 several orders of magnitude lower

than the corresponding 𝑟PN ones. On the contrary, when Mark B boundary conditions

are chosen, the acceleration is not very effective, especially for the sequences featured

by the smallest number of meshes. The missing acceleration can be related to the oscil-

lating behaviour featuring the original sequences for Nx=10, 40. These oscillations are

progressively damped when the spatial mesh is refined. In this case, convergence ac-

celeration is possible, as showed by the points for Nx=640 represented in right graph of

fig. 2.10. Similar oscillations are present as well in the Marshak case, despite in a rather

reduced fashion. For this last case, acceleration seems almost always effective, except

for some tens of points falling below the dashed, black line delimiting the region with

CG>1. Similar comments could be made also for the convergence histories and gains of

the one-group case, which are omitted here for the sake of brevity. These observations

are fully consistent with the angular convergence behaviour depicted in figs. 2.4-2.7,

thus confirming the useful features observed for the Mark A boundary conditions with

respect to the other two possibilities.

Nx P1000 W-𝜀(N) W-𝜀(Nx) W-𝜀(N, Nx) W-𝜀(Nx, N)

10 0.99783010 0.99782900 0.99783010 0.99782900 0.99782900

20 0.99937445 0.99937338 0.99937445 0.99937338 0.99937338

40 0.99982891 0.99982786 1.00001840 1.00001737 1.00001737

80 0.99996565 0.99996462 1.00002451 1.00002349 1.00002349

160 1.00000653 1.00000554 1.00002401 1.00002304 1.00002305

320 1.00001848 1.00001760 1.00004181 1.00002140 1.00002698

640 1.00002180 1.00002112 1.00002257 1.00002257 1.00002237

diag. W-𝜀 1.0000224

Monte Carlo 1.000022(3)

Table 2.18: Original (N=1000) and accelerated (N=1,… , 1000) sequences for the one-group
problem, obtained imposing Mark A boundary conditions. The Monte Carlo result is pro-
vided with a confidence interval of 2𝜎 , to be interpreted as ±3 on the last significant digit.

Tables 2.18 to 2.22 provide a summary of the different acceleration strategies adopted

to approach the Monte Carlo reference values, kindly provided by Dr. A. Zoia. The first

column of each table provides the sequence for the best angular approximation, while

the second and the third provide the results of the single W-𝜀 accelerations, along N
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Nx P1000 W-𝜀(N) W-𝜀(Nx) W-𝜀(N, Nx) W-𝜀(Nx, N)

10 0.99813885 0.99813705 0.99813885 0.99813705 0.99813705

20 0.99947502 0.99947326 0.99947502 0.99947326 0.99947326

40 0.99984927 0.99984754 0.99999488 0.99999318 0.99999318

80 0.99995775 0.99995607 1.00000203 1.00000040 1.00000040

160 0.99998917 0.99998765 1.00000198 1.00000060 1.00000062

320 0.99999800 0.99999674 1.00000203 1.00000050 1.00000051

640 1.00000036 0.99999933 1.00000108 1.00000034 1.00000012

diag. W-𝜀 1.00000036

Monte Carlo 1.0000003(3)

Table 2.19: Original (N=1000) and accelerated (N=1,… , 1000) sequences for the two-group
problem, obtained imposing Mark A boundary conditions. The Monte Carlo result is pro-
vided with a confidence interval of 2𝜎 , to be interpreted as ±3 on the last significant digit.

and Nx, respectively. Finally, the last two columns stand for the double acceleration

cases. As expected, due to the W-𝜀 non-linearity, the acceleration order (N and then

Nx or viceversa) has some impact on the final results, but only on the last three digits

out of 8. This behaviour seems to suggest that the acceleration algorithm is robust, as

it is only slightly dependent on the order of the discretisation indexes. The tables also

report the extrapolated value obtained using a diagonal acceleration strategy, which

has the considerable advantage of using a sequence of only 7 elements instead of 7000.

The agreement between the double N-Nx acceleration and the reference Monte Carlo

(MC) calculation is excellent, up to 2 ⋅ 10−2 of pcm. This result is even more astound-

ing considering that, in the original 7x1000 dataset obtained with Marshak boundary

conditions, only 14 values are above 1, suggesting that the algorithm is really able to

extrapolate the asymptotic result. The same occurs if the acceleration is performed di-

agonally. For this last case, a sensitivity analysis involving the selection of the diagonals

is reported in table 2.20. The diagonal extrapolations yield very similar values, despite

the different boundary conditions and the selection of different parity orders (only odd,

even-odd and only even), suggesting once again the robustness of the method for this

kind of application.

The different results are clearly summarised in figures 2.12 and 2.13, where the ex-

trapolated values for the different sequences and acceleration strategies are compared

to the Monte Carlo reference, given with its confidence interval. First, it is worth notic-

ing that every case considered yields a value falling within the statistical uncertainty of

the MC value, given as a 2𝜎 confidence interval and represented by the shaded area. The

first group of values on the left of each graph is the best PN estimate, with N=1000 and

Nx=640. The diagonal acceleration, displayed in the second group of fig. 2.12 and in the
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N 15 31 63 125 249 499 999

Mark A, one-group 1.00002244

Mark B, one-group 1.00002242

Marshak, one-group 1.00002243

Mark A, two-group 1.00000022

Mark B, two-group 1.00000022

Marshak, two-group 1.00000025

N 14 31 62 125 250 501 1000

Mark A, one-group 1.00002251

Marshak, one-group 1.00002250

Mark B, one-group 1.00002244

Mark A, two-group 1.00000036

Mark B, two-group 1.00000016

Marshak, two-group 1.00000021

N 14 30 62 124 250 500 1000

Mark A, one-group 1.00002254

Mark B, one-group 1.00002242

Marshak, one-group 1.00002241

Mark A, two-group 1.00000012

Mark B, two-group 1.00000018

Marshak, two-group 1.00000023

Table 2.20: Extrapolated values obtained through a diagonal acceleration involving in-
creasing values of N (reported in the table) and Nx (10, 20, 40, 80, 160, 320, 640) and differ-
ent boundary conditions. The one-group MC reference is 1.000022(3), while the two-group
case is 1.0000003(3).

last three groups of fig. 2.13 proves to be very effective, pushing the values on the ex-

pected value of the Monte Carlo calculation, despite the different boundary conditions.

Figure 2.12 is very informative on the effect of the different non-diagonal acceleration

strategies. When the extrapolation is performed along N, the effects due to the different

boundary conditions disappear, leaving a bias with respect to the reference, related to

the spatial discretisation. Similarly, when the acceleration involves the spatial discreti-

sation for the N=1000 case, the values move towards the reference, but a bias due to

both the boundary conditions and the PN truncation is visible. At last, when the double

W-𝜀 acceleration is performed, most of the eigenvalues cluster around the Monte Carlo

reference.

Comment on the use of W-𝜀 to estimate the discretisation errors accelerating the
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Nx P1000 W-𝜀(N) W-𝜀(Nx) W-𝜀(N, Nx) W-𝜀(Nx, N)

10 0.99782891 0.99782890 0.99782891 0.99782890 0.99782890

20 0.99937330 0.99937329 0.99937330 0.99937329 0.99937329

40 0.99982780 0.99982776 1.00001733 1.00001727 1.00001728

80 0.99996461 0.99996453 1.00002352 1.00002340 1.00002339

160 1.00000561 1.00000545 1.00002318 1.00002296 1.00002296

320 1.00001771 1.00001740 1.00002693 1.00002496 1.00002308

640 1.00002111 1.00002104 1.00002084 1.00002257 1.00002171

diag. W-𝜀 1.0000224

Monte Carlo 1.000022(3)

Table 2.21: Original (N=1000) and accelerated (N=1,… , 1000) sequences for the one-group
problem, obtained imposing Marshak boundary conditions. The Monte Carlo result is pro-
vided with a confidence interval of 2𝜎 , to be interpreted as ±3 on the last significant digit.

Nx P1000 W-𝜀(N) W-𝜀(Nx) W-𝜀(N, Nx) W-𝜀(Nx, N)

10 0.99813691 0.99813689 0.99813691 0.99813689 0.99813689

20 0.99947314 0.99947310 0.99947314 0.99947310 0.99947310

40 0.99984749 0.99984739 0.99999318 0.99999303 0.99999303

80 0.99995615 0.99995593 1.00000059 1.00000026 1.00000026

160 0.99998781 0.99998749 1.00000084 1.00000043 1.00000055

320 0.99999681 0.99999664 1.00000067 1.00000038 1.00000040

640 0.99999923 0.99999920 0.99999990 1.00000047 1.00000013

diag. W-𝜀 1.00000021

Monte Carlo 1.0000003(3)

Table 2.22: Original (N=1000) and accelerated (N=1,… , 1000) sequences for the two-group
problem, obtained imposing Marshak boundary conditions. The Monte Carlo result is pro-
vided with a confidence interval of 2𝜎 , to be interpreted as ±3 on the last significant digit.

other indexes, citing paper SIMMER-FRENETIC as an example of WE for this purpose.

The diagonal seems the best but partial accelerations can be useful for code qualification
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Figure 2.12: Differences between the 𝑘eff values and the Monte Carlo reference for the one-
(left) and two-group (right) slab, with N ranging from 1 to 1000. The shaded area indicates
the confidence interval of the Monte Carlo calculation.
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Figure 2.13: Differences between the 𝑘eff values and the Monte Carlo reference for the one-
(left) and two-group (right) slab, with N ranging from 1 to 1000. The shaded area indicates
the confidence interval of the Monte Carlo calculation.

2.7 Conclusions
This chapter presented the numerical framework, based on the PN and SN multi-

group models, used to solve the eigenvalue problem formulations arising in neuron

transport. After proving the equivalence between the odd PN equation and the suc-

ceeding even order PN+1, the code numerical implementation is verified with several

benchmark values taken from the available literature on the topic. Then, the impact of

the boundary conditions and of the parity order on the angular convergence of the fun-

damental eigenvalues was assessed. In this case, it was interesting to show that, with

a proper selection of the boundary conditions, it is possible to realise even and odd

sequences that converge to the asymptotic value from two opposite directions. This

interesting feature is thus exploited to study the possibility to accelerate the eigenvalue

sequences, which suffers from the energy and spatial modelling error, to the asymp-

totic values. In this case, the Wynn-𝜀 scheme is employed, showing its applications to
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estimate the numerical errors.
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Chapter 3

The spectrum of the neutron
transport operator and its
application to group collapsing

Perfection. That’s what it’s about. It’s those

moments. When you can feel the perfection of

creation. The beauty of physics, you know, the

wonder of mathematics. The elation of action

and reaction, and that is the kind of perfection

that I want to be connected to.

Samuel T. Anders, Battlestar Galactica

3.1 Introduction
As mentioned in chapter 2, the eigenvalue analysis is a fundamental, well established

tool in reactor physics. In addition to its classic applications, involving criticality ap-

proach, sensitivity analysis, modal expansion and perturbation theory, the solution of

the eigenvalue problems described previously can be extremely valuable also for other

purposes, e.g.,

1. showing the intimate behaviour of the transport operator through its eigenvalue

spectrum

2. weighting the multi-group constants and the kinetic parameters

3. providing information concerning the stability of a system.
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Despite their importance and huge potentialities, the adoption of the different eigen-

value formulations for these applications is rather scarce in the literature, except for

the well known 𝑘 and 𝛼 formulations. Studies of the spectrum behaviour for these two

eigenvalues can be found, for example, in Saracco, Dulla, and Ravetto, 2012, Sanchez,

Tomatis, et al., 2017 and Dulla, Ravetto, and Saracco, 2018 for a diffusion theory frame-

work, and in Sanchez and Tomatis, 2019 and McClarren, 2019 for a transport theory

framework. Regarding the multi-group collapsing, the only alternative to 𝑘, which is

the usual eigenvalue formulation used for this purpose despite it may provide poor re-

sults for off-critical systems, was proposed by Dugan, Zmijarevic, and Sanchez, 2016.

In this work, the adoption of the fundamental 𝛼 and 𝜔 modes as weighting functions

is proposed, to account for the dynamic behaviour of the system when it is off-critical.

Similarly to these two applications, the multiplication and time eigenvalues are the only

formulations discussed in the literature for the spectral stability analysis of a multiply-

ing system (Beckner and Rydin, 1975; Vitali, 2020; Pázsit and Dykin, 2018).

In this chapter, the different eigenvalue formulations addressed in chapter 2 will be

investigated numerically, in order to highlight their peculiarities and to characterise

them for the applications previously mentioned, possibly filling a gap in the literature

on their possible uses. This chapter will present the different eigenvalue formulations

more in detail, focusing on their spectral behaviour according to the numerical and

modelling approximations to the neutron transport equation. The knowledge of the full

spectrum of a certain eigenvalue formulation is usually not needed for most applica-

tions, which exploit only the dominant eigenpairs. However, analysing the eigenvalue

spectrum allows to draw some useful indications for driving the eigenvalue solver to-

wards the most interesting portions of the spectrum. Moreover, as it will be discussed

in the chapter, the eigenvalue spectrum, being intimately related to the approximated

transport operator, can provide a very rich information on the physics of the transport

process.

As for chapter 2, part of the content of this chapter has been already published in a

conference proceedings and in two peer-reviewed journal articles: the first one has been

published on the special issue of Journal of Computational and Theoretical Transport

dedicated to the International Conference on Transport Theory (ICTT) 2019, while the

second one has been published on the special issue of Annals of Nuclear Energy dedi-

cated to the memory of Massimo Salvatores,

• N. Abrate, M. Burrone, S. Dulla, P. Ravetto, P. Saracco, "Study of the eigenvalue
spectra of the neutron transport problem in 𝑃𝑁 approximation", Proceedings of the

PHYSOR 2020 conference, Cambridge (U.K.), in EPJ Web of Conferences, 247, 2020

• N. Abrate, M. Burrone, S. Dulla, P. Ravetto, P. Saracco, "Eigenvalue formulations for
the 𝑃𝑁 approximation to the neutron transport equation", Journal of Computational

and Theoretical Transport, 50, 2020

• N. Abrate, S. Dulla, P. Ravetto, "On some features of the eigenvalue problem for the
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𝑃𝑁 approximation of the neutron transport equation", Annals of Nuclear Energy,

163, 2021

3.2 The multiplication eigenvalue
As discussed in chapter 2, Fermi first approached criticality introducing an eigen-

value called reproduction factor 𝑘 (Fermi, 1942) with the aim of controlling the recently

discovered fission reaction (Hanh and Strassmann, 1939),�̂�𝜑𝑘,𝑛 + (�̂� + �̂� 0 + �̂�0)𝜑𝑘,𝑛 − �̂�𝜑𝑘,𝑛 = 1𝑘𝑛 �̂�𝜑𝑘,𝑛. (3.1)

When the system is sub-critical, the eigenvalue 𝑘0 < 1 modifies the neutron production

by fission increasing it, while, when the system is super-critical, 𝑘 > 1 reduces the neu-

tron production. The differences induced on the neutron distribution can be understood

on physical basis: for example, remembering that neutrons emitted by fissions are fast,

in the sub-critical case the increase in fission production will result in hardening of the

energy spectrum characterising the system, while in the super-critical case the spec-

trum would soften. The criticality condition is satisfied when no modification of the

fission operator is required, i.e. 𝑘0 = 1. Since the reproduction factor depends on both

the system geometry and composition, Fermi focused at first on the material properties

of the reactor, which yields the reproduction factor of an infinite system, 𝑘∞, via the

four factor formula. Once the composition is such that 𝑘∞ > 1, the critical size of the

system can be estimated with the six factor formula, which accounts also for boundary

effects.

The physical meaning of the reproduction factor, which is commonly known as ef-
fective multiplication factor, is straightforward. Integrating (3.1) over the phase space

and isolating 𝑘𝑛, it is possible to get

𝑘𝑛 = ⟨�̂�𝜑𝑘,𝑛⟩⟨(�̂� + �̂� − �̂�)𝜑𝑘,𝑛⟩ , (3.2)

which is the ratio between the number of neutrons produced by fission and the num-

ber of neutron losses. In addition to its physically meaningful interpretation, which

is related also to other disciplines dealing with multiplying systems like epidemiology

and demography (Adam, 2020; Shryock and Siegel, 1980), the reason that probably con-

tributed the most to make the 𝑘-eigenvalue the main way of addressing criticality lies

in the fact that its always yields a solution, provided that the system is multiplying.

This property can be justified by a physical observation: whatever the configuration

of a system is, as long as it contains a certain amount of fissile material, it is always

possible to achieve criticality by adjusting its multiplying properties.

The fact that 𝑘eff is the fundamental eigenvalue is also extremely convenient from

a numerical point of view, as most algorithms for the solution of eigenvalue problems,
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e.g., the power method described in chapter 2, are very efficient in computing the eigen-

values at the extremities of the spectrum.

Table 3.1: Energy group structures employed in the following sections.

group boundary
CASMO-2 CASMO-4 CASMO-7

[MeV]2.00 × 101 x x x8.21 × 10−1 x x5.53 × 10−3 x x4.00 × 10−6 x6.25 × 10−7 x x x1.40 × 10−7 x5.80 × 10−8 x1.00 × 10−11 x x x

These two physico-mathematical features can be appreciated looking at the 𝑘-spec-

trum in fig. 3.1 where the different numerical approximations to the neutron transport

model, discussed in chapter 2, are employed. Figure 3.1a represents the spectra com-

puted for a two-group, P3 model using an increasing numbers of spatial meshes, fig. 3.1b

shows the spectra obtained for a P3 model discretised with 25 spatial meshes adopting

different energy grid structures, while fig. 3.1c provides the spectra for increasing an-

gular approximation orders, using the CASMO-4 grid for a system discretised with 25

spatial meshes. The details on the energy structures employed in these calculations are

reported in table 3.1. Unless differently specified, the cross sections are collapsed on

the CASMO energy grids starting from a set of cross sections scored on the CASMO-70

with the Serpent-2 Monte Carlo code (Leppänen, Pusa, et al., 2015).

The influence of the various numerical approximations on the spectrum, in this case,

is rather predictable: more refined approximations introduce new degrees of freedom in

the discretised operator, thus more eigenvalues appear, accumulating after some domi-

nant, discrete eigenvalues. It is useful to recall here that the CASMO energy structures

are nested, i.e. each grid contains the preceding one and additional groups, thus en-

suring a consistent comparison among different energy group grids. Finally, fig. 3.1d

provides a comparison between the P1 and the S2, which are formally equivalent only

when no space discretisation occurs. As already stated in chapter 2, the discrepancy be-

tween the two sets of eigenvalues increases for the higher-order eigenvalue, associated

to higher spatial frequencies.

Figure 3.2 provides an example of the spectrum behaviour when the system critical-

ity and heterogeneity levels change. As one could reasonably expect from the previous

physico-mathematical considerations, the three spectra in fig. 3.2a maintain the same

shape and order, but they are shifted towards 0 or 1 according to the values of the fun-

damental, represented by the three stars. It is important to notice that the eigenvalues
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(b) P3, 25 spatial meshes.
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(c) CASMO-4 energy grid, 25 meshes.
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(d) 25 meshes and CASMO-2 energy grid.

Figure 3.1: 𝑘-spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions. The stars represent the fundamental eigenvalues.
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(a) 𝑃1, 25 meshes, Mark boundary conditions,
CASMO-2 energy grid.
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(b) 𝑃3, 125 meshes, Mark boundary conditions,
CASMO-7 energy grid.

Figure 3.2: 𝑘-spectrum for a homogeneous, isotropic slab featured by different thicknesses
(left) and for a linearly anisotropic slab featured by different levels of heterogeneity (right).
The stars represent the fundamental eigenvalues.
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for the sub-critical case are more separated with respect to the other two cases, when

the values seem to shrink. Concerning fig. 3.2b, three slabs with equal thickness but

different compositions and material arrangement have been considered, to appreciate

the impact of the system heterogeneity on the spectrum shape: in the "bare" case, the

slab is filled with the same fissile material used above, in the "reflected" case there are

30 cm of fuel surrounded, at both sides, by water, while in the "lattice" case there are

alternating 10 cm thick layers of water and fuel. Except for a different separation be-

tween the eigenvalue, which is a fundamental parameter to assess the spatial stability

of a multiplying system and that will be discussed in chapter 5, it is not possible to

appreciate any substantial difference due to the presence of different media.

The spectra depicted in these figures are useful to show that the 𝑘-spectrum has

three well established features:

• the spectrum is always real, consistently with the fact that it is always possible

to attain criticality changing 𝜈 , provided that there is fissile material inside the

system;

• the fundamental eigenvalue, i.e. the one associated to the eigenfunction with a

uniform sign, is always the largest positive real value;

• the spectrum shape is rather insensitive to both the system features (energy spec-

trum, spatial heterogeneities, criticality level) and the transport approximations

(number of groups, angular detail, spatial mesh), despite its pattern may shrink or

inflate according to the system physical features, as it will be point out later in the

chapter.

Due to its intuitiveness and to its nice properties, the 𝑘-eigenvalue formulation is

the most popular one for a set of reactor physics applications ranging from multi-group

collapsing to core-design. Nevertheless, despite its popularity, this spectral formulation

has two main drawbacks, which are too often ignored:

• let us assume that an off-critical system is given. Since 𝑘 ≠ 1, it is known that

something has to change to achieve criticality. As mentioned, 𝑘 acts on the fission

operator, so it changes the fission parameters. Since the fission cross sections must

be consistent with the other data, i.e. eq. (2.2) must hold, 𝑘 can be interpreted as a

scaling factor acting on the number of neutrons emitted by fission, 𝜈 : the system

can achieve criticality when 𝜈 → 𝜈/𝑘eff . However, it is not possible to change 𝜈 ,

in practice, without actually changing the fuel composition itself and, thus, its fis-

sion cross section. As a consequence, in practical situations, the reactor physicist

can only adjust the reactivity changing the system geometrical dimensions or re-

lying on the control systems, e.g. the control rods. In this sense, the 𝑘 eigenvalue

does not provide any quantitative information that could guide the action of the

controller;
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• the fundamental 𝑘-eigenfunction 𝜑𝑘,0 may be strongly inaccurate to describe the

neutron spatial and energy distribution of the system, unless the system is close to

criticality. The evaluation of the reproduction factor characterising a multiplying

system, defined as the ratio between the populations of two successive generations𝑔 − 1 and 𝑔, with Λ defined as the effective neutron generation time,

𝑘(𝑔) = ⟨𝜙(𝑥, 𝐸, 𝜇, 𝑡 = 𝑔Λ)
v(E) ⟩

⟨𝜙(𝑥, 𝐸, 𝜇, 𝑡 = (𝑔 − 1)Λ)
v(E) ⟩ , (3.3)

always makes sense, both in steady-state, where it would be unitary, and in tran-

sient conditions. However, the actual population distribution associated to 𝑘(𝑔) for

a system far from criticality could be extremely different from the one computed

solving the 𝑘-eigenvalue problem, as this would provide the steady-state distribu-

tion for a system that is actually time-dependent, as brilliantly explained in Cullen,

Little, et al. (2003).

3.3 The collision eigenvalue
To the author’s knowledge, the second eigenvalue formulation proposed in the frame

of the neutron transport equation can be found in Davison and Sykes, 1957. In this book,

it is proposed to approach criticality extending the multiplication process to include all

collisions leading to a neutron emission, i.e. scattering and fission,�̂�𝜑𝛾 ,𝑛 + �̂�𝜑𝛾 ,𝑛 = 1𝛾 (�̂� + �̂�) 𝜑𝛾 ,𝑛. (3.4)

Due to its position in the transport equation, this eigenvalue has some similarities to the𝑘 formulation. Also in this case, the physical meaning of the fundamental eigenvalue𝛾0 is straightforward. Integrating (3.4) over the phase space and isolating 𝛾0 yields,

𝛾𝑛 = ⟨(�̂� + �̂�)𝜑𝛾 ,𝑛⟩⟨(�̂� + �̂�)𝜑𝛾 ,𝑛⟩ , (3.5)

which is closely related to the number of secondaries per collision. Thanks to this

equation, it should be evident that the system is critical when 𝛾 = 1, i.e. the number

of neutrons emitted per collision is equal to the number of neutrons lost, while it is

larger/lower than the unity when the system is super-critical/sub-critical.

Since it acts also on the fission term, the 𝛾 spectrum inherits the property of exis-

tence of a real, positive eigenvalue from the 𝑘 formulation, provided that the system

is multiplying. However, the inclusion of the scattering operator enriches the physical

content of the spectrum, as visible ictu oculi from figures 3.3 and 3.4. Since 𝛾 acts also
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(d) P3, 25 spatial meshes, anisotropic scattering.

Figure 3.3: 𝛾 -spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions. The stars represent the fundamental eigenvalues.

on the scattering, the spectrum appears to be very sensitive to both the energy and the

angular aspects of the transport process, contrarily to what occurs for the 𝑘 case, where

these variables do not affect the shape of the spectrum. Figure 3.3 shows the influence

of the number of spatial meshes and energy groups on the spectrum, for the isotropic

and linearly anisotropic scattering orders. As for 𝑘, increasing the number of degrees

of freedom has the general effect of introducing more eigenvalues. However, contrarily

to 𝑘, the linear anisotropy and the adoption of finer energy discretisations introduce

some complex eigenvalues, which are related to the higher-order effects induced by the

scattering phenomenon. As long as the collisions are simply described by an isotropic,

two-group model, the 𝛾 spectrum is very close to the 𝑘 one, but when the physical detail

increases, the spectrum becomes complex.

It is interesting to observe how these additional complexities are still preserved when

coarser models are employed, confirming the consistency of the numerical scheme

adopted. For example, the two branches in fig. 3.3b associated to Nx=50 (red squares)

are represented by a branch and a discrete point when the number of spatial meshes is

halved (grey hexagons) and by a single branch when the number of meshes is reduced
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3.3 – The collision eigenvalue

to 12 (blue dots). A similar comment can be made concerning the group structures. In

this case, the complex branches collapse consistently with the group collapsing.
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Figure 3.4: 𝛾 -spectrum for a homogeneous, fissile slab, imposing Mark boundary conditions
and using 25 meshes, with isotropic (top), linearly anisotropic (centre) and quadratically
anisotropic (bottom) scattering orders. The cross sections are collapsed on the CASMO-4
energy grid. The stars represent the fundamental eigenvalues.
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An analogous behaviour can be observed as well in fig. 3.4, where more and more

accurate transport models are adopted to treat different anisotropy levels. When the

scattering is assumed to be isotropic or linearly anisotropic, the adoption of progres-

sively better angular models does not have a significant impact on the spectrum: most of

the changes in the spectrum shape are due to the introduction of the linear anisotropy.

However, when a quadratic scattering is assumed, the P5 and the P9 spectra shows ad-

ditional clusters of complex eigenvalues, located around Re(𝛾 )=[0.2, 0.4], with respect

to the spectrum computed with the P1 model, which is not able to take into account the

additional anisotropy scattering order.

0.0 0.2 0.4 0.6 0.8 1.0
Re( )

−10−1−10−30
10−310−1

Im
()

P1 S2

(a) 25 meshes, CASMO-2 energy grid
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(b) 𝑃3, 125 meshes, CASMO-7 energy grid.

Figure 3.5: 𝛾 -spectrum of a homogeneous, fissile slab featured by linearly anisotropic scat-
tering (left) and for a linearly anisotropic slab featured by different levels of heterogeneity
(right). The stars represent the fundamental eigenvalues.

Similar considerations on the anisotropy effect hold also for the SN model. Figure 3.5

provides a comparison between the spectra of the P1 and the S2 models, which are very

similar except for the high frequency eigenvalues, and an example of the behaviour of

the spectra in the presence of spatial heterogeneity. In this case, despite some slight

differences in the complex branches, it is not possible to notice specific effects induced

by the number of layers of different materials.

Regarding the influence of the criticality level, reported in fig. 3.6, the 𝛾 spectrum

behaves similarly to the 𝑘 case, i.e. the eigenvalues tend to be more dispersed when the

system is sub-critical.

The analysis of the 𝛾 spectrum in different cases allows to observe some general

features:

• the spectrum is featured by complex eigenvalues, associated to higher-order en-

ergy and angular effects;

• the fundamental eigenvalue always lies at the right of the spectrum, assuming the

largest real value, provided that �̂� ≠ 0;
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Figure 3.6: 𝛾 -spectrum for a homogeneous, fissile slab with different thicknesses, impos-
ing Mark boundary conditions and using 25 meshes, with isotropic (left) and linearly
anisotropic (right) scattering orders. The cross sections are collapsed on the CASMO-2 en-
ergy grid. The stars represent the fundamental eigenvalues.

• the fundamental eigenvalue appears to be by far less sensitive than 𝑘0 to the criti-

cality level. This aspect can be a drawback from the point of view of the calculation

accuracy, as the tolerance on this parameter should be lower than the usual pcm

scale (Ronen, Shvarts, and Wagschal, 1976), but is can be also an advantage as the

energy spectrum deformation should be minimised with respect to the 𝑘 case.

Since it is not possible to simultaneously change the fission and the scattering cross

sections, this eigenvalue is not adequate for design-oriented applications. Moreover,

the low sensitivity to the criticality level makes this eigenvalue unattractive for the

approach to criticality. Nevertheless, as suggested in (Cacuci, Ronen, et al., 1982), the𝛾 formulation may be of interest as weighting function for the few-group collapsing,

since, acting simultaneously on both scattering and fission, it does not alter their energy

spectrum ratio, contrarily to what occurs when 𝑘 is introduced. Hence, criticality is

attained by means of a rescaling of the total number of particles emitted by collisions,

minimising the energy spectrum shift.

3.4 The time eigenvalue
The third eigenvalue formulation proposed in the history of reactor physics is the

so-called time eigenvalue, which is also the most employed one after the multiplication

eigenvalue. Firstly introduced by Henry, 1964, this formulation has recently attracted

more attention due to its strong relationship with the time evolution of an off-critical

system (Zoia, Brun, and Malvagi, 2014; Vitali, 2020), which could be of interest in order

to obtain better few-group constants for dynamic calculations (Dugan, Zmijarevic, and

Sanchez, 2016). The time eigenvalue is also the only natural spectral formulation of the

transport equation, being associated to its Laplace transform. This is the reason why

the time eigenfunctions are often referred to as the natural modes.
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According to the time scale considered and to the assumptions made, two formula-

tions of the time eigenvalue are currently possible. The most general one, proposed by

Henry and already introduced in chapter 2, yields

�̂�𝜑𝜇,𝑛 +(�̂� + 𝜔𝑛
v(𝐸)) 𝜑𝜇,𝑛 = �̂�𝜙 + �̂� 𝑝𝜑𝜇,𝑛 + R∑𝑖=1 𝜆𝑖𝜇𝑛 + 𝜆𝑖 �̂� 𝑖𝜑𝜇,𝑛,�̂�𝜑𝜇,𝑛 + (�̂� + 𝜔𝑛�̂�) 𝜑𝜇,𝑛 = �̂�𝜑𝜇,𝑛 + �̂� 𝑝𝜑𝜇,𝑛 + R∑𝑖=1 𝜆𝑖𝜇𝑛 + 𝜆𝑖 �̂� 𝑖𝜑𝜇,𝑛. (3.6)

This non-linear spectral form is equivalent to the one obtained from the full transport

model coupled with the precursors concentration (see eq. (2.1)). In this last case, the

formulation would be defined by R + 1 equations, but it would be linear in 𝜔. All the

calculations presented in this work are obtained exploiting the linear form of the 𝜔
formulation.

When the delayed neutron contributions are neglected, the 𝛼 eigenvalue, i.e. prompt
time eigenvalue, would be obtained,�̂�𝜑𝛼,𝑛 + (�̂� + 𝛼𝑛�̂�) 𝜑𝛼,𝑛 = �̂�𝜑𝛼,𝑛 + �̂�𝜑𝛼,𝑛, (3.7)

where the total fission operator �̂� is considered. From a physical standpoint, this means

that the delayed neutrons energy is accounted for, but they are assumed to be emitted

with the prompt ones.

The hypothesis at the basis of these formulations is that the neutron flux (and the

precursor concentrations as well, in the case of 𝜔) is separable in time and described by

an exponential decay, 𝜙(𝑥, 𝐸, 𝜇, 𝑡) = 𝜑𝛼,𝑛(𝑥, 𝐸, 𝜇)𝑒𝛼𝑛𝑡 . (3.8)

This equation allows to highlight the physical meaning of the time eigenvalues, which

are the time frequencies characterising the free evolution of the system. As such,

these quantities, also known as natural frequencies, are physical observables (Chen-

tre, Saracco, et al., 2019), contrarily to the other eigenvalue formulations addressed in

this chapter. The time eigenvalue has been a hot issue of reactor physics for decades,

as it can be noticed from the wide literature concerning both its theoretical (Dahl, Pro-

topopescu, and Sjöstrand, 1983; Sahni and Sjöstrand, 1990; Sahni, D. C. and Sjöstrand,

N. G. and Garis, N. S., 1995; Dulla, Ravetto, and Saracco, 2018) and practical (Cacuci,

Ronen, et al., 1982; Singh, Degweker, et al., 2011; Dugan, Zmijarevic, and Sanchez, 2016;

McClarren, 2019) aspects.

The most peculiar feature of this spectral form is that its spectrum is featured by

a continuous and a discrete parts, located on the left and on the right, respectively,

of the so-called Corngold limit, defined as 𝑚𝑖𝑛(v(𝐸)Σ𝑡(𝐸)) (Corngold, 1969; Corngold,

1975). Another well known aspect characterising the time spectrum when the delayed

neutrons are considered is the presence of clusters of discrete eigenvalues, which are
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usually known as delayed frequencies. As proved by Henry, 1958, these discrete eigen-

values tend to accumulate at the right of −𝜆𝑖 , i.e. the opposite of the decay constant

of the 𝑖-th neutron precursors family, ∀𝑖 = 1,… ,R. The phenomenon of the eigenpair

clustering, tightly related to the nature of the inhour equation (Sanchez and Tomatis,

2019), is explained by the presence of eigenstates featured by very similar fluxes but dif-

ferent precursors spatial concentrations. This peculiarity has often suggested that each

eigenstate, i.e. flux and R precursors concentrations, belonging to a cluster is equally

important to provide some physically significant information for the description of the

system dynamics. However, as found by Ravetto, 1974, only one eigenstate, associated

to 𝜔 + 𝜆1 > 0, has a uniform sign, while the other 𝜔 modes in the cluster are featured

by fluxes with uniform sign but by precursors concentration 𝐶𝑖 with non-uniform sign,

when 𝜔 + 𝜆𝑖 < 0.

Since clustering is an issue for any eigenvalue algorithm aiming at retrieving only

the most significant eigenvalues, this feature is extremely important to provide a shift to

enable the convergence of the numerical solver. In this respect, fig. 3.7 provides a useful

comparison between the 𝛼 and the 𝜔 spectra. Concerning the prompt spectrum on the

left, the fundamental eigenvalue is clearly positive, meaning that the flux amplitude

diverges as time goes by. Except for this point, the spectrum is composed by negative,

larger frequencies, which are related to rapidly vanishing flux modes. When the delayed

neutrons are taken into account, the overall system dynamics becomes slower, as visible

looking at the magnitude of the time frequencies. This phenomenon depends on the

typical time scale characterising the delayed neutrons emission, which are represented

by the clusters of eigenvalue around −103 and −10−1.
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Figure 3.7: Prompt (left) and delayed (right) spectra for a homogeneous, isotropic, fissile
slab, computed with a 𝑃3 model defined on 25 spatial and imposing Mark boundary condi-
tions. The stars represent the fundamental eigenvalues, while the dashed black lines around−107 s indicates the Corngold limit.

Due to its collocation in the transport equation, the term 𝛼/v(𝐸) is often referred to

as time absorption, although a more appropriate name should be time capture, as it does
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not modify the fission cross section,Σ𝛼,𝑐(𝐸) = 𝛼
v(𝐸) . (3.9)

This time capture cross section can be physically interpreted as a virtual capture re-

action featured by a 1/v(𝐸) spectrum (Bell and Glasstone, 1970, chapter 1). For critical

systems, the fundamental eigenvalue 𝛼0 vanishes: no time capture is needed to reach

the equilibrium. When the system is off-critical, there are two possibilities:

• for super-critical systems, there is a positive reactivity, which hardens the energy

spectrum yielding a positive value of 𝛼 . Consequently, the fictitious time capture

is positive (𝛼0 > 0) (Ronen, Shalitin, et al., 1977). In this case, the neutron energy

spectrum is hardened, since Σ𝛼,𝑐(𝐸) is larger at lower energies;

• for sub-critical systems, the time capture is negative (𝛼0 < 0). In this case, the

neutron energy spectrum is softened, since Σ𝛼,𝑐(𝐸) is lower at lower energies;

The action of the Σ𝛼,𝑐(𝐸) virtual cross section has two important detrimental effects

from the numerical point of view:

• some numerical instabilities may arise when the total removal term Σ𝑡 + 𝛼/v is

negative or close to zero;

• the search for the fundamental eigenvalue may not be straightforward, as it can

be either positive or zero or negative.

In spite of these intricacies, the time eigenproblem conveys a lot of physical informa-

tion. First of all, as written above, it is the only natural eigenvalue formulation, opposed

to the other formulations that are somewhat artificial. Then, the fundamental eigen-

value is the inverse of the reactor stable period, while the associated mode describes

the asymptotic population distribution. The same considerations apply to the case of 𝜔
as well, with the additional complications related to eigenvalue clustering.

Figure 3.8 shows the influence of the number of spatial meshes on the prompt and de-

layed spectra, for a P3 model employing a set of cross sections collapsed on the CASMO-

2 grid. As expected, the spatial mesh refinement enriches locally the spectrum, but does

not affect its pattern. However, when the number of energy groups increases, both

the spectra exhibit additional features, as clearly visible from fig. 3.9. The number of

branches and their disposition in the Gauss-Argand plane are remarkably related to

the energy group boundaries adopted to collapse the cross sections. To fully appreci-

ate this relationship, it is useful to observe that the CASMO-4 and the CASMO-7 grids,

reported in table 3.1, share the same fast (2.00 × 101−5.53 × 10−3MeV) and epithermal

(8.21 × 10−1−MeV) groups, while the CASMO-4 and the CASMO-2 grid are featured by

the same thermal group (6.25 × 10−7−1.00 × 10−11MeV). As a consequence, the branches

associated to these common energy groups are perfectly overlapped. The association
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Figure 3.8: Prompt (top) and delayed (bottom) spectra for a homogeneous, isotropic, fissile
slab, using a P3 model with cross sections collapsed on the CASMO-2 structure and Mark
boundary conditions. The stars represent the fundamental eigenvalues, while the dashed
black lines represent the Corngold limit (around -106) and −𝜆R and −𝜆1 (around -10 and
-10−2). The full spectra are displayed on the left, while a zoom of each spectra is reported
on the right.

of each branch to the corresponding energy group is possible on a physical basis: the

higher the neutron velocity in a group, v𝑔 , the faster the dynamics associated to that

group. Therefore, the fast groups will trigger large negative frequencies, while the ther-

mal groups will be associated to smaller negative frequencies. Heuristically, it is possi-

ble to relate these branches to the neutron mean collision time in each group, defined

as 𝓁𝑔,𝑐𝑜𝑙𝑙 = 1
v𝑔Σ𝑔,𝑡 . (3.10)

In light of this definition, it is possible to give a new interpretation to the Corngold limit

(CL), which turns out to beCL = −min(vgΣg,t) = −min(𝓁 −1g,coll), (3.11)

i.e. the opposite of the smallest collision frequency. As visible from the graphs on the

right of fig. 3.9, which is an enlargement of the graphs on the left, each branch gathers

around the collision frequency of the corresponding group. This behaviour is confirmed

83



The spectrum of the neutron transport operator and its application to group collapsing

−109 −107 −105 −103 0 103
Re(�) [s-1]

−1010−1020
1021010

Im
(�)[s-1

]

CASMO-7 CASMO-4 CASMO-2

−109 −107 −105
Re(�) [s-1]

102

1010

Im
(�)[s-1

]

CASMO-7 CASMO-4 CASMO-2

−106 −102 0 102
Re(!) [s-1]

−108−1040
104108

Im
(!)[s-1

]

CASMO-7 CASMO-4 CASMO-2

−107
Re(!) [s-1]

102

1010
Im

(!)[s-1
]

CASMO-7 CASMO-4 CASMO-2

Figure 3.9: Prompt (top) and delayed (bottom) spectrum for a homogeneous, linearly
anisotropic, fissile slab, whose cross sections are collapsed according to the energy struc-
tures indicated. The calculation is carried out with a P3 model using 25 meshes and Mark
boundary conditions. The stars represent the fundamental eigenvalues, while the dashed
black lines indicate the mean collision time for the CASMO-7 grid. The full spectra are
displayed on the left, while a zoom of each spectra is reported on the right.

also for the case of a fast, homogeneous system, whose spectrum is reported in fig. 3.10.

In this case, two different energy grid structures, specified in table 3.2 are used to further

highlight the rôle of the group structure choice on the complex branch disposition.

The time spectrum shape is also strongly influenced by the angular approximation

order, as visible from fig. 3.11. In analogy to what already observed in Abrate, Burrone,

et al., 2021 and Abrate, Dulla, et al., 2021, it is possible to distinguish, more or less clearly

according to the number of spatial meshes and energy groups and on a linearly scaled

graph, N+1 (N) wing-shaped batches of eigenvalue per energy group, where N is the odd

(even) order of the PN (SN) model employed to approximate the spectrum. As showed in

Abrate, Burrone, et al., 2021, new branches appear only when the succeeding odd/even

order for the PN/SN model is employed, while the even/odd approximation orders only

induce some distortions of the spectrum shape.

The symmetrical disposition with respect to the real axis is due to the symmetry of

the roots of the Legendre polynomial 𝑃N(𝜇), which are employed in both models.

The mutual disposition of these wing-shaped branches also depends on the interac-

tion channel between the neutrons and the diffusing medium. Figure 3.12 shows the
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Figure 3.10: Time spectrum with delayed neutrons of a homogeneous, linearly anisotropic,
fissile slab, computed using a P3 model with 25 meshes and Mark boundary conditions
and collapsing the cross sections according to the energy structures indicated. The stars
represent the fundamental eigenvalues, while the dashed lines indicate the mean collision
time for the two grid structures. The full spectrum is displayed on the left, while a zoom is
reported on the right.

Table 3.2: Energy group structures employed for the fast energy spectrum calculations.

group boundary
6-groups PoliTO-LFR-6A

[MeV]2.000000 × 101 x x2.231300 × 100 x4.978710 × 10−1 x1.831564 × 10−1 x2.478752 × 10−2 x x5.530840 × 10−3 x2.260329 × 10−5 x7.485180 × 10−4 x5.400000 × 10−7 x1.000000 × 10−7 x1.000000 × 10−11 x x

time spectrum for the one-group P7 and S8 models for a non-multiplying medium fea-

tured by different values of secondaries per collision 𝑐 = Σ𝑠/Σ𝑡 . In the P7 case, each

angular batch is independent for 𝑐 = 0, due to the absence of scattering. When scatter-

ing is triggered, there is an evident repulsion and crossing between the branches, due

to the collision-riven angular redistribution. In a multi-group case, the same physical

justification can be adopted for each group.

Concerning the S8 model, it is possible to qualitatively observe the same behaviour,

with some notable exceptions. First, in the case of purely absorbing medium, 𝑐 = 0, the
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Figure 3.11: Time spectrum with delayed neutrons of a homogeneous, isotropic, fissile slab,
computed collapsing the cross sections on the CASMO-4 structure, using 25 meshes and
imposing Mark boundary conditions. The stars represent the fundamental eigenvalues.
The top graph shows the full spectrum, while the bottom ones show two enlargements.

𝛼 spectrum degenerates in five points, and no fundamental mode can be distinguished.

This peculiar behaviour is a consequence of the inherent structure of the SN model, in

which each direction is independent in the case of a purely absorbing medium, contrar-

ily to the set of coupled equations for the flux angular moments in the PN model. The

five degeneracy points should be interpreted as one degeneracy per each N/2 = 4 direc-

tion, due to the symmetry of the quadrature weights, plus one degeneracy associated

to the Mark (vacuum) boundary conditions. In this case, it is not possible to identify

a fundamental eigenvalue. When 𝑐 increases, the spectrum assumes a shape similar to

the P7 case, but with the wing-shaped batches pointing towards −∞. The difference be-

tween the PN and SN spectra cannot be ascribed only to the differences in the numerical

setup described in chapter 2, but are rather due to the fact that this is a limit cases in

which neither fission nor external source are present. In case fission is introduced, the

two angular models provide very similar time spectra, as visible in fig. 3.13 for the S2-P1
case.
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Figure 3.12: Prompt spectrum of a homogeneous, isotropic slab, computed with one-group𝑃7 (left) and 𝑆8 (right) models using 100 meshes and imposing Mark boundary conditions.
The stars represent the fundamental eigenvalues. For the sake of readability, the ordinate
axes of the graphs are linear in the interval [−5 × 105 ,5 × 105 ].
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Figure 3.13: Time spectrum with delayed neutrons for a homogeneous, isotropic, fissile
slab discretised with 25 meshes and described with a set of cross sections collapsed on the
CASMO-2 grid.

To complete the discussion on the impact of the angular approximation on the spec-

trum shape, it is important to remember that, in time-dependent situations, the diffusion

model is not equivalent anymore to the P1 system, which can be cast into the so-called

telegrapher’s equation form,3𝐷
v2 𝜕2𝜙0𝜕𝑡2 + 3𝐷Σ𝑎 + 1

v

𝜕𝜙0𝜕𝑡 = 𝐷𝑑2𝜙0𝑑𝑥2 − Σ𝑎𝜙0 + 𝜈Σ𝑓𝜙0, (3.12)

where the terms have their usual meaning (see chapter 2) and the dependencies of the

flux has been omitted. Figure 3.14 shows the prompt spectra computed with diffusion,P1 and P3 with two energy structures, the CASMO-40 and the CASMO-4. In the first

case, the diffusion spectrum is completely real, while in the second case, due to the
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larger number of groups, complex eigenvalues appear, consistently with what observed

in Sanchez, Tomatis, et al., 2017.
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(a) Model parameters: CASMO-4 energy grid, 25 meshes.
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(b) Model parameters: CASMO-40 energy grid, 25 meshes.

Figure 3.14: Prompt spectrum for a homogeneous, isotropic, fissile slab, whose cross sections
are collapsed on the CASMO-4 (top) and CASMO-40 (bottom) structures. The calculation is
carried out using 25 meshes and imposing Mark boundary conditions. The stars represent
the fundamental eigenvalues, while the dashed black lines indicate the Corngold limit.

Since most of the reactor concepts are strongly heterogeneous, it is extremely in-

teresting to observe the spectrum deformation according to the heterogeneity of the

88



3.4 – The time eigenvalue

system, keeping the total number of degrees of freedom fixed as done for the other

spectral formulations. Figure 3.15 shows some details of the time spectrum, consider-

ing the rôle of delayed neutrons, for the three configurations discussed previously: a

bare reactor made of fissile material, a reactor composed by an inner fissile core and

surrounded by a water reflector and a lattice alternating layers of water and fissile ma-

terial. The time spectra are computed for a one-group, P7 model, with the purpose of

highlighting the angular behaviour in presence of heterogeneity, and for a two-group,P3 model, aiming at evaluating the energy effects. The shape of the spectra associated to

the bare reactor is consistent with the previous considerations: the number of complex

branches scales as N+1, where N is the odd PN order, and, an angular batch per group

is located near the opposite of the smallest group-wise collision frequency. When the

heterogeneity appears, as one could expect on a physical ground, the time spectrum

pattern becomes more intricate, due to the interplay between spatial, angular and en-

ergy effects. Concerning the one-group case, it is possible to observe, on the right of

fig. 3.15a, 8 branches (despite some small overlapping) per each imaginary half-plane

for both the heterogeneous arrangements, in contrast with the 4 per each half-plane for

the homogeneous reactor. Since both configurations are featured by different numbers

of layers but by the same number of different materials, i.e. water and fuel, it could be

concluded that the number of complex branches is proportional to the second param-

eter, while the number of layers seems to affect only the branch disposition and their

separation, consistently with what observed for the case observed in fig. 3.12. At a first

glance, the fact that the angular branches are sensitive to the material properties could

sound unphysical, as the streaming of neutrons does not depend on the medium prop-

erties, �̂�𝜙 = ∇⃗ ⋅ (Ω⃗𝜙). Hence, this phenomena most likely origins from a spatial-angular

effect, in analogy to the spatial-energy coupling that features the heterogeneous media

(Weinberg and Wigner, 1958) and that can be observed in fig. 3.15b, where two details

of the spectrum around −𝓁 −11,𝑐𝑜𝑙𝑙 (fast) and −𝓁−12,𝑐𝑜𝑙𝑙 (thermal) are provided. The spectrum

for the homogeneous system behaves as discussed previously, i.e. the branches are lo-

cated around −𝓁−11,𝑐𝑜𝑙𝑙 and −𝓁−12,𝑐𝑜𝑙𝑙 and maintain a very similar shape. On the contrary,

the fast and the thermal branches featuring the heterogeneous media exhibits differ-

ent shapes, as a consequence of the involved interaction between spatial, angular and

energy effects.

The influence of the criticality level on the time spectra can be appreciated looking

at fig. 3.16, where the prompt (top) and delayed (bottom) spectra computed with 25

meshes and the P1 model collapsing the cross sections on the CASMO-4 grid are re-

ported for the same fissile slab featured by isotropic and linearly anisotropic scattering.

The striking difference between the 𝛼 and 𝜔 formulations is the fact that, in the case of

a sub-critical system, the fundamental eigenvalue is bounded by −𝜆1 when the delayed

neutrons are taken into account. This feature is consistent with the physical expec-

tations, and is of paramount importance to direct the numerical search for the funda-

mental delayed eigenvalue in practical cases. Despite this lower limit, the fundamental

eigenvalue exhibits a large sensitivity to the criticality level in both formulations, being
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(a) Time spectrum (left) computed with a one-group 𝑃7 model, discretised with 121 meshes and a
detail of the same spectrum (right) for Re(𝜔) = [−2 × 106 ,−5 × 105 ].
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(b) Details on the fast (left) and thermal (right) frequencies featuring the time spectrum computed
with a two-group (CASMO-2) 𝑃3 model.

Figure 3.15: Details of the time spectrum with delayed neutrons for a linearly anisotropic
slab featured by different levels of heterogeneity.

a time frequency.

Concerning the fast dynamics region, beyond the Corngold limit, the spectra do not

show differences that can be appreciated ictu oculi, due to the departure from critical-

ity. Nevertheless, it is worth observing that, when the system is super-critical and the

scattering is isotropic, the frequencies associated to the thermal groups are purely real.

Considering this fact and the different spectra commented above, it is likely that there

is some intricate connection, whose investigation is left as a future development, be-

tween the criticality offset, the scattering anisotropy order and the angular and energy

approximations.
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Figure 3.16: Prompt (top) and delayed (bottom) spectra for isotropic (left) and linearly
anisotropic (right) scattering for a homogeneous, isotropic, fissile slab. The calculations
are carried out using 25 meshes, imposing Mark boundary conditions and collapsing the
cross sections on the CASMO-4 grid. The stars represent the fundamental eigenvalues,
while the dashed black line indicates the Corngold limit.

3.5 The density eigenvalue
Except for the time eigenvalue, the other two eigenvalue formulations addressed so

far act on some specific reaction channels, i.e. fission production and neutron emis-

sion. Despite the advantages of these formulations, as it has been previously pointed

out, it not possible to practically modify these interactions without affecting also the

other cross sections. Probably inspired by the desire of avoiding this drawback, Ronen,

Shalitin, and Wagschal, 1976 introduced the so-called density eigenvalue,

�̂�𝜑𝛿,𝑛 = 1𝛿 (�̂� + �̂� − �̂�) 𝜑𝛿,𝑛, (3.13)

which can be interpreted as the ratio between the net number of particles emitted in

the system and the number of particles leaking out of the system,

𝛿 = ⟨(�̂� + �̂� − �̂�)𝜑𝛿,𝑛⟩⟨�̂�𝜑𝛿,𝑛⟩ . (3.14)
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This eigenvalue lends itself to two physical interpretations. First, it can be seen as a

tuning parameter acting on the competition between neutron production and removal

terms, whose density is varied by the same amount, i.e. 𝛿 itself. From a different per-

spective, it can be interpreted as a streaming eigenvalue, changing the relationship be-

tween the angular flux and the angular current (Ω̂𝜙). In this case, 𝛿 turns out to be a

scaling parameter acting on the geometrical size of the system. Referring to the integral

form of the NTE, it is possible to verify that the eigenvalue acts on the free-flight kernel

of the transport process (Barbarino, Dulla, and Ravetto, 2013).

As observed in the literature available about this formulation (Velarde, Ahnert, and

Aragonés, 1978; Perel, Wagchal, and Yeivin, 1999), a consequence of this property is

the fact that, when the geometry of the system is scaled by a certain factor 𝛽 , the 𝛿
eigenvalue spectrum is scaled by the same factor, and the flux energy spectrum does

not change. This feature appears to be a considerable advantage with respect to the

other spectral formulations previously discussed, which introduce some distortions in

the energy spectrum. In contrast with 𝑘 and 𝛾 , 𝛿 acts simultaneously on all the energy-

dependent cross sections, so it does not affect their mutual relationship. However, with

respect to what it can be found in the literature, this equivalence condition actually ver-

ifies only under a specific assumption, namely that, when each geometrical coordinate

is scaled with a factor 𝛽 , 𝑟 = ⎛⎜⎜⎝
𝑥𝑦𝑧⎞⎟⎟⎠ ⟶ ⃗ = 𝛽𝑟 = ⎛⎜⎜⎝

𝛽𝑥𝛽𝑦𝛽𝑧⎞⎟⎟⎠ , (3.15)

the divergence of the current scales accordingly,∇ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω⃗)) ⟶𝛽∇ ⋅ (Ω⃗𝜙(⃗, 𝐸, Ω⃗)) == 𝛽(Ω⃗ ⋅ ∇𝜙(⃗, 𝐸, Ω⃗) + 𝜙(⃗, 𝐸, Ω⃗)∇ ⋅ Ω⃗). (3.16)

It can be easily shown that this condition is satisfied whenever ∇ ⋅ Ω⃗ = 0, as for a

cartesian set of coordinate,∇ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω⃗)) = Ω ⋅ ∇𝜙(𝑟 , 𝐸, Ω⃗) == √1 − 𝜇2𝑐𝑜𝑠𝜑 𝜕𝜙(𝑟 , 𝐸, Ω⃗)𝜕𝑥 +√1 − 𝜇2𝑠𝑖𝑛𝜑 𝜕𝜙(𝑟 , 𝐸, Ω⃗)𝜕𝑦 + 𝜇 𝜕𝜙(𝑟 , 𝐸, Ω⃗)𝜕𝑧 ,
(3.17)

where 𝜇 is the cosine of the polar angle 𝜃 and 𝜑 is, in this specific formula, the azimuthal

angle. In this case, it is easy to verify that, when the coordinates are rescaled by a

constant factor 𝛽 , ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = 𝛽𝑥 ⟶ 𝜕x = 𝛽𝜕𝑥
y = 𝛽𝑦 ⟶ 𝜕y = 𝛽𝜕𝑦
z = 𝛽𝑧 ⟶ 𝜕z = 𝛽𝜕𝑦, (3.18)
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the streaming term for the scaled geometry becomes

∇ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω⃗)) ⟶ = 𝛽√1 − 𝜇2𝑐𝑜𝑠𝜑 𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕x + 𝛽√1 − 𝜇2𝑠𝑖𝑛𝜑 𝜕𝜙(𝑟 , 𝐸, Ω⃗)𝜕y+ 𝛽𝜇 𝜕𝜙(𝑟 , 𝐸, Ω⃗)𝛽𝜕𝑧 == 𝛽Ω ⋅ ∇�⃗�(⃗, 𝐸, Ω⃗).
(3.19)

When the reference frame is not fixed in space, as for curvilinear geometries (Bell

and Glasstone, 1970), the condition expressed in eq. (3.16) should be examined case by

case. For spherical and cylindrical frames, it is possible to prove that this condition still

holds. Assuming a symmetrical sphere with radius scaled as r = 𝛽𝑟 , it is possible to get∇ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω⃗)) ⟶𝛽∇ ⋅ (Ω⃗𝜙(⃗, 𝐸, Ω⃗)) == 𝛽𝜇 𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕r + 𝛽 1 − 𝜇2
r

𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕𝜇 , (3.20)

while, for a cylinder whose radius and height are scaled by the same factor,∇ ⋅ (Ω⃗𝜙(𝑟 , 𝐸, Ω⃗)) ⟶𝛽∇ ⋅ (Ω⃗𝜙(⃗, 𝐸, Ω⃗)) == 𝛽𝜇 𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕z + 𝛽√1 − 𝜇2
r

𝑠𝑖𝑛𝜑(𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕𝜇 − 𝛽 𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕𝜇 )+ 𝛽√1 − 𝜇2𝑐𝑜𝑠𝜑 𝜕𝜙(⃗, 𝐸, Ω⃗)𝜕r .
(3.21)

For more complex geometries, a useful generalisation of the scattering term can be

found in Pomraning, 1989.

Exploiting this scaling, it is easy to show that, when 𝛽 = 𝛿 , the scaled system is

critical, as 𝛿 cancels out in eq. (3.13). This fact further confirms that 𝛿 can be inter-

preted as the streaming eigenvalue: given a certain material composition, criticality is

attained changing the volume of the system, thus its surface-to-volume ratio and, thus,

the leakage contribution. Of course, this operation is not always possible, since the ef-

fective multiplication constant of the infinite system, 𝑘∞, which is a material parameter

featuring the system, should be larger than unity. This condition can be deduced from

elementary criticality theory: considering a homogeneous, one-speed slab with zero-

flux vacuum boundary condition, for which the identity ∇2𝜑𝛿 (𝑥) = −𝐵2𝜑𝛿 (𝑥) holds, it is

possible to get 𝛿 = √𝑘∞ − 1𝐿𝐵 , (3.22)

which yields a real and positive eigenvalue if and only if 𝑘∞ > 1. This simple example

poses the interesting question of how to interpret the fact that 𝛿 → ∞ when 𝐵 → 0,
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which is verified when the slab thickness𝐻 tends to infinity. Since criticality is attained

by changing the leakage contribution in the balance equation, it is not possible to derive

a criticality condition for the infinite medium, where no leakage occurs by definition.

From another perspective, the streaming operator becomes singular, so eq. (3.13) can be

satisfied only in the limit 𝛿 → ∞. The same result can be obtained also more rigorously

taking the limit for 𝛽 → ∞, when condition eq. (3.16) is verified. Despite its clear re-

lationship with the streaming operator, which manifests in the geometry scaling under

specific hypotheses, 𝛿 will be addressed in the following as the density eigenvalue, in

order to be consistent with the literature and to be as general as possible.

−102 −10−2 0 10−2
Re(�)

−101−10−10
10−1101

Im
(�)

Nx=50 Nx=25 Nx=12

(a) 𝑃3, CASMO-2 energy grid.
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(b) 𝑃3, 25 spatial meshes.
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(d) 25 meshes and CASMO-2 energy grid.

Figure 3.17: 𝛿-spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions. The stars represent the fundamental eigenvalues.

Figure 3.17 provides an idea of the behaviour of the 𝛿 eigenvalues on the complex

plane for different numerical discretisations, assuming the usual one-dimensional carte-

sian system. Observing the figures, it is not easy to individuate an intuitive, clear re-

lationship between the spectrum shape and the number of spatial meshes, the energy

group structures and the angular approximation, also due to the difficulty in giving a

physical interpretation to the higher-order eigenvalues. Nevertheless, it is possible to

make some general comments. First, the additional degrees of freedom available with
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finer numerical approximations mainly affect the complex branches. Then, it is pos-

sible to appreciate a strong interplay between directional and energetic effects. As an

example of such intricacy, it should be noticed that, in fig. 3.18, the spectrum computed

with P1 and the CASMO-4 grid is featured by two branches of complex conjugate values

when Re(𝛿)> 0, while the spectrum for the same system solved with P3 and the CASMO-

4 grid does not show any complex conjugate branch in the half-plane Re(𝛿)> 0. In this

last case, these branches can be found in the Re(𝛿)< 0 half-plane. Despite this com-

plexity, it is possible to notice that the number of complex branches is proportional to

the number of groups and to the angular approximation order. For example, two com-

plex conjugate branches appear in the P1, CASMO-2 case while six complex conjugate

branches are present for the P3, CASMO-2 case, while six branches can be appreciated

for the P1, CASMO-4 case and twelve batches can be observed for the P3, CASMO-4

case. Despite this clear proportionality, it is not possible to observe a striking relation-

ship like for the time spectrum.
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(b) 𝑃3.
Figure 3.18: 𝛿-spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions and using 50 meshes. The stars represent the fundamental eigenvalues.

Then, it is possible to see some complex structures also for the simplest case studies,

employing the CASMO-2 energy grid and the P1 model, like in fig. 3.17d. In this case, it is

interesting to observe that, differently from the other formulations, there is a significant

difference related to the angular model employed. This increased sensitivity is probably

due to the different approach, i.e. projection against discretisation, at the basis of thePN and SN methods, respectively, to approximate the streaming term, whose eigenvalue

is 𝛿 itself.

Another general feature of the 𝛿 spectrum is the presence of negative, real eigen-

values associated to spatially oscillating solutions. Their existence can be probably ex-

plained by the fact that, in virtue of the competition between the production and the

removal terms, some critical systems could be obtained switching the signs of these

terms and introducing negative neutrons.

Finally, it is interesting to highlight the fact that, when even-order (odd-order) PN
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(SN) approximations are used to evaluate the spectrum, a set of extremely large eigen-

values (∼ 1015) appears. The spawning of such eigenvalues can be explained recalling

that, when such parity order is employed, the streaming operator becomes singular, as

discussed in section 2.5.1. From a physical point of view, it is possible to justify the

existence of such eigenvalues exploiting the SN formalism. When N is odd, the follow-

ing equation could be written for the streaming direction 𝜇𝑁 /2+1 = 0, parallel to the slab

boundaries, 𝜇𝑁 /2+1 𝜕𝜙(𝑥, 𝜇𝑁 /2+1)𝜕𝑥 = −1𝛿 Σ𝜙(𝑥, 𝜇𝑁 /2+1) = 0. (3.23)

Since Σ and 𝜙 are non-zero, eq. (3.23) holds only in the limit case 𝛿 → ∞.

−101 −10−3 0 10−3 101
Re(�)

−101−10−10
10−1101

Im
(�)

crit. sub-crit. super-crit.

Figure 3.19: 𝛿-spectrum for a homogeneous, fissile slab with different thicknesses, com-
puted with a 𝑃1 model using data collapsed on the CASMO-2 grid and 25 meshes, imposing
Mark boundary conditions. The stars represent the fundamental eigenvalues.

Concerning the sensitivity of the spectrum to the offset from criticality, it is possible

to observe, looking at section 3.3.5, that the overall shape is not distorted by this pa-

rameter, despite the fundamental eigenvalue exhibits a significant variation according

to the distance from criticality, as also observed in Ronen, Shalitin, and Wagschal, 1976.

However, with respect to the 𝑘 and 𝛾 cases, it is not always possible to justify the exis-

tence of a positive, real eigenvalue, especially in the case of a heterogeneous medium.

In this last case, it may be possible that criticality is attained with a negative value of 𝛿 ,

which could artificially exchange the rôle of production and removal among the differ-

ent regions of the system in case the multiplicativity was not sufficient to sustain the

chain reaction. This behaviour could be regarded as an unpleasant issue concerning𝛿 , but it should be interpreted as a consequence of the additional physical constraints

considered in the search for criticality.

Finally, section 3.3.5 shows the effect of the spatial heterogeneity on the spectrum

shape. In this case, despite some additional complex values, related to the use of more

energy groups and common to each arrangement, it is not possible to appreciate evi-

dent deformations of the spectrum due to the number of layers or to their composition.

Nevertheless, the detail of the right portion of the complex spectrum, depicted in the
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Figure 3.20: 𝛿-spectrum (top) for different slabs featured by different material arrange-
ments, computed with a 𝑃3 model using data collapsed on the CASMO-7 grid and 121
meshes, imposing Mark boundary conditions, and zoom on the negative (left) and positive
(right) half-planes. The stars represent the fundamental eigenvalues.

bottom-right of the same figure, suggests that the heterogeneity has an impact on the

eigenvalues distribution, which appear to be more dispersed than in the homogeneous

case, although it is not easy to identify a clear pattern. Moreover, for the lattice case,

more than one fundamental eigenvalue appears, each associated to an eigenfunction

with uniform sign. These fluxes, reported in section 3.3.5, are very similar in space

but with a different energy spectrum. The appearance of these multiple fundamental

eigenpair is related to the fact that 𝛿 acts on all the cross sections of all the materials.

This simultaneous modification means that there is a competition between different

terms and different spatial regions. For example, the slowing down occurring in water

competes with the its absorption. Thus, more than one configurations are possible,

The analysis of the 𝛿 spectrum in different cases allows to observe some general

features:

• the spectrum is featured by complex eigenvalues, associated to higher-order ef-

fects, with a strong coupling between energy and direction;

• the fundamental eigenvalue usually lies at the right of the spectrum, assuming the

largest real value, but this may not hold in general, especially for heterogeneous
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media;

• the fundamental eigenvalue appears to be more sensitive than 𝑘0 and 𝛾0 to the

criticality level;

• the fundamental eigenfunction is a solution common to each system featured by

a geometrical similarity transformation;

• the energy spectrum is not affected by the eigenvalue, which can be seen as mod-

ifying the nuclides densities or the boundary leakages.

• the 𝛿 formulation could be applied as well in a diffusion model, but at the price

of solving a non-linear eigenvalue problem, since the diffusion coefficient would

depend on 𝛿 itself.

• more than one configurations is possible for heterogeneous systems.
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3.6 The capture eigenvalue
Inspired by the fact that 𝑘 and 𝛾 act on specific reaction channels, an eigenvalue

acting on neutron capture, indicated with 𝜃 , can be introduced as well,

(�̂� + �̂� 0 + �̂�0 − �̂� − �̂�) 𝜑𝜃,𝑛 = 1𝜃𝑛 �̂�𝜑𝜃,𝑛. (3.24)

As mentioned in chapter 2, to the author’s knowledge, this is the first time that this

formulation is addressed. Integrating (3.24) over the phase space and isolating 𝜃0 is

useful to give a physical interpretation to this eigenvalue,

𝜃𝑛 = ⟨�̂�𝜑𝜃,𝑛⟩⟨(�̂� + �̂�0 + �̂� 0 − �̂� − �̂�)𝜑𝜃,𝑛⟩ , (3.25)

which expresses the number of neutrons that have to be captured to maintain criticality

per neutron that is present inside the system. Since the attention is focused on capture,

which is a loss term, the behaviour of this eigenvalue with respect to criticality is re-

versed: a super-critical system requires to increase capture, so 𝜃 < 1, while a sub-critical

system requires the system to reduce capture, so 𝜃 > 1. In this last case, it is also pos-

sible that, for a significant level of sub-criticality, 𝜃 becomes negative. In such a case,

the criticality could be attained only substituting the removal with a production term,

similarly to what occurs for the 𝛿 case. This situation, which seems rather unphysical,

should be considered as the counter-part of adjusting 𝜈Σ𝑓 with 𝑘 and 𝜈Σ𝑓 + Σ𝑠 with 𝛾 :

it is always possible to reach criticality adjusting these parameters, with 𝑘 and 𝛾 rang-

ing from 0 to +∞, provided that the system is able to emit neutrons. However, if the

number of neutrons emitted cannot be adjusted, the only way to compensate this lack

of particles is to introduce them by mean of a negative capture. Despite this fact may

sound misleading, this property may be very useful for the design of a reactor, because,

in this specific situation, the designer could be immediately aware that it is necessary to

increase the multiplication properties of the system. The same situation handled with

the 𝑘 (or 𝛾 ) eigenvalue would not provide a one-way suggestion, since a value of 𝑘 (or𝛾 ) smaller than 1 could be interpreted ambiguously as the need for either more fissile

material or reduced leakages or reduced parasitic captures. Therefore, due to its tight

connection with the capture reactions, this eigenvalue could be useful for the design of

specific components of a reactor, e.g., control rods and breeding blankets.

As for the 𝛿 eigenvalue, it is not trivial to give a clear, physical interpretation to the𝜃 higher-order eigenvalues. Nevertheless, the spectrum behaviour is clearly sensitive

to the physical model employed to solve the NTE. Figure 3.22 provides an overview of

the spectrum behaviour, considering the same approximations used for the previous

analyses. Similar considerations to the ones made for the time and density eigenvalue

can be drawn, with an important difference: the 𝜃 fundamental eigenvalue may not lie

at the real axis extremity, as clearly visible in figs. 3.22c and 3.22e. In this specific case,
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Figure 3.22: 𝜃-spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions. The stars represent the fundamental eigenvalues.

the eigenvalue on the right of the fundamental is associated to the first-order harmonic,

i.e. the flux featured by one sign change.

Figure 3.23 shows a detail of the spectrum, in linear scale, for the P1 and P3 approxi-

mations as a function of different energy grid structures. Also in this case, it is possible

to appreciate a relationship between the number of complex branches, the number of

groups and the angular approximation order: for each group, (N + 1)/2 branches with
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positive imaginary part and (N + 1)/2 branches with negative imaginary part can be

individuated.
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Figure 3.23: 𝜃-spectrum for a homogeneous, isotropic, fissile slab, imposing Mark boundary
conditions. The stars represent the fundamental eigenvalues. Graphs on the right represent
a zoom of the spectra depicted on the left.

As regards the impact of the angular model, the spectra yielded by the PN and SN
models are very close, as visible from fig. 3.25a.

Figure section 3.3.6 shows some details of the spectrum for the different heteroge-

neous arrangements studied for the other eigenvalues. With respect to the homoge-

neous case, which is featured by N+1 oval-shaped branches per each energy group,
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Figure 3.24: Details of the 𝜃-spectrum for slabs featured by different heterogeneous ar-
rangements, computed with the 𝑃3 model with 121 meshes and Mark boundary conditions.
The cross sections are collapsed on the CASMO-2 energy grid. The stars represent the fun-
damental eigenvalues.

the introduction of the heterogeneity alters the shape of the spectrum, which is char-

acterised by additional branches, visible in the region Re(𝜃) = [−0.02, 0]. As for the

previous eigenvalues, the number of branches seems proportional to the number of dif-

ferent materials composing the system, two in this case, while their disposition in the

complex plane is related to the specific arrangement of the system.

Concerning the effect of the departure from criticality, it is possible to see in fig. 3.25b

that there is a strong sensitivity of the real eigenvalues with respect to this parameter,

as already discussed above.

The analysis of the newly proposed capture eigenvalue allows to draw some general

conclusions, which may be useful for its application:

• the fundamental may not be positive. Even if it was, it may not be the larger

positive eigenvalue;

• when the criticality cannot be attained with the available fissile material, the fun-

damental becomes negative;

• the spectrum is very sensitive to the departure from criticality;
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Figure 3.25: 𝜃-spectrum for a homogeneous, linearly anisotropic, fissile slab, computed
with the 𝑃1 model with 25 meshes and Mark boundary conditions. The cross sections are
collapsed on the CASMO-2 energy grid. The stars represent the fundamental eigenvalues.

• since the eigenvalue acts on the overall capture cross section of the system, it is

not possible to establish a priori the impact on the energy spectrum, especially

for heterogeneous systems: in some cases, e.g., in presence of boron, the capture

could harden the energy spectrum, removing thermal neutrons, while in other it

may soften the energy spectrum, e.g., in presence of fertile material that could

remove fast neutrons.

3.7 The effect of energy group collapsing
As highlighted throughout the chapter, the eigenvalue spectra associated to the dif-

ferent NTE formulations is tightly connected both to the physics of the transport pro-

cess and to the modelling and numerical approximations used to solve the problem.

Except for the 𝑘 and 𝛾 eigenvalues in case of isotropic scattering, the shape of the spec-

trum of the different formulations is strongly sensitive to the modelling approximations,

like the number of groups and directions chosen to discretize the equation.

In light of these observations, it is interesting to observe the effect of group collaps-

ing on the shape of the eigenvalue spectrum, since it could disclose some aspects of

the collapsing procedure that could be exploited to improve the choice of the group

structure, which is still an open issue of reactor physics, as will also be pointed out in

chapter 4.

In order to get some qualitative information, the spectrum of the time eigenvalue for-

mulation is analysed in the following for a homogeneous slab, filled first with a mixture

of water and enriched uranium, and then with a mixture of uranium and plutonium, in

order to highlight both the impact of the energy spectrum on the eigenvalue distribu-

tion and the influence of the group structures chosen for the collapsing. The thickness

of the thermal slab is 37.8 cm, while the thickness of the second one is 74.6 cm. In both
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Figure 3.26: Flux per unit lethargy computed with a 𝑃1 model using CASMO-40 group
structure for a thermal system. The vertical lines represent some coarse-group grids used
to collapse the cross sections.

cases, the slab is featured by linearly anisotropic scattering.

Figure 3.26 shows the 𝛼-flux per unit lethargy scored on the CASMO-40 grid for the

thermal slab case, and the few-group structures used to perform the group collapsing,

whose specifications can be found in table 3.3.

At first, the spectrum is collapsed using the grid with 11 groups. Then, some groups

are removed from this grid, in order to collapse over 10 and 7 groups, respectively.

Observing table 3.3, it is possible to notice that the 10-group grid is obtained collapsing

the first two fast groups of the 11-group grid, while the 7-group structure is obtained

collapsing some epithermal groups where the flux is almost constant and the three

thermal groups with the lowest energy. The best option among the two turns out to be

the 7-group grid, which yields 𝛼0,7𝑔 =564s−1 against 𝛼0,11𝑔 =524s−1, while the 10−group

structure, despite three additional groups, provides 𝛼0,7𝑔 =770s−1. The fundamental

eigenvalue 𝛼0 computed with the CASMO-40 grid is equal to 244s−1.
Figure 3.27 shows the impact on the spectrum shape due to the loss of degrees of

freedom caused by the collapsing procedure. Exploiting the physical meaning of the 𝛼𝑛
frequencies, it is possible to notice the presence of two batches of eigenvalues, one in
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Table 3.3: Energy group structures employed to assess the impact of group collapsing on
the eigenvalue spectrum.

group boundary
11g 10g 7A 7B 7C

[MeV]2.00000 × 101 x x x x x2.31000 × 100 x x x8.21000 × 10−1 x x x x x1.11000 × 10−1 x x x x x5.53000 × 10−3 x x x x x1.48728 × 10−4 x x4.80520 × 10−5 x x x x4.00000 × 10−63.30000 × 10−6 x x6.25000 × 10−7 x1.00000 × 10−7 x x1.40000 × 10−73.50000 × 10−7 x x x x5.80000 × 10−8 x1.50000 × 10−8 x x1.00000 × 10−9 x1.00000 × 10−11 x x x x x

the interval [−1 × 109 , −1 × 108 ] s−1 and the other in [−1 × 107 , −1 × 105 ] s−1, respectively.

This net subdivision is a consequence of the thermal energy spectrum featuring the sys-

tem, which is historically known to be adequately described by a two-group model. As

already observed previously, the branches of the collapsed spectrum are located accord-

ing to the opposite of their group-wise collision frequency. Thanks to the detail of the

spectrum reported on the bottom of the figure, is possible to notice that there are four

branches of the 10-group spectrum that are very close to each other, due to the pres-

ence of many thermal groups in this grid, but only two branches are located in the fast

region. On the contrary, the 7-group grid, featured by less degrees of freedom, allows

to span different frequencies, providing an overall better representation of the original

spectrum and, thus, of the fundamental eigenvalue. This behaviour is consistent with

the common practice of dividing the energy grid with into uniform lethargy bins (Bell

and Glasstone, 1970).

Similarly, fig. 3.28 provides the time spectra computed for different 7-group struc-

tures. Again, the best results are provided by the cases that allow to cover more uni-

formly the frequencies, i.e. A (𝛼0 = 564.3s−1) and B (𝛼0 = 540.3s−1), while the worst case,

C (𝛼0 = 2309.3s−1), is featured by two thermal groups, providing unnecessary detail,

and only one fast group. The bottom part of fig. 3.28 shows the comparison between
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Figure 3.27: Time spectrum computed for a homogeneous, fissile slab using the 𝑃1 model
and different group structures for the cross section collapsing.

the A and C cases, which are identical except for one group: in the A case, an energy

group is employed in the fast region, while in the C case it is used to cover the thermal

region, where the flux variation is reduced with respect to the one in the fastest groups.

As clearly visible in the figure, the complex branches associated to the thermal groups,

indicated by the round markers, appears to be overlapped around 3 × 10−5s−1, suggest-

ing that the information associated to the additional thermal group is redundant, while

the corresponding branches in the fast region for the C case, indicated by the hexag-

onal markers, are more separated. Considering that the first three eigenvalues of the

discrete spectrum, reported in table 3.4, are much more accurate when computed us-

ing the 7A grid rather than using the 7C grid, it could be concluded that, in this case,

the fast group is more important to correctly reproduce the behaviour of the reference

model. Hence, due to the observations made so far regarding the behaviour of the time

frequencies with respect to the group structure employed for collapsing, it is reasonable
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to conclude that these features are tightly connected.
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Figure 3.28: Time spectrum computed for a homogeneous, fissile slab using the 𝑃1 model
and different group structures for the cross section collapsing.

eigenvalue [𝑠−1] CASMO-40 7A 7B 7C𝛼0 244.5 564.3 540.3 2309.3𝛼1 −42 957.4 −44 200.7 −43 529.7 −38 055.44𝛼2 −73 107.8 −75 572.6 −74 282.6 −67 741.1
Table 3.4: First three time eigenvalues computed collapsing the data for the thermal slab
case with different group structures.

The same relationship can be appreciated also for the slab featured by a fast spec-

trum, depicted in fig. 3.29. In this case, three 10-group structures with the same group
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Figure 3.29: Flux per unit lethargy computed with a 𝑃1 model using ECCO-33 group struc-
ture for a fast system. The vertical lines represent some coarse-group grids used to collapse
the cross sections.

boundaries except few ones, reported in table 3.6, are used to perform the cross sections

collapsing, starting from the reference ones scored on the ECCO-33 grid. The first grid,

10A, presents an intermediate cut-off boundary for the thermal group with respect to

the cases B and C, where the thermal group is at lower and higher energies, respectively.

Contrarily to the thermal case, the time spectrum in fig. 3.30 does not show a clear

subdivision in batches of the "continuous" portion of the spectrum, but it is worth notic-

ing that the largest frequencies fall around 7 × 10−5s−1 instead of 2 × 10−5s−1, which is the

largest frequency characterising the thermal system. These features of the time spec-

trum suggest that the thermal group is less relevant than in the thermal spectrum case,

but still important enough to be considered for the definition of the collapsing struc-

ture. Table 3.6 helps to confirm this fact. The case that best matches the three time

frequencies is the 10A, which is featured by a rather uniform subdivision in lethargy.

When the thermal region is collapsed with some epithermal energies, as in case B, the

fundamental eigenvalue is still quite accurate, but the higher-order harmonics, which

are crucial to determine the behaviour of the system (Beckner and Rydin, 1975), are

associated to quite different frequencies with respect to the reference ones. As a con-

sequence of the lack of thermal groups, the spectrum computed with this grid does not

present any complex branch around the frequencies characterising the thermal region.

On the contrary, case C, which includes a thermal group at the price of a wider fast

group, yields a fundamental frequency that is quite far from the reference, but higher-

order frequencies that are close to the reference. This last case seems to suggest that,

if a modal expansion was used to study the system evolution, the initial instants of the

transient could be accurate. As for the thermal slab, the presence of a superfluous ther-

mal group is made evident by the reduced separation between the complex branches

associated to these groups.

In this section, the relationship between the time spectrum for a collapsed system
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Table 3.5: Energy group structures employed to assess the impact of group collapsing on
the eigenvalue spectrum for the fast slab.

group boundary
10A 10B 10C

[MeV]2.000000 × 101 x x x1.000000 × 101 x x2.231020 × 101 x x x4.978707 × 10−1 x x x1.110900 × 10−1 x x2.478752 × 10−2 x x x5.530844 × 10−3 x x x2.034684 × 10−3 x7.485183 × 10−4 x1.486254 × 10−4 x7.485183 × 10−4 x x1.486254 × 10−4 x4.016900 × 10−5 x x4.000000 × 10−6 x x5.400000 × 10−7 x1.000000 × 10−11 x x x
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Figure 3.30: Time spectrum computed for a homogeneous, fissile slab using the 𝑃1 model
and different group structures for the cross section collapsing.
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eigenvalue [𝑠−1] ECCO-33 10A 10B 10C𝛼0 5094.4 8950.1 8929.9 17 467.2𝛼1 −193 382.2 −193 629.2 −889 079.9 −194 341.1𝛼2 −201 054.8 −201 269.2 −905 034.3 −202 012.0
Table 3.6: First three time eigenvalues computed collapsing the data for the fast slab case
with different group structures.

and the group structure used to perform the collapsing has been analysed, highlighting

that the both the discrete and the continuous parts of the spectrum can be used to assess

whether the group structure is adequate to provide a sufficiently accurate approxima-

tion of the reference one. In light of these observations, it could be interesting, as a

future perspective, to exploit the spectrum as a driver for feature-selection algorithms

(Liu, 2010) like genetic algorithms, which have been successfully employed for the op-

timal selection of the group boundaries in the recent years (Massone, Gabrielli, and

Rineiski, 2017). In this application, the accuracy between the region-wise, few-group

flux and the associated 𝑘eff and the reference quantities is used to guide the optimisation

process. Despite its intuitiveness, this approach may be difficult and expensive to apply

in case the target of the optimisation process involves a time-dependent problem. In this

case, it could be worth to employ the time spectrum as a concise indicator of the tempo-

ral, spatial, angular and energetic behaviour of the system, to drive the group selection

process more rigorously. For this application, some operator transformations like the

Givens rotation of the QR factorisation (Saad, 1992) could be employed to compute the

eigenvalues without the need for evaluating the associated eigenvectors, reducing both

the computational time and the memory consumption.

3.8 Conclusions
In this chapter, the different eigenvalue formulations to the neutron transport equa-

tion available in the literature, i.e. the time, the multiplication, the collision and the

density eigenvalues, and a newly introduced capture eigenvalue, introduced here for

the first time, have been presented, discussing thoroughly both their advantages and

their disadvantages. The attention has been focused mainly on the behaviour of the

different eigenvalue spectra according to the spatial, angular and energetic models em-

ployed and to the spatial heterogeneity. For instance, the concept of Corngold limit has

been extended to the case of multi-group systems, showing heuristically that the group-

wise fast, complex conjugate frequencies are bounded by the opposite of the group-wise

collision frequency.

The analysis of the spectrum, led using the TEST code, has been extremely useful to

highlight the tight connection between the spectra and the approximation used to solve
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the neutron transport equation and to draw some important, practical conclusions to

drive the eigenvalue solver towards the fundamental eigenpair according to the spectral

formulation employed. Finally, a possible application of the spectrum as a concise figure

of merit for the optimal selection of the group boundaries has been suggested as a future

perspective.
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Chapter 4

Spectral formulations as
alternative weighting
functions for group collapsing

Then all the colors will bleed into one,

Bleed into one

I still haven’t found what I’m looking for, U2

4.1 Introduction
The generation of a set of effective cross sections to perform deterministic, few-

group, full-core calculations using either diffusion (Nallo, Abrate, et al., 2020) or some

low-order transport models like the SPN approach (Gelbard, 1968; Cervi, Lorenzi, et

al., 2019) is definitively one of the most challenging and exciting problems in reactor

physics. The rigorous definition of the multi-group cross section for a certain interac-

tion 𝑦 can be obtained by integrating the continuous-energy transport equation over a

general energy interval [𝐸𝑔 , 𝐸g+1] and by imposing the preservation of the reaction rate,

namely

Σ𝑦,𝑔(𝑟 ,Ω) = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑦(𝑟 , 𝐸) 𝜙(𝑟 , 𝐸,Ω)

∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜙(𝑟 , 𝐸,Ω) , 𝑔 = 1,… ,G, (4.1)

where the symbols have their usual notation. As pointed out in the classic book by

Bell and Glasstone, 1970, it can be noticed that the integration over the energy helps to

reduce the number of degrees of freedom of the system, which is the ultimate goal of this
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approximation, but at the price of an additional angular dependence for the effective

cross sections. As observed in chapter 2, this further complexity is often neglected,

assuming the separability between energy and angle. In this case, considering also the

spatial homogenisation over a certain volume 𝑉𝑖 , eq. (4.1) yields

Σ𝑦,𝑔,𝑖 = ∫𝑉𝑖 𝑑𝑟 ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑦(𝑟 , 𝐸)𝜓 (𝑟 , 𝐸)

∫𝑉𝑖 𝑑𝑟 ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜓 (𝑟 , 𝐸) , 𝑔 = 1,… ,G, i = 1,… , I, (4.2)

where 𝜓 (𝑟 , 𝐸) is a suitable weighting function, which, neglecting the angular effects,

is usually identified as the total flux Φ(𝑟 , 𝐸) for a simplified geometrical configuration

of the system under investigation. In order to yield an optimal set of collapsed data,

the calculation of the weighting function is usually performed with a very detailed

transport calculation, using an accurate angular model and a fine-group structure. A

standard example for this computational framework is the full-core calculation route

followed for Light Water Reactors (LWRs), which is usually composed by three steps

(Cacuci, 2010): first, a set of self-shielded cross sections are computed starting from the

point-wise libraries at the pin level, then the cross sections are further collapsed over

a fine-group structure at the assembly level and, finally, these data are condensed over

few groups in order to carry out coarse-mesh calculations at the full-core level.

Despite its apparent simplicity, eq. (4.2) hides a series of different complexities, which

can be summarised as:

• the choice of an adequate number of energy groups G;

• the choice of the group boundaries [𝐸1,… , 𝐸𝑔 ,… , 𝐸G];
• the choice of the regions [𝑉1,… , 𝑉𝑖 ,… , 𝑉I] for the spatial homogenisation;

• the cross section dependence on some physical and operational parameters such as

the burn-up level, the offset to criticality (e.g., related to the control rod position),

the thermodynamic conditions of the medium;

• the loss of accuracy derived from the assumption of energy and angle separability;

• the choice and the the calculation of the weighting function 𝜓 (𝑟 , 𝐸).
Due to the involved relationship between the point-wise cross sections, the system

physical parameters, and the different modelling and numerical approximations, it is

extremely difficult to individuate a reliable, case-independent strategy for the cross

section generation that could be applied to any reactor concept. Hence, the calcula-

tion of the effective cross section Σ𝑦,𝑔,𝑖 is today often considered more an art rather

than a rigorous operation, especially for systems that cannot be described adequately

by a two-group approach.
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Because of these intricacies and of the intrinsic uncertainties of this procedure, some

strategies have been proposed, aiming at reducing the computational burden of the

cross section generation and, at the same time, at minimising the modelling error.

One possibility is to avoid in toto the need for collapsing and homogenisation at the

assembly level, as it has been proposed in the CASL project, where neutronics calcula-

tions are perform at a pin-level calculations with an intermediate number of groups, 51

in this case (Kulesza, Franceschini, et al., 2016; Cramer and Kropaczek, 2020). This ap-

proach has proved to be adequate in a high-fidelity, multi-physics modelling framework,

but it cannot be practically employed for design- and safety-oriented applications, espe-

cially when transient scenarios are considered. Therefore, more sophisticated methods

have been proposed to minimise the impact of the effective cross sections generation

on the final calculation accuracy.

Massone, Gabrielli, and Rineiski, 2017 have proposed to employ a genetic algorithm

for a clever selection of the group boundaries based on some constraints on the accuracy

between some relevant quantities obtained with few- and multi-group calculations, e.g.

the multiplication factor and the flux. Exploiting the advantages of the heuristic nature

of the genetic algorithm, it is possible to deliver automatically a group structure that

fits the needs of a specific reactor configuration, minimising the approximation error.

As regards the spatial homogenisation at the assembly level, different sophisticated

techniques have been suggested during the years. Smith, 1986 introduced the concept

of assembly discontinuity factor, outlining the so-called General Equivalence Theory,

while in Rahnema, 1989; Rahnema and Nichita, 1997; Rahnema and McKinley, 2002

it is showed that taking into account the leakage effects on the energy spectrum can

improve significantly the quality of the nodal calculations. In this spirit, Gamarino,

Dall’Osso, et al., 2018 have recently suggested to exploit a rehomogenisation method

that takes into account the energy spectrum shift between the infinite medium, used

to generate the data, and the current conditions of the system, in order to enhance

the nodal calculations accuracy. Concerning the choice of the weighting function used

to perform the collapsing and homogenisation, it is a standard practice to assume the

separation between angular and energy dependencies. Under this hypothesis, the total

flux is usually the preferable choice in order to preserve the reaction rates.

For a time-dependent problem, the weighting function would depend on time, so

eq. (4.2) would be

Σ𝑦,𝑔,𝑖(𝑡) = ∫𝑉𝑖 𝑑𝑟 ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑦(𝑟 , 𝐸, 𝑡)𝜓 (𝑟 , 𝐸, 𝑡)

∫𝑉𝑖 𝑑𝑟 ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝜓 (𝑟 , 𝐸, 𝑡) , 𝑔 = 1,… ,G, i = 1,… , I. (4.3)

In analogy to what occurs in eq. (4.1), also in this case the resulting effective cross sec-

tion depends on time. This dependence would still be valid even in case the continuous-

group cross section would be time-independent, due to the temporal variation of the
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weighting function. On top of the additional memory requirements associated to their

adoption, the calculation of time-dependent cross sections would be extremely com-

putationally demanding. Therefore, the weighting is usually accomplished with the

flux obtained by a static, 𝑘-based criticality calculation, 𝜑𝑘(𝑟 , 𝐸), for a set of different

operating conditions in order to be as close as possible to the time-dependent system.

As one could expect, this approximation yields very poor results when the system

is heavily off-critical, because

• the static calculation does not consider the time effects, like the accumulation term1/v(𝐸)𝜕/𝜕𝑡 ∗ and the action of the delayed neutrons;

• the 𝑘 eigenvalue distorts the energy spectrum of the physical, time-dependent

system.

In this respect, as pointed out in Dugan, Zmijarevic, and Sanchez, 2016; Dugan, Sanchez,

and Zmijarevic, 2018, a good alternative could be the adoption of the time eigenfunc-

tions 𝜑𝛼 (𝑟 , 𝐸) and 𝜑𝜔(𝑟 , 𝐸). The advantage of this approach is the fact that it is possible to

convey the information of the free time evolution of the system through the weighting

procedure, with a computational burden similar to the one of the static calculations, de-

spite some additional numerical difficulties that pertain to these spectral formulations

and that have been addressed, for instance, in section 3.3.4 and in Mancusi and Zoia,

2018.

In Dugan, Zmijarevic, and Sanchez, 2016, the fundamental time mode is proposed as

an alternative weighting function for collapsing a set of 281-group cross sections into

different few-group structures, with the goal of simulating a power excursion, due to an

accidental reduction of the capture cross section, in an infinite medium. In this paper,

a simplified lumped-parameters thermal model is coupled with the neutron transport

equation to take into account the feedback effects. This paper shows that, as expected

on a physical ground, the cross sections collapsed with the time eigenfunction allows

to improve the overall accuracy of the results, especially for super-prompt critical tran-

sients.

Due to the encouraging results of this paper and to some gaps in the literature con-

cerning this kind of analysis, this section will focus on assessing the advantages coming

from the adoption of the different eigenfunctions associated to the spectral forms of the

NTE as weighting functions for the few-group collapsing. To this aim, this section re-

ports some time-dependent calculations performed first with intermediate group struc-

tures and then with few-group structures, collapsing the data using the eigenfunctions

of the different formulations discussed in this chapter.
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4.2 Transient simulation framework
In order to be as much general as possible, the analysis will involve different energy

spectra (fast vs. thermal) and reactivity insertion levels (sub-prompt critical vs. super-

prompt critical), but it will not deal with spatial heterogeneity. Usually, the presence

of the spatial heterogeneity induces strong space-energy effects, thus the collapsing

procedure is often combined with a spatial homogenisation. However, as discussed in

the previous chapters, the most relevant differences in the fundamental eigenfunctions

computed with the various eigenvalue formulations are more related to their energy

spectrum rather than to their spatial shapes, which are very similar. Thus, this chapter

focuses only on homogeneous systems, leaving the analysis of the heterogeneity effects

and of the homogenisation as a future development.

The transient simulations are performed with the neutronic module of the multi-

physics code FRENETIC, developed in the last ten years at Politecnico di Torino by

former PhD students (Bonifetto, 2014; Caron, 2017). This module, written in Fortran,

implements a nodal diffusion solver and a wide variety of efficient methods for the reac-

tor kinetics, like the Improved Quasi-Static method and the Predictor-Corrector Quasi-

Static (PCQS) method (Caron, Dulla, and Ravetto, 2016). All the transient calculations

presented in this chapter are carried out exploiting the PCQS method, coupled with an

adaptive time-step selection for the solution of the shape and the amplitude functions.

The main purpose of FRENETIC is the simulation of 3D systems featured by closed,

hexagonal fuel assemblies, but the code allows to consider simplified geometries as

well, like 2D hexagonal systems and 1D cartesian systems. In this case, the choice of

the geometry arrangement is driven by the need of ensuring a consistent exchange

of information between the TEST code and FRENETIC. The first code is employed to

compute the eigenfunctions and to use them as weighting functions for the multi-group

data condensation, while the second is used to solve the time-dependent problems. The

choice of a one-dimensional geometry also forces to neglect the effects of the thermal

feedback, since FRENETIC currently supports coupled neutronics/thermo-hydraulics

simulations only for 3D systems. Thus, also this aspect is left as a future work.

In spite of the apparent simplicity of the problem, the generation of the FRENETIC

input is not a smooth operation, due to the low flexibility offered by the Fortran lan-

guage and to fact that the management of the few-group data needed for the transient

calculations is quite an error-prone operation. Since all the scenarios start from a steady

state, critical configuration, the driver of the transients is a perturbation in the set of the

multi-group cross sections. Therefore, FRENETIC requests a configuration file where

the set of group constants for each material region is specified for each configuration
time  . When the set of group constants changes between two configuration times  (𝑛)
and  (𝑛+1)

, the code linearly interpolates the data. To avoid the manual intervention of

the user and to ensure the reproducibility of the calculations, an external Python wrap-

per, named coreutils, has been developed as a high-level interface for the generation of

the FRENETIC input.
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Exploiting these codes, the calculation route described in the following was pursued

for each scenario presented in this chapter:

1. The input for the neutronic module of FRENETIC is generated with the coreutils
package;

2. The reference transient simulations are carried out with the set of group constants

collapsed on the intermediate group structure;

3. The intermediate group constants are used to solve the time, collision, multiplica-

tion, density and capture eigenvalue problems at each configuration time  , using

TEST;

4. The cross sections featuring each time configuration are collapsed with the eigen-

functions computed at the previous step. Also the collapsing process is performed

in TEST;

5. As done in Dugan, Zmijarevic, and Sanchez, 2016, the condensed fission cross

section is normalised to ensure that the system is initially critical at the round-off

precision. This correction factor, 1/𝑘eff,few−group, computed by solving the static 𝑘
eigenvalue problem in FRENETIC for the few-group system, allows to avoid that

the condensation errors produces slightly off-critical systems, ensuring that all the

cases analysed in this chapter start from the same initial condition;

6. The transient calculations with the few-group constants are carried out in FRE-

NETIC, leaving all the numerical settings used in the reference simulation unal-

tered;

7. The evolution of the main neutronic integral parameters computed in the two

cases, i.e. the effective neutron lifetime Λ(𝑡), the effective delayed neutron fraction𝛽eff(𝑡), the reactivity 𝜌(𝑡) and the total power 𝑃 (𝑡), is compared.

In order to ensure the full consistency between the two codes, the eigenfunctions,

except for the time ones, are computed with the P1 model and Marshak boundary con-

ditions, exploiting the equivalence between diffusion and P1. This choice makes the

solution of the 𝛿 formulation smoother, since the diffusion model would yield a non-

linear eigenproblem, as pointed out in chapter 3.

Concerning the time eigenvalue, due to the inherent difference between transient

diffusion and P1 equations, both models are used to determine the eigenfunctions. With

respect to the previous chapters, where both 𝛼 and𝜔 were considered, here only the last

formulation will be adopted, in order to properly account for the spectral effects due to

the prompt and delayed contributions. Since there are R+1 fundamental modes, whereR is the number of delayed neutron precursors families, a question concerning how

to actually define the weighting function may arise. Recalling the literature evidences

(Sanchez, Tomatis, et al., 2017; Henry, 1964), confirmed also in chapter 2 and chapter 3,
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the 𝜔-modes are featured by R delayed modes and one prompt mode. The delayed

cluster actually represents the fundamental eigenstate of the system defined by the

relationship between the neutron and the precursors populations, while the prompt

mode represents the prompt eigenstate of the system, before the contribution of the

delayed emissions becomes relevant. As mentioned, the cluster is characterised by a

set of fluxes that are very close to each other and by a set of precursors concentration

that can assume negative values. The flux shapes in the cluster are in general very close

but, in this case, they are the same, at numerical precision, because the delayed fission

emission spectrum evaluated by Serpent 2 is the same for each of the 𝑅 families.

As opposed to Dugan, Zmijarevic, and Sanchez, 2016, who consider some linear

combinations of the delayed and prompt modes as a weighting function, here only the

flux of the fundamental eigenstate, which is associated to the stable period of the system

and positive on the whole phase space, and the prompt mode are adopted as weighting

functions. The reason for this choice is that, to define a physically meaningful linear

combination, the flux at the beginning of each configuration interval must be known,

namely 𝜙(𝑥, 𝐸,  (𝑛)) = 𝑀∑𝑚=1 𝑎𝑚𝜑𝜔, (𝑛),𝑚(𝑥, 𝐸), (4.4)

where 𝜑𝜔, (𝑛),𝑚 indicates the𝑚-th mode computed with the set of group constants featur-

ing the system at time  (𝑛)
and 𝑀 spans from 1 up to R+1. The flux at each core config-

uration is generally not known a priori, except for the initial condition, i.e. 𝑡 = 𝑡0 =  (0)
.

As highlighted previously in this chapter, in real-life applications we usually aim at col-

lapsing the data for some reactor configuration without solving the multi-group tran-

sient, but rather solving a static problem. Thus, in this logic, the linear combination of𝜔-modes is not considered in this work.

In addition to these precautions, it is also assumed that the scattering is isotropic.

This hypothesis allows to ensure the full consistency between the multi-group con-

stants generated by Serpent, which adopts the so-called out-scattering approximation

for the evaluation of the diffusion coefficient (Leppänen, Pusa, and Fridman, 2016),

𝐷𝑔 = 13[Σ𝑡,𝑔 − ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸′Σ𝑠(𝑥, 𝐸′)𝑓1(𝑥, 𝐸′ → 𝐸)𝜙1(𝑥, 𝐸′)
∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸𝜙1(𝑥, 𝐸) ]−1

≈ 13[Σ𝑡,𝑔 − ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸′Σ𝑠(𝑥, 𝐸)𝑓1(𝑥, 𝐸 → 𝐸′)𝜙1(𝑥, 𝐸)
∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸𝜙1(𝑥, 𝐸) ]−1

= 13(Σ𝑡,𝑔 − Σ𝑠1,𝑔) .
(4.5)
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Due to this approximation, the first-order scattering moment used in the P1 model

would not be fully consistent with the diffusion coefficient estimated by Serpent, be-

cause of the small discrepancy introduced by this approximation. Therefore, assuming

the scattering isotropicity, the diffusion coefficient can be simply defined as follows,

𝐷𝑔 = 13Σ𝑡,𝑔 . (4.6)

Some benchmark calculations revealed that, thanks to this assumption, the difference

between TEST and the static module of FRENETIC amounts to some pcm in the worst

case.

The collapsing process, performed in TEST, is applied to all the group constants used

in the reference calculations, following the usual definitions (Bell and Glasstone, 1970)

of group constants, 1
v𝑔 ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 𝜑𝜉 (𝐸) = ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 1

v(𝐸)𝜑𝜉 (𝐸)𝐷𝑔 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 𝜑𝜉 (𝐸) = ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 13Σ𝑡(𝐸)𝜑𝜉 (𝐸)Σ𝑦,𝑔 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 𝜑𝜉 (𝐸) = ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 Σ𝑦(𝐸)𝜑𝜉 (𝐸)𝜈𝑔 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Σ𝑓 (𝐸)𝜑𝜉 (𝐸) = ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 𝜈(𝐸)Σ𝑓 (𝐸)𝜑𝜉 (𝐸)𝐸𝑓 ,𝑔 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Σ𝑓 (𝐸)𝜑𝜉 (𝐸) = ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 𝐸𝑓 ,𝑔(𝐸)Σ𝑓 (𝐸)𝜑𝜉 (𝐸)𝜒𝑧,𝑔 = ∫ 𝐸𝑔
𝐸𝑔−1 𝜒𝑧(𝐸)𝑑𝐸,

(4.7)

where 𝜉 indicates the eigenvalue formulation used for the condensation, 𝑦 may indicate

either capture or scattering or fission and 𝑧 refers to kind of fission emission spectra,

which can be either delayed or prompt. These relations allows to preserve the num-

ber of neutrons, the reaction rates, the number of neutrons emitted by fission and the

overall fission energy. It should be noticed that, with respect to eq. (4.2), the space de-

pendence is dropped due to the space-energy separation for a homogeneous medium

(Weinberg and Wigner, 1958; Dulla and Ravetto, 2020). This allows to weight the diffu-

sion coefficient on the flux spectrum rather than on the spectrum of its spatial gradient.

Before moving on, it is important to make some considerations concerning the fourth

step of the workflow presented above, i.e. the condensation of the group constants

at the beginning of each configuration interval. Since the multi-group cross sections

and diffusion coefficients are interpolated between two succeeding configuration times

 (𝑛)
and  (𝑛+1)

, the collapsing could be performed either with the eigenfunctions of
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4.3 – Homogeneous thermal system

the configuration at  (𝑛)
or with the eigenfunctions of the configuration at  (𝑛+1)

. In

analogy with the nomenclature used for the time discretisation schemes, these two

possibilities could be addressed respectively as implicit and explicit.
The implicit collapsing, in principle, should provide better results, because, in this

way, the multi-to-few group condensation would be carried out with the energy spec-

trum featuring the future state of the system,  (𝑛+1)
. However, this approach could not

be applied in practice if the thermal feedback was taken into account, because the tem-

perature field is usually not known at time 𝑡 =  (𝑛+1)
. On the contrary, in the explicit

collapsing case, the temperature field is known at 𝑡 =  (𝑛)
, meaning that the thermal

feedback evaluation is consistent with the flux spectrum. Since one of the aims of the

group collapsing is reducing the number of degrees of freedom of the problem to allow

its time-dependent, multiphysics solution, only the explicit collapsing will be consid-

ered in the following.

Concerning the tuning of the numerical parameters of the PCQM used for the so-

lution of the transients, a sensitivity study related to the most challenging transient

scenario showed that choosing the maximum time step allowed for the adaptive time

step selection during the reactivity update (Δ𝑡𝜌,max) equal to 1 × 10−5s and the maximum

time step allowed for the adaptive shape update (Δ𝑡𝜑,max) equal to 1 × 10−3s provides

results which are independent on the time steps, as visible from fig. 4.1.
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Figure 4.1: Sensitivity of the total power evolution with respect to the maximum time step
allowed for the shape update, with Δ𝑡𝜌,max = 1 × 10−5s.
4.3 Homogeneous thermal system

In this section, a homogeneous slab featured by a thermal energy spectrum is con-

sidered. The system, whose thickness is set to 250 cm, is filled with the same mixture of
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Spectral formulations as alternative weighting functions for group collapsing

UOx and water fissile isotopes which is used in chapter 3. The multi-group cross sec-

tions employed in the reference transient calculation are collapsed on the CASMO-25

structure with the Serpent 2 Monte Carlo code and then used as input for FRENETIC,

which discretises the slab in 60 uniformly spaced nodes. A graph of the energy spectrum

and of the group-grid used for the collapsing is provided in fig. 4.2.
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Figure 4.2: Flux energy spectrum of the initially critical system scored on the CASMO-25
grid and group structures used to perform the collapsing.

4.3.1 Sub-prompt positive reactivity insertion
The first transient scenario analysed is the insertion of a sub-prompt reactivity in

the critical system, obtained reducing the capture cross section on the whole energy

axis by the same amount, -0.75 %, at 𝑡 = 10 + 10−9 ms, in order to simulate the reactivity

insertion step.

Figure 4.3 shows the time evolution of the total power and of the total concentration

of the precursors for the given reactivity profile. After an initial sharp increase, the

power evolution is soon softened by the delayed neutrons emissions. Since there is no

thermal feedback, and the cross section set does not change anymore after 10 ms, the

flux shape is expected to behave asymptotically as the fundamental 𝜔-mode, which is

associated, in this specific case, to a positive time frequency.

For each configuration interval, i.e. the time interval between two configuration

changes, the set of fundamental eigenfunctions is evaluated using TEST, except for the

initial condition, since the system is critical and all the eigenfunctions are supposed to

be identical. Figure 4.4 shows the relative error between the time-averaged energy spec-

trum, computed by FRENETIC, and the corresponding energy spectrum of the different

eigenfunctions. In order to draw a consistent comparison between the two spectra,

the relative percentage error is computed between the time-average of the FRENETIC
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Figure 4.3: Evolution of the total power and total precursors concentration in the case of a
sub-prompt reactivity insertion (𝜌 = 431.2 pcm).

spectrum in each time configuration interval and the spectrum of the generic 𝜉 eigen-

function for the reactor configuration at 𝑡 =  (𝑛)
, namely

𝜖(𝐸)% = ∫  (𝑛+1)
 (𝑛) 𝑑𝑡[Ψ𝐹𝑅𝐸(𝐸, 𝑡) − Ψ𝑇𝐸𝑆𝑇 ,𝜉 , (𝑛)(𝐸)]

∫  (𝑛+1)
 (𝑛) 𝑑𝑡Ψ𝐹𝑅𝐸(𝐸, 𝑡) ∗ 100. (4.8)

As clearly visible from fig. 4.4, the eigenfunction with the closest spectrum are the

fundamental 𝜔 ones, consistently with the fact that the asymptotic period for this con-

figuration, 𝜏 = 1/𝜔0 =2235ms, is slightly shorter than the transient simulation time.

A part from the excellent agreement for the time eigenfunction case, it is interesting

to notice that the spectra which are the closest to the time-averaged spectrum of the

system are the 𝛾 and the 𝛿 ones, while the worst one is the 𝑘 mode, which is usually

employed for the condensation process.

Concerning the performances of the few-group data condensed with the different

eigenfunctions, some relevant information can be obtained by inspection of fig. 4.5. The

figure allows to observe the instantaneous ratio between the few-group to the multi-

group total power, according to the type of eigenfunction adopted. When the data

are condensed from 25 to 7 groups, the best weighting functions turn out to be the

time and the multiplication ones. On the contrary, when the data are collapsed in a

two-group structure, the best option seems to be the capture eigenfunction, while the

worst one is represented by the multiplication eigenfunction. In both cases, the collision

eigenfunction seem to provide a good accuracy with respect to the other weighting

functions. In addition to this observation, it is possible to notice that, when two groups

are used instead of seven, the few-group results are reasonably less accurate and the

differences between the various cases are more evident.

A quantitative and more thorough information concerning the error on the main

integral parameters featuring the transient is given for these two few-group cases in
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Figure 4.4: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

tables 4.1 and 4.2, where the relative 𝐿2 distance between the reference multi-group

quantity 𝑦MG(𝑡) and the approximated few-group one 𝑦FG(𝑡) duration is provided for

the whole transient duration, namely,

𝜖% = ||𝑦MG(𝑡) − 𝑦FG(𝑡)||2||𝑦MG(𝑡)||2 ∗ 100. (4.9)

In both cases, it is interesting to notice that the sensitivity of the effective neutron

lifetime Λ with respect to the weighting function chosen for the group condensation

is very small, while the sensitivity of the effective delayed neutron fraction 𝛽eff is neg-

ligible. On the contrary, both the reactivity and the total power are very sensitive to

the choice of the weighting function. Looking at the values of the relative errors it is

possible to appreciate that, in both cases, the 𝛾 collapsing ranks among the best three,

while the performances of the other eigenfunctions seem to be dependent on the en-

ergy structure adopted for the collapsing. In the CASMO-7 case, the fundamental time

eigenfunctions allow to get the closest results to the reference, while in the CASMO-2

case the most accurate matching is achieved with the capture eigenfunction 𝜃 .

4.3.2 Super-prompt positive reactivity insertion
When a super-prompt (𝜌 > 𝛽eff) critical reactivity is inserted, decreasing the capture

cross section by 1.5%, the system is featured by a faster dynamics, since the system is

super-critical considering only the prompt neutrons. As a consequence of the very fast

power growth, it is not possible to appreciate the characteristic prompt jump in the first

time instants of fig. 4.6.

Due to its very short asymptotic period, 𝜏 = 1/𝜔0 = 5.85 ms, also in this case the

time-averaged energy spectrum is very close to the one of the fundamental 𝜔 mode,
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Figure 4.5: Evolution of the ratio between the total power computed in the few-group cases
(CASMO-7 on the left, CASMO-2 on the right) and the total power in the reference case.

Table 4.1: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-2 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 723.76 340.85 543.75 245.97 485.27 683.30 485.27 683.29Λ 298.00 297.82 298.28 297.10 299.49 302.97 299.49 302.97𝛽eff 275.55 275.55 275.55 275.55 275.55 275.55 275.55 275.55𝑃 2361.23 1727.84 2091.01 1531.62 1993.45 2304.32 1993.45 2304.31

followed by the 𝛾 spectrum, as visible in fig. 4.7.

Despite this very good agreement in the energy spectra, the ratio between the ref-

erence power and the ones computed in the few-group transients shows that, despite

some noticeable differences among the weighting spectra, the error between the ref-

erence calculation and the collapsed ones is quite large. This discrepancy should be

mostly due to the approximation error related to the group averaging and its propa-

gation through time. Due to the fast dynamics, even a small difference between the

initial power profiles can cause larger and larger deviations as time goes by. In practi-

cal situations, this diverging behaviour does not occur, because of the negative thermal

feedback, which stabilises the power evolution. Despite this transient seems practically

meaningless, its study is important to highlight the strong biases induced by the group

collapsing in the transient evolution.

A clear example of the rôle played by the group choice can be found in fig. 4.8. When

the collapsing is carried out with the CASMO-7 groups, the best profile is obtained with
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Table 4.2: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-7 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 162.76 166.42 168.08 189.79 159.93 184.87 159.93 184.87Λ 43.63 43.67 43.63 43.77 43.93 44.33 43.93 44.33𝛽eff 53.80 53.80 53.80 53.80 53.80 53.80 53.80 53.80𝑃 777.62 787.92 792.54 851.41 769.59 838.39 769.59 838.39
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Figure 4.6: Evolution of the total power and total precursors concentration in the case of a
super-prompt positive reactivity insertion (𝜌 = 862.4 pcm).

the asymptotic 𝜔 mode, consistently with what observed in fig. 4.7. However, when the

CASMO-2 grid is employed, i.e. the classical two-group model with the cut-off at 0.625

eV, the profile obtained with the 𝜔 weighting is not the best one anymore. The largest

contribution to this discrepancy, which seems to contradict the excellent agreement

between the spectra in fig. 4.7, is mostly due to the fact that the spectral effects due to

the delayed neutrons are not distinguishable from the prompt one when a two-group

model is adopted.

Tables 4.3 and 4.4 show the relative error for the evolution of the main neutronic

integral parameters. As for the sub-prompt positive reactivity insertion, Λ and 𝛽eff are

not very sensitive to the collapsing function, while 𝜌 and 𝑃 are featured by a much

lower sensitivity than in the previous case.

4.3.3 Negative reactivity insertion
In this section, a shut-down transient is examined, increasing the capture cross sec-

tion of the medium by 0.8%, which corresponds to a negative reactivity insertion around
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Figure 4.7: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.
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Figure 4.8: Evolution of the ratio between the total power computed in the few-group cases
(CASMO-7 on the left, CASMO-2 on the right) and the total power in the reference case.

-460 pcm. For this system, the reactor period, 𝜏 = 1/𝜔0 = 79365 ms, is much longer than

the total transient duration, equal to 3000 ms, since 𝜔0 = −0.01211s−1 is lower-bounded

by the opposite of the smallest precursors decay constant, −𝜆1 = −0.0124667s−1. Nev-

ertheless, since the shapes in the cluster are equal within machine precision due to the

fact that they share the same delayed emission spectrum, the time-average spectrum is

still very close to the asymptotic 𝜔 mode, as for the previous cases.

Figure 4.11 shows the time-dependent ratio between the power computed in the

reference transient and the power computed with different group structures for each

eigenfunction. Also in this case, it is interesting to observe how the group choice

strongly affects the error behaviour for the different eigenvalue formulations. For all
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Table 4.3: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-2 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 188.65 144.79 167.22 135.25 153.68 160.62 153.68 160.62Λ 79.77 79.77 79.86 79.61 79.92 80.18 79.92 80.18𝛽eff 73.50 73.50 73.50 73.50 73.50 73.50 73.50 73.50𝑃 1326.30 1324.99 1325.71 1324.63 1325.29 1325.51 1325.29 1325.51

Table 4.4: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-7 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 42.46 43.33 43.77 49.05 39.99 41.85 39.99 41.85Λ 11.68 11.69 11.67 11.73 11.76 11.82 11.76 11.82𝛽eff 14.35 14.35 14.35 14.35 14.35 14.35 14.35 14.35𝑃 1179.40 1180.80 1181.50 1188.93 1175.02 1178.33 1175.02 1178.33

the few-group grids, all the collapsed transients exhibit the same behaviour immedi-

ately after the reactivity insertion, which occurs at 10 ms, but each case is featured by

a progressively larger error as the group structure becomes coarser. Then, around 100

ms, the effect of the delayed neutron precursors becomes more relevant and the profiles

behave quite differently. When the prompt 𝜔 mode is used to perform the collapsing,

the resulting system tends to underestimate the reference power with a rate related to

the grid structure. Despite it seems the best option when a two-group model is used,

this choice clearly gets worst and worst as time goes by.

On the contrary, the 𝛾 and the 𝜃 collapsed systems are featured by a slower error

increase in time, suggesting that they are the best weighting functions for this kind of

transient. The energy-dependent relative error reported in fig. 4.7 seems to confirm this

behaviour, except for the case with the 𝜔 collapsing, which does not always yield the

best results. A possible explanation of this behaviour is the fact that, since the system

is not yet in the asymptotic state during the time evolution, performing the collapsing

with the fundamental time mode introduces a larger error in the non-asymptotic part

of the transient.
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Figure 4.9: Evolution of the main integral parameters in the case of negative reactivity
insertion (𝜌 = −460 pcm).
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Figure 4.10: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

As for the previous cases, tables 4.5 and 4.6 provide a more precise quantification of

the errors associated to the different collapsing strategies. Also in this case both Λ and𝛽eff have a negligible sensitivity to the choice weighting function, while the reactivity

and the power strongly depend on it. As mentioned previously in this section, in order

to assess the quality of the various condensation schemes it is important to have a look

also on the time-dependent behaviour of the error. For this reason, the prompt time

mode is not the best solution despite the relative error is the lowest one. Again, one of

the most accurate transient is the one using the 𝛾 mode to perform the collapsing.

4.3.4 Positive and negative reactivity insertions
Figure 4.12 shows the power and the precursors total concentration in response to

a more sophisticated reactivity profile, that is composed by step and non-linear time
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Figure 4.11: Evolution of the ratio between the total power computed in the few-group cases
(CASMO-18 on top-left, CASMO-7 on top-right, CASMO-3 on bottom-left and CASMO-2
on bottom-right) and the total power in the reference case.

Table 4.5: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-2 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 293.34 173.33 228.45 146.03 214.58 91.82 214.58 91.81Λ 171.47 171.49 171.37 171.68 171.02 175.10 171.02 175.10𝛽eff 159.59 159.59 159.59 159.59 159.59 159.59 159.59 159.59𝑃 201.08 146.31 171.28 133.86 165.02 73.22 165.02 73.22

variations. At first, the capture cross section of the critical system gets perturbed by

-1.28 % and the system becomes super-prompt critical for 20 ms. Then, the positive

reactivity is compensated by a linear increase of the perturbed capture cross section by
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4.3 – Homogeneous thermal system

Table 4.6: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-18 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 4.87 3.38 4.44 1.03 5.22 18.58 5.22 18.58Λ 0.24 0.24 0.24 0.26 0.19 0.47 0.19 0.47𝛽eff 10.49 10.49 10.49 10.49 10.49 10.49 10.49 10.49𝑃 6.72 6.12 6.54 5.18 6.86 4.70 6.86 4.70

a factor 0.8% between 𝑡 =30 ms and 𝑡 =110 ms. This system is then perturbed again

linearly in time in such a way that the capture cross section at 𝑡 =110 ms is increased

by 2% at 𝑡 =410 ms. Finally, at 𝑡 =1000 ms the new capture cross section is decreased

linearly in time in order to obtain a decrease of -2.2 % at 𝑡 =2000 ms. The simulation is

then arrested at 3000 ms.
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Figure 4.12: Evolution of the total power and total precursors concentration in the case of
super- and sub-prompt positive and negative reactivity insertions.

Figure 4.7 provides the relative error between the time-averaged energy spectra ob-

tained by solving the time-dependent diffusion equation and the energy spectra of the

various eigenfunctions used in the condensation, for the most relevant time intervals.

For all intervals, except the one for 𝑡 ∈ [110, 410] ms, the 𝑘 spectrum is definitively the

worst one, while the spectra featured by the smaller error are the prompt and delayed𝜔 mode and the 𝛾 and 𝜃 modes. The instantaneous ratio between the few-group and

the reference power, displayed in fig. 4.14 for the CASMO-7 and the CASMO-3 grids,

behaves consistently, except for the 𝜃 eigenfunction when the CASMO-7 grid is used.

A more detailed information on the error behaviour of the main integral parameters is

reported in tables 4.7 and 4.8. Also for this more complex transient, the same comments
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made for the previous cases hold: only the power and the reactivity are very sensitive

to the weighting function choice, and the 𝛾 collapsing always ranks among the best two

options for both the CASMO-3 and CASMO-7 cases.
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Figure 4.13: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

Table 4.7: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-7 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 443.55 338.02 451.26 281.01 428.62 11931.31 428.63 11931.04Λ 56.44 56.46 56.39 56.50 56.63 58.92 56.63 58.92𝛽eff 69.55 69.55 69.55 69.55 69.55 69.55 69.55 69.55𝑃 1173.46 1203.80 1217.19 1383.55 1141.82 1329.16 1141.82 1329.16
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Figure 4.14: Evolution of the ratio between the total power computed in the few-group
cases (CASMO-7 on the left, CASMO-3 on the right) and the total power in the reference
case.

Table 4.8: % relative error for the whole transient between the reference CASMO-25 cal-
culation and the few-group calculations using the various eigenfunction to collapse on the
CASMO-3 grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the effective
neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total thermal
power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 1241.72 709.94 1212.69 557.87 1009.46 67814.07 1009.46 67812.01Λ 444.48 443.95 444.36 443.66 444.58 452.85 444.58 452.85𝛽eff 69.52 69.52 69.52 69.52 69.52 69.52 69.52 69.52𝑃 2635.34 2233.27 2519.29 2027.05 2518.40 3068.71 2518.41 3068.70

4.4 Homogeneous fast system
The second set of cases involves a homogeneous slab featured by a fast energy spec-

trum. The system, whose thickness is set to 200 cm, is filled with the same mixture of

MOx which is used in the inner fuel assemblies of the LEADER version of the ALFRED

reactor (Grasso, Petrovich, et al., 2014). The multi-group cross sections employed in the

reference transient calculation are collapsed on the ECCO-33 structure with the Serpent

2 Monte Carlo code (Leppänen, Pusa, et al., 2015) and then used as input for FRENETIC,

which approximates the slab using 40 nodes. A graph of the energy spectrum and of

the group-grid used for the collapsing is provided in fig. 4.15.

In the following, the same types of transients analysed for the thermal system are

presented and discussed, in order to make a consistent comparison between the two

systems and to favour some general conclusions.
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Figure 4.15: Flux energy spectrum of the initially critical system scored on the ECCO-33
grid and group structures used to perform the collapsing.

4.4.1 Sub-prompt positive reactivity insertion
In this section, a sub-prompt super-critical transient is triggered perturbing the cap-

ture cross section by -0.75 %, at 𝑡 = 10 + 10−9 ms, again with the purpose of reproducing

the step reactivity insertion.

Figure 4.16 shows the total power and total precursors concentration evolution in

response to the step insertion of reactivity. After the prompt jump, which is sharper

than the one featuring the thermal case because of the faster dynamics featuring the

fast system (Λtherm ≈9.6 × 10−6s−1 against Λfast ≈4.4 × 10−7s−1), the power evolution slows

down thanks to the delayed neutrons emissions, which are less effective than in the

thermal system case (𝛽eff,therm ≈ 698 pcm against 𝛽eff,fast ≈ 309 pcm).
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Figure 4.16: Evolution of the total power and total precursors concentration in the case of
a sub-prompt reactivity insertion (𝜌 = 431.2 pcm).
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Figure 4.17: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

In analogy with the corresponding thermal case, the flux shape behaves asymptoti-

cally as the fundamental 𝜔-mode, the asymptotic period of the system is much shorter

than the one featuring the analogous thermal system, 𝜏fast ≈ 405ms against 𝜏therm ≈2235ms. This aspect is made evident by fig. 4.17, which shows the usual relative error

between the various energy spectra with respect to the reference one. It is interest-

ing to observe that, in this case, the 𝛾 and the 𝛿 spectra are the most accurate one in

representing the time-averaged spectrum, after the 𝜔 mode.

101 102 103
time [ms]

0.2
0.4
0.6
0.8
1.0

P/P ref
[-

]

k �� !, P1!pr, P1 !!pr

101 102 103
time [ms]

0.20.4
0.60.8
1.0

P/P ref
[-

]

k �� !, P1!pr, P1 !!pr

Figure 4.18: Evolution of the ratio between the total power computed in the few-group
cases (PoliTO-LFR-12A on the left, PoliTO-LFR-6A on the right) and the total power in the
reference case.

However, fig. 4.18 shows that, concerning the ratio between the few-group power

and the reference one, the 𝜃 and the 𝛾 collapsing seem to provide more accurate results

with respect to the other eigenfunctions, especially with respect to 𝜔. This is probably
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due to the fact that, despite the asymptotic spectrum basically corresponds to the fun-

damental time mode, using this spectrum to perform the few-group collapsing may not

be necessarily adequate to produce good results before the asymptotic state is reached,

i.e. for 𝑡 approximately smaller than 405ms. As a matter of fact, the curves have a

similar trend up to 𝑡 around 200ms, but then they start to diverge. In light of these

considerations, it may be reasonably assumed that the 𝜃- and 𝛾 -collapsed few-group

data may not be as accurate as 𝜔 in reproducing the asymptotic energy spectrum, but

they are more accurate in yielding the overall system dynamics, including the instants

before the asymptotic period.

Table 4.9: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-12A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 23.55 73.55 50.26 76.50 15.19 11.94 15.17 11.93Λ 132.19 131.80 131.76 132.01 131.72 131.67 131.72 131.67𝛽eff 169.44 169.44 169.44 169.44 169.44 169.44 169.44 169.44𝑃 3385.67 2807.02 2988.39 2782.07 3234.19 3294.05 3234.34 3293.98

Tables 4.9 and 4.10 report the 𝐿2-error norm for the whole transient duration for

the most relevant integral parameters. As for the thermal system, also in this case

it is possible to notice that the parameters which are most sensitive to the weighting

function used in the collapsing are the reactivity and the power. The results of these

tables confirm the trends observed in fig. 4.18, but they show that, quite interestingly,

the 𝛾 -collapsing provides a better power evolution than the one obtained with the 𝑘-

collapsing although 𝜌 computed in this last case is more accurate. Since these quantities

are related, in the quasi-static method, through the equations for the amplitude function𝐴(𝑡), ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝐴(𝑡)𝑑𝑡 = 𝜌(𝑡) − 𝛽eff(𝑡)Λ(𝑡) 𝐴(𝑡) + R∑𝑖=1 𝜆𝑖𝑐𝑖(𝑡)𝑑𝑐𝑖(𝑡)𝑑𝑡 = 𝛽eff(𝑡)Λ(𝑡) 𝐴(𝑡) − 𝜆𝑖𝑐𝑖(𝑡) 𝑖 = 1,… ,R, (4.10)

it appears that, for the same value of 𝛽eff , a better estimate of Λ is more advisable than

a better estimate on the reactivity to obtain an overall better estimate of the power.
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Table 4.10: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-6A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 123.72 171.01 92.57 198.84 77.62 106.41 77.67 106.37Λ 366.15 365.53 365.59 365.92 365.65 365.59 365.65 365.59𝛽eff 220.23 220.23 220.23 220.23 220.23 220.23 220.23 220.23𝑃 4129.74 3110.48 3638.93 2864.24 4005.79 4091.07 4006.00 4090.97

4.4.2 Super-prompt positive reactivity insertion
With a super-prompt (𝜌 > 𝛽eff) critical reactivity insertion, the dynamics of the sys-

tem gets faster, diverging rapidly. With respect to the thermal case, the system is only

slightly super-prompt critical, thus it is possible to appreciate the characteristic prompt

jump in the first time instants of fig. 4.19. Due to its very short asymptotic period,
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Figure 4.19: Evolution of the total power and total precursors concentration in the case of
a super-prompt positive reactivity insertion (𝜌 = 310.8 pcm) pcm).𝜏 = 1/𝜔0 = 4.437 ms, as visible in fig. 4.20, also in this case the time-averaged energy

spectrum is very close to the one of the fundamental 𝜔 mode, except in the low energy

groups, where the flux is very low. The second most accurate spectrum is the 𝛿 one. By

inspection of the figure, it is clear that the spectra that fail the most in reproducing the

time-averaged spectrum are the 𝑘 and the 𝜃 one.

Nevertheless, the cross section collapsed with the 𝜃 spectrum seem to provide the

best results, compared to the power computed with the ECCO-33 grid. It is interesting

to notice that, when the cross sections are collapsed with the six-group grid, the ratio

between the collapsed and the reference power reaches a minimum for the 𝜃 and 𝛾 cases.
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Figure 4.20: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

From a physical point of view, both systems have reached their transient asymptotic

state, which means that their shape in the phase space should not change anymore,

and that the only varying quantity is the amplitude, which in this case should increase

exponentially. Therefore, the fact that the ratio has a minimum is very likely due some

numerical effect.
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Figure 4.21: Evolution of the ratio between the total power computed in the few-group
cases (PoliTO-LFR-12A on the left, PoliTO-LFR-6A on the right) and the total power in the
reference case.

Concerning the overall trend of the ratio, also in this case it should be considered

that, due to the fast dynamics and due to its monotonic behaviour, even a small differ-

ence between the initial power profiles can diverge after a few ms. This fact suggests

that a future development of this analysis should consider the effects of the thermal

feedback, which should dampen not only the power evolution, but, probably also the
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4.4 – Homogeneous fast system

numerical error between reference and collapsed calculations.

Table 4.11: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-6A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 22.54 31.14 17.69 36.02 14.27 14.98 14.26 14.99Λ 70.35 70.21 70.23 70.28 70.25 70.25 70.25 70.25𝑃 918.34 914.03 915.99 912.02 917.53 917.63 917.53 917.63𝛽eff 42.29 42.29 42.29 42.29 42.29 42.29 42.29 42.29

Tables 4.11 and 4.12 provide the usual integral parameters as a function of the group

structure used for the collapsing (six- and twelve-group, respectively) and of the eigen-

function used as weight. In the first table, it is possible to appreciate the higher accu-

racy of the reactivity collapsed with the time eigenfunction, while the differences in

the power relative error are so tiny that it is hard to assess the notice the effect of the

collapsing function. Concerning the adoption of the PoliTO-LFR-12A group grid, it can

be noticed that the best reactivity is provided collapsing with 𝑘, which, however, is fea-

tured by the largest error in the power. For this last parameter, the best cases are the

ones obtained with 𝜃 and 𝛾 , due to the fact that the error decreases after the minimum

is reached. Once again, the effective delayed neutron fraction and the effective life-

time are not influenced at all by the collapsing choice, but only by the group structure

selection.

Table 4.12: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-12A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 4.25 25.08 17.58 26.04 5.80 5.09 5.81 5.09Λ 25.43 25.23 25.22 25.32 25.21 25.21 25.21 25.21𝑃 898.15 687.75 829.56 642.17 881.15 882.76 881.14 882.78𝛽eff 32.54 32.54 32.54 32.54 32.54 32.54 32.54 32.54
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4.4.3 Negative reactivity insertion
Mirroring the corresponding section for the thermal system, in the following a typi-

cal shut-down transient is analysed, perturbing the capture cross section of the medium

to get a negative reactivity insertion around -250 pcm, which is almost the half of the

reactivity drop featuring the thermal case (-460 pcm). The corresponding reactor period

is, again, much longer than the overall transient duration, 𝜏 = 1/𝜔0 = 82569 ms, because

of the delayed effects. As for the thermal case, the asymptotic 𝜔 mode reproduces very

well the time-averaged spectrum, since the delayed neutrons have the same emission

spectrum, which implies that their shapes in the delayed cluster are equal within ma-

chine precision.
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Figure 4.22: Evolution of the main integral parameters in the case of negative reactivity
insertion (𝜌 = −250 pcm).
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Figure 4.23: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.
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The usual time-dependent figure of merit, depicted in fig. 4.24, has a similar be-

haviour to the corresponding thermal case, except for the fact that, in this case, the

fundamental time mode provides the best error trend. Compared to the other cases,

this one exhibits an almost steady error evolution and, thus, seems the best in repro-

ducing the reference result during the overall transient duration.
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Figure 4.24: Evolution of the ratio between the total power computed in the few-group
cases (CASMO-18 on top-left, PoliTO-LFR-12A on top-right, PoliTO-LFR-6A on bottom-left
and CASMO-2 on bottom-right) and the total power in the reference case.

However, an inspection of the relative error on the integral parameters in table 4.13

would suggest that, concerning the power, the best options for the collapsing are 𝜃
and 𝛾 for the six-group case and 𝜔𝑝𝑟 , 𝜃 and 𝛾 for the twelve-group case. This "wrong"

suggestion is clearly a consequence of the fact that, during the transient evolution,

the ratio between the few-group and the reference power tends to unity and, then,

goes below it. If the transient was longer, the integral error would certainly change in

favour of the 𝜔 case. This suggests that a future analysis should consider also some

"local" definition of the relative error, maybe evaluating it in some fixed instants of the

transient.

4.4.4 Positive and negative reactivity insertions
Figure 4.25 shows the response of the power and of the precursors concentration to a

complex reactivity evolution, obtained with step and non-linear variations. At first, the

capture cross section of the critical system gets perturbed by -0.9 % to induce a super-

prompt critical transient for 20 ms. Then, the positive reactivity is compensated by a

linear increase of the perturbed capture cross section by a factor 0.8% between 𝑡 =30 ms

and 𝑡 =110 ms. Afterwards, a linear perturbation in time occurs, such that the capture

cross section at 𝑡 =110 ms is increased by 2% at 𝑡 =410 ms. The last variation is obtained

decreasing linearly the new capture cross section in order to obtain a decrease of -2.2

% at 𝑡 =2000 ms. The simulation is stopped at 3000 ms.
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Table 4.13: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-6A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 123.41 170.66 92.44 197.49 76.58 477.48 76.63 477.45Λ 370.57 371.18 371.11 370.83 371.03 370.32 371.03 370.32𝑃 195.22 91.34 116.61 87.51 164.98 155.39 165.02 155.37𝛽eff 220.23 220.23 220.23 220.23 220.23 220.23 220.23 220.23

Table 4.14: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-12A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 24.24 73.09 50.01 75.56 15.66 154.91 15.64 154.90Λ 132.59 132.96 132.99 132.78 133.01 132.42 133.01 132.42𝑃 109.25 67.64 77.07 66.70 94.37 48.59 94.38 48.59𝛽eff 169.44 169.44 169.44 169.44 169.44 169.44 169.44 169.44

Due to the complex reactivity evolution, the relative error between the time-averaged

energy spectra and the energy spectra of the various eigenfunctions is reported in

fig. 4.20 for the most relevant time intervals. For all these intervals, except the one

for 𝑡 ∈ [110, 410] ms, the 𝜔 spectrum is the most accurate one, followed by the prompt

time spectrum when the time interval duration is not too long. Concerning the static

eigenfunctions, 𝛿 seems the most accurate one in most of the different time intervals,

with a relative error slightly larger than the one featuring 𝜔, while 𝜃 is almost always

the worst one.

Notwithstanding these relative error trends, fig. 4.27 clearly shows that, with respect

to the thermal case, the performance of the various collapsing eigenfunctions are much

more sensitive to the choice of the few-group grid. Specifically, in the six-group case,

the 𝜃 eigenfunction seems even the best option for the cross section generation. In the

case with twelve groups, the best case is the 𝛿 one, consistently with the observations

on the relative error of the energy spectrum.

Compared to the previous case, the relative error on the power, visible in tables 4.15

and 4.16, is completely consistent with the trend observed in fig. 4.27. Concerning the
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Figure 4.25: Evolution of the total power and total precursors concentration in the case of
super- and sub-prompt positive and negative reactivity insertions.
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Figure 4.26: Group-wise, relative error between the time-averaged spectrum computed by
FRENETIC and the spectrum of the different eigenvalue formulations as a function of the
incident neutron energy.

reactivity, the most accurate values are obtained with the fundamental time eigenmode

with both energy grids.
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Figure 4.27: Evolution of the ratio between the total power computed in the few-group
cases (PoliTO-LFR-12A on the left, PoliTO-LFR-6A on the right) and the total power in the
reference case.

Table 4.15: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-6A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 36.70 187.64 136.11 190.38 45.67 5045.21 45.63 5044.66Λ 171.18 171.45 171.47 171.33 171.47 170.44 171.47 170.44𝑃 5483.67 4559.65 4968.87 4490.10 5321.41 5399.57 5321.37 5399.70𝛽eff 218.99 218.99 218.99 218.99 218.99 218.99 218.99 218.99

Table 4.16: % relative error for the whole transient between the reference ECCO-33 calcu-
lation and the few-group calculations using the various eigenfunction to collapse on the
PoliTO-LFR-12A grid for some relevant integral parameters: 𝜌 is the reactivity, Λ is the
effective neutron lifetime, 𝛽eff is the effective delayed neutron fraction and 𝑃 is the total
thermal power.

k 𝛾 𝛿 𝜃 𝜔, P1 𝜔𝑝𝑟 , P1 𝜔 𝜔𝑝𝑟𝜌 170.14 467.81 272.24 525.50 61.16 18048.22 61.25 18045.64Λ 476.91 477.35 477.29 477.11 477.22 475.98 477.22 475.98𝑃 5749.29 67907.89 3229.64 272479.40 5584.67 5782.53 5584.55 5782.73𝛽eff 284.64 284.64 284.64 284.64 284.64 284.64 284.64 284.64
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4.5 Conclusions
In this chapter, one of the current open issues in reactor physics, i.e. the cross section

group-collapsing, has been addressed from the point of view of the weighting spectrum

used to perform the integration over the energy range. In particular, the use of the

fundamental eigenfunctions associated to the different eigenvalue formulations arising

in neutron transport is investigated as an alternative to the usual choice of considering

the 𝑘-eigenvalue spectrum.

Due to the problem complexity and to the large number of parameters affecting the

group constant generation, the analysis was carried out performing some numerical

experiments for a simplified system, i.e. a homogeneous slab, for which the calculation

of the various eigenfunctions is possible using the TEST code. The choice of neglecting

any heterogeneity effect allowed to focus on the energy effects related to the system

spectrum, to the choice of the weighting function and to the energy group structure

used for the cross sections and diffusion coefficient condensation.

For the sake of generality, several calculations were carried out, analysing different

basic transient scenarios, featured by positive and negative reactivity insertions, con-

sidering both a thermal and a fast spectrum. In order to be consistent in the examination

of the various scenarios, each reactivity modification involved the modification of the

group-wise capture cross section of the system. The choice for this kind of perturbation

is that is allows to mimic the behaviour of a control rod, which is usually the reactivity

driver in an operating reactor.

The analysis showed that it is actually very difficult to foresee the performances of

each weighting eigenfunction only relying on physical considerations, because of the

appearance of numerical error compensations in the condensation scheme that depend

on the type of the reactivity insertion, on the few-group grid, on the type of the eigen-

function and, of course, on the system energy spectrum.

Nevertheless, it is possible to conclude that, in most of the cases, the 𝑘 eigenfunction,

which is the one traditionally employed in the group constant generation process, is

certainly the one yielding the worst results, especially when the system is far from

criticality. In this respect, the best option for the condensation procedure seems to be 𝛾
energy spectrum. Actually, other eigenfunctions like the 𝜔 and the 𝜃 ones may provide

slightly more accurate results than the ones produced with the 𝛾 condensation, but the

evaluation of these eigenfunctions is always much more computationally expensive.

On top of that, the performances of 𝛾 can found a justification on a physical ground,

since, among the static eigenvalue formulations presented in the thesis, it is the one

which distorts the less the energy spectrum of the system.

From this perspective, the low relative error obtained with the 𝜃 collapsing may be

explained by the fact that both the nature of the perturbation and the 𝜃 eigenvalue

definition involve the capture cross section. In order to shed some light on this aspect,

the reactivity should be driven by the change of other parameters, for example the

fission cross section or the density of the system, which are strongly related to 𝑘 and 𝛿 ,
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respectively.

In order to draw some more general conclusions, other numerical experiments should

be envisaged in the future. In addition to the analysis of the influence of the kind of

perturbation triggering the reactivity insertion, the spatial and energy effects related

to the presence of heterogeneities in the system should be definitively taken into ac-

count. Finally, the thermal feedback should be introduced, especially for the analysis of

heavily off-criticality.
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Chapter 5

A generalised eigenvalue
formulation for core-design
applications

I stand upon my desk to remind myself that we

should constantly look at things in a different

way. See, the world looks very different from

up here. . . Just when you think you know

something, you have to look at it in another

way. Even if it may seem silly, or wrong, you

must try.

Prof. John Keating, Dead Poets Society

5.1 Introduction
In chapter 3, the various eigenvalue formulations available in the literature have

been examined, highlighting their potential application as design-oriented tools. From

the designer perspective, all of these spectral forms of the NTE share the issue of show-

ing unsatisfactory adherence to the physical constraints that are practically encoun-

tered when the design is actually carried out. Exploiting the features of the eigenvalue

problem formulations in neutron transport theory, and aiming at improving the core-

design phase, a new eigenvalue formalism is thus introduced and some of its potential-

ities are discussed in this chapter, analysing some relevant problems of reactor physics.

As mentioned in the previous chapters, the design of the core of a nuclear fission re-

actor has been traditionally carried out focusing on the 𝑘 eigenvalue. According to the
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value of 𝑘eff , i.e. the fundamental eigenvalue 𝑘0, the designer can immediately under-

stand how far the system is from criticality. Assuming that a certain system is featured

by 𝑘 > 1, the designer guesses that the multiplication properties of the core should

decrease, either changing its geometrical features to increase leakage or changing its

material properties, e.g. increasing parasitic capture or decreasing fission, but no pre-

cise indication on what has to change can be obtained. Most of the times, the other

design constraints can guide this selection. For example, the fuel pins should have a

minimum surface-to-volume ratio for thermo-hydraulics requirements, so the critical-

ity could be attained, in this case, acting only on the material composition. However,

the quantitative information provided by 𝑘 is not sufficient to practically achieve criti-

cality. As discussed in chapter 3, 𝑘 can be interpreted as a correction factor for the total

fission production, so it can be viewed as a correction either for Σ𝑓 or for 𝜈 . In the first

case, changing the total fission cross section would imply to change the absorption and

the total cross sections as well, while changing 𝜈 is not possible unless acting on the

mixture of fissile materials, which implies to change the cross sections of the medium.

At this point, it should be clear that the quantitative information delivered by 𝑘 does

not provide a physically consistent indication for the design. The same could be argued

also for the 𝛾 and the 𝜃 cases.

On the contrary, the other design-oriented formulation, i.e. the density eigenvalue𝛿 , provides a correction factor for the medium density, so it acts simultaneously on all

the cross sections. In principle, this information is physically consistent, but it may not

be useful from a practical point of view, as it is not always possible to act on the atomic

density of a certain material. Moreover, the same correction factor should be applied to

each nuclide composing the medium, meaning that this formulation does not allow to

handle specific regions, e.g. the fuel pins or the control rods.

This chapter presents an innovative formulation of the density eigenvalue, based

on a generalised eigenvalue formulation, which overcomes the issues of the traditional𝛿 formulation in order to be applicable for design-oriented applications. In the next

section, this new eigenvalue formulation will be derived starting from a generalisation

of the neutron transport eigenvalue problem, while in the rest of the chapter some

relevant problems in reactor physics will be analysed in light of this new formulation,

in order to show its advantages with respect to the legacy calculation approach.

Part of the content of this chapter has been already published as a conference pro-

ceedings for the Physor 2022 conference,

• N. Abrate, S. Dulla, P. Ravetto, P. Saracco, "Formulation of the Density Eigenvalue
Problem in Neutron Transport for Relevant Engineering Applications", Proceedings

of the PHYSOR 2022 conference, Pittsbutgh, PA (U.S.A.), 2022.

Part of the content of this chapter was also presented, after a preliminary selection, at

the European Nuclear Education Network (ENEN) PhD event 2022, hosted during the

FISA2022-EURADWASTE’22 conference, where I was awarded with the ENEN Prize

2022 ex aequo with other two PhD students.

152



5.2 – The theory of the 𝜁 eigenvalue

5.2 The theory of the 𝜁 eigenvalue
Except for the time eigenvalues, which naturally arise from the Laplace transform

of the NTE, all the other design-oriented formulations discussed so far are simply de-

rived introducing an eigenvalue in front of the operator of interest. Recalling here the

definition of eigenvalue problem at the basis of the design-oriented formulations, given

in eq. (2.19), �̂��⃗�𝜉 ,𝑛 = 𝜉𝑛�̂��⃗�𝜉 ,𝑛, (5.1)

it is evident that the eigenvalue 𝜉𝑛 turns out to be a tuning parameter that is used to

force the system to reach the criticality condition. In this case, this parameter acts on

the operator �̂� and, consequently, on the phase space where this operator is defined.

For example, in case 𝜉 was 𝑘, this parameter would act only on those regions of the

phase space where 𝜒 (𝑥, 𝐸)𝜈(𝑥, 𝐸′)Σ𝑓 (𝑥, 𝐸′) ≠ 0, i.e. only on the fissile nuclides in the

active regions and only on the fission energy range.

As such, it would be still valid, from both a mathematical and a physical point of

views, to introduce the eigenvalue to act on a more specific portion of the phase space.

Let’s assume, for example, that the objective of the design is to determine which is the

amount of captures that a cluster of control rods should ensure in order to compensate

the excess of reactivity for a fresh fuelled, thermal reactor. In this case, due to the

spectrum of the system, we could assume that our control rods are made of a thermal

absorber, like cadmium. Since the control rods are localised in a specific position in the

core, it is possible to introduce the 𝜃 eigenvalue as follows,

(�̂� + �̂� 0 + �̂�0 − �̂� − �̂�) 𝜑𝜃𝑛 = 1𝜃𝑛(𝑟 , 𝐸) �̂�𝜑𝜃𝑛 , (5.2)

where the dependence of the eigenvalue with respect to the spatial and energy variable

should be interpreted as

𝜃𝑛(𝑟 , 𝐸) = {𝜃𝑛 ∀𝑟 ∈ 𝐶𝑅 , ∀𝐸 ∈ [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥]1 otherwise. (5.3)

The symbol 𝐶𝑅 indicates the volume of the control rods, while [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥] indicates

the thermal range for the capture cross section of the cadmium.

With respect to the formulation given in chapters 2 and 3, this alternative form of 𝜃
allows to estimate the capture reaction rate needed to achieve criticality for a specific

region, without affecting the other ones. However, from a practical point of view, this

form is still unsatisfactory, as it includes also other nuclides in addition to cadmium,

e.g., the structural materials composing the rods. Therefore, to achieve the maximum

level of flexibility, the eigenvalue formulation should be generalised in order to act only

on the nuclides of interest.

In this case, the quantitative information obtained by solving the 𝜃 eigenvalue prob-

lem would be a correction factor 1/𝜃eff for the capture cross section of cadmium, Σ𝑐,𝐶𝑑 (𝐸) =
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𝑁𝐶𝑑𝜎𝑐,𝐶𝑑 (𝐸). Since it is not possible to change 𝜎𝑐,𝐶𝑑 (𝐸), which is an intrinsic property of

cadmium, the correction factor should be interpreted as a scaling factor for its atomic

density 𝑁𝐶𝑑 . However, if the cadmium concentration was re-scaled, also the other cross

sections of cadmium, like the scattering one, would change. Hence, in light of this con-

sideration, the only physically meaningful eigenvalue turns out to be the density eigen-

value, which is the only one able to provide scaling factors consistent with the physics.

In order to distinguish this generalised eigenvalue from the classic one, hereafter this

eigenvalue will be addressed as 𝜁 .

Considering a system defined in a limited spatial domain  , filled by a mixture of

M nuclides, each characterised by a local atomic density 𝑁𝑚(𝑟), 𝑚 = 1,… ,M, the gen-

eralised eigenvalue problem 𝜁 for a specific isotope, identified as 𝑚⋆
and located in a

region 𝑚⋆ , would yield

Ω⃗ ⋅ ∇𝜙(𝑟 , 𝐸, Ω⃗) + M∑𝑚=1𝑚≠𝑚⋆[𝑁𝑚(𝑟)𝜎𝑡,𝑚(𝐸)]𝜙(𝑟 , 𝐸, Ω⃗) + 1𝜁 [𝑁𝑚⋆(𝑟)𝜎𝑡,𝑚⋆(𝐸)]𝜙(𝑟 , 𝐸, Ω⃗) =
M∑𝑚=1𝑚≠𝑚⋆ ∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚(𝑟)𝜎𝑠,𝑚(𝐸′)]𝑓𝑠,𝑚(𝑟 , 𝐸′→𝐸, Ω⃗′ ⋅ Ω⃗)𝜙(𝑟 , 𝐸′, Ω⃗′)+1𝜁 ∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚⋆(𝑟)𝜎𝑠,𝑚⋆(𝐸′)]𝑓𝑠,𝑚⋆(𝑟 , 𝐸′→𝐸, Ω⃗′ ⋅ Ω⃗)𝜙(𝑟 , 𝐸′, Ω⃗′)+M∑𝑚=1𝑚≠𝑚⋆ ∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚(𝑟)𝜈𝑚(𝐸′)𝜎𝑓 ,𝑚(𝐸′)]𝜒𝑚(𝐸)4𝜋 𝜙(𝑟 , 𝐸′, Ω⃗′)+1𝜁 ∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚⋆(𝑟)𝜈𝑚⋆(𝐸′)𝜎𝑓 ,𝑚⋆(𝐸′)]𝜒𝑚⋆(𝐸)4𝜋 𝜙(𝑟 , 𝐸′, Ω⃗′),

(5.4)

for 𝑟 ∈ 𝑚∗, while, for 𝑟 ∉ 𝑚∗,
Ω⃗ ⋅ ∇𝜙(𝑟 , 𝐸, Ω⃗) + M∑𝑚=1 [𝑁𝑚(𝑟)𝜎𝑇 ,𝑚(𝐸)]𝜙(𝑟 , 𝐸, Ω⃗) =M∑𝑚=1∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚(𝑟)𝜎𝑠,𝑚(𝐸′)]𝑓𝑠,𝑚(𝑟 , 𝐸′→𝐸, Ω⃗′ ⋅ Ω⃗)𝜙(𝑟 , 𝐸′, Ω⃗′)+M∑𝑚=1∫ 𝑑𝐸′ ∮ 𝑑Ω⃗′ [𝑁𝑚(𝑟)𝜈𝑚(𝐸′)𝜎𝑓 ,𝑚(𝐸′)]𝜒𝑚(𝐸)4𝜋 𝜙(𝑟 , 𝐸′, Ω⃗′),

(5.5)

imposing the continuity of the angular flux on any internal interface. It should be no-

ticed that it is not required that the zone 𝑚∗ is simply connected, meaning that the

same eigenvalue can be applied also to different zones in the reactor at the same time.

Eqs. 5.4-5.5 constitutes a general eigenvalue problem that allows to estimate the

effect of a specific nuclide and its positioning within the reactor on the total neutron

balance in a completely self-consistent way. In general, the eigenvalue 𝜁 could be de-

fined to filter a more specific volume in phase space, as for the example of cadmium,
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thus including the possibility to select a specific energy window and a specific reaction

channel. In this sense, each eigenvalue formulation discussed so far can be interpreted

as a particular case of the 𝜁 model:

• 𝑘 is restricted to the phase space region featured by Σ𝑓 (𝑟 , 𝐸) ≠ 0;

• 𝛾 is applied to each phase space region and nuclide featured by a particle emission;

• 𝜃 filters the specific capture reaction, extending to the whole phase space and to

each nuclide;

• 𝛿 is defined over the whole phase space and applies to each nuclide.

Due to its generality, it is extremely difficult to provide a formal proof concerning the

existence and uniqueness of an eigenfunction with uniform sign over the phase space.

Since 𝜁 includes also the other formulations, the same considerations made in chapter 3

hold under some hypotheses. If 𝜁 was cast into a 𝑘 form, it would be always possible to

assess the existence and uniqueness of a fundamental eigenpair. On the contrary, if 𝜁
was cast as 𝜃 , the existence of a positive eigenvalue would not be guaranteed. Despite

this lack of formal evidences could seem a bit disappointing, it is not an issue from a

practical standpoint. In the framework of the core design, the designer is aware that, in

the design process, different possibilities may arise: the lack of a fundamental solution

would simply mean that it is not possible to obtain a steady state system acting on that

particular isotope and region of the phase space, while, if one or more fundamental

eigenpair exist, this would mean that the problem can be solved.

The following sections present a set of relevant applications of this new eigenvalue

problem, showing in more detail these different possibilities.

5.2.1 Implementation in the TEST code
Exploiting the built-in classes already implemented in TEST to handle the various

eigenvalue formulations presented in chapter 2, an ad hoc sub-class was defined to

properly handle the 𝜁 formulation and its action on specific nuclides and/or portions

of the phase space. Aiming at maximising the code flexibility, the full set of matrix

operators appearing in eq. (2.13) are first assembled for the initially off-critical system.

Then, the formulation is built acting on the different operators, according to a user-

defined object that represents the volume of the phase space and the nuclides on which𝜁 should operate. If the nuclide of interest does not exist in the starting off-critical

system, e.g., the boron to be diluted in water, its few-group cross sections are read and

the set of the matrix operators are defined accordingly in order to yield eq. (5.4). Because

of the additional implementation complexities that may arise, TEST does not currently

support matrix-free, iterative solution of eq. (5.4), like the transport-sweep algorithm.
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5.3 Determination of the moderation ratio for a ho-
mogeneous mixture of fuel and moderator

One of the classical problems of reactor physics is the determination of the criti-

cal moderator-to-fuel ratio in a thermal reactor. Due to the competition between the

neutron slowing down and the parasitic captures that both occur in the moderator, it

is usually possible to find two critical moderation ratios 𝑁𝑚/𝑁𝑓 , where 𝑁𝑚 and 𝑁𝑓 are

the atomic density of the moderator and of the fuel material, respectively (Weinberg

and Wigner, 1958). A typical example of the behaviour of the effective multiplication

constant for a thermal system moderated by light water can be found in fig. 5.1, which

has been constructed iteratively changing 𝑁𝑚, for a fixed value of 𝑁𝑓 . In case the lowest

value of 𝑁𝑚 is selected, the critical structure is said to be under-moderated, while, in

case the largest one is employed, the system is said to be over-moderated. The existence

of a maximum in this curve induces the designer to choose the under-moderated con-

figuration, because of its better behaviour in presence of instabilities. There are at least

two physical justifications for this choice. From a purely neutronic point of view, this

configuration is more spatially coupled, so it is less sensitive to localised perturbations.

Consequently, the under-moderated arrangement is featured by a larger eigenvalue sep-

aration (ES), which is a well established figure of merit to assess the spatial stability of

a reactor (Beckner and Rydin, 1975; Vitali, 2020). From a thermo-hydraulics point of

view, an increase of the average temperature of the system would cause a larger varia-

tion in the density of the moderator, meaning that the moderation ratio of the system

would decrease and that, consequently, the multiplication factor of the system would

increase, destabilising the system.

Table 5.1: Critical moderation ratios 𝑁𝑚/𝑁𝑓 to achieve criticality for a slab thick 170 cm
filled with a homogeneous mixture of fissile material and light water, computed with the𝜁 formulation and with an iterative procedure.𝜁 formulation iterative approach𝑁𝑚/𝑁𝑓 keff 𝑁𝑚/𝑁𝑓 keff

0.09096 1.00000 [0.09060, 0.09132] [0.99918, 1.00082]

20.01752 1.00000 [19.98347, 20.14059] [1.00074, 0.99734]

Figure 5.1 shows the keff behaviour for a slab, thick 140 cm and filled with a ho-

mogeneous mixture of fissile material and light water, as a function of the moderation

ratio. Following the common practice, the critical moderation ratios, i.e. the red dots

in the figure, are determined increasing iteratively the moderator density, using 1000

uniformly-spaced values. Therefore, each dot in the Figure corresponds to the solution

of a 𝑘-eigenvalue problem cast in the two-group P1 model.
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Figure 5.1: Effective multiplication factor as a function of the moderation ratio for a two-
group homogeneous system of thickness 140 cm and filled with a mixture of uranium oxide
enriched at 3% and light water.

Both solutions can be obtained "exactly", without iterations, introducing the 𝜁 eigen-

value in front of the moderator density. Table 5.1 provides the density correction factors

needed to attain criticality computed with the two methods. For the iterative approach,

the range including the critical values is reported. The presence of two critical config-

urations is reflected by the existence of two fundamental eigenfunctions, both featured

by a uniform sign across the domain. These modes are showed in fig. 5.2 with the first-

and second-order harmonics. By inspection, it is easy to notice that the solution as-

sociated to the larger value of 𝜁 , i.e. the one requiring the largest moderator density

reduction, is associated with a harder spectrum, featured by a spectral index roughly

equal to 0.6, than the second arrangement, featured by a spectral index about 71. Figure

5.3 represents the full 𝜁 eigenvalue spectrum. Thanks to the detail on the right of the

figure, it is possible to appreciate the existence of two batches of eigenvalues around

the stars, which represents, as usual, the fundamental eigenvalues. The largest value

represents the under-moderated configuration, while the other star represents the over-

moderated one. These figures are very informative. First, it is extremely interesting to

notice that the eigenvalue separation ES in the first batch is much larger than the sec-

ond one, where the eigenvalue are very close to each other. Then, it is possible to notice

that the over-moderated fundamental is the lowest values in its batches, meaning that

its ES is negative.

This fact, which can be appreciated also looking at the eigenvalues reported in

the legend of fig. 5.2, is consistent with the known relationship between ES and the

core spatial decoupling degree, and would have an important implication: the designer

could look only for the dominant eigenpair, avoiding the determination of the full spec-

trum. However, this peculiarity depends on the system initial configuration. When

the starting off-critical configuration is featured by a larger moderation ratio, closer to

the critical over-moderated configuration, the situation is reversed, i.e. the largest 𝜁
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corresponds to the over-moderated solution. Since the 𝜁 spectrum behaviour is case-

dependent, computing only the dominant eigenvalue could be risky. This observation

seems to suggest that, in order to find all the physically meaningful solutions and to

choose the best one, the complete spectrum should be estimated. In case this would not

be affordable, a smart computational strategy for the reduction of the computational

burden could be to use a low-order transport model (e.g. with fewer energy groups and

less angular detail) to look for the approximated fundamental eigenvalues, which then

could be used in the well known shift-and-invert procedure to enhance the eigenvalue

solver convergence towards more precise estimates of the eigenvalues (Saad, 1992). Al-

ternatively, if some basic knowledge of the various possible critical arrangements was

available, the calculation could be made more efficient starting from a configuration

close to the desired one.
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Figure 5.2: Higher-order, two-group 𝜁 modes for a homogeneous mixture of light water
and fissile material. The spectral index 𝜙1/𝜙2 of the systems is equal to 70.3 and 0.6 for the
under- and over-moderated cases, respectively.

5.4 Determination of the moderation ratio for a reg-
ular lattice

Due to its great flexibility, 𝜁 can be used to deal with more complex problems, for

example the determination of the moderation ratio for a heterogeneous arrangement of

fuel and moderator layers, surrounded by a reflector. In this case, the iterative search

of the critical moderation ratio is more expensive, due to the larger number of spatial

nodes needed to resolve the spatial gradients. Of course, the design is usually carried

out using smart, non-linear root-finding algorithms, like the Newton-Raphson method
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Figure 5.3: 𝜁 eigenvalue spectrum for a homogeneous mixture of light water and fissile
material. The stars are the eigenvalues associated to positive modes.

(Quarteroni, Sacco, and Saleri, 2010), to minimise the number of static calculations re-

quired. However, the presence of more solutions, like in this case, can have a detri-

mental effect on such techniques, limiting their effectiveness. As visible from fig. 5.4,

which has been again obtained iteratively, three critical configurations could be devised

for a lattice composed by 17 sheets, 3 cm thick and composed of uranium oxide (UOx)

enriched at 3%, and 16 sheets of water 3 cm thick, surrounded at both sides by 20 cm of

water used as a reflector. It is important to remark here that, despite the curve seems

to approach a fourth zero around 𝑁𝑚/𝑁𝑓 = 102, it was not possible to found a solution

to the static, 𝑘 problem around these values of 𝑁𝑚, due to the ill conditioning of the

moderator cross sections, which assume very large, unphysical values.
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Figure 5.4: Effective multiplication factor as a function of the moderation ratio for a two-
group heterogeneous system composed of alternating layers of fuel and moderator.

In this case it is possible to determine three possible critical eigenstate, casting the
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𝜁 eigenvalue problem as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + 1𝜁 𝑁𝑚𝜎𝑡,𝑚(𝐸)𝜙(𝑥, 𝐸, 𝜇) =1𝜁 ∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑚𝜎𝑠,𝑚(𝐸′)𝑓𝑠,𝑚(𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) 𝑥 ∈ 𝑚,

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇) =∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) + 𝑥 ∉ 𝑚,

∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑚(𝑥, 𝐸′)Σ𝑓 ,𝑚(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)
(5.6)

where 𝑚 is defined as {[𝑥1, 𝑥2], ∪[…] ∪ [𝑥𝑖 , 𝑥𝑖+1]}. In the first equation, the eigenvalue

acts only on the nuclide density 𝑁𝑚 featuring the homogeneous water sheets, while

in the second one the cross sections are expressed as space-dependent functions since

they refer to the reflector and to the fuel regions.

Eq. 5.6 makes possible, also in this case, to determine the three scaling factors 1/𝜁 for

the moderator density identified by the iterative procedure used to draw the curve in

fig. 5.4. In order to distinguish the eigenvalues belonging to the fundamental set, i.e. the

eigenvalues associated to eigenfunctions with uniform sign over the phase space, they

will be indicated in the following as 𝜁0 ∗, where ∗ is replaced by a letter. In this specific

case, the largest eigenvalue in the fundamental set will be indicated as 𝜁0𝑎, while the

smallest fundamental eigenvalue will be indicated as 𝜁0𝑐 .
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Figure 5.5: Fundamental two-group 𝜁 modes for the heterogeneous arrangement of light
water and fissile material.

The thermal and fast fluxes associated to these configurations are represented on
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top of the lattice geometry in fig. 5.5. These eigenfunctions correspond to the critical

neutron distribution in the phase space, provided that the moderator density was modi-

fied by a factor 1/𝜁 ∗0 . The black curve, associated to the largest fundamental eigenvalue,

i.e. to the under-moderated solution, presents smaller spatial gradients in the core, con-

sistently with the larger degree of spatial coupling, while the red curve, associated to

the over-moderated solution 𝜁0𝑏, shows significant oscillations in both the fast and the

thermal fluxes. These local oscillations in the fluxes are due to the stronger interplay

between slowing down and fission for larger moderator densities: the moderation is

a sink for the fast population and a source for the thermal one, while the fission pro-

duces fast neutrons and removes thermal ones. This mechanism is exacerbated when

the moderator density is further increased adopting the scaling factor 1/𝜁0𝑐 . Similar

considerations hold also for the spatial behaviour of the first harmonic, represented in

fig. 5.6. In this case, only the 𝑎 and the 𝑏 modes are showed in order to make the figure

cleared.
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Figure 5.6: Fundamental two-group 𝜁 modes for the heterogeneous arrangement of light
water and fissile material.

As for the homogeneous case, the eigenvalue spectrum for 𝜁 , in fig. 5.7, presents

batches of eigenvalues near the fundamental ones. The first batch is well separated,

while the other two batches, related to the over-moderated configurations, are less and

less separated, as visible in the right part of the figure.

The fact that the largest fundamental eigenvalue, 𝜁0𝑎, is featured by the largest domi-

nance ratio 𝜁0𝑎/𝜁1𝑎 is a very nice feature of the 𝜁 formulation. From a numerical point of

view, the convergence speed of the numerical algorithms for the solution of the eigen-

value problems is always somehow proportional to the dominance ratio, especially for

the legacy power method. Thus, if the system was closer to the desired configuration,

the convergence should be enhanced, avoiding the risk of finding one of the other pos-

sible critical arrangements.

As pointed out in this chapter, one of the advantages of 𝜁 is that the consistency

of the cross sections of the system is guaranteed by acting only on the atomic density
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Figure 5.7: 𝜁 eigenvalue spectrum for the heterogeneous arrangement of light water and
fissile material. The stars are the eigenvalues associated to positive modes.

of one or more nuclides. Notwithstanding this inherent advantage, it is not always

possible to practically act on the atomic density. According to the medium considered,

the atomic density could be interpreted macroscopically as a chemical concentration

or as a physical density. In the first case, the range of variation for the isotope atomic

density is determined by the solubility of the solute into the solvent. This situation is

often encountered in nuclear engineering, for example when the boric acid H3BO3 is

dissolved in water to control the reactivity in PWRs or when some fissile nuclides like233U or
239Pu are added to a molten salt reactor. In these cases, the solubility range is

usually wide enough to allow a fine regulation of the atomic concentration that is useful

in most situations (Cacuci, 2010). Hence, the scaling factor 1/𝜁 could be effectively

achieved.

On the contrary, when the atomic density corresponds to the physical density, as

in the case of the moderator choice, the designer is not free to change 𝑁 , which is a

physical property of the medium that depends on its thermodynamic conditions. From

this perspective, 𝜁 seems to provide a quantitative information that is not practically

achievable, as for the other eigenvalue formulations. However, under some rather mild

assumptions, it is possible to prove that 1/𝜁 can be interpreted as a scaling factor for

the geometrical volumes containing the isotope under investigation, in analogy to what

occurs with the 𝛿 formulation, for which 𝜁 is a generalisation.

Recalling eq. (3.16), which shows that scaling the geometry by a factor 𝛽 , ⃗ = 𝛽𝑟 ,
scales the density eigenvalue by the same factor, it is possible to prove quite easily that

also (5.6) behaves similarly for a one-dimensional cartesian system, provided that the

scaling is applied only to the geometrical volume where 𝜁 is actually operating. In

particular, by choosing 𝛽 = 1/𝜁eff , i.e. x = 1/𝜁eff𝑥 and 𝑚 = 1/𝜁eff𝑚, it is possible to
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obtain a critical system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 𝜕𝜙(x, 𝐸, 𝜇)𝜁eff𝜕x + 1𝜁eff𝑁𝑚𝜎𝑡,𝑚(𝐸)𝜙(x, 𝐸, 𝜇) =1𝜁eff ∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑚𝜎𝑠,𝑚(𝐸′)𝑓𝑠,𝑚(𝐸′→𝐸, 𝜇′)𝜙(x, 𝐸′, 𝜇′) x ∈ 𝑚,

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇) =∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) + 𝑥 ∉ 𝑚.

∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑚(𝑥, 𝐸′)Σ𝑓 ,𝑚(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)
(5.7)

as the 1/𝜁eff terms cancel out. As for the 𝛿 eigenvalue, the physical consistency of this

local volume scaling can be justified intuitively referring to the fact that the microscopic

cross sections are not altered by this procedure, which only affects the streaming term.

This relationship cannot be extended in a straightforward manner also to more com-

plex 2D and 3D systems, due to the fact that scaling a certain region would imply a

modification also to the surface-to-volume ratio of the surrounding regions. Due to

these intricacies, it is likely that this property holds only for some very specific cases,

for example when 𝜁 is formulated in a 𝛿 fashion, i.e. it acts on all the regions of the

system. Hence, further analyses are left for a future development of this work.

In addition to these assumptions, 𝜁 should act on all the isotopes contained in the

phase space volume 𝑚∗. It is easy to prove that, in case 𝜁 is introduced in front of a

specific isotope 𝑚∗
inside the selected phase space volume 𝑚∗ , scaling the geometrical

volume would not be equivalent to change the density of that specific nuclide, since

the factor 1/𝜁eff would operate on the volume containing also the other nuclides 𝑚 ≠𝑚∗
. Therefore, 𝜁eff can be interpreted either as a density scaling factor with constant

geometry (always) or as a geometrical volume scaling factor for constant density and

cross sections (under some assumptions). Despite the volume is scaled only in some

non-simply connected zones of the system, the consistency of the system of equations

is ensured by enforcing the continuity of the angular flux at the interfaces.

In the following, an example involving the estimation of the geometrical scaling is

provided for a sub-critical (𝑘eff=0.92070) lattice composed by 17 fuel sheets, each 1 cm

thick and made of 3% enriched UOx, and 16 water sheets, each 0.2 cm thick, surrounded

by a 4 cm thick water reflector on both sides. Solving the 𝜁 eigenvalue problem for

the moderator provides two correction factors, namely 1/𝜁0𝑎 = 1.54392 and 1/𝜁0𝑏 =37.76805. Figure 5.8 provides a graphical sketch of the critical configurations obtained

adjusting the moderator volume inside the lattice according to the two values of 𝜁 , while

fig. 5.9 shows the off-critical system and the under-moderated configuration on the

same scale. As expected, the under-moderated design, obtained with a slight increase

of the moderator thickness between each couple of fuel sheets, is more compact than
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Figure 5.8: Under-moderated critical lattice (left) and over-moderated critical lattice (right)
designed using the 𝜁 eigenvalue.
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Figure 5.9: Initial off-critical lattice (top) and under-moderated critical lattice.

the other one, proving once again its better spatial stability. The spatial distribution of

the thermal and fast critical fluxes for the two cases, visible in fig. 5.10, further confirms

this observation: the under-moderated case, on the left, is featured by a rather smooth

profile, similar to what occurs in a homogeneous system, while the over-moderated

case presents local spikes in both groups.

As mentioned previously, the decoupling degree of a system can be inferred in a

more rigorous way from the eigenvalue separation (ES) or from the dominance ratio

(DR) of the system under design. An intuitive relationship between of the ES and the

system stability can be found in the framework of the Generalised Perturbation Theory,

which was mainly developed during the ’80s by Gandini (Gandini, 1978; Gandini, 1981;

Gandini, 1987). Following the basic idea at the basis of other well known expansion
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Figure 5.10: Fast and thermal fluxes for the under- (left) and over-moderated (right) design
solutions.

methods like the Helmholtz one, he proposed to exploit the higher-order eigenfunctions

of a reference, unperturbed configuration, namely(�̂� − 𝜉0�̂�)�⃗�0 = 0, (5.8)

as a basis for the estimation of the approximated eigenpair of a perturbed system,(𝐴′̂ − 𝜉 ′𝐵′̂ )𝜑 ′⃗ = 0, (5.9)

avoiding to solve directly the full perturbed eigenproblem. The perturbed operators

can be assumed as the unperturbed operators with the addition of a small perturbation,

explicitly 𝐴′̂ = 𝐴′̂ + 𝛿𝐴′̂ , 𝐵′̂ = 𝐵′̂ + 𝛿𝐵′̂ . According to the GPT approach, the perturbed

eigenvalue and eigenfunction can be expressed as infinite series, reading

𝜉 ′ = 𝜉 (0) + 𝜉 (1) + … + 𝜉 (∞) = 𝜉 (0) + ∞∑𝑛=1 𝜉 (𝑛) = 𝜂0 + ∞∑𝑛=1 𝜉 (𝑛), (5.10)

and 𝜙′ = �⃗� (0) + �⃗� (1) + … + �⃗� (∞) = �⃗� (0) + ∞∑𝑛=1 �⃗� (𝑛) = �⃗�0 + ∞∑𝑛=1 �⃗� (𝑛), (5.11)

where the first term for the two series, 𝜂0 and �⃗�0, are the fundamental eigenvalue and

eigenfunction of the reference system, while 𝜉 (𝑖) and �⃗�(𝑖)
are the 𝑖-th order perturbations

for the eigenvalue and flux, respectively. Substituting equations (5.10) and (5.11) into the

perturbed eigenproblem (5.9) and equating the terms of the same order, the following
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recursive set of equations can be obtained:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(�̂� − 𝜂0�̂�)�⃗�0 = 0(�̂� − 𝜂0�̂�)�⃗� (1) = −(𝛿�̂� − 𝜂0𝛿�̂�)�⃗�0 + 𝜉 (1)�̂��⃗�0...(�̂� − 𝜂0�̂�)�⃗� (𝑛) = −(𝛿�̂� − 𝜂0𝛿�̂�)�⃗� (𝑛−1) + 𝑛−1∑𝑘=1 𝜉 (𝑘)�̂��⃗� (𝑛−𝑘) + 𝑛−1∑𝑘=1 𝜉 (𝑘)𝛿�̂��⃗� (𝑛−𝑘−1) + 𝜉 (𝑛)�̂��⃗�0.

(5.12)

The direct solution of such system can be avoided by means of projections on the adjoint

eigenfunctions �⃗�+𝑖 of the following equation:(�̂� − 𝜂𝑖�̂�)�⃗�𝑖 = 0. (5.13)

Exploiting the so-called Standard Method proposed in Gandini, 1978, it is assumed that

the 𝑛-th order flux perturbation �⃗�(𝑛)
can be explicitly estimated as linear combinations

of the harmonics of the unperturbed eigenvalue problem, �⃗�𝑖 , as

�⃗�(𝑛) = ∞∑𝑖=0 𝑎(𝑛)𝑖 �⃗�𝑖 , (5.14)

where 𝑎(𝑛)𝑖 are unknown expansion coefficients to be determined. Exploiting the bi-

orthogonality property between direct and adjoint harmonics and isolating the 𝑖-th or-

der perturbation terms, the quantities 𝜉 (𝑖) and 𝑎(𝑛)𝑖 can be estimated as:

𝜉 (𝑛) = ⟨�⃗�+0 | |(𝛿�̂� − 𝜉 (0)𝛿�̂�)�⃗�(𝑛−1)⟩ − 𝑛−1∑𝑘=1 ⟨�⃗�+0 | |𝜉 (𝑘)�̂��⃗�(𝑛−𝑘)⟩ − 𝑛−1∑𝑘=1 ⟨�⃗�+0 | |𝜉 (𝑘)𝛿�̂��⃗�(𝑛−𝑘−1)⟩⟨�⃗�+0 | |�̂��⃗�0⟩ , (5.15)

𝑎(𝑛)𝑚 = 1(𝜂𝑚 − 𝜂0) ⟨�⃗�+𝑚| |�̂��⃗�𝑚⟩[𝑛−1∑𝑘=1[𝜉 (𝑘)𝑎(𝑛−𝑘)𝑚 ⟨�⃗�+𝑚| |�̂��⃗�𝑚⟩ + ∞∑𝑖=0 𝜉 (𝑘)𝑎(𝑛−𝑘−1)𝑖 ⟨�⃗�+𝑚| |𝛿�̂��⃗�𝑖⟩]+
− ∞∑𝑖=0 𝑎(𝑛−1)𝑖 ⟨�⃗�+𝑚| |(𝛿�̂� − 𝜉 (0)𝛿�̂�)�⃗�𝑖⟩].

(5.16)

By inspection of the equation for 𝑎(𝑛)𝑚 , it is possible to notice that the magnitude of the

coefficient is inversely proportional to the distance between the fundamental eigen-

value and the higher-order eigenvalues of the reference system, {𝜂1, 𝜂2,… , 𝜂𝑚}. When𝑚 = 0, the singularity is avoided imposing that all the values 𝑎(𝑛)0 satisfy an arbitrary

condition, consistently with the homogeneous nature of the perturbed eigenvalue prob-

lem. A common practice consist in fixing the fission rate of the perturbed system to be
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equal to the reference one, i.e. ⟨1| |∗⟩ �̂� �⃗�0 = ⟨1| |∗⟩ 𝐹 ′̂ 𝜙 ′⃗
. When 𝑚 > 0, the magnitude

of the perturbation coefficient, so the perturbation term itself, is inversely proportional

to 1/(𝜂𝑚 − 𝜂0), i.e. the eigenvalue separation ES. With the appropriate definitions, the

generic eq. (5.8) can be cast into the different eigenvalue formulation discussed in chap-

ter 2. For example, the 𝑘 eigenproblem would be obtained imposing �̂� = �̂�, �̂� = �̂� and𝜂𝑛 = 1/𝑘𝑛, which implies that1ESk = 1
( 1𝑘𝑚 − 1𝑘0) = 1(𝜂𝑚 − 𝜂0) . (5.17)

Therefore, the inverse proportionality between the ES and the intensity of the pertur-

bation term 𝑎(𝑛)𝑚 is independent on the eigenvalue formulation adopted, meaning that,

in principle, the ES associated to each spectral formulation can be useful to assess the

stability of a multiplying system. It is important to remark here that the ES may not

be a very informative figure of merit per se, but it becomes a powerful indicator when

it is computed for different system configurations. In this respect, the ES is a valuable

criterion to guide the neutronic design of a reactor (Shirakata, Sanda, and Nakashima,

1999). In this specific case, it is interesting to compare the values of the ES computed

with different eigenvalue formulations for the possible design solutions determined by

the 𝜁 problem. To this aim, these figures of merit and the related dominance ratios,

defined as DR = 𝜂1/𝜂0, are reported in table 5.2.

Table 5.2: Critical moderation ratios 𝑁𝑚/𝑁𝑓 to achieve criticality for a slab thick 170 cm
filled with a homogeneous mixture of fissile material and light water, computed with the𝜁 formulation and with an iterative procedure.𝜁0𝑎 = 0.74697 𝜁0𝑏 = 0.02748

eig. ES DR ES DR𝛼 −2.09226 × 107 −3.24026 × 10−12 −2.78505 × 106 −8.80089 × 10−10𝛾 1.43712 × 10−2 1.01437 3.77510 × 10−4 1.00038𝛿 1.41445 2.41445 −2.32373 × 10−1 7.67627 × 10−1𝑘 8.59768 × 10−1 1.85977 3.83623 × 10−2 1.03836𝜃 −9.60989 −8.60989 −6.01560 × 10−2 9.39844 × 10−1
As it could be expected, the critical solution featured by the largest value of 𝜁 presents

the largest eigenvalue separation for the different eigenvalue formulations, despite some

significant variations. The prompt time eigenvalue yields the largest eigenvalue sepa-

ration, while the collision eigenvalue 𝛾 yields the smallest one. The other formulations

falls between these two. The capture eigenvalue 𝜃 yields a negative ES, since the funda-

mental eigenvalue is smaller than the one associated to the first harmonic, as visible in
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fig. 3.22a. It is interesting to notice that 𝛿 presents two fundamental harmonics in ad-

dition to the critical one. This peculiarity, discussed in chapter 2, makes ambiguous to

evaluate the ES. In this case, the distance between the fundamental critical eigenvalue

(𝛿 = 1) and the first harmonic is evaluated.

When the design solution is over-moderated, all the eigenvalues exhibit a reduction

of their distance from the first harmonic, meaning that the system is more spatially

decoupled, i.e. it is more sensitive to the localised perturbation than to the neutron

leakages. The eigenvalue formulations featured by the largest variation from one case

to the other are the capture eigenvalue, the collision eigenvalue and the density eigen-

value, suggesting that it is worth investigating their capability of delivering information

about the system stability in alternative to the ES computed referring to 𝑘.

5.5 Determination of the boron concentration for re-
activity control

Another fundamental problem in the operation of PWRs is the search for the critical

boron concentration to be diluted in the water to control the reactivity during normal

conditions. Even in this case, the common approach to determine this parameter is

resorting to iterations. Exploiting the generalised density eigenvalue, it is possible to

avoid iterations, by looking for the fundamental 𝜁 eigenvalue. Assuming that the mod-

erator surrounding the fuel sheets can be modelled as a homogeneous material, the 𝜁
eigenvalue problem can be cast as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + 1𝜁 𝑁𝑎𝜎𝑡,𝑎(𝐸)𝜙(𝑥, 𝐸, 𝜇) + 𝑁𝑚𝜎𝑡,𝑚(𝐸)𝜙(𝑥, 𝐸, 𝜇) =
∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑚𝜎𝑠,𝑚(𝐸′)𝑓𝑠,𝑚(𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′)+1𝜁 ∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑎𝜎𝑠,𝑎(𝐸′)𝑓𝑠,𝑎(𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) 𝑥 ∈ 𝑎,
𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇) =∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) + 𝑥 ∉ 𝑎,∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑚(𝑥, 𝐸′)Σ𝑓 ,𝑚(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)

(5.18)

where 𝑁𝑎 indicates the absorber atomic density, 𝑁𝑚 indicates the moderator absorber

atomic density and 𝑚 is defined as {[𝑥1, 𝑥2], ∪[…] ∪ [𝑥𝑖 , 𝑥𝑖+1]}. This equation is then

cast in a two-group, P1 model assuming linearly anisotropic scattering, using the group

constants computed with Serpent 2.
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Figure 5.11 (left) shows the two-group, off-critical flux (𝑘eff = 1.02420), computed

with the 𝑘 eigenvalue problem, for a super-critical system with no boron in water and

the two-group eigenfunction that corresponds to the critical flux in case some boron

with density multiplied by 1/𝜁 is added to the water inside the coolant layers. The

geometrical representation refers to the critical case. As expected on a physical ground,

the addition of a thermal absorber to the coolant has an impact on the energy spectrum

of the system, which is featured by a slight spectrum hardening.
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Figure 5.11: Two-group fundamental off-critical (𝑘) and critical (𝜁 ) modes for a heteroge-
neous arrangement of fuel and borated water sheets, surrounded by a light water reflector
(left) and eigenvalue spectrum (right).

Figure 5.11 (right) shows the full 𝜁 spectrum. Since the phase space where the eigen-

value is defined comprises only a neutron poison, there is only one possible critical

configuration, associated to the fundamental eigenvalue, while most of the spectrum

degenerates around zero. This behaviour can be justified on a physical ground. When

the moderator density is changed, it is possible to identify more critical solutions, due

to the competition between absorption and scattering of the moderator. On the con-

trary, the absorber influences the reactivity of the system monotonically, thus only one

configuration can be devised.

5.6 Fissile concentration for reactivity control in the
Molten Salt Fast Reactor

Similarly to the case concerning the determination of the critical boron concentra-

tion, the 𝜁 spectrum appears to have a unique solution when the objective of the analysis

is the determination of the critical concentration for a fissile material.

Solving this problem efficiently is very important in several situations. For example,

one could be interested in estimating which is the minimum fissile enrichment needed

to sustain criticality for a given fuel composition, e.g., mixed oxides (MOx) of uranium
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and plutonium coming from reprocessed spent fuel. Alternatively, the same problem

would be relevant for the evaluation of the fissile inventory needed to operate a fluid

core system, like the Molten Salt Fast Reactor (MSFR) design, conceived in the European

Union funded projects EVOL, SAMOFAR and SAMOSAFER. One of the advantages of

using a fluid core would be the continuous adjustment of criticality acting on its com-

position, through the injection of fresh fuel and the extraction and reprocessing of the

fuel containing the fission products. From this perspective, the 𝜁 formulation could be

extremely valuable, as it could be employed to estimate the fissile concentration needed

in different operating configurations of the system.

Having this application in mind, in the following the generalised eigenvalue formu-

lation will be applied to determine the critical concentration of
233U to be diluted in the

core of the MSFR (Allibert, Gérardin, et al., 2017), starting from an initial sub-critical

configuration (𝑘eff = 0.98072),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + 1𝜁 𝑁𝑓𝜎𝑡,𝑓 (𝐸)𝜙(𝑥, 𝐸, 𝜇) + 𝑁𝑠𝜎𝑡,𝑠(𝐸)𝜙(𝑥, 𝐸, 𝜇) =
∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑠𝜎𝑠,𝑠(𝐸′)𝑓𝑠,𝑚(𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′)+1𝜁 ∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝑓𝜎𝑠,𝑓 (𝐸′)𝑓𝑠,𝑓 (𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′)+
∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑠(𝑥, 𝐸′)Σ𝑓 ,𝑠(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)+
∫ ∞
0 𝑑𝐸′ 1𝜁 ∫ 1

−1 𝑑𝜇′𝜈𝑓 (𝑥, 𝐸′)Σ𝑓 ,𝑓 (𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′) 𝑥 ∈ 𝑓 ,
𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇) =∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) + 𝑥 ∉ 𝑓 ,∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑛(𝑥, 𝐸′)Σ𝑓 ,𝑛(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)

(5.19)

where 𝑁𝑓 indicates the fissile atomic density, 𝑁𝑠 indicates the atomic density of the

FLiTh salt, 𝑁𝑛 indicates the nuclides constituting the liquid breeding blanket and 𝑓 is

defined as [−𝐻,𝐻 ], where 𝐻 is the half-thickness of the core region. This equation is

then cast in a 30-group structure matching the ECCO-33 grid except for the last three

thermal groups, which are collapsed to avoid statistical issues in the effective group

constant generation performed in Serpent 2.

The eigenvalue spectrum for this case, shown in fig. 5.12, supports the hypotheses

made for the boron case: in the absence of competing phenomena, only one configura-

tion can yield a critical system, like in the presence of a fissile isotope, which is directly

proportional to the reactivity. In contrast with the boron case, here it is possible to

observe more than one real and positive eigenvalue, associated to higher-order spatial

harmonics.
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Figure 5.12: Eigenvalue spectrum computed for the MSFR case.
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Figure 5.13: Critical (𝜁 ) modes obtained diluting 𝑁𝑓 /𝜁 moles of 233U in the molten salt fast
reactor (left) and the off-to-critical ratio for the energy spectrum (right).

Figure 5.13 provides, on the right, the spatial behaviour of the group-wise, critical

fluxes, while, on the left, the ratio between the critical energy spectrum, obtained ad-

justing the
233U concentration of 1/𝜁eff , and the off-critical one is shown for both the

regions composing the core. This last graph helps to appreciate the fact that, for a

given set of multi-group constants, the 𝜁 formulation takes automatically into account

the spectral effects induced by the change in the system composition or volume. In this

case, the intermediate group structure allows to get a deeper insight the spectral varia-

tions occurring after the fissile concentration adjustment. The addition of 10.79mg cm−3
of

233U to the FLiTh salt has a relatively small impact on the overall energy spectrum.

By inspection of this graph, it is possible to appreciate a reduction in the thermal spec-

trum, consistently with the fact that the fission cross section of
233U is maximum in the

thermal region, and, conversely, a slight increase in the fast spectrum, caused by the

additional fast neutrons emitted by fissions. The other large spectral variation involves

the blanket: since it is composed only by FLiTh, which can do fission only at high en-

ergy (see fig. 5.14), the flux spectrum increases as a consequence of the larger fraction
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of fast neutrons diffusing from the core to the blanket.
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Figure 5.14: Fission cross section collapsed on the 30-group grid based on the ECCO-33
structure.

The graphs in fig. 5.13 allows to conclude that the 𝜁 formulation allows to naturally

take into account the spectral and spatial effects occurring as a consequence of the den-

sity (or volume) adjustments. Henceforth, in addition to the modelling and numerical

errors, the only physical approximations induced by the adoption of the 𝜁 approach are

due to the fact that the self-shielding of the input multi-group cross sections are com-

puted a priori, without taking into account the additional self-shielding effects induced

by the 1/𝜁 correction in the density or in the volume of the selected region. The most

natural way to tackle this issue would be to perform a 𝜁 calculation for a configuration

close to the studied one during the multi-group cross section calculation stage, similarly

to what is usually done for standard 𝑘 calculations. In this way, most of the spatial and

the energy self-shielding effects on the flux would be automatically accounted for, thus

ensuring that the small spectral adjustments induced by the solution of the 𝜁 problem

for the coveted configuration do not affect significantly the accuracy of the self-shielded

cross sections. Since both the cases involving the search for the critical boron concen-

tration and the search for the critical fissile concentration are loosely off-critical, they do

not induce sharp variations in the flux spectrum, suggesting that this approach should

be adequate. Nonetheless, since this is the first application of the 𝜁 eigenvalue problem

and since TEST does not currently support too fine group calculations, this aspect will

not be addressed in more detail in the following.

5.7 Determination of the coolant volume in a Lead
Fast Reactor

Similarly to what discussed in section 5.5.4, this section presents the solution of

the 𝜁 eigenvalue problem for the case of a lattice composed by fuel sheets made of

MOx of minor actinides (MAs) and cooled by liquid lead. As for the MSFR, also this

172



5.7 – Determination of the coolant volume in a Lead Fast Reactor

system is featured by a fast spectrum. Due to the absence of a moderator, the MOx

fuel is usually highly enriched (≈ 20%), thus allowing to achieve higher power densities

and more compact core arrangements with respect to light water reactors. Since
208Pb,

which constitutes roughly half of the natural lead, is stable, the average capture cross

section of lead is very small and, thus, adequate for the neutron economy of the system.

Moreover, due to its relatively heavy nucleus, neutrons are not significantly slowed

down by scattering interactions, thus making lead one of the best coolant options for

MOx-fuelled, fast-spectrum reactors. The fact that there is not a dominant phenomenon

between capture and slowing down allows the existence of more than one possible

critical configurations.

Given a sub-critical (𝑘eff = 0.96298) lattice featured by 14 MOx sheets, each 1.5 cm

thick, surrounded by sheets of lead, each 1 cm thick, the 𝜁 approach allows to identify

two different configurations. This system has been analysed employing a P1, collapsing

the cross sections on the six-group PoliTO-LFR-6A structure, reported in table 3.2 and

casting the eigenproblem as in eq. (5.6), mutatis mutandis. Similarly to what occurs for a

light water lattice, one solution is featured by a slight adjustment in the coolant volume,

while the other is featured by a substantially larger volume fraction. The dominant

mode, associated to the largest 𝜁 , allows to realise a critical arrangement with ES=1.01922, while the other solution yields a more decoupled critical structure, featured by

ES= 0.12770. Interestingly, fig. 5.15 shows ictu oculi that there are no other positive,

real eigenvalues except the fundamental ones, implying that there are no higher-order

real harmonics.
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Figure 5.15: Eigenvalue spectrum for the MOx-lead lattice.

Figure 5.16 provides the six-group spectrum of the two critical configurations (left)

and the ratio between each of the two critical spectra and the starting, sub-critical one

(right). The first configuration slightly perturbs the spectrum, because of the reduced

increase in volume of lead (𝑉 ′Pb = 1/𝜁0𝑎𝑉 = 1.913𝑉 ), while the other (𝑉 ′Pb = 1/𝜁0𝑏𝑉 =33.02𝑉 ) strongly soften the spectrum, increasing the thermal population roughly by

a factor 30. Of course, the preferable solution among the two is the first one since,

in addition to its better neutronic stability, it allows to minimise the volume of lead,
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reducing both the weight of the reactor and its size. Nevertheless, being aware that

criticality could be reached also for a larger coolant-to-fuel volume ratio is certainly

very important for the safety assessment of the reactor.

The flux spatial distribution in the lattice is shown in fig. 5.17 for some selected

groups. The solution for the configuration that requires the minimum lead volume is

featured by a spatial trend that is very close to the one featuring a homogeneous sys-

tem, while the solution associated to the more decoupled configuration exhibits strong

variations passing from the fuel to the coolant sheets, similarly to what occurs for a

moderated system.
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Figure 5.16: Ratio between the critical and the sub-critical energy spectra for the two pos-
sible critical configurations (left) and the critical energy spectra (right) for a lattice of MOx
and liquid lead.

5.8 Determination of neutron absorbers for reactivity
control

The last application presented in this section concerns another classical problem in

reactor physics, namely the evaluation of the absorber density required for a control

rod device in order to achieve criticality. Assuming that the control rods are located

in some specific volumes, 𝐶𝑅 = [𝑥𝑖 , 𝑥𝑖+1],… , [𝑥𝑗 , 𝑥𝑗+1], the eigenproblem can be cast as
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Figure 5.17: Group-wise fluxes for the two critical configurations for the MOx-lead lattice.

follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + 1𝜁 𝑁𝐶𝑅𝜎𝑡,𝐶𝑅(𝐸)𝜙(𝑥, 𝐸, 𝜇) =1𝜁 ∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′𝑁𝐶𝑅𝜎𝑠,𝐶𝑅(𝐸′)𝑓𝑠,𝐶𝑅(𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) 𝑥 ∈ 𝐶𝑅 ,

𝜇 𝜕𝜙(𝑥, 𝐸, 𝜇)𝜕𝑥 + Σ𝑡(𝑥, 𝐸)𝜙(𝑥, 𝐸, 𝜇) =∫ ∞
0 𝑑𝐸′∫ 1

−1𝑑𝜇′Σ𝑠(𝑥, 𝐸′)𝑓𝑠(𝑥, 𝐸′→𝐸, 𝜇′)𝜙(𝑥, 𝐸′, 𝜇′) + 𝑥 ∉ 𝐶𝑅 ,

∫ ∞
0 𝑑𝐸′ ∫ 1

−1 𝑑𝜇′𝜈𝑚(𝑥, 𝐸′)Σ𝑓 ,𝑚(𝑥, 𝐸′)𝜒 (𝑥, 𝐸)2 𝜙(𝑥, 𝐸′, 𝜇′)
(5.20)
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where 𝑁𝐶𝑅 indicates the atomic density of the control rod.

In the following, the critical absorber density (or volume) is searched for different

control rod arrangements and initial off-criticality levels, dealing with a thermal system

similar to the one discussed in section 5.5.4. Since the control rods are usually sized

when most of the core characteristics like the moderation ratio and the fuel enrichment

have been selected, the initial configuration will be assumed to be super-critical. This is

the only reasonable situation that could be considered, as, in the case of sub-criticality, it

may not be possible to achieve a steady state configuration in general, unless to consider

unphysical, negative density corrections.

All the problems treated in the following have been solved using the P1 model and

collapsing the group constants on the CASMO-3 grid. The determination of the whole𝜁 eigenvalue spectrum reveals that only one density allows to achieve criticality for

an initially super-critical, provided that the reactivity excess is not too large. Figure

fig. 5.18 reports the three-group fundamental 𝑘 mode for the super-critical configuration

(𝑘eff = 1.11155) and the fundamental 𝜁 mode which corresponds to the critical flux when

the two sheets of absorber are localised near the centre of the core. With respect to the

boron dilution in water, this reactivity control system introduces a larger distortion in

the energy spectrum, especially in the thermal group. The ES associated to this critical

configuration amounts to 0.8, while 1/𝜁 eff = 18.93716.
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Figure 5.18: Three-group critical and off-critical fluxes (right) and eigenvalue spectrum
(left) for the case considering the control rods near the center of the lattice.

When the control devices are placed in the periphery of the core, see fig. 5.19, the

spatial decoupling of the system is reduced, ES=1.12759. However, due to the proximity

with the boundaries, also the effectiveness of the control devices is reduced, i.e. their

worth reduces when they are located far from the centre of the cor. Hence, the same

static reactivity (𝜌 = 10035 pcm) should be compensated with a larger absorber con-

centration, 1/𝜁 eff = 37.18518. Also in this case, there is only one solution to the design

problem, i.e. only one real and positive value of 𝜁 can be found.
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Figure 5.19: Three-group critical and off-critical fluxes (right) and eigenvalue spectrum
(left) for the case considering the control rods near the reflector.
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Figure 5.20: Three-group critical and off-critical fluxes (right) and eigenvalue spectrum
(left) for the case considering the control rods near the center of the lattice.

Figures 5.20-5.21 refer to a different initial configuration, featured by a larger mod-

eration ratio and, thus, by a larger departure from criticality (𝑘eff = 1.39879, 𝜌 = 28509
pcm). When the control rods are positioned at the core centre, the 𝜁 spectrum (see right

of fig. 5.20) exhibits two real and positive eigenvalues, associated to the fundamental

and to the first-order harmonic. As for some cases discussed previously, the fundamen-

tal eigenvalue is smaller than the first-order one. The appearance of a higher-order real

and positive eigenvalue is probably related to the larger departure from criticality with

respect to the previous case. Following this intuition, the same problem is addressed

placing the control rods in peripheral position. In this case, there is no solution to the

problem, i.e. it is not possible to determine a correction factor for the control devices

such that they are able to remove the excess of reactivity. As visible in fig. 5.21, no fun-

damental eigenvalue, represented with a star marker throughout the thesis, appears in

the spectrum. Therefore, the appearance of higher-order eigenvalues could be related
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to the offset to criticality, although a deeper investigation would be required.

−10−1 −10−5 0 10−5 10−1
Re(� )

−10−1
−10−5

0
10−5
10−1

Im
(�)

Figure 5.21: Three-group critical and off-critical fluxes (right) and eigenvalue spectrum
(left) for the case considering the control rods near the reflector.

Concerning the spatial profile displayed in fig. 5.20, it is easy to notice the strong flux

depression in correspondence of the control sheets, which is caused by the spatial self-

shielding effects induced by the adjusted absorber density. The overall effect of these

flux spikes is an increase of the core spatial decoupling, ES=0.04787. The significant self-

shielding effect raises again the issue of the few-group constant generation: in practical

applications, the 𝜁 method should be applied during the group constants generation

process, to avoid the under-/over-estimation of the self-shielding effects.

It is interesting to notice how, focusing only on the neutronic aspects of the core

design, the location of the control rods should require a compromise between the core

stability and their worth. An analogous discussion applies also to the number of control

rods in relation to the core decoupling and to the offset from criticality, although this

aspect has not been taken into account in this section. In light of these considerations

and of the results of this section, the proposed eigenvalue formulation seems to well

suit the needs of the design process, providing an efficient computational framework.

As a matter of fact, the existence of only one physical solution, due to the absence of

competing phenomena, would allow to compute only a few dominant eigenpairs instead

of the full spectrum, which could be a considerable reduction of the computational time

in practical applications.

5.9 Conclusions
In this chapter, it has been shown how the eigenvalue formulations to the neutron

transport equation could be traced back to a generalised eigenvalue formulation, called𝜁 . This eigenvalue can be introduced in order to filter specific regions of the phase

space. In particular, bearing in mind the possible practical constraints arising during

the core-design process, the 𝜁 eigenproblem has been cast in a form that extends the
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applicability of the density eigenvalue 𝛿 to specific nuclides and regions of the phase

space.

This novel approach has been applied to a wide range of different classical yet re-

alistic problems in reactor physics, considering the main types of materials encoun-

tered in the design of a reactor core, e.g., the fuel, the coolant, the moderator and

the localised absorbers. These applications provided remarkable results. First, the 𝜁
eigenvalue yields equivalent results to the iterative method commonly applied in such

framework, but with a strong reduction of the computational effort. More importantly,

the existence of one or more design solutions seems related to the presence, in the 𝜁
spectrum, of one or more real and positive eigenvalues associated to positive eigenfunc-

tions. This is a remarkable feature, which should facilitate to rigorously assess whether

criticality can be attained or not acting on the selected nuclides, even in case of com-

plex systems. Moreover, the knowledge of all the possible criticality arrangements of

a system is of the utmost importance for the safety studies involving the re-criticality

phenomena. This study of the 𝜁 eigenvalue spectrum suggests that, in some situations,

featured by the absence of competing interaction phenomena, there may exist only one

positive solution, associated to an eigenvalue separation which is large enough to en-

sure an efficient numerical convergence on the dominant one.

Due to its novelty, there are many open questions that should be addressed in future

activities. First of all, the 𝜁 spectrum should be studied more thoroughly, starting from

a more rigorous physico-mathematical framework and taking into account the impact

of the different spatial, angular and energy approximations of the neutron transport

equation. Moreover, the physico-mathematical meaning of the higher-order 𝜁 harmon-

ics should be investigated as well. A better comprehension of the 𝜁 superior modes

could disclose the possibility to apply perturbation methods, like the Generalised Per-

turbation Theory, which could be very useful for design-purpose calculations. Then, the

action of the eigenvalue on more specific portions of the phase space should be stud-

ied, involving for example only some reaction channel, e.g. the capture, and a reduced

energy range, e.g. the thermal region. Finally, some research efforts should be devoted

to incorporate the 𝜁 calculation in the cross sections collapsing and homogenisation

process, in order to properly account for the self-shielding effects.
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Chapter 6

A non-intrusive,
computationally efficient
modelling framework for the
safety analysis of complex
systems

Frustra fit per plura quod potest fieri per
pauciora
(It is inconvenient to do with more actions

something you can do with fewer)

Summa Totius Logicae, William of Ockham

6.1 Introduction
The last decades have witnessed a sharp increase both in the computational power

(Moore, 1998) and in the development of high-fidelity models, enabling to tackle most

of the real-life physico-engineering problems, e.g., the design of a safety-critical system,

with sophisticated computer codes. However, the more complex the problem, the larger

the computational resources required to accomplish the task: on one side, a computer

model may be particularly expensive to solve because of several numerical complexities,

e.g. non-linearities; on the other, a huge number of code runs could be required in case

a large input parameter space needs to be explored, due to the curse of dimensionality
(Bellman, 1957).
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These issues have to be often faced, for instance, when dealing with design- (Jameson

and Vassberg, 2001; Dur, Coskun, et al., 2011; Ballarin, Manzoni, et al., 2014) and safety-

oriented (Parihar, Vergara, and Clutter, 2011; Fu, Yan, et al., 2016; Bagheri, Alamdari, and

Davoudi, 2016; Seike, Kawabata, and Hasegawa, 2017) Computational Fluid-Dynamics

(CFD) simulations, which are featured by several geometrical, material and model pa-

rameters. The same complexities can be found as well in the different disciplines of

nuclear engineering, e.g., neutronics, thermo-hydraulics and thermo-mechanics.

Some strategies to minimise the computational resources consumption exploit ad
hoc features of the problem under examination, e.g., geometrical symmetries (Tommasi,

Maillot, and Rimpault, 2016). These approaches can be very effective, but are strongly

case-dependent. More general strategies rely on reduced order models (ROMs) (Pedroni

and Zio, 2017; Pedroni, 2022).

The basic idea of this kind of approach is to generate a simpler but more computa-

tionally efficient model that mimics, in some way, either the reality, reproducing the

experimental data, or a physico-mathematical-computational model, reproducing its

output, at the price of some controllable approximations (Benner, Gugercin, and Will-

cox, 2015).

When the surrogate is built as a cheaper alternative to the reference model, it is

often addressed with the term meta-model, since it aims at reproducing the responses

of the original model as well as the latter tries to imitate the reality. In this respect, the

definition of Science given by Popper and Barthley III, 1988,

"Science may be described as the art of systematic over-simplification — the art
of discerning what we may with advantage omit",

perfectly describes the "art" of meta-modelling: in some specific situations, it is con-

venient and possible to simplify a complex model that represents the real world, still

retaining its most important features in order to map exhaustively its behaviour in a

very broad range of conditions. In other words, we omit some physical details in favour

of information concerning the overall system behaviour, which is the fundamental in-

formation that cannot be disregarded.

Meta-modelling is particularly relevant in the frame of the safety analysis of com-

plex systems described by complex models. In this case, a thorough quantitative risk

assessment would require an analysis of the system behaviour in different operational

and off-operational conditions, often as a function of different input parameters.

Reduced order models can be roughly divided in physics-driven and data-driven

methods. The first ones yield an approximated model by manipulating directly the

high-fidelity model (Lorenzi, Cammi, et al., 2016; 2017). Acting on the original equations

allows to minimise possible biases in the model response and even to give an a priori
estimate of the ROM error bounds (Rahman, San, and Rasheed, 2018). However, on

top of the manifest difficulty in accessing the high-fidelity model equations in most of

the commercial codes, these modifications would require a new code verification and

validation (V&V) phase, which is a critical aspect when dealing with codes used for the
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design verification of nuclear installations.

On the contrary, the second class of methods considers the code as a black-box,

which is seen as a set of input and output data that are used to train the empirical

regression model. Due to the data labelling, this class of methods is known as super-
vised machine learning (Russell, 2010), which includes, for instance, various regression

models like Artificial Neural Networks (ANNs) (Demazière, Mylonakis, et al., 2021) and

Support Vector Machines (SVMs) (Cortes and Vapnik, 1995). The data-driven nature

of such methods makes them non-intrusive and application-independent, hence they

can be employed effectively even with commercial, validated codes (Casenave, Gariah,

et al., 2020).

However, this class of methods also brings some drawbacks. First, the fact that they

need data to learn makes their performances sensitive to the training data selection. In

order to realise an accurate yet flexible model, a trade-off between the model variance

and the model accuracy, known as model bias, i.e. the error between the meta-model

and the reference model, is needed. In case a few data were available, the meta-model

would operate in an under-fitting regime, i.e. it would be simpler and more flexible

(low variance) but very inaccurate (high bias). On the contrary, if many training eval-

uations were available, the model would be very accurate but also very complex and

over-specialised on the training the data. This situation, featured by a low bias and a

high variance, is known as over-fitting (Ghojogh and Crowley, 2019). The other main

drawback is the fact that the lack of important training data can seriously limit the ROM

prediction capability. As it is brilliantly summarised in Lassila, Manzoni, et al., 2014,

"If it is not in the snapshots, it is not in the ROM".

Finally, it is very difficult to obtain an a priori error prediction (Rahman, San, and

Rasheed, 2018).

Nevertheless, the advantages of these methods are so attractive with respect to their

shortcomings that they are becoming very popular. Audouze, De Vuyst, and Nair, 2013

were among the first ones to present a non-intrusive reduced order model (NIROM)

for the solution of parametrised partial differential equations, but, to the best of our

knowledge, the first NIROM application to the Navier-Stokes equations is due to Xiao,

Fang, et al., 2015, who proposed a method relying on Taylor expansion and another one

based on sparse grid collocation. Since then, many approaches have been proposed to

perform non-intrusive model reduction, especially for CFD applications (Kumar, Raisee,

and Lacor, 2016; Demo, Tezzele, and Rozza, 2019).

Most of these NIROMs, including the ones presented in this chapter, share some

common features. First, they are composed by an offline, computationally intensive

phase and by an online, fast-running stage. In the offline phase, the (expensive) FOM is

run possibly a small number of times (e.g., few hundreds) to gather the input-output data

realisation for the ROM training, while in the online phase the trained ROM can be used

to approximate the FOM solution in correspondence of new input parameter values.

Second, the different ROMs typically rely on is the reduction of the data dimensionality,
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which allows to decouple them into a set of parameter-dependent coefficients and a set

of spatial and dynamic modes (Marrel, Pérot, and Mottet, 2014; Nanty, Helbert, et al.,

2017; Wu, Kozlowski, et al., 2018; Wu, Kozlowski, and Meidani, 2018; Roma, Di Maio,

et al., 2021). The most popular technique to extract the modes and the coefficients from

functional (spatial- or time-dependent) data is the Proper Orthogonal Decomposition

(POD) (Volkwein, 2011), which has proven to be very efficient for the dimensionality

reduction of physical fields(Lorenzi, Cammi, et al., 2016).

On the other hand, the major differences in the NIROMs recently proposed are due

to the way the POD parameter-dependent coefficients are evaluated on new parame-

ters which does not belong to the training dataset. In Kumar, Raisee, and Lacor, 2016,

a regression-based polynomial chaos expansion is employed to estimate the POD coef-

ficients for an uncertainty quantification study in a CFD framework, while in Guo and

Hesthaven, 2019 a Gaussian process regression model is applied. Another approach

is presented by Demo, Tezzele, and Rozza, 2019, where the POD coefficients are in-

terpolated over new parameters through the adoption of the active subspaces tech-

nique. Another popular option to perform such interpolation is the use of SVM with

a kernel constituted by radial basis functions (RBF) (Schaback, 1995), which have been

proved to be very effective for non-linear, high-dimensionality interpolation in a broad

range of applications (Xiao, Fang, et al., 2017; Dutta, Farthing, et al., 2021; Iuliano and

Quagliarella, 2013; Chen, Hesthaven, et al., 2018). Due to its advantages, the SVM-RBF

model is adopted to interpolate the POD coefficients on new parameters in this work.

The purpose of this chapter is to present a non-intrusive POD-RBF model and its

advantages for obtaining an efficient model reduction in three different applications.

The first involves the stability analysis of a large thermal reactor, while the second deals

with the neutronic transient analysis of the ALFRED lead fast reactor design. Finally, the

third application regards the safety analysis of gaseous releases in congested, industrial

plants. This last application aims at demonstrating the NIROM applicability to a broad

variety of different problems, proving its versatility. In the following, an overview of

the POD-RBF model is presented, focusing on its structure and on its algorithms. Then,

the various applications of the model are illustrated and discussed.

Some parts of this chapter have been already published in two conference proceed-

ings, while another part has been submitted as peer-reviewed article for publication in

the Journal of Computational Physics,

• N. Abrate, S. Dulla, N. Pedroni, "A non-intrusive reduced order model for Light Water
Reactor core stability analysis", Proceedings of the ESREL-PSAM 2020 conference,

Venice (Italy), 2020

• N. Abrate, A. Moscatello, G. Ledda, N. Pedroni, F. Carbone, M. Maffia, A. Carpig-

nano, "A novel approach combining bootstrapped non-intrusive reduced order models
and unscented transform for the robust and efficient CFD analysis of accidental gas
releases in congested plants", submitted to Journal of Computational Physics, 2022
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• N. Abrate, S. Dulla, N. Pedroni, "A non-intrusive reduced order model for neutronic

transient analyses of the ALFRED reactor", Proceedings of the M&C conference

2021, Raleigh, NC, U.S.A., 2021

6.1.1 A non-intrusive POD-RBF model
Basically all the physico-mathematical problems that may be posed in the field of

physics and engineering can be compactly represented as the action of a certain model

 on a 𝑃-dimensional input vector parameter �⃗�,�⃗� = (�⃗�), (6.1)

where �⃗� is the 𝑚-dimensional output response, named snapshot. The model  hides

both the model variables (e.g., space, time, energy...) and the different modelling and

numerical approximations and complexities. Hence, it may be though as a black-box

taking a certain input from the outside and responding with a certain output. Inciden-

tally, this is exactly the way any computer code aiming at solving any practical problem

works. Therefore, in the following the notions of physico-mathematical model and com-
puter model are assumed to be interchangeable.

6.1.1.1 Reduced order model overview: offline and online phases

The reduced order models presented in this chapter aim at approximating (with a re-

duced computational burden) the response �⃗� of a general physico-mathematical model

 depending on a certain vector input parameter �⃗�. As previously mentioned, this

is achieved with a data-driven approach. First, according to a suitable sampling strat-

egy, the FOM is sampled to gather the high-fidelity responses, whose dimensionality

is reduced via POD. The POD coefficients, representing the solutions in a reduced or-

der space, are then used to train the RBF network. Afterwards, the ROM is validated

on some untrained parameter values, in order to verify that the approximation error

of the ROM is acceptable for the intended application. Finally, the bootstrap method

may be applied to estimate and, potentially, to propagate the ROM approximation error

induced by the training samples choice. This procedure is performed by constructing

a set of different ROMs, each trained with datasets sampled with replacement from the

original training set.

Once this computationally expensive phase is completed, the ROM can be used as a

fast-running tool to approximate the FOM responses on new parameter values. If the

ROM response is employed as input for another model ′
, an estimate of the ROM

approximation error can be obtained via the unscented transform (UT). This method

estimates the uncertainty in the response of ′
by means of a limited number of model

evaluations. These steps are summarised in algorithm 1 and in figs. 6.1 and 6.2.

In spite of the large availability of codes and libraries for the fast deployment of

reduced-order modelling applications, especially open-source, all the steps constitut-

ing these algorithms have been implemented ex novo in an in-house Python package
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called ROMpy (Reduced-Order Modelling in Python). The reason for having taken this

additional effort is two-fold: first, it allows to obtain a higher level of comprehension of

the model than with a plug-and-play code, and, second, it makes easier the algorithm

development in case some code modifications were needed. In this respect, the package

collects all the ad hoc functionalities needed to gather the input-output data from the

different external codes for the training and validation stages.

Algorithm 1: POD-RBF with uncertainty estimation

Offline procedures
1. define the 𝑝-dimensional parameter space ℝ𝑝

;

2. select a parameter space sampling strategy (i.e. sparse grids, random sampling...);

3. generate full-order model snapshots �⃗� 𝑖 ∈ ℝ𝑚
for each parameter sample �⃗�𝑖;

4. divide the data into the training and the validation sets;

5. reduce dataset dimensionality, using POD (see Algorithm 2);

6. train the RBF net with the POD coefficients �⃗�𝑖 ∈ ℝ𝑛
(see Algorithm 3);

7. apply the bootstrap method (see Algorithm 5) to generate a set of ROMs;

8. compute the error distribution of the ROMs on the validation set;

9. validate the ROM on the validation set. If the average error between validation

data and the set of bootstrapped ROMs is not acceptable, go back to step 3,

adding more training points;

Online procedure

1. interpolate with RBF the POD coefficients over a new point (i.e. not used during

training) �⃗�𝑗 in ℝ𝑝
;

2. back-project the POD coefficients �⃗�𝑗 ∈ ℝ𝑛
to get the approximated snapshot in

the original space, �⃗� 𝑗 ∈ ℝ𝑚
.

3. if the ROM response is used as input for another model, apply the UT (algorithm

6) to estimate the confidence interval.

6.1.1.2 Model sampling and reduction

The performances of data-driven models are strongly dependent on the quality of

the training data. Therefore, independently on the reduced order modelling approach,
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Figure 6.1: Offline phase procedure workflow.
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one of the most important steps is sampling the FOM.

Among the deterministic sampling techniques, the Smolyak sparse grid (Smolyak,

1963) approach is one of the most popular ones in this framework, due to its nice fea-

tures. First, it allows an anisotropic sampling for multi-dimensional parameter spaces.

Second, different levels of nested nodes can be obtained with a proper choice of the

quadrature rule. The use of nested levels allows to efficiently train the ROM, allowing

an a posteriori refinement of the parameter samples. In case of a high-dimensional pa-

rameter space, the Smolyak grid can be also coupled with an adaptive simulation strat-

egy, as in Alsayyari, Perkó, et al., 2019; 2021. Since this chapter aims to present and

test the non-intrusive ROM presented above for different applications, more detailed

discussions concerning the sampling phase will be given for each case.

After the FOM sampling, the data are reduced by means of the POD. The core idea

of the POD method, described in algorithm 2 and in fig. 6.3, is to express the original

data as an expansion of basis functions, known as POD modes, extracted with a singular

value (eigenvalue) decomposition of the FOM snapshot matrix (correlation matrix). The

main advantage of this technique is that the first modes retain most of the FOM dataset

information, which means that, usually, truncating the POD expansion implies a limited

loss of information. This evidence is justified by the fact that the POD basis is optimal

in a least-square sense (Volkwein, 2011).

=
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Ŷ TŶ T B̂kB̂k ÂkÂk

Figure 6.3: POD-driven dimensionality reduction for the snapshot matrix containing the
training CFD solutions.

The usual figure of merit employed to assess the number of POD basis functions

needed to achieve a certain accuracy is the POD energy 𝑘 , i.e. the ratio of the sum

of the first 𝑘 squared singular values to the sum of all the squared singular values.

The calculation of this quantity is simple and cheap, but often not enough in order to

fully characterise the POD expansion accuracy. Therefore, in this paper, the root mean

squared error between the FOM output and the ROM estimates will be evaluated as well

to have an additional figure of merit.
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Algorithm 2: Proper Orthogonal Decomposition algorithm

Input
1. snapshot matrix �̂� = [�⃗�1, �⃗�2,… , �⃗�𝑛], with �⃗� 𝑖 ∈ ℝ𝑚

;

2. snapshot matrix rank 𝑟 ;
3. truncation error 𝜀;

Output

1. POD basis �̂�𝑘 = [�⃗�1, �⃗�2,… , �⃗�𝑘], with �⃗�𝑖 ∈ ℝ𝑚
;

2. POD eigenvalues 𝜆𝑖 , ∀𝑖 = 1,… , 𝑘;

3. POD energy 𝑘 ;
4. POD coefficients �̂�𝑘 = [�⃗�1, �⃗�2,… , �⃗�𝑘], with �⃗�𝑖 ∈ ℝ𝑛

;

try:[Ψ̂, Σ̂, Φ̂] = svd(�̂� ) # Singular Value Decomposition
for 𝑖 = 1,… , 𝑟 do�⃗�𝑖 = �⃗� 𝑖 # �⃗� 𝑖 is the Ψ̂ 𝑖-th column𝜆𝑖 = 𝜎 2𝑖 # 𝜎𝑖 is the 𝑖-th diagonal entry of Σ̂
end

except Memory Error:
if 𝑛 > 𝑚 then[Ψ̂, Λ̂] = eig(�̂� �̂� T) # Eigenvalue Decomposition

for 𝑖 = 1,… , 𝑟 do�⃗�𝑖 = �⃗� 𝑖 # �⃗� 𝑖 is the 𝑖-th column of Ψ̂𝜆𝑖 = Λ̂𝑖,𝑖 # Λ̂𝑖,𝑖 is the 𝑖-th diagonal entry of Λ̂
end

else[Φ̂, Λ̂] = eig(�̂� T�̂� ) # Eigenvalue Decomposition
for 𝑖 = 1,… , 𝑟 do�⃗�𝑖 = �̂� �⃗�𝑖√𝜆𝑖 # �⃗� 𝑖 is the 𝑖-th column of Ψ̂𝜆𝑖 = Λ̂𝑖,𝑖 # Λ̂𝑖,𝑖 is the 𝑖-th diagonal entry of Λ̂
end

end
end
choose 𝑘 such that 1 − 𝑘 < 𝜀�̂�𝑘 = �̂� T�̂�𝑘 # compute reduced order coefficients
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6.1.1.3 Model training and tuning

Once the reduction step is completed, the parameter-dependent POD coefficients are

employed to train a network of RBFs, which can be then adopted in the online phase to

interpolate the FOM solution on new parameter values.

Among the different types of radial basis functions, in this chapter it has been chosen

to rely mostly on the inverse multi-quadrics formulated by Hardy, 1971 and on the

Gaussian distribution. The value of these functions depend on two parameters. The

first one is the 𝐿2 distance between the centers, i.e. the training parameter values �⃗�𝑖 ,
and the collocation points, i.e. the new parameter �⃗�𝑗 , while the second one is the so-

called hyperparameter 𝜎 , which is a free parameter determining the shape of the RBFs.

The choice of this parameter is a very delicate aspect of the training phase, as it strongly

affects both the interpolation accuracy and its numerical stability. Usually, the choice

of this parameter is performed in order to minimise the interpolation error on some test

points, which do not belong to the training set.

This The main drawback of this approach, however, is the need to partition the high-

fidelity solutions in three subsets, namely the training, the test and the validation set,

in order to train, tune and validate the model, respectively. Due to the large compu-

tational cost usually associated to the high-fidelity simulations, this approach is too

computationally expensive.

Algorithm 3: Radial Basis Function training algorithm.

Input
1. data reduced via POD, �̂�𝑘 ∈ ℝ𝑛×𝑘

;

2. parameter matrix �̂� = [�⃗�1, �⃗�2,… , �⃗�𝑛], with �⃗�𝑖 ∈ ℝ𝑝
;

3. RBF type 𝑓 (e.g. 𝑓 = 1/√||�⃗�1 − �⃗�𝑗 ||2 + 𝜎 2);
4. hyperparameter 𝜎 via Algorithm 4 or Hardy’s formula Hardy, 1971;

Output
training matrix �̂� ∈ ℝ𝑛×𝑘

# loop over each column of �̂�𝑘 , �⃗�𝑖 ∈ ℝ𝑛
for 𝑖 = 1,… , 𝑘 do

choose hyperparameter 𝜎𝑖 (optimal selection with algorithm 4)

# compute distance matrix �̂� = [𝑑1,… , 𝑑𝑛] ∈ ℝ𝑛×𝑛
for 𝑗 = 1,… , 𝑛 do𝑑 𝑗 = [𝑓 (||�⃗�1 − �⃗�𝑗 ||2, 𝜎𝑖),… , 𝑓 (||�⃗�𝑛 − �⃗�𝑗 ||2, 𝜎𝑖)]
end�⃗� 𝑖 = �̂�−1�⃗�𝑖 # �⃗� 𝑖 is the 𝑖-th column of �̂�

end
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Algorithm 4: Optimal hyperparameter selection.

Input
1. data reduced via POD, �̂�𝑘 ∈ ℝ𝑛×𝑘

;

2. parameter matrix �̂� = [�⃗�1, �⃗�2,… , �⃗�𝑛], with �⃗�𝑖 ∈ ℝ𝑝
;

3. RBF type 𝑓 (e.g. 𝑓 = 1/√||�⃗�1 − �⃗�𝑗 ||2 + 𝜎 2);
4. initial hyperparameter guess 𝜎0 = 0.815𝑛 𝑛∑𝑖=1 ||�⃗�𝑖 − �⃗�𝓁 ||2, where 𝓁 is the closest point

to 𝑖 in the parameter space Hardy, 1971.

Output

1. Optimal hyperparameter 𝜎𝑜𝑝𝑡
Optimise 𝜎 minimising RMSE

Select 𝜎 # e.g. via conjugate gradient method
Compute �̂� and �⃗� 𝑖 as in algorithm 3

# use Rippa’s algorithm Rippa, 2011 and LOOCV[�̂�, �̂� ] = lu(�̂�) # Compute LU decomposition
for j=1, …, n do𝑥 = �̂� −1�̂�−1𝑒𝑗 # 𝑒𝑗 is the 𝑗-th column of the identity matrix𝛿𝑗 = ||𝑤𝑖,𝑗𝑥𝑗 || # compute interpolation error with 𝑗-th components of 𝑥 and �⃗� 𝑖
end

RMSE =

√1𝑛 𝑛∑𝑗=1 𝛿2𝑗
end

Among the many possible approaches suggested in the literature, the Leave-One-

Out-Cross-Validation (LOOCV) technique is followed, due to its generality. The LOOCV

consists in training the meta-model with each of the N sets obtained taking N-1 samples

and using the left one as a test point. In this framework, the best hyperparameter is

the one minimizing the root-mean square error (RMSE) computed from the N trained

models. In order to reduce the computational cost related to the LOOCV optimisation,

the formula developed by Rippa, 2011 is used to evaluate the cost function, i.e. the

RMSE, in combination with the conjugate gradient optimisation algorithm. The shape

optimisation is initialised using the empirical formula for 𝜎 given by Hardy, 1971.

The RBF training phase is summarised in algorithm 3, while the hyperparameter

optimisation is presented in algorithm 4.
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6.1.1.4 Model validation and error estimation by a bootstrap-based ensemble
of ROMs

When the training phase is completed, the model needs a validation on new param-

eter values to verify its accuracy and consistency with respect to the FOM solution.

An extensive validation would require lots of FOM evaluations, jeopardising the over-

all computational efficiency of the meta-model. A common strategy to overcome this

issue consists in being satisfied with the selection of a few, significant new parameter

values not too close to the training points. This is the most popular approach in the

literature when the NIROMs do not allow an a priori estimation of their confidence

interval (Rahman, San, and Rasheed, 2018; Xiao, Fang, et al., 2017).

In this thesis the same approach is pursued, albeit trying to complement this limited

validation with a statistical sensitivity study concerning the training set. As a matter

of fact, the ROM responses are biased by the selection of the training points, whatever

is the sampling strategy of the parameter space. Therefore, as a complement of the

validation phase, the bootstrap method is applied for a full exploitation of the available

training set, maximising the amount of information extracted. The idea of this non-

parametric statistical method, presented in algorithm 5 and sketched in fig. 6.4, consists

in training a large number of ROMs using different training sets, obtained by resampling

with replacement the original training set. In this way, it is possible to build an ensemble

of meta-models, which can be used to construct a distribution of output responses: in

the end, this can be employed to estimate the error distribution for each validation point

(Zio, 2006; Secchi, Zio, and Di Maio, 2008; Zio, Apostolakis, and Pedroni, 2010; Pedroni,

Zio, and Apostolakis, 2010; Marelli and Sudret, 2018).

The training phase of the NIROM is usually much cheaper than the offline phase,

yet it may be still quite time consuming if the number of training parameters and/or

the number of reduced order coefficients are large, because of the RBF hyperparameter

optimisation process. However, since each model reboot is independent, the bootstrap

procedure can be massively parallelised.

Due to the features of the POD-RBF ROM approach, some precautions are needed.

First of all, since the RBF kernel becomes singular if the same training data is repeated,

each time that a training case is resampled, it is deliberately ignored, thus the resam-

pled set is always poorer than the original one. Then, due to the interpolatory nature

of the RBF approach, some care should be devoted when the meta-model is tested on

the validation set, because one or more validation samples could fall outside the sam-

pled parameter space, i.e. the convex hull obtained from the sampled points. In these

situations, the RBF net extrapolates rather than interpolating. In order to better un-

derstand the model behaviour in such cases, the bootstrap is applied, in the following,

either in extrapolation or in interpolation mode. In the first mode, each validation point

is accepted and evaluated by the ROM, which thus could extrapolate parameter values

falling outside the training points, while, in the second mode, the validation points
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Algorithm 5: Bootstrap method

Input
1. number of reboots 𝑁𝑟 ;
2. training parameter values �̂� = [�⃗�1, �⃗�2,… , �⃗�𝑛];
3. training snapshots �̂� = [�⃗�1, �⃗�2,… , �⃗�𝑛];

Output
Ensemble of ROMs, 1,… ,𝑁𝑟

# this can be done in parallel
for i=1, …, 𝑁𝑟 do

for j=1, …, 𝑁 do
Sample one parameter point �⃗�𝑗 from [�⃗�1, �⃗�2,… , �⃗�𝑛] with replacement;

if �⃗�𝑗 exists then
Discard �⃗�𝑗 to avoid singular RBF kernel;

end
Reduce dataset with Algorithm 2;

Train and tune the RBF network with Algorithms 3, 4;

end
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Figure 6.4: Sketch of the generation of the ROM distribution, and, consequently, of the
output spatial fields via bootstrapping.

falling outside the training range are discarded. In this last case, no extrapolation oc-

curs for parameter values drawn outside the parameter "box".

6.1.1.5 Unscented Transform and POD for uncertainty propagation and con-
fidence interval estimation

As mentioned in the previous subsection, bootstrapping the ROM generates an en-

semble of meta-models. If the ROM response is the final goal of its application, con-

fidence intervals can be extracted directly from the ensemble distributions. However,

when the ROM response �⃗�𝑅𝑂𝑀 is an input for another model ′
, this operation may

not be trivial, especially when �⃗�𝑅𝑂𝑀 is a spatio-temporal field. In this case, the uncer-

tainty in the ROM responses should be propagated through ′
in order to obtain a

confidence interval for the final output of the calculation chain. To avoid many queries

of the model, it is proposed to approximate the confidence interval with the so-called

Unscented Transform (UT) method (Julier and Uhlmann, 1997).

This method, which is an extension of the Kalman filter (Kalman, 1960) to non-linear

models, approximates the original 𝑚-dimensional statistical distribution with a set of2𝑚 + 1 specific samples, identified as sigma points, that are then transformed using the

non-linear model, i.e. ′
in this case. The transformed sigma points can be used to

estimate the mean and the variance of the non-linear model due to the uncertain input.

Since the input distribution dimension is proportional to its number of degrees of

freedom, the choice of the sigma points may not be trivial. To overcome this issue, the
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Algorithm 6: Unscented Transform and POD for uncertainty propagation

Input
ensemble of ROM responses �̂� = [�⃗�,1,… , �⃗�,𝑁𝑟 ] (spatial fields) for a certain

parameter value �⃗�new;

Output
mean E[𝑧] and covariance cov[𝑧] estimates for the response 𝑧 of the model ′

;

# choose sigma points
Compute reduced order coefficients �⃗� ∈ ℝ𝑘

via POD (Algorithm 2) of �̂�;

Compute mean 𝜇 = E[�⃗�] and covariance �̂� = cov[�⃗�];
Compute Cholesky or SVD decomposition to obtain �̂��̂�⊺ = 𝑘�̂� ;

Apply the scaling factor 𝑠 = 𝑘 + 𝜆, �̂� = √𝑠√�̂� ; # 𝜆 is a free parameter (here 𝜆=0)
Determine weights as 𝑤𝑖 = 1/2𝑠, 𝑖 = 1,… , 𝑘 and 𝑤0 = 𝜆/𝑠 (associated to 𝜇);
# this can be performed in parallel
for i=1, …, 𝑘 do�⃗�𝑈 𝑇 ,𝑖 = 𝜇 − �̂� 𝑖 # �̂� 𝑖 is the i-th column of the �̂� matrix𝑧𝑖 = ′(�⃗�𝑈 𝑇 ,𝑖) # apply non-linear model�⃗�𝑈 𝑇 ,𝑖+𝑘 = 𝜇 + �̂� 𝑖𝑧𝑖+𝑘 = ′(�⃗�𝑈 𝑇 ,𝑖+𝑘) # apply non-linear model
end

compute E𝑤[𝑧] = 2𝑘+1∑𝑖=0 𝑤𝑖𝑧𝑖 and cov𝑤[𝑧] = 2𝑘+1∑𝑖=0 𝑤𝑖(𝑧𝑖 − E𝑤[𝑧])(𝑧𝑖 − E𝑤[𝑧])T;
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POD algorithm could be applied to reduce the dimensionality of the ROM ensemble,

similarly to what is done in Foad, Yamamoto, and Endo, 2020. The UT-POD procedure

is presented in algorithm 6, while a conceptual scheme is presented in fig. 6.5.
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Figure 6.5: Sketch of the POD-UT approach for uncertainty quantification.

In the following sections, the non-intrusive POD-RBF modelling framework dis-

cussed so far is adapted and tested on three different industrial applications, with the

purpose of highlighting its capabilities and its potential issues. Therefore, considering

also the overall aim of the thesis, it is important to remark here that the attention will

be focused more on the methodology and modelling aspects rather than on the applica-

tion of the NIROM itself. This choice is also related to the fact that each real-life study

case is properly simplified in order to make the problem more suitable for the NIROM

development, still trying to retain its most important features in view of the potential

full-scale industrial use of the NIROM.
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6.2 A non-intrusive reduced order model for the sta-
bility analysis of large thermal reactors

6.2.1 Introduction
6.2.1.1 Stability issues in Gen-III+ reactors

Due to the more and more strict constraints on safety, sustainability and capital cost,

the Gen-III+ Light Water Reactors (LWRs) are endowed with new design features which

aims at extending the life of the system, reducing the radioactive waste and increasing

the safety level of the plant.

This is the case, for example, of the European Pressurised Reactor, which is currently

under operation in China and under construction in France (Flamanville) and United

Kingdom (Hinkley Point). Among the new design features, the most relevant ones are,

from a neutronic perspective:

• the possibility to use MOx fuel assemblies (FAs), obtained by the spent fuel re-

processing. These FAs can introduce some significant distortions in the energy

spectrum of the reactor with respect to the traditional, UOx-based FAs;

• an increase in the core size, in order to extend its burn-up and, thus, the lifetime

of the plant;

• the adoption of a heavy reflector, made of stainless steel, for the reduction of the

core leakages. Compared to traditional reflectors, made of water and structural

materials, the heavy reflector tends to absorb more thermal neutrons, reflecting the

epithermal ones towards the core. This aspect constitutes an advantage both on

the radiological risk, that is reduced, and on the neutron economy, that improves.

In spite of these advantages, the larger core optical size and the heavy reflector in-

crease the overall spatial decoupling of the system, which thus becomes more sensitive

to localised perturbations than compact, leakage-dominated cores. The combination of

different perturbations, which may be either of operational nature, like the FAs bow-

ing, or of fabrication nature, like the fuel tolerances, can induce local inhomogeneities

in the moderation process. As a consequence, when these disturbances do not mutually

compensate, some localised perturbations in the flux, known as flux tilts, can arise. Ac-

cording to the standard safety practices for PWRs (NRC, 2016), the Quadrant Power Tilt

Ratio (QPTR), which is a figure of merit defined as the ratio between the peak ex-core

detector output and the average of the ex-core detector outputs, should be smaller than

1.02. If this limit is exceeded, a set of specific actions, starting with the thermal power

reduction, should be followed in order to bring the core back to a safe operational state.
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6.2.1.2 Computational analysis to the aid of core monitoring

The effect of the tilt on the overall power distribution, which has to be carefully

monitored in order to keep the reactor operation into its safety margins, is proportional

to the spatial decoupling of the system. Therefore, in spite of their advantages, the

adoption of a heavy reflector and of a larger core size amplify the tilt detrimental effect

on the core neutronic stability. This unpleasant design feature makes the operation of

the EPR more delicate, since the detection of flux and power tilts is practically quite

difficult, especially during the cold start-up. In this phase, the tilts can be particularly

dangerous, since the thermal feedback is not effective in damping their effects, and the

fission chambers used to map the flux distribution in the core are less precise, because

of the lower flux with respect to the nominal one. Therefore, the ex-core measurements

should be complemented by accurate calculations.

Due to these considerations, in order to complement the experimental monitoring

and to help its interpretation, the use of a computationally efficient simulation frame-

work is of paramount importance. Unfortunately, the larger spatial decoupling of these

systems have detrimental effects not only on their operation, but also on the efficiency

of the numerical techniques used to simulate them. Most of the legacy codes used in

the LWRs industry heavily rely on the so-called power iteration method, described in

chapter 2, whose convergence rate depends on the dominance ratio of the system, i.e.

the ratio between the fundamental and the first-order eigenvalue of the multiplication

eigenvalue problem.

Since this parameter is inversely proportional to the decoupling degree of the reactor,

the determination of the fundamental eigenpair of the system is extremely inefficient.

As mentioned in chapter 2, among the different proposals to enhance the numerical

convergence of the eigenvalue solvers, one of the best options consists in adopting a

method belonging to the class of Krylov-Arnoldi methods (Saad, 1992). In virtue of its

non-intrusiveness, these methods can be wrapped around an existing code, minimising

the implementation effort and making its validation easier.

However, even in the case a Krylov-Arnoldi method was implemented in the legacy

codes, the number of parameters influencing the flux distribution would require a too

vast number of calculations.

The usual way to reduce the number of expensive calculations in reactor physics

is to rely on perturbation methods, like the Generalised Perturbation Theory (GPT)

(Gandini, 1978). As pointed out in chapter 5, this approach yields an approximation of

the perturbed eigenpair, exploiting the knowledge of the perturbation and of some of

the higher-order flux harmonics. In this respect, this method would take full advantage

of computationally efficient methods like the Krylov-Arnoldi, which are sufficiently

robust to yield the leading higher-order harmonics even for system featured by a low

dominance ratio.

Although the GPT is a well-established technique, available in most legacy codes,

its range of application is not rigorously defined. The fact that this approach suffers
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from some convergence flaws can be proven quite easily considering a homogeneous

slab, modelled with the two-group diffusion equation, and assuming that the fission

operator is perturbed by means of a perturbation 𝛿 in the number of neutrons emitted

per fission, 𝜈 ′ = 𝜈 + 𝛿𝜈 = (1 + 𝛿)𝜈. (6.2)

Since this perturbation does not affect neither the cross sections nor the diffusion coef-

ficient, the perturbed eigenvalue 𝜆′, i.e. the inverse of 𝑘′eff , can be evaluated analytically,

𝜆′ = (1 + 𝐿21𝐵2)(1 + 𝐿22𝐵2)𝑘′∞ = Σ1Σ2(1 + 𝐿21𝐵2)(1 + 𝐿22𝐵2)𝜈Σ𝑓 ,2Σ1→2(1 + 𝛿) = 𝜆1 + 𝛿 , (6.3)

where 𝜆 is the reference, unperturbed eigenvalue and 𝜆′ is the eigenvalue of the per-

turbed system. In this specific case, the GPT coincides with the Taylor expansion with

respect to 𝛿 , 𝜆′ = 𝜆 ∞∑𝑛=0 (−1)𝑛𝛿𝑛, (6.4)

which converges if and only if |𝛿 | < 1. Therefore, when the perturbation intensity is

beyond a certain threshold, the GPT series is not convergent.

Since it is extremely difficult to rigorously assess the application ranges of this ap-

proach for realistic configurations, its use for this kind of analysis may not be suffi-

ciently robust and reliable to perform the core qualification,

In light of these limitations concerning the code computational performances and

considering that modifying the legacy codes is not viable as a short term solution due

to complexity of their qualification, a possible approach to tackle these issues is to resort

to non-intrusive surrogate models.

In the following section, the physico-mathematical formulation of the full-order

problem is presented. Then, a NIROM for this application is proposed and its train-

ing is carried out for a realistic yet simplified study case, represented by the 2D UAM

benchmark reactor. Finally, the accuracy of this model is discussed and some conclud-

ing remarks and future perspectives are given.

6.2.1.3 Physico-mathematical statement of the problem

The characterisation of the tilt behaviour according to the different types of localised

perturbations occurring during the nominal core operation can occur estimating the

flux and the associated thermal power distributions, which can be obtained by solving

the steady state neutron balance equation.

Since the analysis should involve the full-core, it is not practical nor useful to use

a detailed transport model. As it is usually done in this case, a low-transport model is

often sufficient to convey a sufficient amount of information regarding the state of the

core, provided that a set of homogenised and collapsed cross sections representative of

the system under investigation is available. The generation of the few-group data is
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usually accomplished using a high-fidelity transport calculation on a simplified reac-

tor configuration, e.g., a set of representative fuel assemblies. The usual definition of

collapsed cross section yields

Σ𝑦,𝑔(𝑟 , �⃗�) = ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Σ𝑦(𝐸, �⃗�)𝜙(𝐸, �⃗�)

∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸𝜙(𝐸, �⃗�) , (6.5)

where the terms have their usual meaning (as detailed in chapter 4) and �⃗� represents a

general localised perturbation that can affect the nominal local conditions.

More specifically, for the EPR case, the localised perturbations indicated by �⃗� can be

assumed to belong to two main families, namely fabrication tolerances and operational

disturbances. In the first group, the main fabrication uncertainties can be due to

1. the fuel pellet density, which has an impact on the fission rate

2. the fuel pellet diameter, which influences both the fission rate and the moderation

ratio

3. the cladding thickness, which has an impact on the parasitic capture and on the

moderation ratio

4. the enrichment, which affects the fission rate.

Concerning the operational disturbances, it is possible to identify

1. the pump uncertainty, which affects the local water density and, thus, the local

moderation

2. the assembly bowing, which alters the flow cross section in the sub-channel and,

thus, the local moderation ratio

3. the change in the fuel density, which depends on two competing phenomena, i.e.

the fuel densification and the fuel swelling (Cacuci, 2010). The first mechanism,

due to the coalescence of the micro-pores in the fuel structure under irradiation,

tends to increase the density of the fuel, while the second one, caused by the accu-

mulation of the gaseous fission products, tends to decrease the fuel density because

of the pellet ballooning.

These random, localised disturbances introduce some competing phenomena in the

neutron balance. Because of the large spatial decoupling of the system, which is a

consequence of the short diffusion length of the neutrons, the information of these

disturbances is not propagated at the full-core level, but affects the local flux behaviour,

inducing the tilt. Since these phenomena occurs at the fuel assembly level, but different
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assemblies can be affected, the proper characterisation of these disturbances should be

carried out considering them since the few-group data generation process.

Once the set of nominal and perturbed few-group constants has been produced, the

full-core flux and power distributions can be finally estimated with a few-group diffu-

sion model. Due to the thermal spectrum of the system, a two-group approach can be

adopted for this purpose. Consistently with the system features, it is possible to neglect

the up-scattering and to consider that all neutrons coming from fissions are emitted in

the fast group,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ 𝐷1(𝑟 , �⃗�)∇𝜙1(𝑟 , �⃗�) + Σ𝑟 ,1(𝑟 , �⃗�)𝜙1(𝑟 , �⃗�) = 1𝑘eff [𝜈Σ𝑓 ,1(𝑟 , �⃗�)𝜙1(𝑟 , �⃗�) + 𝜈Σ𝑓 ,2(𝑟 , �⃗�)𝜙2(𝑟 , �⃗�)]−∇ ⋅ 𝐷2(𝑟 , �⃗�)∇𝜙1(𝑟) + Σ𝑟 ,1(𝑟 , �⃗�)𝜙1(𝑟) − Σ𝑠,1→2(𝑟 , �⃗�)𝜙1(𝑟) = 0,

(6.6)

where the terms have their usual meaning, as detailed in chapter 4.

cell model
(Monte Carlo)

two-group
diffusion

model

φ1, φ2

Q̇

~ν, ~Σf , ~Σr, ~Σs, ~D

perturbation
locations

fabrication
uncertainties

operational
disturbances
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Figure 6.6: Two-step calculation path followed for the full-core neutronic simulation.

The two-step nature of the full-core diffusion calculation, depicted in fig. 6.6, poses

a question concerning the development of a reduced order simulation framework. One

possibility is to consider this calculation chain as a single model , sketched as the

dashed box in the figure, which takes as input parameters the perturbation intensities

and their location in the core and outputs the flux and power distributions at the full-

core level. Considering the approach as monolithic, the resulting ROM would have the

advantage of avoiding the evaluation of the set of few-group data, establishing a direct

relationship between input and output. However, due to the large number of input

parameters, especially concerning the number and the location of the perturbations,

the training phase would be very computationally demanding.

An alternative strategy to this monolithic approach is to consider a reduced order

model consisting in two steps, each one approximating the two steps of the FOM. This
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two-step ROM would allow to decouple the training phase, taking advantage of the

features of the two models, although at the price of the propagation of the modelling

errors from the cell ROM to the full-core ROM.

In order to develop an ad hoc ROM for the tilt characterisation, a simplified yet still

realistic problem is considered, based on the Uncertainty Analysis in Modelling (UAM)

benchmark for the Gen-III+ systems (Ivanov, Avramova, et al., 2007), which is sketched

in fig. 6.7. This specific 2D model is featured by 529 squared fuel assemblies with a pitch

of 21.42 cm, and includes the different regions of the core, like the heavy reflector and

the borated water surrounding the core.
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Figure 6.7: Sketch of the UAM benchmark. BW: borated water; MO: Mixed Oxides of
U and Pu; U4: 2.1 % enriched UOx; U3: 3.2 % enriched UOx with burnable poison rods
of UO2 – Gd2O3; SS: stainless steel; U5: 3.2 % enriched UOx with burnable poison rods of
UO2 – Gd2O3; U2: 2.1 % enriched UOx;

Figure 6.8 shows the detailed geometry for the fuel assemblies (FAs) constituting the

core. For each kind of FAs, a set of energy collapsed and spatial homogenised cross

sections and diffusion coefficients are computed with the Serpent code.

Because of the large number of FAs, the input parameter space of this problem is

huge and very complex, since, in principle, different disturbances can affect different

FAs at the same time, with different probabilities. Since the aim of this section is to pro-

vide a "proof of concept" for the development of a non-intrusive ROM to characterise
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6.2 – A non-intrusive reduced order model for the stability analysis of large thermal reactors

Figure 6.8: Pin cells of the UAM benchmark: UOx with 3.2% enrichment and Gd rods in
orange (left), UOx with 2.1% enrichment (centre) and MOx with 9.8% (emerald green), 6.5%
(pine green) and 3.7% (mint green) Pu enriched rods (right) .

the tilt effects on the core operation, the parameter space variability is properly reduced

to limit the computational effort for the model training, still maintaining an adequate

level of generality. Therefore, to reduce the number of scenarios, a simplifying assump-

tion concerning the operational and fabrication disturbances is introduced: only two of

them are considered in the following.

The first disturbance is assumed to be the fuel diameter pellet. Since it affects both

the fission and the moderation, which depends on the ratio between the fuel and the

coolant volume in the elementary cell, this parameter is a good representative for the

group of disturbances of fabrication uncertainties. As such, it is assumed that this pa-

rameter is normally distributed, following the specifications in Ivanov, Avramova, et

al., 2007, i.e. a nominal value of 0.41625cm and a standard deviation equal to 0.00043̄.

The second disturbance is assumed to be a variation of the water density, which can

be assumed originating either from the FAs bowing or from the pump operational un-

certainty, as done in Sargeni, Burn, and Bruna, 2016. The nominal coolant density is0.700758g cm−3
and its standard deviation is assumed to be 0.02102274g cm−3

. Due to

the difficulty in evaluating the probability of this water density variations, it is assumed

that this parameter has a uniform distribution between ±3% of the nominal value, fol-

lowing again Sargeni, Burn, and Bruna, 2016. The Probability Density Functions (PDFs)

for both the parameters is reported in fig. 6.9.

As briefly discussed above, if the ROM was designed to be "monolithic", the training

process would be very expensive, since the input parameter space is very large and

the cost of each calculation would include both the cell calculation, which is the most

expensive in this specific case, and the full-core simulation. On the contrary, if a two-

step approach was employed, it could be possible to split the training phase in two

stages, each benefiting of the specific features of each model. The choice of tailoring the

ROM according to the peculiarities of the FOM follows a popular principle suggested by

Vapnik, who gave fundamental contributions to the development of the Support Vector

Machine method (Cortes and Vapnik, 1995):
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Figure 6.9: Distributions considered for the uncertainties in the physical input parameters
for the lattice calculation.

When solving a problem of interest, do not solve a more general problem as an
intermediate step.

Since, in this case, the cell calculation performed with Monte Carlo is the most com-

putationally expensive, this strategy allows to simplify the input parameter space, de-

coupling the aspect of the perturbation location in the reactor, which is the most chal-

lenging aspect of the problem, and the intensity of the perturbations, which are more

relevant for the generation of the few-group constants. Of course, the response of the

full-core diffusion model would depend both on the kind of perturbation, through the

few-group parameters, and on the location of the perturbations, but each set of per-

turbed cross sections and diffusion coefficients would be generated with a small effort

by the cell ROM.

In the following section, the cell and the full-core ROMs are presented and their

performances in terms of accuracy and computational efficiency are discussed.

6.2.2 Non-intrusive model reduction for the cell calculations
Since each of the two input parameters for the cell calculations follows a statistical

rule, the polynomial chaos expansion is selected to generate the surrogate model for

the generation of the few-group data. This approach and the motivations behind this

choice are described in section 6.2.2.1.

6.2.2.1 The Polynomial Chaos Expansion method

The Polynomial Chaos Expansion (PCE) is a very popular technique for Uncertainty

Quantification (UQ) and Sensitivity Analysis (SA) that was first suggested by Wiener,

1938 and then extended and rigorously formalised by Xiu and Karniadakis, 2002. After

this seminal work, this technique has been extensively tested for several applications,

proving its flexibility in a wide range of applications., including reactor physics.

204



6.2 – A non-intrusive reduced order model for the stability analysis of large thermal reactors

To the author’s knowledge, the first application in this field traces back to M. M. R.

Williams, 2007, who discussed the application of PCE for the solution of the neutron dif-

fusion equation in presence of spatially random cross sections. Then, this technique has

been applied to approach several problems, especially concerning the propagation of

the uncertainties through neutron transport (Gilli, Lathouwers, et al., 2013) and multi-

physics calculations (Santanoceto, Tiberga, et al., 2021).

The basic idea of the PCE approach, which belongs to the class of spectral meth-

ods (Canuto, Hussaini, et al., 2007), is to express a stochastic model  in terms of an

expansion of orthogonal polynomials Ψ,

(�⃗�, 𝑡 , �⃗�) = �⃗� = ∞∑𝑘=0 �⃗�𝑘(�⃗�, 𝑡)Ψ𝑘(�⃗�) ≈ 𝐾∑𝑘=0 �⃗�𝑘(�⃗�, 𝑡)Ψ𝑘(�⃗�), (6.7)

where �⃗� is the vector of the state variables (e.g., spatial coordinates and energy), 𝑡 is the

time, �⃗� is the vector of stochastic parameters (in this case, the pellet diameter and the

water density) and 𝑎𝑘 is the k-th expansion coefficient, which is obtained by means of

a projection, weighted on the random variable distribution 𝑤(�⃗�), of the model on the

k-th basis function, namely

�⃗�𝑘(�⃗�, 𝑡) = ∫ +∞
−∞ 𝑑�⃗�(�⃗�, 𝑡 , �⃗�)Ψ𝑘(�⃗�)𝑤(�⃗�). (6.8)

The choice of the orthogonal polynomial basis is determined by the distribution of the

random variables.

If the vector of random input parameters was constituted by independent random

variables, the multivariate polynomial basis would be defined as

Ψ𝑘(�⃗�) = 𝑑∏𝑖=1 𝜓𝑖(𝑝𝑖), (6.9)

where 𝑑 is the number of independent random variables.

The calculation of the projection coefficients, whose number depends both on the

desired polynomial order 𝐾 and on the number of independent random variable 𝑑 , can

be carried out following different strategies.

Concerning non-intrusive procedures, which allow to treat the model  as a black-

box, it is possible to identify two general procedures (Kaintura, Dhaene, and Spina,

2018), namely:

• the pseudo-spectral approach, which consists in approximating (6.8) through a quadra-

ture rule,

�⃗�𝑘(�⃗�, 𝑡) = ∫ +∞
−∞ 𝑑�⃗�(�⃗�, 𝑡 , �⃗�)Ψ𝑘(�⃗�)𝑤(�⃗�) ≈ 𝐼∑𝑖=1 (�⃗�, 𝑡 , �⃗�𝑖)Ψ𝑘(�⃗�𝑖)𝑤(�⃗�𝑖); (6.10)
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• the least-square regression approach, which consists in approximating the PCE co-

efficients �⃗�𝑘 through a least-square fit.

One of the advantages of the first approach is that, in many situations, a limited

number of points is sufficient to provide a good estimate of eq. (6.8). For example, in

a few dimensional problem, the Gauss quadrature would allow to integrate exactly all

the polynomials with a degree 2𝑛−1 or less with 𝑛 model evaluations. On the contrary,

the accuracy of the regression approach would depend on the choice of the model sam-

ples, thus it would be more difficult to assess its adequateness. As expressed in eq. (6.9),

when the input vector �⃗� ∈ ℝ𝑑
is constituted by independent random variables, the

multivariate polynomials would be expressed as a product of univariate polynomials,

meaning that the number of their coefficients and, thus, the number of integral evalu-

ations, would grow exponentially with the number of dimensions, due to the so-called

curse of dimensionality (Bellman, 1957). In this respect, the least-square regression could

be more convenient than the pseudo-spectral method.

However, the use of sparse grids could mitigate this issue, making the adoption of

the quadrature suitable also for relatively large values of 𝑑 . The first application of

these sparse grids is due to Smolyak, 1963, who observed that it is possible to get good

estimates of integrals and interpolations on a high-dimensional cube, i.e. a hypercube,

by selecting only the most important elements of the tensorial grid obtained combining

each parameter. In this way, the growth rate of the points becomes polynomial instead

of exponential. An intuitive explanation of the effectiveness of the sparse grids despite

their limited number of points compared to the full tensor grid is that high-dimensional

spaces does not behave as intuitively as 2D and 3D Euclidean spaces. Particularly, com-

paring the volume of a hyper-sphere with radius 𝑟 with the one of a hyper-cube with

edge 2𝑟 (Izenman, 2008), it is possible to find out that the volume of the sphere is neg-

ligible with respect to the one of the cube, which is simply (2𝑟)𝑑 ,

lim𝑑→∞ 𝑉ℎ𝑦𝑝𝑒𝑟𝑠𝑝ℎ𝑒𝑟𝑒𝑉ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒 = 𝜋𝑑/2Γ(𝑑/2)𝑑2𝑑−1 → 0, (6.11)

where Γ is the Gamma function. Since the hypersphere is inscribed inside the hyper-

cube, this behaviour suggests that most of the volume of the hypercube is distributed

in its corners, justifying the use of sparse grids. Moreover, since the distance between

one corner and the centre of the hypercube is 𝑟√𝑑 , the volume of the hypercube tends

to spread away from the centre as the space dimension gets higher and higher.

An advantage of using sparse grids is that, for some specific quadrature rules, they

allow to realise nested levels of points, i.e. the higher-order levels contain all the pre-

ceding lower-order ones. Despite these rules do not achieve the same accuracy as the

Gauss-Legendre quadrature, they allow to perform an adaptive quadrature, which can

be improved with more points when needed.

Figure 6.10 shows the sparse grids constructed to get the model evaluations needed

for the quadrature. On the left, it is possible to see the first four levels of quadrature
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points, sampled with a combination of the Clenshaw-Curtis rule, appropriate for the

uniform PDF related to the water density, and of the Genz-Keister rule, appropriate for

the normal PDF associated to the pellet density. On the right, the 4
th

level of the grid

is showed distinguishing between positive and negative weights. In both figures, the

size of the points is proportional to the absolute value of their weights. Because of this

representation, it is not easy to notice the nodes beyond the dashed lines, which are

located at ±3𝜎𝑝𝐷 , where 𝜎𝑝𝐷 indicates the standard deviation of the normal distribution

for the pellet diameter. The low values of these weights is due to the fact that the region

inside the dashed lines covers up to 99.7% of the data, meaning that the values falling

outside this range are extremely unlikely.
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Figure 6.10: Quadrature weights used in the pseudo-spectral projection. The size of the
dots is proportional to their weight, while the dashed, horizontal lines cover the 99.7% of
the area, i.e. they are located at ±3𝜎𝑝𝐷 , where 𝜎𝑝𝐷 is the standard deviation of the pellet
diameter.

To better appreciate all the points in the sparse grid, fig. 6.11 reports both these

points and a set of 161 points generated with Sobol’s rule for the validation of the PCE

model. In this case, the size of the nodes is not proportional to the weights, in order to

appreciate also the points falling outside the range 𝑝𝐷 ⩽ ±3𝜎𝑝𝐷 . Sobol’s rule generates

a low-discrepancy, quasi-random sequence of points that obey to the statistical rules of

each random variable. This sampling rule has been chosen because, although no vali-

dation point falls outside the region delimited horizontally by the two dashed lines, the

points cover more uniformly the parameter space in the region with largest probability,

allowing to check the performances of the PCE model more thoroughly.

6.2.2.2 Two-group constants generation

As specified previously in the chapter, the full order model for the cell calculation is

represented by the Serpent 2 Monte Carlo code. As discussed in chapter 4, the choice of

the regions to perform the spatial homogenisation is of paramount importance in order
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Figure 6.11: Quadrature points used to construct the pseudo-spectral PCE model and 160
quasi-random testing points generated using Sobol’s rule. The dashed, horizontal lines
cover the 99.7% of the area, i.e. they are located at ±3𝜎𝑝𝐷 , where 𝜎𝑝𝐷 is the standard deviation
of the pellet diameter.

to get accurate data for the full-core calculation.

Usually, the homogenisation is carried out at the assembly level, since it provides a

sufficient spatial detail to represent the core behaviour. In particular, exploiting the low

diffusion length of neutrons in a thermal system, a simplified system made of one or

more types of FAs is considered for the homogenisation procedure, imposing reflective

boundary conditions and then applying some leakage-correction model to take into

account the effects of the flux gradients near the boundaries (Rahnema and Nichita,

1997). Although this approach is very popular, it is not suitable to get the constants for

the inactive regions like the reflector or the borated water surrounding it. In order to

get the effective constants for these regions, several strategies are possible, namely

• performing a full-core simulation;

• generating the constants for the inactive regions running a source-driven calcula-

tion using the energy spectrum featuring the fuel lattice;

• considering a simplified system composed by an active region and the other inac-

tive regions.

The first strategy would definitively be the most accurate one, but also the most

computationally expensive, especially for the Gen-III+ systems, which are featured by

a large dominance ratio. In this case, the higher accuracy of this approach would not

be worth the price of the large number of inactive neutron histories needed for a good

fission source convergence (De Mulatier, Dumonteil, et al., 2015), especially since more

than one calculation would be required for the PCE model training.
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The second strategy is much more affordable to generate the cross sections for the in-

active regions with a sufficient accuracy. However, since the aim of the Serpent model

is to evaluate the two-group constants for different input perturbations affecting the

FAs, this approach would not be viable. As a matter of fact, the most sensitive regions

to localised perturbations are the outer ones, close to the reflector, where the flux is

maximum. Therefore, in order to take into account the spectral and spatial effects in-

duced by the reflector on these assemblies, the cell model should include the fuel and

the reflector as well, as proposed in the third strategy.

Figure 6.12: Sketch of the 2D system used to generate the two-group constants with Serpent
2. From left to right, it is possible to see the fuel assemblies, the heavy stainless-steel reflec-
tor (grey), the water baffle (cyan) and the external boron layer (cerulean) used to simulate
the vacuum boundary conditions.

Figure 6.12 represents the simplified reactor model used to generate the group con-

stants, which is a portion of the full-core model in fig. 6.7 with reflective boundary

conditions. This choice allows to consider all the most relevant FAs and inactive re-

gions featuring the system reducing as much as possible the core dimension and, thus,

its dominance ratio. Since Serpent does not allow to specify different boundary con-

ditions for different surfaces, an additional layer of assemblies filled with water with

a higher boron concentration has been added at the boundary, in such a way that the

flux practically vanishes in that region, decoupling the system from its "mirrored" ver-

sion on the right side. Figure 6.13 shows the ratio between the energy flux spectrum

evaluated with the simplified and the one computed with the full-core models. Except

for the borated water region, which is a region featured by a low neutron importance,

the spectrum of the simplified model is very close to the one evaluated with the full-

core calculation, justifying the adoption of such approach to generate the few-group

constants.

A delicate aspect concerning the model reduction in a Monte Carlo simulation frame-

work that should be carefully taken into account is the fact that each output is affected

by statistical uncertainty. Usually, model reduction is applied to deterministic models,

so the possibility to have uncertain outputs is often not considered. The PCE model is

designed to deal with uncertain output responses, but, in this case, it is not possible to

associate the output samples from the sample average normal distribution to an input

parameter. Some techniques could be used to overcome this issue, e.g., bootstrapping.

However, since the aim of this work is to develop a computationally efficient model
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Figure 6.13: Ratio between the flux energy spectrum computed with the simplified geom-
etry and the spectrum evaluated with the full-core model.

that could be applied to a general industrial code, this specific aspect will not be taken

into account, as, in general, the cross section and diffusion coefficient generation is

carried out using deterministic cell codes. Thus, each Monte Carlo calculation is carried

out minimising the statistical uncertainty of the outputs to an acceptable level, so that

their impact on the quality of the results is negligible for this specific application.

Figure fig. 6.14 shows the convergence trends for the Shannon entropy and the 𝑘eff
as a function of the number of neutron cycles for different combinations of active and

inactive cycles, which are delimited by the vertical lines in the graph, using 106 neutrons

per cycle. The convergence behaviour of these parameters and the statistical error of

the group-constants of interest have been considered acceptable with 200 inactive cycles

and 300 active cycles, so each simulation used to train the PCE model relied on these

neutron population settings. As a further confirmation, it has been then verified that

the output variations due to the physical parameter perturbations are not covered by

the statistical noise in the results.

With these settings, each Serpent simulation requires, on average, about 3 hours

with 16 CPUs (2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz).

6.2.2.3 Model training and validation

The PCE model construction discussed in this section is carried out exploiting the

open source Python library chaospy (Feinberg and Langtangen, 2015), which offers a
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Figure 6.14: Convergence trend for the Shannon entropy.

complete pipeline for the ROM training. Among the wide selection of sampling tech-

niques and PCE-based methods, the deterministic sampling approach based on the

Smolyak sparse grids is chosen and, as discussed previously, the Pseudo-Spectral (PS)

projection is selected to evaluate the coefficients of the chaos polynomial. In parallel

with the data generation for the training phase, about 160 model evaluations are per-

formed using a low-discrepancy sequence generated with the Sobol rule.

The number of the PCE coefficients scales as the number of input random vari-

ables times the order of the polynomial. Therefore, the calculation of these coefficients

through the quadrature rule requires a larger and larger number of points for an accu-

rate evaluation of the coefficients. While the Gaussian quadrature allows to integrate

exactly one-dimensional polynomials up to degree 2𝑛 − 1 using 𝑛 model evaluations,

the Clenshaw-Curtis rule (Clenshaw and Curtis, 1960) allows an exact integration with𝑛 nodes only up to order 𝑛−1. Since in eq. (6.10) the basis functions Ψ𝑘 are polynomials

of order 𝑚 and the model  is assumed to be smooth enough to be represented by an𝑚th
order polynomial, the evaluation of the integral would require 2𝑚 + 1 nodes. Con-

cerning the Genz-Keister (Genz and Keister, 1996) rule, the information concerning the

exactness order is not available in the literature. Therefore, although the accuracy of

the PCE model should increase as the expansion order increase, a compromise between

the integration accuracy and the model expansion order should be accepted in practice

for a fixed number of model evaluations, especially for high-dimensional problems.

Exploiting the fact that both rules allow to obtain nested sparse grids, the PCE model

training is progressive, increasing, when needed, the accuracy level of the grid albeit

minimising the number of new model evaluations. Excluding the 0
th

order PCE, the first

four levels of the sparse grid are employed to generate the PCE models ranging from

1
st

to 4
th

order.

Figure 6.15 shows the percentage Root-Mean Square Error (RMSE) computed be-

tween the PCE model evaluations and the validation set for different orders of the poly-

nomials. The trend of the RMSE clearly shows the need for a compromise needed be-

tween the polynomial order and the accuracy required to evaluate its coefficients. From
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Figure 6.15: RMSE between the PCE models evaluations and the validation set, sketched in
fig. 6.11.

another perspective, the curve is a clear example of the Occam’s Razor principle (Bar-

gagli Stoffi, Cevolani, and Gnecco, 2022), according to which simpler models should be

preferred to complex ones when all the other conditions are equal (in this case, the val-

idation set). Since this is one of the golden rules in the reduced-order modelling frame-

work to resolve the dilemma between low-variance, highly specialised, biased models

and high-variance, low-biased models (Geman, Bienenstock, and Doursat, 1992), the

first-order PCE model is selected as a surrogate for the cell calculations performed with

Serpent.

Figures 6.16 and 6.17 seem to further justify this choice. Despite a slight statisti-

cal noise affecting some of the parameters, the linear PCE seems the most adequate in

representing the full-order model response, especially the dependence to the pellet di-

ameter random variable. As it can be clearly seen in fig. 6.17, the quadratic PCE fails to

represent the data falling outside the range ±2𝜎𝑝𝐷 , represented by the dashed vertical

lines.

In light of these considerations, one could argue that the adoption of a PCE reduced-

order modelling framework could have been avoided using a much simpler model, e.g.,

a linear regression. However, it is important to remark that, in a general problem, one

does not know a priori the general behaviour of a model with respect to a set of input

parameters, especially when their number is large and they follow some statistical dis-

tributions. Despite this is a simplified problem, the objective of this work is to provide

a computationally efficient framework that could be extended to more complex prob-

lems. Thus, the fact that the PCE allows to obtain a linear model should be interpreted

as a positive feature of this approach.

Moreover, since the dependence between the input parameters and the few-group

constants is, in general, non-linear, the linear relationship between input and output is

probably a consequence of the small input variations (≈ 0.1 % for the pellet diameter,
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Figure 6.16: PCE fitting and full-order model evaluations as a function of the coolant
density for different FAs. The pellet diameter is considered at its nominal value, 0.41265
cm. U6 indicates the 2.1% enriched UOx FAs, U7 indicates the 3.2% enriched UOx FAs and
MP indicates the MOx FAs.

≈ 3% for the coolant density), thus the linearity may not hold anymore if the uncer-

tainty range should become larger. With respect to other simplified models, e.g., the

perturbation analysis, the PCE model could be naturally extended to a non-linear case,

for example if the few-group data dependencies on the burn-up and the temperature

were accounted for. Nevertheless, this extension will not be addressed in this chapter,

leaving it as a future development for this activity.

Concerning the validation phase, the quadrature nodes that are not employed in the

model training, i.e. the evaluation of the polynomial coefficients through integration,

are added to the validation set. The main advantage of this choice is the fact that,

contrarily to the points generated with the Sobol rule, these nodes cover also the most

unlikely parameter region, improving the reliability of the evaluation of the modelling

error.

The overall quality of the PCE model is acceptable for the intended application, as it

can be noticed by inspection of fig. 6.18, which shows the % relative error between the

PCE and the Serpent output for some selected responses of the validation simulations.

Most of the points are featured by an error which is by far lower than 0.1 %, as displayed

by the error distributions in fig. 6.19, where the dashed, vertical lines indicate the values
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Figure 6.17: PCE fitting and full-order model evaluations as a function of the pellet di-
ameter for different FAs. The coolant density is assumed to be at its nominal value,0.700758g cm−3. U6 indicates the 2.1% enriched UOx FAs, U7 indicates the 3.2% enriched
UOx FAs and MP indicates the MOx FAs.

±0.05%. In general, the points featured by the largest error are the ones falling outside

the range ±2𝜎𝑝𝐷 .

One of the advantages of the PCE approach is that its coefficients can be used to have

a direct evaluation of the first-order Sobol’s indices for each output response, defined

as 𝑆𝑖 = 𝜎 2𝑖𝜎 2[𝑅] , (6.12)

where 𝜎 2𝑖 is the variance obtained varying only the 𝑖-th parameter and 𝜎 2[𝑅] is the

total variance of the output response 𝑅. In general, the indices are normalised. In this

particular case, they obey to the following relationship,𝑆𝜌 + 𝑆𝑝𝐷 + 𝑆𝜌,𝑝𝐷 = 1, (6.13)

where 𝑆𝜌 is the index associated to the coolant density, 𝑆𝑝𝐷 is related to the pellet diam-

eter and 𝑆𝜌,𝑝𝐷 is the index accounting for the mutual interaction of the two parameters.

These figures of merit are fundamental in the framework of the Global Sensitivity Anal-

ysis (GSA) (Sudret, 2008), which estimates the relative importance of the various input

parameters, and their correlation, in the determination of the output variance.
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Figure 6.18: % relative error between PCE and Serpent output for some selected responses.
U6 indicates the 2.1% enriched UOx FAs, U7 indicates the 3.2% enriched UOx FAs and MP
indicates the MOx FAs.

In this case, it is interesting to notice that, except for the diffusion coefficients, the

most important uncertain parameter is the coolant density. In addition to its largest

relative variation, this parameter is tightly related to the moderation, which strongly

alters the flux energy spectrum at the cell level. The overall low sensitivity of the two-

group data to the fuel pellet diameter can be explained by its small relative variation

with respect to the coolant density. The fact that the diffusion coefficient is more sensi-

tive to the fission cross sections can be explained by a competing phenomena involving

the moderation and the spatial self-shielding featuring the fuel pins (M. L. Williams,

2011). For a given coolant density, perturbing the pellet diameter alters the coolant-to-

fuel volume ratio inside the cell, which has a non-negligible impact on the mean free

path of the particles inside the system and, thus, on their diffusion coefficient. Since

the neutron penetration inside the fuel mostly occurs in the outer region, due to the

self-shielding, slightly changing the pellet diameter does not significantly impact the

fission rate.

Finally, it can be appreciated that the mutual interaction of the two input variables

has a negligible impact on the variance of the output responses: the largest index as-

sociated to the input parameter correlation is about 0.03 % and, as such, it could be

appreciated in the figure.
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Figure 6.19: Distribution of the % relative error between PCE and Serpent output for some
selected responses. U6 indicates the 2.1% enriched UOx FAs, U7 indicates the 3.2% enriched
UOx FAs and MP indicates the MOx FAs.

6.2.3 Non-intrusive model reduction for the full-core calculations
In this section, the main aspects concerning the training and the validation of the

full-core NIROM are discussed, focusing on the peculiarities of the problem under ex-

amination.

6.2.3.1 High-fidelity model of the UAM benchmark

Concerning the high-fidelity full-core model of the UAM benchmark, the finite ele-

ment code FreeFEM++ (Hecht, 2012) has been selected for the solution of the two-group

diffusion equation. Despite finite volumes and coarse-mesh methods are usually pre-

ferred for the numerical approximation of the neutron diffusion operator, this tool has

been selected for several reasons, namely:

• it is open-source;

• it is optimised to handle strongly heterogeneous geometries like the one of the

UAM benchmark;
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Figure 6.20: First-order Sobol indexes for each output model response.

• both the computational mesh generation and the manipulation of the input and

output fields are very fast and easy;

• it offers a wide number of wrappers to other computationally efficient libraries,

like PETSc (Balay, Abhyankar, et al., 2020) and SLEPc (Hernandez, Roman, and

Vidal, 2005), which are very efficient for the solution of eigenvalue problems, as

pointed out in chapter 2.

On the right of fig. 6.21, the UAM benchmark sketch with the indication of the num-

bers used to indicate the various FAs is reported, while on the left the adapted compu-

tational mesh employed for the generation of the training and validation solutions is

provided. The number of elements for this mesh was selected according to the results

of a grid independence study, reported in fig. 6.22.

Using this mesh, composed by 632 430 elements, each finite element simulation re-

quires about 3-5 minutes, according to the machine architecture, using 12 CPUs to par-

allelise the solution of the eigenvalue problem.

6.2.3.2 Definition of ad hoc sampling strategies

The selection of an adequate sampling strategy is of paramount importance for train-

ing an efficient and robust meta-model. To the author’s knowledge, a specific sampling

strategy adequate to handle the special feature of this application, i.e. the spatial depen-

dence of the perturbations, does not exist in the literature. Therefore, since extending

the usual sampling strategies for an input parameter space made of scalar quantities to
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Figure 6.21: Finite element mesh adopted for the full-core diffusion calculation (left) and
sketch of the UAM core with the FA numbers (right).
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calculation with ≈ 5.9 × 106elements for 𝑘eff (top) and the total fission power in the FA
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this specific case is not straightforward, an ad hoc procedure is proposed in the follow-

ing, trying to exploit the physical features of the problem.

The first aspect that is exploited in the definition of the sampling procedure is the

fact that, from the point of view of the power production by fission, not all the neutrons

diffusing in the reactor are equal: some of them are more important than others in

contributing to the fission chain reaction. Therefore, it would be advisable to introduce

the perturbations in the FA to which the fission source is more sensitive.

The concept of neutron importance Ψ, first introduced by (Usachev, 1956), is tightly

related to the adjoint equation and its solution 𝜙†
, which has been interpreted his-

torically as a measure of the importance of one single neutron in contributing to the

response of a certain detector or, for a critical system, to the fission reaction. Although

the interpretation Ψ = 𝜙†
is the most popular one, it is possible to define also other

importance functions in the frame of neutron transport (Tal, Israeli, et al., 2019). For

example, in the framework of the Generalised Contributon Theory (M. Williams, 1991),

the importance function can be defined as the product between the adjoint and the

direct fluxes, namely Ψ = 𝜙𝜙†, (6.14)

or as the product between the adjoint flux and the neutron density, namelyΨ = 𝜙
v
𝜙†. (6.15)

Figure 6.23 reports the assembly-wise spatial distributions in each energy group for

the direct and adjoint fluxes and for the neutron density, computed ensuring criticality

through a proper normalisation of the fission operator by 𝑘eff . Since the factor 1/vg,𝑔 = 1,2 is spatially uniform, the spatial distribution of the direct flux and of the neutron

density does not change, but, since v1 >> v2, the ratio between the thermal and the fast

densities is reversed: the flux, i.e. the neutron track length per unit volume, is larger

in the fast group, but the density, i.e. the number of particles per unit volume, is larger

in the thermal group. Since the thermal adjoint in figs. 6.23e and 6.23f is larger than

the fast one, the resulting importance function would be very different according to its

definition.

The three assembly-wise importance function definitions can be appreciated in fig. 6.24.

In all cases, the most important FAs are the peripheral ones featured by 2.1% enriched

UOx, without Gd, where the flux achieves its peak. However, the importance of the

other FAs strongly depends on the kind of definition employed. The one coinciding

with the adjoint, obtained summing the group-wise adjoint fluxes, is more spatially

uniform than the other ones. Thus, according to this definition, the neutrons generated

in the inner FAs have roughly the same importance in sustaining the fission reaction. If

the adjoint is weighted with the direct flux, the spatial heterogeneity effects increases,

due to the sensitivity of the thermal flux to the FA composition. This effect is exacer-

bated when the adjoint is weighted with the neutron density, due to the largest weight

associated to the thermal density.
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(a) Fast neutron density.
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(b) Thermal neutron density.
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(e) Fast neutron adjoint flux distribution.
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(f) Thermal neutron adjoint flux distribution.

Figure 6.23

Since the last formulation is constructed weighting the adjoint on the actual number

of particles inside each FAs, this definition is considered to be the best candidate for the

definition of the probability density function for sampling the location of the perturbed

FAs. The assembly-wise distribution of the resulting PDF is reported in 6.25,
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(a) Importance function Ψ defined as 𝜙†.
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(b) Importance function Ψ defined as 𝜙†𝜙.
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Figure 6.24
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Figure 6.25: Probability density function to sample the location of the perturbed FA.

The other physical feature that could be exploited is the symmetry of the core, which

could be used to increase the number of training data at basically no cost by means of
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proper rotations of the solution. In this way, each FreeFEM++ calculation provides four

solutions, one for each multiple of the rotation angle 𝜃 = 𝜋2 + 𝑘 𝜋2 , with 𝑘 = 0, 1, 2, 3.

An example of this rotation procedure is visible in fig. 6.26. In order to emphasise the

visualisation of the perturbation clusters, each one is represented by a single colour,

although the FAs are featured by different few-group constants according to their type.

Figure 6.26: Rotated perturbed configurations. The starting configuration (upper left) is
progressively rotated with multiple of 𝜋/2 counter-clockwise.

To induce the perturbation clusters visible in fig. 6.26, only the initial FA is sampled

according to the importance PDF. Then, a FA among the north, east, south and west

ones is selected randomly, and the procedure is iterated until the maximum number of

perturbed FAs per each perturbation cluster is achieved. In this way, a kind of pertur-

bation random walk is defined. Figure 6.27 provides a support to visualise the sampling

strategy used to define the block of perturbed FAs. First, the number of perturbed FA

is sampled from a uniform distribution defined among 6 and 10, included. Then, the

initial FA, 103 in the figure, is sampled according to the PDF in fig. 6.25. Afterwards,

the FA 126 is sampled among the equally probable FAs surrounding the FA 103. The red

arrow indicate the direction of the disturbance random walk, while the white arrows

indicate the other possible, non-sampled directions. The sampling process goes on until

the number of perturbed FAs is achieved, verifying that each new configuration is not
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contained in the previous samples. This check is more and more expensive as the num-

ber of samples grows, but it is necessary to avoid the generation of duplicate training

data, which, in addition to the obvious waste of computational resources, would make

the RBF kernel singular.

Each perturbation cluster is featured by the same perturbation intensities, which are

sampled according to the joint PDF obtained combining the PDFs showed in fig. 6.9. The

presence of blocks of FAs with the same perturbation is particularly reasonable because

of the fact that a change in the coolant conditions would affect also the adjacent FAs,

due to the cross flow phenomena. The same assumption is made for the fuel pellet

diameter uncertainties, in order to reduce the number of possible combinations. For

each perturbation, the corresponding set of two-group constants are generated using

the PCE model, described in section 6.2.2.1.

Figure 6.27: Example of a perturbation random walk. The white arrows indicate the FAs
that could be extracted, while the red arrows indicate the selected FAs. The red X indicates
the starting FA.

In spite of this simplifying assumption, the number of possible scenarios is still dra-

matic. First, the PDF for the extraction of the first FA is strictly positive for each FA,

meaning that potentially every FA could be selected as the origin of the perturbation.

Then, even though only some surrounding FAs can be selected to define the perturba-

tion cluster, the total number of perturbed FAs can vary in the range 6-10, increasing

the number of potential scenarios. As a further complication, more than one perturba-

tion clusters may appear, each one featured by different values of coolant density and

pellet diameter, which are random parameters themselves.

Due to the huge parameter space, two alternative strategies are proposed and tested

in the following, in combination to the algorithm described above for the generation of

the perturbation random walks:

1. a full random sampling, which consists in sampling both the spatial features of the

perturbation and the perturbation intensities;

2. a hybrid sampling, which consists in using a random sampling for the spatial fea-

tures of the perturbations and a deterministic rule, i.e. the Smolyak sparse grid,
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for the intensity of the perturbations.

The advantages and disadvantages of these methods will be discussed later in more

detail, but it is important to observe here their fundamental features.

The brute-force random sampling is simpler and more naive than the hybrid one,

but it can be conveniently used to split the dataset into a training and a validation

sets. Moreover, combined with the importance sampling, this approach could be still

effective in providing a uniform mapping of the parameter space. Thus, this technique

is used to generate a set of around 1125 scenarios (4500 effective scenarios, considering

the solution rotations), each featured by a random number of batches, a random number

of FAs per batch and a random perturbation intensity, i.e. the values of coolant density

and pellet diameter, per batch.

The hybrid sampling is more involved, but it allows a better control of the random

physical parameters, enabling also to perform an adaptive training with the nested

sparse grids. This feature would be very important, because it would allow to pro-

gressively take into account the super-position of different perturbations at the same

time. An inspection of fig. 6.10 would be useful to notice that the lower-order levels of

the grid are constructed by varying only one parameter and leaving the other unper-

turbed, meaning that, to have simultaneous perturbations, the level of the grid should

be larger than 2. For larger number of parameters, this value would increase.

Notwithstanding its nice features, some precautions are needed to reduce the effects

of the curse of dimensionality: since each perturbed batch is featured by an independent

perturbation intensity, the number of configurations would scale exponentially with the

number of deterministic points used to map the perturbation intensity. For example, if

the second level of the Smolyak sparse grid was used to map the pellet diameter and

the coolant density, 17 points would be generated, as in fig. 6.10. Since each perturba-

tion batch would be featured by 17 values of the physical parameters, the number of

configurations would scale as 17𝑏, where 𝑏 is the number of batches considered.

Table 6.1: Example of sampling scaling when the second level of the Smolyak sparse grid
is defined for each batch independently or considering as input parameters all the density-
diameter couples per each batch.

n. batches batch-wise sampling global sampling

1 17 17

2 289 49

3 4913 97

4 83521 161

To avoid this behaviour, it is possible to profit by the polynomial scaling of the

Smolyak algorithm, considering a higher-dimensional input space composed by 2𝑏 pa-

rameters, where 2 refers to the density and to the diameter inputs. In this way, only
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an optimal subset of the possible 17𝑏 combinations would be selected by the Smolyak

algorithm. Table 6.1 provides the number of samples obtained following the batch-wise

and the global sampling. As expected, the batch-wise sampling strategy is not afford-

able, while the other sampling strategy allows to achieve a massive reduction in the

number of samples. On top of that, it is important to notice that each Smolyak level

contains the 0
th

level, i.e. the reference, unperturbed input. Therefore, excluding these

points, the actual number of points is expected to be even lower. Even though, the

number of training simulations required to map the core with four batches would be

still very large, as 161 simulations are required for a single perturbation configuration.

Because of this reason, the hybrid sampling is adopted in the following to analyse a

simpler problem, featured by only one batch of perturbed FAs in each configuration,

leaving the number of FAs and their location as free, independent parameters. For this

problem, 32 independent spatial arrangements are considered, for a total of 1024 cases,

considering the rotations and the 16 Smolyak points required per each arrangement.

6.2.3.3 Evaluation of the distance between the input parameters

Figure 6.28 and fig. 6.29 shows some examples of physical perturbations affecting

the core, which is supposed to have a uniform density spatial distribution, being at the

uniform temperature of 570 K, i.e. at hot zero power.

(a) (b)

(c)

Figure 6.28: Some configurations for a single perturbation in the coolant density distribu-
tion in the active FAs.
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The fact that the input parameters (coolant density and pellet diameter) are not scalar

quantities but assembly-wise distributions poses the question of taking the spatial as-

pect into account during the RBF weights assignment. By inspection of the figures it

appears manifest that, due to the linearity of the diffusion equation, the perturbations

in figs. 6.28a and 6.29a will induce a neutron flux and fission power distributions quite

close to the one induced by the perturbations in figs. 6.28b and 6.29b, respectively, being

the perturbation intensity in each batch of FAs equal. On the contrary, it is reasonable

to expect that the perturbation in figs. 6.28c and 6.29c would provide substantially dif-

ferent flux and power profiles, due to the location of the L-shape perturbation, which

is placed in the northern part of the core instead of the southern one.

(a) (b)

(c)

Figure 6.29: Some configurations for multiple perturbations in the coolant density distri-
bution in the active FAs.

However, the resulting RBF weights do not follow this physical expectation when

the usual 𝐿2 norm is adopted to evaluate the distance ||�⃗�𝑖 − �⃗�𝑗 ||2 between the various

input parameter distributions. In particular, the Euclidean distance between fig. 6.28a

and fig. 6.28c turns out to be equal to the one between fig. 6.28a and fig. 6.28b, 0.0442.

Despite it contradicts the physical expectations, this result is fully consistent with the

mathematical expression of the 𝐿2 norm,

||�⃗�𝑖 − �⃗�𝑗 ||2 = √ 𝐾∑𝑘=0 (�⃗�𝑖𝑘 − �⃗�𝑗𝑘)2. (6.16)
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Since the only non-zero differences would be found for the locations of the perturbed

FAs, and both the perturbation intensity and the number of perturbed FAs are the same,

also the resulting distance between the two input parameters would be the same. In

case the perturbation intensity and the number of perturbed FAs were different, which

is likely considering the dimensions of the input parameter space, the distance would

certainly change, but it would not still be very sensitive to the spatial distribution of the

input. For instance, the Euclidean distance between fig. 6.29a and fig. 6.29c would be

around 0.0254, while the one between fig. 6.29a and fig. 6.29b would be around 0.0442,

which are quite similar despite the spatial distributions are noticeably different.

Among the huge number of different metrics available in the literature, the so-called

IMage Euclidean distance (IMED) (Wang, Zhang, and Feng, 2005) seems the most ade-

quate to tackle this issue, due to its robustness to small perturbations and to its simplic-

ity. Contrarily to the traditional 𝐿2 norm, this metric accounts for the relative position of

the different pixels composing an image thanks to a proper weighting matrix �̂�, which

has to be positive definite,

||�⃗�𝑖 − �⃗�𝑗 ||𝐼𝑀𝐸𝐷 = √(�⃗�𝑖 − �⃗�𝑗)⊺�̂�(�⃗�𝑖 − �⃗�𝑗). (6.17)

Given an image defined in ℝ𝑁 ×𝑀
, the 𝑔𝑛𝑚 element of the weighting matrix �̂� is defined

as 𝑔𝑛𝑚 = ℎ(||𝑃𝑛 − 𝑃𝑚||), (6.18)

where Pn and Pm are the 𝑛-th and𝑚-th coordinates of the pixel composing the image andℎ is a continuous function that should be monotonically decreasing when its argument||Pn − Pm|| increases. As in the reference paper, in this work the ℎ function is chosen to

be a Gaussian distribution, namely

𝑔𝑛𝑚 = 12𝜋𝜎 2 exp(− ||Pn − Pm||2𝜎 2 ). (6.19)

Although the IMED has been developed for image recognition algorithms, it can

be easily extended to other multi-dimensional objects for which the relative position

in space is important, considering the intensity of the field instead of the pixel colour.

In this specific application, each input parameter can be cast as an object belonging toℝ𝑋𝑁 ×𝑌𝑀 , where𝑋𝑁 and 𝑌𝑀 are the number of spatial points along the 𝑥 and 𝑦 coordinates,

respectively. The application of the IMED to one-dimensional fields is trivial, since it

would be sufficient to consider 𝑌𝑀 = 1, while the application to three dimensional fields,

e.g., �⃗�(𝑥, 𝑦, 𝑧), which is interesting for 3D full-core analyses, would require an exten-

sion of the IMED algorithm to three-dimensional images. This generalisation is not

addressed in this work, but it is left as a future development to extend the applicability

of this ROM framework to 3D full-core systems.

The IMED distance between the configuration in fig. 6.28a and the one in fig. 6.28c

yields 0.027, while the one between fig. 6.28a and fig. 6.28b amounts to 0.009, proving
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the higher sensitivity to the perturbation spatial pattern. The better performance of this

metric can be verified also comparing the other perturbations depicted in fig. 6.29. The

distance between fig. 6.29a and fig. 6.29c yields 0.0267, while the one between fig. 6.29a

and fig. 6.29b yields, as expected, a lower value, 0.018.

The main disadvantage of the IMED algorithm is its higher computational cost com-

pared to the traditional 𝐿2 norm, since the distance evaluation requires to perform a

vector-matrix-vector product, and the RBF approach requires to compute the distance

between each pair of training data. However, exploiting the linearity of the algorithm,

it is possible to apply a linear transformation to each input that allows to reduce the

number of matrix-vector products. Exploiting a factorisation of the �̂� matrix (Wang,

Zhang, and Feng, 2005), the IMED turns out to be the classical Euclidean between two

transformed variables 𝑟 𝑖 and 𝑟 𝑗 , i.e.||�⃗�𝑖 − �⃗�𝑗 ||𝐼𝑀𝐸𝐷 = √(�⃗�𝑖 − �⃗�𝑗)⊺�̂�(�⃗�𝑖 − �⃗�𝑗) = √(�⃗�𝑖 − �⃗�𝑗)⊺�̂� ⊺�̂� (�⃗�𝑖 − �⃗�𝑗) == √(𝑟 𝑖 − 𝑟 𝑗)⊺(𝑟 𝑖 − 𝑟 𝑗), (6.20)

where �̂� can be obtained either from SVD or from the eigenvalue decomposition of the

weighting matrix �̂�.

Thanks to this property, the IMED can be naturally embedded non-intrusively in

the ROM framework, just applying the linear transformation to each input before pass-

ing them to the POD-RBF algorithm. Figure 6.30 shows the smoothing effect obtained

applying the �̂� matrix to the input coolant density field.
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Figure 6.30: Original (left) and smoothed (right) perturbed coolant density distributions.

If the input parameters considered to train the ROM were the actual inputs for the

diffusion model, i.e. the few-group constants, the smoothing effect would be more rel-

evant for the thermal properties, featured by a stronger spatial variation, as visible in

fig. 6.31. Concerning this case, it is possible to notice the appearance of an unphysical

"stripe" in the thermal diffusion coefficient distribution. These values are not physical

perturbations, but are a consequence of the fact that, to apply the IMED to the few-

group data, each group-wise data is stacked in a vector of length 𝑛𝑑𝑎𝑡𝑎𝑁𝑥𝑁𝑦 , where 𝑛𝑑𝑎𝑡𝑎
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is the number of data and 𝑁𝑥 and 𝑁𝑦 are the number of assemblies in the x and y direc-

tions. Since each "image" is stacked one below the other to form a unique "image" for

the IMED application, the linear transform �̂� smooths the passage from one figure to

the other. This aspect does not influence at all the distance between the parameters in

this application, since each perturbation is applied only in the active region, where this

effect does not occur. In view of other applications where this issue may be relevant,

it could be possible to avoid it adding some dummy values between each data, which

could be interpreted as adding some blank space between each figure.
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Figure 6.31: Original (left) and smoothed (right) fast (top) and thermal (bottom) diffusion
coefficient.

Another challenging aspect of this application is the large dimension of the input

data. In this case, which is featured by a low number of energy groups, 𝑛𝑑𝑎𝑡𝑎 = 7, i.e.

the two-group diffusion coefficients, production cross sections, removal cross sections

and the slowing down cross section, while 𝑁𝑥 and 𝑁𝑦 are both equal to 23, for a total

of 3703 values. Since the computational cost of the distance matrix evaluation is (𝑛2),
where 𝑛 is the number of training snapshots, and this operation has to be performed

several times in the RBF training process (see algorithm 3), the total cost would be

prohibitive.

This issue can be effectively mitigated using the POD algorithm to reduce the input

dimensionality, exploiting its redundancies. Since the POD is linear, the overall IMED
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does not change if the reduction is applied to the smoothed input data, making the com-

bination of these two methods straightforward. In fig. 6.32 it is possible to appreciate the

first three POD modes of the thermal fission production cross section 𝜈Σ𝑓 ,2. Concerning

the criterion adopted to select the number of POD modes, a very strict truncation error

(10−12) is considered, in order to ensure a sufficiently accurate data representation in the

reduced-order space and, thus, a precise evaluation of the distance between the various

input perturbations.

-0.0080

-0.0070

-0.0060

-0.0050

-0.0040

-0.0030

-0.0020

-0.0010

0.0000

PO
D 

m
od

e 
n.

 0

-0.0100

-0.0050

0.0000

0.0050

0.0100

PO
D 

m
od

e 
n.

 1
-0.0100

-0.0050

0.0000

0.0050

0.0100

PO
D 

m
od

e 
n.

 2

-0.0080

-0.0060

-0.0040

-0.0020

0.0000

0.0020

0.0040

0.0060

0.0080

PO
D 

m
od

e 
n.

 3

-0.0040

-0.0020

0.0000

0.0020

0.0040

PO
D 

m
od

e 
n.

 4

-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100
PO

D 
m

od
e 

n.
 5

Figure 6.32: POD modes for thermal fission production cross section, with increasing spatial
frequency moving from top to bottom and from left to right.
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6.2.3.4 Model training and validation

In this section, the full-core model results are presented and discussed, considering as

output response the assembly-wise power distribution, which is the physical parameter

adopted to assess the core conformity in presence of localised perturbations.

fig. 6.33 presents the first six modes obtained by applying the POD reduction to the

power training snapshots. Contrarily to the POD application to the input data, in this

case it is possible to use a much looser tolerance, around 5 ⋅ 10−6, which guarantees an

energy of the POD basis larger than 99.999%. It is interesting to notice that the spatial

shapes of these modes are very similar to the ones of the higher 𝑘-eigenmodes.
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Figure 6.33: POD modes for fission power distribution.

The POD reduction is very important to minimise the computational cost associated
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to the model training, as one RBF net is trained per each POD coefficient (see algorithm

3), including the RBF shape parameter optimisation with the LOOCV technique (see

algorithm 4). Also in presence of a significant dimensionality reduction, the computa-

tional time of the RBF evaluation strongly depends on the number of training snapshots𝑛, as the RBF weights have to be determined by inverting the distance matrix �̂� ∈ ℝ𝑛×𝑛
.

This is a well-known limit of non-parametric techniques like RBF-SVM (Russell, 2010),

together with the possible over-fitting behaviour. Since the datasets used to map the

input parameter space of the problem are very large, in the following the model sensi-

tivity to the number of training samples will be assessed taking into account both the

accuracy of the model and its computational efficiency.

Figure 6.34: Example of perturbation arrangements which are spatially similar but involve
different kinds of FAs.

Before moving on with this evaluation, it is of paramount importance to discuss the

input-output association logic. Due to the two-step structure of the high-fidelity model

depicted in fig. 6.6 and since the ROM is non-intrusive, one could be led to assume that

the best labelling strategy for the supervised learning model would be to assign the

spatial distributions of the coolant density and of the pellet diameter as input to the

ROM. This choice could appear completely legitimate, since, from a physical point of

view, the reactor responds with a certain power distribution to a certain perturbation

arrangement. However, from the point of view of the model, the same relative density

variation affects in a different way each type of FAs in a certain perturbation batch,

meaning that the full-core diffusion model would "see" different cross sections and dif-

fusion coefficients in each perturbation batch. This has an non-negligible impact on

the effective distance between the training configurations, as visible from fig. 6.34. The

two perturbation batches shown are very similar from a topological point of view, but

involve different families of FAs. Therefore, if the ROM input were the density and the

diameter distributions, the two configurations would turn out to be much closer than

they actually would if the two-group data were considered. Figure 6.35 reports the
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PDF and the Cumulative Distribion Function (CDF) of the percentage relative error on

the assembly-wise power �̇� 𝑖 between the FOM and the ROM for 2000 validation cases

generated with the full-random sampling approach, namely

𝜖�̇�% = 𝑁𝐹𝐴𝑠∑𝑖=1 ‖‖‖‖�̇� 𝑖,𝐹𝑂𝑀 − �̇� 𝑖,𝑅𝑂𝑀�̇� 𝑖,𝐹𝑂𝑀
‖‖‖‖2100. (6.21)

On the left, the physical perturbations are used as input parameters for the model, while,

on the right, the input parameters are the actual two-group constants. At a first glance,

it may seem that there is no striking difference between the two cases, but looking at

the frequency axis it is easy to notice how the right graph is featured by peak around

1% and by a strong reduction of the frequency for the error around 6-10 %.
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Figure 6.35: Percentage relative error distribution on the validation samples for the full-
random sampling case considering four perturbation batches in the core. On the left, the
model is trained considering the coolant density and the pellet diameter as input, on the
right the model is trained using the actual few-group data.

Therefore, these results confirm that, for a proper evaluation of the input parameter

distance, which is fundamental to assign the correct weights to the RBF, it is necessary

to assign the actual input data of the FOM to each snapshot.

Figure 6.36 reports the PDF and CDF of the percentage relative error computed as

in (6.21) for 3000 validation cases generated with the full-random sampling approach

using 500, 1000 and 1500 training snapshots. Although the number of samples doubles

and then triplicates, the shape of the error distribution for the 3000 validation snapshots

does not seem to change significantly, apart from an increase in the frequency of the

error values around 1%. On one side, this is an excellent feature of the model, since it

suggests that a good trade-off between accuracy and complexity has been achieved and

that the model is rather insensitive to the addition of new samples. On the other, the

fact that the error seems to decrease slowly would suggest that reducing the validation

error to an arbitrary value would require a huge number of snapshots.

Finally, it is worth mentioning the behaviour of the other figure of merit, i.e. the

computational efficiency of the model. Table 6.2 proves that both the ROM training
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Table 6.2: Computational performances of the ROM trained with different dataset sizes.

n. snapshots
ROM training

time [s]

ROM execution

time [s]

Normalised memory

consumption [-]

500 90 0.035 1

1000 369 0.136 4

1500 860 0.30 9
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(a) 500 training samples.
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(b) 1000 training samples.
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(c) 1500 training samples.

Figure 6.36: Percentage relative error distribution on 3000 validation samples obtained with
the full-random sampling algorithm considering four perturbation batches in the core.

and the ROM execution times increase dramatically with the number of snapshots 𝑛, as

well as the memory resources. Therefore, considering also the behaviour of the error

distribution, it is not probably worth to further increase the number of the random

training samples.

The final goal of the full-core NIROM described in this section is the accurate and

fast estimation of the assembly-wise power to study the appearance of the power tilt

instability. Hence, in order to complete the evaluation of the ROM performances, it is
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important to examine more in detail the spatial distribution of the modelling error. Fig-

ure 6.37 reports the perturbation effect on the thermal diffusion coefficient distribution

and the relative error between FOM and ROM for a training case. Since the ROM is built

in order to reproduce the training data with a very large accuracy, it interesting to no-

tice that the overall error spatial behaviour is rather uniform, except some local maxima

where it can reach values even larger than 1 %. Nevertheless, this accuracy is sufficient

to provide an adequate estimate on the quadrant-wise power, which is used in the tilt

evaluation (NRC, 2016). The quadrant power is obtained summing the assembly-wise

power in each of the four quadrants, obtained dividing the core FAs with the lines 𝑥 = 0
and 𝑦 = 0, assuming that the origin of the reference cartesian frame is located in the

central FA, the number 265 (section 6.2.3.1).
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Figure 6.37: Input disturbance on the thermal diffusion coefficient (left) and relative rela-
tive error on the assembly-wise power (right) for a training case.

Concerning the validation cases, fig. 6.38 and fig. 6.39 show the maps of the largest

and lowest power relative errors, respectively. In the first figure, it is possible to ap-

preciate the perturbation effect of the thermal diffusion coefficient and, consequently,

on the power distribution, which is clearly skewed towards the left part of the core,

due to the increased leakages in the opposite direction. The ROM provides a very good

reconstruction of the power, yielding a value of the largest relative error in line with

the one characterising the training case in fig. 6.37, despite some in this case the local

spatial distortions are more evident. On the contrary, fig. 6.39, which is featured by the

largest relative error 𝜖%, shows ictu oculi that the ROM completely fails in reproducing

the power shape. Despite most of the validation points have an error which is less than

5%, the lack of accuracy featuring this case is unacceptable for the intended purpose of

the model.

Given that decreasing the modelling error to an acceptable level would require a

huge increase in the number of training snapshots, and that a larger dataset could bring

the model to the over-fitting condition, a different strategy should be pursued to achieve

the goal of the accuracy.

In this respect, it is convenient to recall the so-called divide et impera (divide and
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Figure 6.38: Input disturbance on the thermal diffusion coefficient (top left), power distri-
bution computed by the FOM (top right) and relative relative error on the assembly-wise
power (bottom) for the validation case featured by the lowest error.
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Figure 6.39: Input disturbance on the thermal diffusion coefficient (left) and relative rela-
tive error on the assembly-wise power (right) for the validation case featured by the largest
error.

conquer) approach (Knuth, 1998), which is a general principle adopted in problem solv-

ing. According to this principle, an effective solution strategy consists in dividing re-

cursively the original, complex problem into smaller and smaller sub-problems until a

sub-problem that could actually be solved is obtained. Then, one can move backwards
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solving the each sub-problem from the bottom to the top.

In a similar way, smaller, very specialised ROMs could be built for modelling specific

situations, e.g., the core behaviour when only one perturbation batch can appear. This

approach would require to train of a potentially large number of models, but it would

offer the advantage of reducing dramatically the parameter space dimension, which

could enable the adoption of smart sampling strategies and it could allow to increase

the overall accuracy of the model, due to the lower input variability.
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(a) 512 training samples, composed by 32 differ-
ent arrangements with 16 different input pertur-
bations each.
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(b) 768 training samples, composed by 48 differ-
ent arrangements with 16 different input pertur-
bations each.
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(c) 1024 training samples, composed by 64 differ-
ent arrangements with 16 different input pertur-
bations each.

Figure 6.40: Percentage relative error distribution on 1252 validation samples obtained
with the full-random sampling algorithm considering one perturbation batch in the core.

In the following, the results obtained with a meta-model designed to deal with a

single perturbation batch appearing in the full-core are presented. Due to the reduced

spatial variability, the hybrid sampling technique described in section 6.2.3.2 is em-

ployed to map more rigorously the parameter dependence. Concerning the validation

samples, the subset of the 3000 cases featured by one perturbation cluster is selected,
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for a total of 1252 cases.

As expected, the specialised ROM is featured by a lower error than the general one,

as visible from fig. 6.40. The training process has been accomplished using 32, 48 and

64 different spatial configurations, combined with the 16 Smolyak points. Despite the

lower number of validation samples, the error distribution is clearly peaked towards

1%, with no case going beyond 6%. The superior accuracy of this model can be appreci-

ated looking at the maps for the relative error on the assembly-wise power, reported in

fig. 6.41. The training case is featured by a lower error compared to the one for the gen-

eral ROM, as well as the validation cases featured by the lowest and the largest errors.

Compared to the spatial profile depicted in figs. 6.38 and 6.39, the error seems also more

spatially uniform, which means that the local deformation of the power distribution due

to the modelling approximation is less important.

6.2.4 Conclusions and future developments
In this section, the POD-RBF model has been applied to reduce the computational

cost associated to the full-core diffusion calculations needed to assess the core behaviour

in presence of local disturbances.

Due to the two-step nature of the full-core calculations, which require a set of few-

group homogenised constants, a two-step meta-model has been proposed, combining

the polynomial chaos expansion method for the estimation of the multi-group data

and the POD-RBF model for the estimation of the assembly-wise power distribution

obtained in response to a localised perturbations, which are assumed to be variations

in the coolant density and in the fuel pellet diameter.

The first-order polynomial chaos expansion is sufficient to reproduce within an ac-

ceptable accuracy the cross sections behaviour as a function of the two input perturba-

tions, with only a few full-order model evaluations. However, it must be acknowledged

that, in presence of larger variations, probably more training points would be required

to match the target accuracy.

Concerning the full-core calculations, some precautions are needed to handle the

spatial arrangement of the perturbations. First of all, an algorithm for the definition of

the perturbation and its constraints, e.g., the perturbation shape, is envisaged. Then,

two different sampling techniques are devised to produce the training dataset. The first

one draws the first perturbed FA according to an importance probability density func-

tion based on the neutron importance, and then randomly selects the surrounding FAs,

assigning a random value to the physical perturbation as well. The second sampling

technique works in the same way, but the perturbation intensity is sampled according

to a deterministic rule.

The last precaution regards the distance evaluation among the input parameters:

due to the spatial arrangement of the disturbance, the classical euclidean distance be-

tween the various input parameter is not adequate to distinguish similar perturbations,

238



6.2 – A non-intrusive reduced order model for the stability analysis of large thermal reactors

0.32

0.34

0.36

0.38

0.40

D
2 [

cm
]

0.4

0.2

0.0

0.2

0.4

0.6

%
 re

l. 
er

r. 
on

 p
ow

er

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

D
2 [

cm
]

0.5

0.0

0.5

1.0

1.5

%
 re

l. 
er

r. 
on

 p
ow

er
0.32

0.34

0.36

0.38

0.40

D
2 [

cm
]

-20.000

-15.000

-10.000

-5.000

0.000

5.000

%
 re

l. 
er

r. 
on

 p
ow

er

Figure 6.41: Input disturbance on the thermal diffusion coefficient (left) and relative rela-
tive error on the assembly-wise power (right) for a training case (top), for the best validation
case (centre) and for the worst validation case (bottom).

engendering the learing capabilities of the model. Thus an alternative algorithm for im-

age recognition is selected, to guarantee a consistent evaluation of the training samples

distance with respect to a new parameter point.

When it is assumed that more perturbations can occur in the core, the parameter

space of the problem becomes huge. However, according to the results obtained, it

seems that the random sampling technique is adequate to provide good results. Never-

theless, it seems difficult to strongly reduce the error, due to the large variability in the

input space.

If a simpler problem is addressed, assuming that only one batch of perturbed FA can
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occur, the overall accuracy of the model improves a lot, also thanks to the adoption

of the hybrid sampling process. This observation suggests that more specialised meta-

models could be the most efficient solution to the problem.

As a future development, hybrid techniques based on data- and physics-driven should

be investigated. For example, it would be interesting to use the legacy Generalised

Perturbation Theory technique to provide a set of sensitivity coefficients to drive the

sampling phase towards the most relevant perturbations.
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6.3 Application to the neutronic transient analysis of
the ALFRED reactor

6.3.1 Introduction
Due to their physico-engineering peculiarities, the deployment of the Gen-IV Lead

Fast Reactor demands the adoption of high fidelity computational techniques for both

design and licensing purposes. Its fast neutron spectrum and the strong coupling be-

tween neutronics, thermo-hydraulics and thermo-mechanics requests the adoption of

very accurate models, which are often very computationally expensive: on top of this

multiphysics aspect, these systems are featured by the usual complexity characteris-

ing the nuclear reactors, i.e. their multi-scale nature. Even with the computational

resources at disposal nowadays, the full-core analyses that are required for the design

verification and for the safety evaluations cannot be carried out in a reasonable time,

especially when operational and off-operational transients are analysed.

Since the very beginning of the nuclear industry, most of the issues due to the multi-

scale modelling have been overcome reducing the complexities of the physics intro-

ducing some approximations in the high-fidelity models. Concerning neutronics, for

instance, the usual approach to treat the multiple spatial and energy scales consists,

as discussed in chapter 4, in solving the steady-state neutron transport equation over a

fine energy group structure over some specific volumes of the core, e.g. at the pin lattice

level, in order to generate the spatially homogenised multi-group constants. Exploiting

the equivalence principle described by eq. (4.1), and accepting some distortions in the

physics, the set of few-group cross sections is then used as input data for a low-order

transport model at the full-core scale, which can provide, within a reasonable time, the

macroscopic quantities needed for design and licensing purposes.

Due to the presence of different time scales between neutronics, heat transfer and

fuel depletion, also the time variable needs some special handling. If the objective of

the analysis is to perform an accurate analysis of an operational transient involving the

core, a common method to manage the different time scales is the quasi-static (QS) ap-

proach (Henry, 1958). The key idea of this method is to exploit the fact that, physically,

the changes in the neutron population amplitude are much faster than the changes in

the neutron spatial and energy shape, meaning that it is possible to separate the two

time scales over a certain time window, whose width depends on the current state of

the system, e.g., its reactivity. From the mathematical and numerical point of view, this

method takes advantage of the fact that the faster time scales is governed by an ordi-

nary differential equation, which is usually cheap to solve, while the slower time scale

is determined by a partial differential equation in the phase space, whose solution is

much more expensive. On the other hand, if the transient analysis involves the pri-

mary and secondary systems, which are featured by much longer time scales, the QS

method would be too expensive to run. In this case, the core time-dependent behaviour

is often approximated with the Point Kinetics (PK) approach, which brutally neglects
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all the spatial and energy effects occurring in the core, treating it like a point object.

Despite its wide adoption in safety parametric analyses, the adoption of PK may lead to

very inaccurate results, especially if the transient regards some design-basis accidents

like a reactivity insertion accident. In this case, one possible initiating event could be

the ejection of a control rod, which would heavily modify the shape of the neutron flux,

jeopardising the PK method.

In this context, disposing of a fast running tool able to accurately simulate the be-

haviour of the core would be extremely useful to enhance the accuracy of the safety

evaluations. Hence, the aim of this chapter is to apply the POD-RBF model to mimic

the output responses of a neutronic transient model, in order to show the potentialities

of the POD-RBF ROM also in a time-dependent framework. In particular, the application

of the NIROM will regard the neutronic transient analysis of the ALFRED (Advanced

Lead Fast REactor Demonstrator) core design, i.e. the European LFR concept (Grasso,

Petrovich, et al., 2014).

6.3.2 Statement of the problem
The application case presented in the following regards the accidental insertion of

one of the 12 control rods (CRs) in the core, starting from an initial close-to-critical

configuration. The starting configuration is obtained by inserting all the control rods

at a height equal to 45 cm with respect to the active zone bottom plane, i.e. the plane

delimiting the beige and the blue regions appearing in the right sketch of fig. 6.43. On

the left of the figure, it is possible to observe the radial section of the ALFRED core and,

on top of it, it can be notice a white X that indicates the CR that triggers the transient.

The CR is assumed to follow the motion law described in fig. 6.42, i.e. its constant

insertion speed is assumed to change at a certain time instant 𝑡 = Δ𝑡1. The insertion

heights are assumed to be 𝑧1=57 cm and 𝑧2 =67 cm, both measured from the bottom

plane of the active zone, while the time intervals Δ𝑧1 and Δ𝑧2 are considered as the

unknown, free parameters featuring the problem, but assuming that 𝑡2 is always less or

equal to 20 s.

Figure 6.42: Motion diagram of the moving control rod.
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The reasons behind the selection of this off-operational scenario are summarised in

the following,

• the asymmetry introduced by the CR movement highlights the drawbacks of the

PK method, which would fail in capturing the spatial effects induced by the CR

motion. Hence, an accurate modelling would require the adoption of more sophis-

ticated models, e.g. the QS approach;

• the insertion of the control rod in a close-to-critical configuration is expected to

bring the reactor in a sub-critical state. From the computational point of view,

treating a sub-critical transient is much simpler than studying a super-critical tran-

sient without the effect of the thermal feedback.

Concerning the computational model for the problem, the neutronic module of the

FRENETIC code, briefly described in chapter 4, is adopted to simulate the CR accidental

insertion, exploiting the Improved Quasi-Static (IQS) method (Caron, 2017).

In order to be as much general as possible, a 3D full-core model of the reactor is

employed in FRENETIC. The version of the ALFRED design considered in this work

is the one produced in the LEADER project. The multi-group constants needed by the

nodal diffusion module of FRENETIC are generated with Serpent 2. To perform this task,

a 3D full-core Monte Carlo model of ALFRED at the beginning-of-life condition has been

developed, subdividing the core regions according to the sketches in fig. 6.43: each type

of sub-assembly (SA) is subdivided axially in a certain number of regions, which are

indicated by different colours in the right graph. For each region, Serpent 2 produces

a set of group constants, collapsing them over the six-group energy grid presented in

6.3 and using the ENDF-B/VIII.0 nuclear data library. A more detailed rationale behind

the selection of this group structure and of the spatial region subdivision adopted for

the homogenisation can be found in (Nallo, Abrate, et al., 2020; Massone, Abrate, et al.,

2022).

Table 6.3: Six-group energy grid adopted to perform the macroscopic cross sections energy
collapsing (Nallo, Abrate, et al., 2020).

Energy [MeV] 2.000 ⋅ 101 1.353 ⋅ 100 1.832 ⋅ 10−1 6.738 ⋅ 10−2 9.119 ⋅ 10−3 2 ⋅ 10−5 10−11
Adopting these effective group constants, FRENETIC yields a 𝑘eff equal to 1.00045,

which is in excellent agreement with the one computed by Serpent 2, 1.00008(24), con-

sidering the various approximations featuring the nodal diffusion approach.

6.3.3 The time-dependent POD-RBF model
In this section, the main modifications needed to adapt the POD-RBF model de-

scribed in section 6.6.1 to consider a time-dependent output are briefly described.
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Figure 6.43: Radial section (left) and axial regions (right) of ALFRED 3D model employed
in the study. The X symbol identifies the control rod inserted during the transient.

The general idea of the method is to approximate a certain physical field, which is

the output of the reference model, by means of an expansion like the following one,

(𝑟 , �⃗�𝑗) = �⃗� 𝑗 ≈ 𝐼∑𝑖=1 𝑎𝑖(�⃗�𝑗)𝜓𝑖(𝑟 , �⃗�𝑗) (6.22)

where 𝐼 is the POD basis dimension, 𝜓𝑖 is the 𝑖-th POD basis function and 𝑎𝑖 is the 𝑖-th
POD coefficient estimated with the RBF interpolation, assuming that �⃗�𝑗 does not belong

to the training dataset. The coefficient represents the 𝑖-th component of the solution

on the reduced space, and depends on a certain input parameter �⃗�.

If the model  depends also on time, a natural way to treat this additional com-

plexity would be to decouple the space and the time dependencies, and then to treat

each of them using the POD-RBF approach. In other words, the output response �⃗� 𝑗(𝑡)
obtained applying  to an input �⃗�𝑗 is decomposed with algorithm 2 into a set of time

coefficients 𝑎𝑖(�⃗�𝑗 , 𝑡) and spatial basis functions 𝜓𝑖(𝑟 , �⃗�𝑗).
Since the POD is applied to each model realisation �⃗� 𝑗(𝑡), both 𝑎 and 𝜓 depend on the

input parameter �⃗�𝑗 , so for a training dataset composed by 𝑛 snapshots, a set of 𝑛 pairs

of coefficients and basis function would be obtained,�⃗� 𝑗 ⟶ {�⃗�(�⃗�𝑗 , 𝑡), Ψ⃗(𝑟 , �⃗�𝑗)} 𝑗 = 1,… , 𝑛, (6.23)

where �⃗� ∈ ℝ𝐼
is the column vector composed by 𝑎𝑖 for 𝑖 = 1,… , 𝐼 and Ψ⃗ ∈ ℝ𝐼𝑀

is the

column vector obtained stacking each basis function �⃗� ∈ ℝ𝑀
. These column vectors can

be interpreted, respectively, as time and spatial snapshots of the original model , and

can be paired with the corresponding input parameters �⃗� to build a POD-RBF model

for time and a POD-RBF model for space. Hence, applying the POD decomposition and

using the RBF formalism presented in algorithm 3, the time and space snapshots for a
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new parameter �⃗�𝑛, not included in the training set, can be expressed as follows,

�⃗�(𝑡, �⃗�𝑛) = 𝑀∑𝑚=1 𝛼𝑚(�⃗�𝑛)�⃗�𝑚(𝑡) = 𝑀∑𝑚=1[ 𝐿∑𝑙=1 𝑓𝛼 (||�⃗�𝑙 − �⃗�new||, 𝜎𝛼,𝑙)�⃗�𝛼,𝑙,𝑚]�⃗�𝑚(𝑡)Ψ̂(𝑟 , �⃗�𝑛) = 𝐾∑𝑘=1 𝛽𝑘(�⃗�𝑛)�⃗�𝑘(𝑟) = 𝐾∑𝑘=1[ 𝐿∑𝑙=1 𝑓𝛽(||�⃗�𝑙 − �⃗�new||, 𝜎𝛽)�⃗�𝛽,𝑙,𝑘]�⃗�𝑘(𝑟). (6.24)

Exploiting the last equation, the output �⃗�𝑛(𝑡) can be finally retrieved,

�⃗�(𝑟 , �⃗�𝑛, 𝑡) ≈ 𝐼∑𝑖=1 𝑎𝑖(�⃗�𝑗 , 𝑡)𝜓𝑖(𝑟 , �⃗�𝑗) =≈ 𝐼∑𝑖=1{ 𝑀∑𝑚=1[ 𝐿∑𝑙=1 𝑓𝛼 (||�⃗�𝑙 − �⃗�new||, 𝜎𝛼,𝑙)�⃗�𝛼,𝑙,𝑚]�⃗�𝑚,𝑖(𝑡) ∗∗ 𝐾∑𝑘=1[ 𝐿∑𝑙=1 𝑓𝛽(||�⃗�𝑙 − �⃗�new||, 𝜎𝛽)�⃗�𝛽,𝑙,𝑘]�⃗�𝑘,𝑖(𝑟)}.
(6.25)

6.3.4 Model training and validation
6.3.4.1 High fidelity simulations

The coarse mesh nodal diffusion module currently available in FRENETIC allows to

compute the neutron flux and the associated reaction rates at the assembly level and

for each node employed in the axial discretisation. The black dashed lines on top of the

right sketch in fig. 6.43 indicate the core axial subdivisions considered by FRENETIC.

Since each volume defined between two planes must be homogeneous, the consistency

of the six-group data computed by Serpent with the regions of FRENETIC is ensured by

performing a post-homogenisation that exploits the group-wise flux averaged on the

cell volumes, provided by Serpent, namely

Σ𝑥,𝑔,𝑖 =
𝑅∑𝑟=1 Σ𝑥,𝑔,𝑟𝜙𝑥,𝑔,𝑖𝑉𝑖𝑅∑𝑟=1 𝜙𝑥,𝑔,𝑖𝑉𝑖

. (6.26)

Concerning the solution of the time-dependent neutron diffusion and delayed neu-

tron precursors equations, FRENETIC offers a wide variety of methods, from the point

kinetics approach to the predictor-corrector quasi-static method, which is endowed

with an adaptive time step selection algorithm for the solution of the shape and of

the amplitude equations.

Despite the manifest computational efficiency of this approach (Caron, 2017), this

algorithm asks the code to solve for the flux shape only at some specific time instants,
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meaning that the shape is not computed and, thus, printed on a regular time grid. More-

over, the time-step selection algorithm behaves differently according to the transient

evolution, meaning that each set of parametric snapshot, depending on �⃗�, a different

number of time snapshots is produced. However, the POD algorithm deals with rectan-

gular matrices, i.e. each parameter evaluation must produce the same number of time

snapshots.

Since the aim of this section is to assess the capabilities of the POD-RBF algorithm

to handle time-dependent problems, this issue is tackled by simply forcing FRENETIC

to solve for the flux shape every 0.5 s. Each transient simulation is solved up to 35 s, in

order to allow the system to properly relax also in case the control rod insertion ends at𝑡2 = 20 s. Hence, each parametric snapshot is composed by 71time snapshots. On aver-

age, the solution of a transient simulation requires about three hours on a commercial

laptop.

In analogy with section 6.2.2, also in this application the output response of the

model will be the power distribution, �̇�(𝑥, 𝑦, 𝑧, 𝑡, �⃗�𝑖), where �⃗�𝑖 is the input parameter

vector defined as (𝑡1, 𝑡2). The rationale behind such choice is two-fold. First, it is a safety-

critical parameter. Second, it allows to easily evaluate the total power �̇�𝑇 (𝑡), which can

be used to assess the impact of the ROM approximation errors on a macroscopic integral

parameter.

6.3.4.2 Model reduction and training

In order to efficiently draw the points needed for the training simulations the Smolyak

sparse grid algorithm is used again to perform the training sample selection. Contrarily

to the application discussed in section 6.2.2, here the grid is based on the Chebyshev

polynomials extrema, which have the property of being a nested set. Thus, also in this

case it is possible to train the model with the lowest grid level and the iterating a poste-
riori, recycling the training samples of the previous levels. To generate the samples, it

is assumed that both time intervals, defined as Δ𝑡1 = 𝑡1 − 0 and Δ𝑡2 = 𝑡2 − 𝑡1, range from

0.5 to 10 s. Figure 6.44 shows the two-dimensional sparse grid constructed to sample

the training points up to the 5−th approximation level.

After the sampling, the POD-RBF parametrised non-intrusive ROM is trained us-

ing the first four levels of the Smolyak sparse grid, for a total of 65 model evaluations.

Then, the model validation is performed with an additional set of independent 100 sim-

ulations. Among these, 80 are taken from the points of the 5−th level of the Smolyak

grid, removing the training points, while 20 are sampled randomly, extracting 5 points

per each quadrant.

As already specified, each simulation contains 71 time snapshots spanning uniformly

the interval 𝑡 ∈ [0, 35] s, and each snapshot is defined over the 171 fuel assemblies, each

divided in 10 axial nodes uniformly distributed along the active height, for a total of

121410 degrees of freedom.

Thanks to the strong redundancy in the data, the dimensionality reduction allows
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Figure 6.44: The first levels of the Smolyak sparse grid used to generate the training sam-
ples.

to use only 30 out of 71 POD pairs {𝑎𝑘 , 𝜓𝑘}, allowing to spare a significant amount of

computational time in the NIROM training, at the price of a negligible loss of informa-

tion, due to the POD basis truncation. With these settings, the ROM composed by the

two POD-RBF models requires a few seconds to provide the approximated FRENETIC

solution on a new parameter point.

fig. 6.45 shows the relative error featuring each validation sample, defined as the𝐿2 norm between the time-dependent power distribution estimated by the ROM and

the one computed by FRENETIC. By inspection of the figure, it is easy to notice that, as

one could reasonably expect, increasing the number of points makes the error decrease.

The stars appearing in the graph indicate the training points, while the squares indi-

cate the random samples generated for validation purposes. Using 65 training points,

the maximum error falls below 4%. Considering that this is the global error for the

time-dependent spatial distribution of the power, this value is judged acceptable for the

intended application, i.e. a fast estimate of the power evolution in case of accidental

control rod insertion in the core. Of course, an even larger number of training points

could be employed, maybe selecting only the ones in the regions featured by the maxi-

mum error.

In the following, a detailed comparison between the ROM and the FRENETIC eval-

uations is carried out, focusing on validation cases featured by the largest and lowest
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(a) 1st level, 5 training points. (b) 2nd level, 13 training points.

(c) 3rd level, 29 training points. (d) 4th level, 65 training points.

Figure 6.45: % relative error on the power distribution time snapshots with a progressively
increasing number of training points.

error with respect to the FRENETIC solutions. The first comparison focuses on the axial

power profiles, which are visible in fig. 6.46. In this figure, it is possible to notice that,

in the worst case, the discrepancy on the local power can be significant, suggesting that

the ROM, trained with only 65 points, is not adequate to perform local analyses, for

example concerning the hot spot analyses.

Similar considerations could be made for the assembly-wise relative error on the

power, which is depicted in fig. 6.47. In this case, it can be observed ictu oculi that the

larger local distortion of the spatial distributions occurs around the CR that is inserted.

A part from this zone, the overall error distribution seems quite uniform.

Finally, the upper part of fig. 6.48 shows the comparison between the total power

evolution during the whole transient, computed by the ROM and by the improved quasi-

static method available in FRENETIC, respectively. In spite of the non negligible local

errors affecting the worst validation case, the agreement between the total power pro-

files is very good, and seems adequate to perform parametric safety analyses. The lower

part of the figure shows a comparison between the total power evolution computed by
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Figure 6.46: Power density axial profile. The one on the left refers to worst case at the time
instant with the largest error in the FA featured by the largest error, while the one of the
right refers to the best case at the time instant with the largest error in the FA featured by
the largest error.

Figure 6.47: Relative % error on the assembly-integrated power at the time instants featured
the largest error for the worst (left) and best (right) validation cases.

ROM and FRENETIC and the one evaluated with the point kinetics approach, for the

worst validation case. This figure clearly shows that the ROM can be a far more accu-

rate alternative to low-order methods commonly used in the safety studies. On top of

that, after the training phase, the ROM power profile can be obtained in a fraction of

the time needed by PK.

6.3.5 Conclusions and future perspectives
In this section, the POD-RBF model presented in section 6.6.1 has been extended to

treat also time-dependent models, proposing an algorithm that suitably combines the

algorithms already implemented in the ROMpy package.

The case study regarded the accidental insertion of a control rod in a close-to-critical

initial configuration of the ALFRED core design, considering as free parameters the

insertion times of the rod, which have the effect of changing the insertion speed of the
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Figure 6.48: Total power evolution for the worst (top left) and best (top right) cases and
comparison between ROM, point kinetics and the quasi-static method (bottom).

CR.

The full-core snapshots, representing the power density of the system, are gener-

ated with the FRENETIC nodal diffusion code. In spite of the relatively low number of

samples, the ROM shows a good accuracy (the global error is below 4%) with respect to

the full-order model for the validation points considered, on both the local and global

spatial scales and for the whole transient duration. From the computational burden

point of view, excluding the off-line training phase, which is though affordable with a

laptop compute due to the fairly low number of training points, the ROM outperforms

FRENETIC, providing the full-core power density time snapshots in less than a dozen

of seconds, with respect to the 3 hours required by the code.

As a future development, efforts will be devoted to improve the training parameters

sampling, trying to reduce the number of samples needed to match the target accu-

racy. Since the Smolyak grid based on the Chebyshev polynomials is more dense at

the corners, the sampling performances could be improved a lot considering alterna-

tive point distributions, like the evenly-space Clenshaw-Curtis points. Finally, the ROM

will be improved to fully exploit the time adaptive features of the predictor-corrector

algorithm, thus considering only the snapshots that are more significant for the reactor

dynamics, in contrast to the uniform time binning employed in this work.
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6.4 A bootstrapped meta-model combined with the
unscented transform for the CFD analysis of ac-
cidental gas releases in congested plants

In this section, the POD-RBF approach is adopted to reduce the computational bur-

den associated to the QRA-oriented, Computational Fluid-Dynamics (CFD) modelling

of accidental high-pressure gaseous release in congested industrial plants. This appli-

cation is certainly an outlier in the context of a PhD thesis concerning the development

of methods for the safety of nuclear fission reactors, but it is reported here to show that

there is a broad variety of industrial applications related to the safety assessment that

could be efficiently approached with the non-intrusive reduced order model presented

in this chapter. The results presented and discussed in the following have been ob-

tained in the frame of a collaboration with the SEADOG research group at Politecnico

di Torino. In particular, all the CFD simulations mentioned in the following for the ROM

training and validation have been carried out by former students Federica Carbone and

Manuela Maffia during their Master’s thesis projects and by Dr. Gianmario Ledda and

Alberto Moscatello, who is currenlty a PhD student in Politecnico di Torino. Finally, it

is acknowledged the overall supervision of Prof. Andrea Carpignano and Dr. Raffaella

Gerboni.

Actually, a thorough QRA for congested industrial plants would be computation-

ally prohibitive, due to the large number of accidental sequences to be simulated, each

one characterised by uncertain parameters to be thoroughly explored and propagated,

and to the complexity of each CFD simulation, which has to model a complex physical

phenomenon in a complex geometry.

Within this framework, a computationally efficient approach, named Source Box Ac-

cident Model (SBAM) (Moscatello, Uggenti, et al., 2021) has been recently proposed to

overcome the issue of computational cost. It consists in splitting the accident evolu-

tion in two steps: i) the release phase, which concerns a small volume around the break,

named Source Box (SB), where the compressibility effects are relevant and ii) the disper-
sion phase, where the flow can be considered incompressible and buoyancy forces are

relevant. In this last step, where the SB flow profiles and gas concentrations are taken as

input, the analysis is extended to the full spatial scale of the plant (e.g. an offshore plat-

form, see figure 6.50 later), in order to evaluate some safety-critical parameters, e.g., the

flammable volume. This two-step approach allows to fairly reduce the computational

burden with respect to a monolithic CFD simulation, as different numerical settings,

e.g., the computational mesh, can be tailored according to the physical phenomena in-

volved. Decoupling the two physical stages implies that also the parameter space can

be partitioned. For example, the break size and release pressure are relevant in the gas

release, while the wind direction is not. This means that it is possible to compute the

concentration and flow fields for several SB characterised by different combinations of

parameters and use them in the dispersion scenarios, whenever they are needed.
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This procedure would lend itself to the generation of a SB library as a ready-to-

use input to the dispersion simulation, which is strongly case-dependent. Relying on

data libraries is a common approach in the framework of the risk analysis, but in this

case it would jeopardise the advantages of using a CFD approach. For example, the

risk analyst would not be free to select the flow field profiles for an arbitrary set of

parameters, losing the CFD flexibility. Moreover, a thorough evaluation of the different

SB scenarios would be still quite computationally expensive.

Therefore, the aim of this study is to assess the NIROM effectiveness in reducing the

computational cost associated to the SB simulations (i.e., to the generation of the spatial

SB flow profiles). A successful model reduction of the release phase would represent the

first step for a computationally smart strategy for safety-oriented, CFD-based analyses.

Thanks to its non-intrusiveness, this approach could be applied to any validated code for

the QRA of different industrial congested systems, like the forthcoming nuclear fusion

plants and hydrogen installations. In the following, study case concerns the accidental

release of CH4 on an oil&gas off-shore platform, simulated using the ANSYS Fluent

code.

Since the objective of the NIROM application is to approximate the behaviour of a

Source-Box (SB) and to provide a set of flow fields for a subsequent (dispersion) simula-

tion, it is of paramount importance to quantify the ROM approximation error and prop-

agate it on the dispersion simulation output. In the works mentioned in section 6.6.1,

except for (Xiao, 2019), a little effort was devoted to this perspective. Therefore, in this

work a novel combination of the POD-RBF model with two statistical approaches is

proposed, namely the bootstrap method (Efron, 1981; Kohavi, 1995) and the unscented

transform (Julier and Uhlmann, 1997), for an estimation of confidence intervals on the

final output (i.e. the irreversible injuries area). The techniques to estimate the error

bounds are quite general and could be applied to other NIROMs.

From the methodological viewpoint, the novel contribution of this application is

twofold:

1. the bootstrap method is combined for the first time (to the best of the authors’

knowledge) with a (fast-running) POD-based NIROM to obtain an empirical (boot-

strapped) distribution of a functional output, which allows building confidence in

the ROM estimates (i.e., in the gas flow spatial fields);

2. the unscented transform is employed to propagate - with a relatively small number

of long-running CFD simulation - the uncertainties in the spatial fields onto the

final simulation output (i.e., released pollutant mass).

From the application viewpoint, the efficient combination of statistical techniques

mentioned above is employed for the first time in the quantitative analysis of a con-

gested oil&gas off-shore platform. As a final remark, it is worth to acknowledge that

the aim of this work is not carrying out a complete, full-scale QRA of an energy plant,

but rather developing a versatile tool that can support it, in an efficient and computa-

tionally tractable fashion.
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6.4.0.1 Two-step CFD modeling for the accidental gas release in a congested
environment

In this case, the computational model is the CFD approach to study the accidental

gas releases in industrial, congested plants. In order to focus on the peculiarities fea-

turing this case study and the implications to realise a ROM simulation framework, this

method will be briefly discussed in the following.

High-pressure gas releases, i.e. from 10 bar onward, in large, open environments

(e.g. 30x20x5 m platform deck, see figure 6.50) always lead to a complex multi-scale

and multi-physics phenomenon. In such cases, an under-expanded jet is generated near

the release point (Franquet, Perrier, et al., 2015), i.e. a supersonic highly compressible

flow (Ma >0.3, where Ma is the Mach number) (Munson, Young, et al., 2010, chapter 9),

characterised by a strong discontinuity in the flow-field quantities. Such discontinuities

are located at a specific distance from the release point, where a Mach disk appears: this

is a normal shock where steep variation of velocity, density, temperature and pressure

is expected. In this region, near the release point, the flow is dominated by inertial

effects, and buoyancy forces are negligible. If the high-pressure release occurs in a

large environment, there is enough space for the gas to slow down from supersonic

to subsonic velocity. Hence, far from the release point, the flow reaches a subsonic

condition (𝑀𝑎 <0.3). At this point, the flow can be considered incompressible and it is

no more inertia-dominated, i.e. buoyancy forces can be relevant.

These two phases can be named release (compressible, inertia-dominated) and disper-
sion (incompressible, subsonic). In (Moscatello, Uggenti, et al., 2021) it is demonstrated

that splitting the entire phenomenon in this two pieces has some advantages from a

modelling point of view, especially if the CFD simulation is QRA-oriented. This is the

basis of the Source Box Accident Model (SBAM), in which the release phase is simulated

in a small domain, the SB, sized in a proper way to contain all the compressibility effects,

and the dispersion in the environment under analysis, e.g., an off-shore oil&gas plat-

form. The coupling of the two simulations is realised imposing the velocity flow field

(v⃗(x, y, z)) and gas concentration distributions on the SB faces (Cgas(x, y, z)) as boundary

conditions in the dispersion simulation.

This last step, as sketched in fig. 6.49, allows to evaluate the mass and volume of the

gas cloud resulting from the dispersion. Thanks to these results, some safety related

quantities can be evaluated. In the case considered in this paper, which concerns a CH4
release, the interests safety parameters are:

• the total dispersed CH4 mass [kg]

• the CH4 mass in the flammable cloud [kg]

• the flammable cloud volume [m3
]

• the Irreversible Injuries (II) volume [m3
]

• the Irreversible Injuries Area (IIA) at 1.5 m height [m3
]
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Apart from the first parameter, the other ones are related to the flammability which is

defined by the LFL (Low Flammability Limit) and the UFL (Upper Flammability Limit).

For CH4, these quantities are equal to 5 % and 15 % by volume of air, respectively. TheCH4 mass in the flammable cloud is a relevant parameter as it is a measure of the poten-

tial energy released in the accident. The flammable cloud volume (which can be defined

also the High Lethality zone) represents the region in which the gas concentration is

between the LFL and UFL and a gas ignition can occur causing serious damage to the

equipment and deaths. The II volume and area are the one with a gas concentration

above the 0.5⋅LFL, and in which some damages to equipment and people are expected.

Since these scalar quantities are relevant for the QRA, they will be considered as the

final output of the whole calculation chain. Nevertheless, in order to avoid any loss of

generality, they will be indicated as 𝑧, in order to remark that the methodology pre-

sented in the paper can be applied to spatial and/or dynamic distributions as well.

source box
model

gas
dispersion
model

mgas

Vgas

Cgas(x, y, z)

v⃗(x, y, z)

wind
conditions

SB
position/
orientation

deck
geometry

release
pressure

obstacle
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hole
diameter

1st step 2nd step

Figure 6.49: Sketch of the SBAM approach.

This computational strategy allows to simplify the simulation of this complex, multi-

physics phenomena, allowing to save considerably computational time when several

scenarios are needed for a QRA. This is possible because each SB simulation available

can be employed for several dispersion scenarios. As it will be explained later, the SB

simulation can be performed by the ROM model, dramatically reducing the computa-

tional cost. In addition, the SB and the dispersion simulations are affected by different

set of parameters. The first one is affected mainly by the gas properties, its pressure,

the piping break size and the shape and orientation of the obstacles near the break,

while the second depends on the congested plant configuration, the release position

and direction and the wind velocity magnitude and direction. This suggested the de-

velopment of a surrogate model to mimic the SB behavior, thus reducing dramatically

the computational cost associated to SBAM.

This paper aims at proving the effectiveness of the NIROM approach to maximise
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the computational gain of this decoupled simulation approach. As this is a proof-of-

concept, the pressure will be considered as the only SB varying parameter. It could

be argued that the choice of only one out of all the possible varying parameters may

jeopardise the considerations drawn throughout the paper about the accuracy, the ro-

bustness and the reliability of the proposed method. The gas release pressure, however,

is the most relevant parameter from both the physical and the computational point of

view, ranging continuously from 10 to 80 bar (Vivalda, Gerboni, and Carpignano, 2018),

which is a very large interval from the fluid-dynamics perspective. On the contrary, the

break size and the SB obstacle dimensions usually assume only few discrete values in

the QRA framework, thus limiting the interest for such parameters from a ROM per-

spective. Moreover, the focus of our analysis is more related to prove the methodology

proposed to quantify and propagate the NIROM uncertainty rather than focusing on

the parameter space sampling.

6.4.1 Study case: accidental gas release in a congested environ-
ment

In this section the results of the NIROM application to the QRA-oriented, SBAM ap-

proach are presented and discussed, with a specific focus on the peculiarities featuring

this case study.

6.4.1.1 Numerical setup of the case study

The considered case study is a high pressure methane release in an offshore platform

deck under wind conditions. The domain is visible in fig. 6.50 and its dimensions are

30x20x5 m. The release position is indicated by the blue box in fig. 6.50. The possible

release pressure (𝑝𝑟𝑒𝑙) range is 10-80 bar while the release diameter is fixed to 1 cm. The

wind velocity is assumed equal to 6 m/s and the direction is along the 𝑥-axis as well as

the release direction.

The SB is dimensioned as a cube whose length (𝐿𝑆𝐵) is such that all the compressibil-

ity effects are exhausted in its volume (Moscatello, Uggenti, et al., 2021). Inside the cube,

an obstacle is present to have an impinging jet. To ensure a robust coupling with the

dispersion model, a fixed reference coordinate system and a fixed denomination for the

SB faces, visible in fig. 6.51 (left), is employed. Within this reference frame, the release

point is always positioned at the centre of the back face and the release direction is al-

ways parallel to 𝑥-axis in the SB. Moreover, since two symmetry planes can be defined,

the simulation is carried out only on one quarter of the cube, using the denomination

in fig. 6.51 (right). The obstacle inside the SB is featured by a diameter equal to 20 cm

and a distance of 30 cm.

The SB dimensions, in principle, would change according to the release pressure.

The different size of the SB, however, can be an issue when the interesting profiles are
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Figure 6.50: CAD of the case study domain with the representation of the source box.

Figure 6.51: Source Box with reference coordinate frame and face names.

extracted and used to train a NIROM. At first, the SB is sized following the procedure ex-

plained in Moscatello, Uggenti, et al., 2021, considering 𝑝𝑟𝑒𝑙=80 bar (the largest possible).

The resulting characteristic length of the SB is 𝐿𝑆𝐵=0.6 m. A non-uniform tetrahedral

mesh is realised in ANSYS meshing. The simulation is performed in steady-state using

a k-𝜔 SST formulation of the RANS equations. The mixture CH4-Air is employed in the

Fluent setup and the “Species Transport” model without chemical reaction is used. TheCH4 mole fraction is imposed equal to 1 at the domain inlet and a mass flow inlet is set

considering a chock mass flow rate due to the pressure release condition. A pressure

outlet set at atmospheric pressure is imposed on all the external SB surfaces called back,

up_down, front and lateral to reproduce the open environment around. A wall with no-

slip condition is imposed on the obstacle surface and a symmetry condition is imposed

on the symmetry planes.

In principle, the SB size scales as the square root of the release pressure. However,
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in order to ensure that the snapshots have the same dimensionality for the POD appli-

cation, each calculation has been run using the same SB dimensions, selected for the

maximum pressure. Then, the different velocity profile components (along x, y and z

directions) and CH4 mass fraction profiles on the faces delimiting the SB (back, lateral,

front, up-down) are exported from Fluent on the same cartesian mesh. These profiles

are used as boundary conditions in the dispersion simulation. Each dispersion simula-

tion requires about 4 hours on a Precision Dell Tower 7820 with a Intel Xeon Gold 6136

CPU (3.00GHz) and 64 RAM.

The dispersion simulation is performed in steady-state with a k-𝜔 standard formu-

lation of the RANS equation. A wind with intensity of 6 m/s and direction along x is

modelled on the face indicated in fig. 6.50. On the other lateral faces of the domain, a

pressure outlet with ambient pressure is imposed. The blue box represents the disper-

sion source: on its faces, the velocity and the CH4 mass fraction profiles obtained by

the SB simulations are loaded as boundary conditions. All the other platform surfaces

are modelled as walls with no slip condition.

6.4.1.2 Sampling strategy and CFD dimensionality reduction

Despite in this application the parameter space is one-dimensional, its variation is

remarkable from both the physical and the numerical point of view. Increasing the pres-

sure requires more computational resources, as the formation of vortexes is enhanced.

Therefore, the sampling strategy should be carefully selected to adequately cover the

release pressure range (10-80 bar), which is expected to induce very large variations in

the resulting flow fields. The parameter values for the CFD snapshot generation are

chosen according to the Newton-Cotes rule (Quarteroni, Sacco, and Saleri, 2010).

It is important to remark that to carry out SB simulations at high pressure, the mass

flow inlet boundary conditions must be used instead of imposing directly the pressure.

Hence, mass flows are evaluated consistently with the needed release pressures consid-

ering the chocked flow conditions. Since the pressure is the reference engineering pa-

rameter for QRA, the mass flow is sampled, but the corresponding value of the pressure

is considered as the free parameter �⃗�, exploiting the fact that the CFD model is con-

sidered as a black-box. Contrarily to the applications dealing with the Gen-III+ PWR

stability, where great differences can be found considering the physical perturbations

instead of the perturbed few-group data, here there is a unique relationship between

pressure and mass flow inlet, due to the sonic flow regime, allowing thus to use the

pressure.

Figure 6.52 provides a sketch of the mass flow and pressure samples. As a starting

point, an initial level is generated dividing the range to have intervals of about 10 bar

each (red dots). Then, the range is partitioned to have intervals of approximately 5 bar

each, so that the previous level is included (light blue squares). Finally, the intervals

width is halved again, in order each simulation to span 2.5 bar.

Concerning the dimensionality reduction, a sensitivity study on the approximation

257



A non-intrusive, computationally efficient modelling framework for the safety analysis of complex systems

Figure 6.52: High-fidelity model samples generated with the Newton-Cotes rule. The or-
ange circles are the first level, the light blue squares are the second level and the dark blue
triangles are the third level.

Figure 6.53: POD basis energy, computed as in Algorithm 2.

error induced by the POD expansion truncation shows that a relatively small number

of basis functions is sufficient to adequately represent the original gas concentration

and flow field, catching the 99.99 % of the POD energy  , whose convergence trend is

provided in fig. 6.53. Figure 6.54 shows the Root-Mean-Square Error (RMSE) between

the CFD snapshots and its POD representation (left) and the RMSE between the CFD

snapshot and its ROM approximation (right) as a function of different truncation orders,

for different values of the training pressures. The RMSE on the left is useful to highlight

that the truncation error approaches zero as the number of basis functions increases, as

reasonably expected looking at the trend in fig. 6.53. On the contrary, the second one

shows that, after a certain expansion order, the error stabilises on a certain value. This

behaviour is explained by the fact that, in addition to the vanishing truncation error,

the NIROM snapshot is also affected by the interpolation error due to the RBF interpo-

lation. This trend has an important implication related to the NIROM approximation

capabilities, i.e. the truncation error is negligible with respect to the interpolation er-

ror, provided that a sufficient number of basis functions is employed to represent the

original dataset.
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Figure 6.54: Root-Mean Squared-Error between the original snapshot and its truncated
POD representation (left) and Root-Mean-Squared Error between the original snapshot and
the ROM reconstruction (right) for some training pressures.

Hereafter, all the POD expansions are truncated at least at the 10
th

term, unless dif-

ferently specified, as indicated by the dashed black line in figs. 6.53 and 6.54.

6.4.1.3 Model training

Exploiting the fact that the samples are nested, the NIROM is initially trained with

the first level of points and validated with the points belonging to the second level.

Figures 6.55 and 6.58 provide an overview of the percentage relative error between

NIROM and CFD CH4 and velocity profiles for each face of the SB (see fig. 6.51). The

black stars are the training points belonging to the first level, while the coloured dots

represent the validation points. The size of these points is proportional to the magni-

tude of the error. By inspection of these figures, it is possible to notice the presence of

significant errors on the back face, where the profiles are featured by some oscillations

due to the gas entrainment with the air. Despite their magnitude, these errors do not

affect the overall quality of the NIROM approximations, because the back plane, which

is tangent to the source point, has a negligible contribution to the overall mass flowing

out of the sourcebox. In spite their lower physical importance for the dispersion phase,

the contributions for this face dominates the overall error behaviour, making the 𝐿2
norm on the whole snapshot unreliable. To overcome this issue, the face-wise errors

are weighted with the mass fraction flowing from each face,

𝜀 = 𝑓 𝑎𝑐𝑒𝑠∑𝑖=1 ||�⃗�CFD,i − �⃗�ROM,i||||�⃗�CFD,i|| 𝑤𝑖 , (6.27)

where the weights are defined as 𝑤𝑖 = �̇�𝑖�̇�𝑡𝑜𝑡 . (6.28)
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Figure 6.55: Face-wise relative 𝐿2 error for the CH4 concentration.

Figure 6.56: Face-wise relative 𝐿2 error for the x-component of the velocity.

Concerning the CH4 concentration profile, it is important to notice here that the

error on the lateral face cannot be measured since no gas reaches this face.
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Figure 6.57: Face-wise relative 𝐿2 error for the y-component of the velocity.

Figure 6.58: Face-wise relative 𝐿2 error for the z-component of the velocity.

Exploiting the estimator given by eq. (6.27), it is possible to combine the relative er-

rors for the different profiles on each face to get a more realistic, meaningful and phys-

ically reliable overview of the NIROM accuracy with respect to the reference solution.
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The values of this estimator is reported in fig. 6.59. The graph on the top represents the

Figure 6.59: Weighted percentage relative error between NIROM and CFD using two dif-
ferent sets of training points.

weighted relative error obtained using the first level of the sampled points as training

and the other levels as validation, while the graph on the bottom provides the same esti-

mator using the first level and some points of the second for training and the remaining

points for validation. As it can be noticed, more training points were taken above 50

bar, in order to reduce the relative error in this region. If the parameter space would be

high-dimensional, a more rigorous adaptive selection technique could be employed to

spare some computational time, as in Alsayyari, Perkó, et al., 2021.

An example of the ROM surrogate ability to mimic the response of the SBAM model

is visible in figs. 6.60 to 6.62, where it is possible to see the CH4 mass fraction on the

front face, the x-component of the velocity on the front face and the y-component of the

velocity on the up_down face, respectively. Each figure provides the reference profile,

computed with CFD, the NIROM surrogate profile and the difference between the two.

By direct inspection, it is possible to conclude that the NIROM is able to reproduce fairly

well the main spatial features of the flow field, with negligible errors except for a few,

small regions on some faces, where oscillations around zero due to the entrainment

with air may occur, as already discussed for the back one.

In light of these considerations, the orders of magnitude of the errors reported in

fig. 6.59 are judged sufficiently low for the purpose of QRA. In what follows, the analysis

is thus focused on another source of (model) uncertainty in the ROM estimation, i.e. the

error variability due to the training point selection.

6.4.1.4 ROM error estimation by bootstrap

The error distribution for each validation case is constructed rebooting the NIROM

500 times, by sampling with replacement the initial set of 21 training points.

As mentioned in section 6.1.1.4, some care should be used during the evaluation of

the bootstrapped error distribution, checking whether the validation case falls in the

training range or not. In the following, only the interpolation situation is examined,
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Figure 6.60: CH4 mass fractions for CFD (left) and NIROM (centre) and their difference
(right) on the front face for the validation case with p=51.237 bar.

Figure 6.61: x-component of the velocity field for CFD (left) and NIROM (centre) and their
difference (right) on the front face for the validation case with p=51.237 bar.

since the NIROMs, due to their data-driven nature, are usually employed as interpolat-

ing tools. It should be remarked here that, with respect to the deterministic rule used to

generate the training and validation samples for our application, there is no guarantee

that the bootstrap random resampling covers uniformly the parameter space, therefore

this approach should yield, in this particular case, conservative confidence intervals.

Figures 6.63 and 6.64 show the sample distributions of the weighted percentage rel-

ative error and RMSE for the validation cases featured by the minimum and maximum

pressure, respectively, i.e. 10.374 and 79.442 bar. These graphs are quite informative

about the method robustness: the distributions for both the cases are highly skewed

towards lower bounds of the error, suggesting that the NIROM is weakly sensitive to

the selection of the finite-sized set of training points.

Figure 6.65 provides the distributions for the validation case 𝑝𝑟𝑒𝑙=51.237 bar, which

is featured by the largest variance and mean error. Due to its larger sensitivity to the

training sample choice with respect to the others, this case is identified as the worst one,

therefore it will be used in the following section to propagate the ROM approximation

error through the dispersion calculation chain by means of the UT.

6.4.1.5 Uncertainty propagation to the dispersion simulation

Propagating the bootstrap-evaluated uncertainty characterising the profiles com-

puted by the NIROM onto the output of the successive CFD dispersion simulation is
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Figure 6.62: y-component of the velocity field for CFD (left) and NIROM (centre) and their
difference (right) on the up-down face for the validation case with p=51.237 bar.

Figure 6.63: Weighted relative percentage error (left) and weighted RMSE (right) computed
for the validation case 𝑝𝑟𝑒𝑙=10.739 bar.

certainly not a trivial task. In addition to the large dimensionality of the uncertain

input (each snapshot contains > 6 ⋅ 106 elements), the bootstrapped profiles are not as-

sociated to real, physical parameters, but only to the set of training points. Thus, the

empirical nature of this distribution makes difficult to adopt a smart sampling strat-

egy. A possible option could be using a brute force technique, evaluating the dispersion

model with each bootstrapped ROM response. However, despite the dispersion simu-

lations are faster than the SB calculations (∼10 hours against ∼25), this would not be

practically feasible.

To overcome these issues, the procedure illustrated in algorithm 6 is employed. The

POD technique helps reducing the dimensionality of the SB gas flow profiles, providing

a set of 𝑡 scalar coefficients for each profile, while the UT allows to select only the most

relevant coefficients for the final uncertainty estimation. Consistently with the POD

reduction for the training phase, also in this case the POD is truncated at the 10
th

order,

yielding 𝑘 = 2𝑡 = 20 sigma points. For each of this point, a dispersion calculation is per-

formed. In particular, the scenario with the largest variance and mean error (𝑝𝑟𝑒𝑙=51.237

bar) is investigated. In the following, some safety-critical output parameters estimated

by a dispersion calculation are analysed, comparing the results obtained using the high-

fidelity, CFD profiles in one case and the approximate, ROM profiles in the other one.

Figure 6.66 shows the irreversible injuries volumes obtained using respectively the CFD
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Figure 6.64: Weighted relative percentage error (left) and weighted RMSE (right) computed
for the validation case 𝑝𝑟𝑒𝑙=79.442 bar.

Figure 6.65: Weighted relative percentage error (left) and weighted RMSE (right) computed
for the validation case 𝑝𝑟𝑒𝑙=51.237 bar.

SB profiles and the NIROM SB profiles are represented. At a first look, no relevant dif-

ferences can be appreciated in the two pictures. In both cases the gas cloud tends to

split in two portions along the vertical direction, and the same platform components are

invested by the gas. Some small discrepancies are highlighted by the red circles and it

is difficult to observe any other difference in the shape of the two clouds. In fact, in the

case of the CFD profile, an II volume equal to 22.2 m
3

is obtained, while in the NIROM

case the II volume is 22.4 m
3
, confirming that the difference is negligible (∼ 0.9%). This

qualitative comparison can be helpful in verifying if there are some relevant differences

in the dangerous cloud shape: however, a more detailed analysis needs to be carried out

by comparing some safety related quantities. For the purposes of a QRA, the evaluation

of the mass and volumes involved in the accident is fundamental for the estimation of

the energy that can be released in case of fire or explosion. In addition, a QRA requires

to estimate the dangerous zones extension in terms of volumes and areas. For these rea-

sons, the total CH4 dispersed mass, the CH4 mass in the flammable cloud, the flammable

cloud volume, the II volume and the flammable area at 1.5 m are evaluated. Table 6.4

provides the main output quantities computed within the dispersion calculation using
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Figure 6.66: Irreversible Injuries volume obtained using the CFD SB profiles (top) and of
the NIROM SB profiles (bottom)

the original CFD profiles, provided by the SB simulation, and the surrogate profiles

computed with the NIROM. The results in the NIROM column, i.e. the mean and the

standard deviation of each response, are obtained from the 20 dispersion calculations,

exploiting the UT. The results obtained using the NIROM SB profiles are surprisingly

similar to the CFD related ones. The relative difference in the mean values is always

below 7%, and this is a remarkable result if we consider the dramatic computational

cost reduction. In fact, to obtain the CFD SB profiles, almost 24 h are employed, while

the ROM profiles are obtained in few seconds. Moreover, from a safety point of view

an overestimation of the accident consequences is desirable to avoid risk underestima-

tions. If the upper bound of the ROM-related results are considered, the CH4 mass in

the flammable cloud and the related parameters are overestimated, while the total CH4

mass and the flammable volume are slightly underestimated (∼ 3%).
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Table 6.4: Dispersion calculation outputs computed with the original profiles computed
with the CFD approach and the surrogate profiles computed with the NIROM approach.
The results of the last column are provided with an uncertainty, put in parentheses, given
in terms of 1 standard deviation.

CFD profile ROM profile

Total dispersed CH4 mass [kg] 5.959 5.6(2)

CH4 mass in the flammable cloud [kg] 0.066 0.064(4)

Flammable cloud volume [m
3
] 1.925 1.8(1)

Irreversible injuries volume [m
3
] 22 23(1)

Irreversible injuries area at 1.5 m height [m
2
] 4.20 4.5(3)

CH4 mass CH4 in cloud Flamm. vol. II vol. Area (1.5 m)

0.8

0.9

1.0

1.1

1.2

ROM-UT CFD ROM (best)

Figure 6.67: Expected value and standard deviation for some safety-relevant quantities,
i.e., the total dispersed mass of CH4, the mass of CH4 in the cloud, the flammable volume,
the irreversible injuries volume and the irreversible injuries area at 1.5 m. Each data is
normalised with respect to the CFD case.

6.4.2 Conclusions and future perspectives
In this section the POD-RBF framework was applied for the non-intrusive reduced

order modelling of QRA-oriented CFD simulations. This class of NIROMs has been

recently applied in many research fields, yet most of the applications do not show sat-

isfactory assessment and propagation of the ROM approximation errors, in particular

in the presence of functional (e.g., time- and/or space-dependent) outputs.

In this respect, since the final aim of this application is the adoption of these surro-

gate models to minimise the computational effort associated to QRA studies (where it

is of paramount importance to endow the simulation model responses with confidence

intervals), a methodology for the assessment of the ROM uncertainty in the estimation

of functional (in this case, space-dependent) safety-critical quantities is proposed. To

test this methodology and prove its effectiveness, the ROM is applied to the case of high

pressure, accidental gas release in an off-shore oil&gas plant, where the critical output

267



A non-intrusive, computationally efficient modelling framework for the safety analysis of complex systems

variables of interest are the flammable gas volume, which is related to the irreversible

injuries area.

First, the NIROM is trained exploiting a set of nested parameter samples in order to

adaptively refine it with a reduced computational burden. The validation error, com-

puted as a weighted sum of the sourcebox face-wise errors, is considered sufficiently

low (<15%) using the first level of training cases plus additional cases above 50 bar.

Then, to estimate the model response variability to the training samples, the boot-

strap method is employed to obtain the statistical distributions from the ensemble of

ROM responses. Since, in this case study, the ROM response is used as input for the CFD

dispersion simulation, a quantitative assessment of the impact of the ROM approxima-

tion error is mandatory.

The propagation of the uncertainty from the ROM response distribution to the dis-

persion model output is achieved combining the POD and the UT techniques. The first

is employed to reduce the input data dimensionality, while the second is adopted to se-

lect the input data for the dispersion calculations and finally to estimate the dispersion

output confidence intervals. The main quantities of interest in such calculations, perti-

nent to the QRA analysis, are in very good agreement with the same results obtained

using the profiles computed by CFD, with a relative error between the two approaches

below 10% and a reduction of the computational time of about three orders of magni-

tude, suggesting that the POD-RBF NIROM is adequate to obtain fast yet very accurate

results. It should be remarked that a QRA study has an intrinsically high level of un-

certainty, which makes the additional 10% introduced by the ROM model acceptable.

A future development of this activity could be to increase the number of training

points considering also other input parameters affecting the SB, namely the break size

and the obstacle features. Since these parameters have a strong influence on the SB

dimension, a more sophisticated strategy should be devised in order to handle the snap-

shots defined on a different spatial domain. Moreover, adaptive sparse sampling tech-

niques should be employed in order to progressively refine the parameter space where

the error is not acceptable.

In parallel to these activities, a surrogate model for the dispersion phase should be

trained as well, in view of a coupling with the source-box ROM, allowing to realise

a real-time simulation framework, featured by the capability of providing confidence

intervals on the main results thanks to the combination of bootstrapping and UT.
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Chapter 7

Generalized Perturbation
Techniques for Uncertainty
Quantification in Lead-Cooled
Fast Reactors

You just don’t get it, do you, Jean-Luc? The

trial never ends. [...]

For that one fraction of a second, you were

open to options you had never considered.

That is the exploration that awaits you. Not

mapping stars and studying nebulae, but

charting the unknowable possibilities of

existence.

Q, Star Trek: The Next Generation

7.1 Introduction
Almost 2500 years ago, the greek philosopher and poet Xenophanes already pointed

out, with some remarkable lines, that our knowledge of the world is imperfect and

inevitably based on hypotheses and guesses. The fragment 18 of his production quotes

The Gods did not reveal, in the beginning, all things to mortal,
but as time goes by, by seeking, they can know things better, 1

1
(Popper, 1998)
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while the fragment 34 reads

But as for certain truth, no man has known it,
Nor will he know it; neither of the gods,

Nor yet of all the things of which I speak.
And even if by chance he were to utter

The perfect truth, he would himself not know it;
For all is but a woven web of guesses.1

In spite of the complex, cutting-edge physico-mathematical models and computational

tools we dispose today, these ancient words are still echoing today and will proba-

bly echo forever. Our knowledge of the nature may improve through experiments

and observations of the reality, but we will never be able to tear "the web of Maya"

(Schopenhauer, 1859). Apart from the philosophical implications of this fact, the intrin-

sic uncertainty characterising our models has important consequences in practical life,

especially when it amounts to design and operate an engineering system. Therefore,

estimating the uncertainty and all its components is a key issue in order to prove the

system effectiveness and to ensure its safe and reliable operation, especially if it is a

nuclear installation.

Among the different approaches adopted nowadays to perform the safety studies of

nuclear power plants, the so-called Best Estimate Plus Uncertainty (BEPU) methodol-

ogy is becoming more and more popular. The purpose of this approach is the qualifi-

cation of the results provided by reference computational models through an estimate

of their uncertainty (D’Auria, Camargo, and Mazzantini, 2012), which may be epis-

temic, i.e. connected to the physico-mathematical model and its approximations (e.g.,

continuous-energy vs. multi-group, transport vs. diffusion, ...), or aleatory (Hüller-

meier and Waegeman, 2019), i.e. related to the intrinsic randomness in the phenomena

observed (e.g., the interaction of radiation with matter).

Among the various sources of uncertainties, the one affecting the raw nuclear data

evaluations, i.e. cross sections, fission yields and energy-angular distributions, is cer-

tainly one of the most relevant, being a superposition of both aleatoric and epistemic

contributions. In particular, the uncertainty in the continuous-energy nuclear data has

a direct impact on the homogenised and collapsed multi-group constants, which are

computed to carry out the neutronic analyses at the full-core level. As mentioned pre-

viously (e.g., in chapter 4), the legacy methodology to produce the multi-group constant

consist in using high-fidelity computational tools that take into account all the energy

and angular details on a local scale, e.g., at the pin-cell or at the assembly levels, with

the aim of providing an accurate local evaluation for the flux. This information is then

adopted to generate the effective cross sections and diffusion coefficient through the

energy collapsing and spatial homogenisation procedure, described by (4.1). As men-

tioned in chapter 4, this process is carried out using either deterministic codes like the

ECCO-ERANOS system (Rimpault, Plisson, et al., 2002) or Monte Carlo codes like Ser-

pent 2 (Leppänen, Pusa, and Fridman, 2016). With respect to the deterministic approach,
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the stochastic codes allow to achieve a significant reduction of both modelling and nu-

merical errors, due to their continuous treatment of the phase space, but at the price of

a statistical uncertainty, inherent to the Monte Carlo method.

Independently on the approach pursued in the multi-group constants generation, the

uncertainty vector in the nuclear data, indicated with 𝑝, on the output vector response𝑟 of interest is often estimated with the so-called sandwich rule Cacuci, 2003,

var[𝑟] = S⃗rpcov[p]S⃗rTp , (7.1)

where var[𝑟] is the variance of the response, S⃗rp is the relative sensitivity of 𝑟 with re-

spect to a variation in the input 𝑝, and cov[𝑝] is the relative covariance matrix associated

to 𝑝. This formula only yields a first-order estimate of the variance, but this is usually

enough to propagate the uncertainty in reactor physics, where it is often combined with

the Generalized Perturbation Theory (GPT). This technique, which is a reduced-order

model exploiting the forward and adjoint neutron models, was originally conceived by

L.N. Usachev (Usachev, 1964) and later developed and generalised by A. Gandini and M.

Salvatores (Gandini, Salvatores, and Bono, 1968; Gandini and Salvatores, 1970). Among

its various applications, GPT is applied to get a first-order estimate of the sensitivities

of some output responses to a large number of input parameters in a computationally

efficient manner, although the information conveyed is limited to the variance of the

response.

When a richer information is needed, e.g. the full statistical distribution of the re-

sponse or its moments, the Uncertainty Quantification (UQ) study can be performed, for

instance, with a brute-force sampling technique. Among the various methods available

in the literature, the so-called Total Monte Carlo (TMC) method (Rochman, A. J. Kon-

ing, et al., 2011) is the reference tool for UQ, since it does not suffer from the curse of

dimensionality (Bellman, 1957). Nevertheless, being based on the Monte Carlo method,

it is featured by a slow convergence, scaling as 1/√𝑁 , where 𝑁 is the number of sam-

ples. Hence, since this approach is often computationally not affordable, some cheaper

approximations of TMC have been conceived, like the fast TMC (“Uncertainty Propa-

gation with Fast Monte Carlo Techniques” 2014) and the GRS method (W. Zwermann,

B. Krzykacz-Hausmann, et al., 2012). Despite their are much more computationally ef-

ficient than TMC, these methods provide only the response variance, similarly to GPT.

A promising alternative to these methods is represented by the eXtended Gener-

alised Perturbation Theory (XGPT), which is a projection technique recently developed

and implemented in Serpent 2 (Aufiero, Martin, and Fratoni, 2016; Leppänen, Pusa,

et al., 2015). Likewise GPT, also this method yields a first-order approximation of the

response variance, but, exploiting its features, it can be profitably used to get also a first-

order approximation for the response distributions, acting as a reduced-order version

of TMC. This useful feature makes XGPT a fast and accurate method to estimate the

statistical distributions of the output responses of the model. Having this information,

although with a first-order accuracy, may be extremely relevant when it is necessary
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to propagate the resulting uncertainty of the response through a calculation chain, e.g.

from the multi-group data to the output of the full-core analysis.

An example of this situation regards the safety-oriented design of the Gen-IV fast

systems, which have an inherent multiphysics behaviour. This peculiarity, in addition

to the presence of uncommon nuclides with respect to commercial reactors, demands

the adoption of state-of-the-art methodologies to actually propagate the uncertainty

from the raw nuclear data to the final output of the whole multiphysics calculation

chain. The propagation of the input uncertainties through computationally expensive

models is nowadays performed with efficient methods, like the Polynomial Chaos Ex-

pansion, presented in chapter 6. However, to unleash the full potential of PCE, the dis-

tributions for the model input parameters is required, even in an approximated form.

In this perspective, the XGPT approach may be very useful to perform a consistent UQ

study bridging the raw nuclear data to the final output of the multiphysics full-core

calculations.

The aim of this chapter is to study the effectiveness of XGPT in delivering estimates

of the response distributions of the output quantities, focusing on some selected multi-

group constants. The first part of the chapter presents a preliminary UQ study concern-

ing the ALFRED (Advanced Lead Fast Reactor European Demonstrator) reactor design

(Grasso, Petrovich, et al., 2014), with the legacy GPT technique. Then, two of the most

important nuclides are selected to assess the uncertainties computed with the GPT and

XGPT methods available in Serpent 2, focusing on the influence of the various tuning

parameters, e.g. the energy grid structure. Finally, the statistical distributions for some

model responses are calculated with XGPT and some conclusions on the potentialities

of this approach are given.

Most of the content of this chapter has been published as a peer-reviewed journal

article on the special issue of Annals of Nuclear Energy dedicated to the memory of

Massimo Salvatores,

• N. Abrate, S. Dulla, P. Ravetto, "Generalized perturbation techniques for uncertainty
quantification in lead-cooled fast reactors", Annals of Nuclear Energy, 164, 2021

7.2 Generalized perturbation methods for uncertainty
quantification

GPT is a well-established tool in reactor analysis, hence it a standard routine avail-

able in the majority of the neutronic deterministic codes (Rimpault, Plisson, et al., 2002).

Due to the fact that these codes approximate the energy variable with the multi-group

approximation, both the sensitivity coefficients provided by GPT and the covariance

matrix used in eq. (7.1) are multi-group quantities. This aspect has induced the nu-

clear data evaluators to develop computational tools, like the NJOY processing code

(MacFarlane, Muir, et al., 2018), to score the covariance matrices over relatively coarse
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energy structures, which contains no more than ≈ 103 groups. Notwithstanding this ap-

proximation, the application of GPT has been successful for sensitivity and uncertainty

analyses in reactor physics and engineering applications since the 70’s. Being very pop-

ular, GPT has been recently coded in the continuous-energy Monte Carlo codes MCNP

(Pelowitz, Goorley, et al., 2013) and Serpent 2. However, in spite of the discretisation-

free nature of the Monte Carlo method, also in this case GPT is forced to score the

sensitivities on a multi-group structure, since decreasing the tally bin width has a detri-

mental effect on the statistical uncertainty.

The XGPT method has been developed aiming at overcoming this limitation of the

Monte Carlo version of GPT (Aufiero, Martin, and Fratoni, 2016). The key idea of this

technique is to evaluate the sensitivity coefficients by means of energy-integrated pro-

jections on basis functions generated from the covariance matrices. Thanks to the in-

tegration over the energy, the XGPT coefficients are less prone to the statistical error,

enabling potentially to evaluate continuous-energy sensitivities.

Moreover, XGPT also offers the possibility to adopt high-resolution covariance ma-

trices, scored on a very fine energy grid. Nevertheless, since legacy codes are multi-

group, it is currently not possible to get continuous-energy matrices from the Evaluated

Nuclear Data Files (ENDF) tapes. The only relevant exception, to the authors’ knowl-

edge, is the T6 package (A. Koning and Rochman, 2012; A. Koning, Rochman, et al.,

2019; A. Koning, 2020), which allows to extract the sample covariance matrices from a

set of continuous-energy perturbed ENDF tapes produced by the code itself.

Figure 7.1 shows the correlation matrices for Pu-239 and U-238 data, generated from

the ENDF/B-VIII.0 library (Brown, Chadwick, et al., 2018) and scored on different energy

grids with the ERRORR module of NJOY (MacFarlane, Muir, et al., 2018). By inspection

of the figures, it is possible to notice that the rôle of the energy grids choice is much

more evident for Pu-239 than for U-238, as it will be discussed in more detail later.

7.2.1 Evaluation of sensitivity coefficients
Given a certain physical system, the first-order relative sensitivity of a certain re-

sponse 𝑅 of the system to a certain physical parameter 𝑃 is defined as:𝑆𝑅𝑃 = 𝜕𝑅/𝑅𝜕𝑃/𝑃 = 𝑃𝑅 𝜕𝑅𝜕𝑃 . (7.2)

Hereafter, the parameter 𝑃 is always assumed to be the microscopic cross section of a

specific nuclide 𝑗 for a certain reaction 𝑦 , i.e. 𝜎𝑦,𝑗(𝐸), while the response is assumed to

be the linear reaction rate ratio defining the macroscopic cross section for reaction 𝑥 ,

which is homogenised over the volume 𝑉 and collapsed over the energy group 𝑔,

𝑅𝑥𝑔 = ∫𝑉 𝑑𝑟 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Σ𝑥 (𝑟 , 𝐸)Φ(𝑟 , 𝐸)

∫𝑉 𝑑𝑟 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Φ(𝑟 , 𝐸) = ⟨Σ𝑥⟩Φ𝑔⟨1⟩Φ𝑔 = 𝑅𝑥1,𝑔[Σ𝑥 ,Φ]𝑅𝑥2,𝑔[Φ] , (7.3)

281



Generalized Perturbation Techniques for Uncertainty Quantification in Lead-Cooled Fast Reactors

Figure 7.1: Correlation matrices for Pu-239 (top) and U-238 (bottom) data evaluated on
ECCO-33 groups (left) and using 1500 groups (right).

where the notation adopted underlines the fact that the response of interest is the ratio

of two functionals, 𝑅𝑥1,𝑔 and 𝑅𝑥2,𝑔 . As a consequence, eq. (7.2) can be manipulated in order

to get: 𝑆𝑅𝑔𝑥𝑃 = 𝑃 𝑅𝑥2,𝑔𝑅𝑥1,𝑔 𝜕𝜕𝑃(𝑅𝑥1,𝑔𝑅𝑥2,𝑔) = 𝑃𝑅𝑥1,𝑔 𝜕𝑅𝑥1,𝑔𝜕𝑃 − 𝑃𝑅𝑥2,𝑔 𝜕𝑅𝑥2,𝑔𝜕𝑃 = 𝑆𝑅𝑥1,𝑔𝑃 − 𝑆𝑅𝑥2,𝑔𝑃 . (7.4)

The term 𝑆𝑅𝑥1,𝑔𝑃 can be written as the sum of two first-order functional derivatives, as:

𝑆𝑅𝑥1,𝑔𝑃 = 𝑃𝑅𝑥1,𝑔 ⟨𝛿Σ𝑥⟩Φ𝑔𝛿𝑃 + 𝑃𝑅𝑥1,𝑔 ⟨Σ𝑥⟩ 𝛿Φ𝑔𝛿𝑃 = 𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 + 𝑆𝑅𝑥1,𝑔𝑃,𝑖𝑛𝑑 (7.5)
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that are often referred to as the direct and the indirect terms, respectively. The direct

term expresses the change of the macroscopic cross section due to 𝑃 , while the indirect

term provides the flux change due to 𝑃 . From now on, the variation symbol 𝛿 will be

used in substitution of the continuous derivative.

From version 2.1.31 onward, Serpent 2 is able to compute automatically both 𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟
and 𝑆𝑅𝑥1,𝑔𝑃,𝑖𝑛𝑑 only in case the GPT routine is adopted. When the XGPT mode is employed,

ad hoc detectors must be set for the direct term estimation.

The explicit tally definitions required to estimate the direct sensitivities presented in

this work can be obtained noticing that, for a heterogeneous system like the ALFRED

core design, Σ𝑥 can be defined as

Σ𝑥 (𝑟 , 𝐸) = 𝐼∑𝑖=0 𝑁𝑖(𝑟)𝜎𝑥,𝑖(𝐸), (7.6)

where 𝑁𝑖 is the atomic density of the 𝑖-th nuclide species. Since the analysis carried out

in the following regards only the fissile isotopes, the atomic density spatial distribution

turns out to be a piece-wise constant,

𝑁𝑖(𝑟) = {𝑁𝑖 ∀𝑟 ∈ 𝐷1 ∪ 𝐷2 ∪ ... ∪ 𝐷𝐹0 otherwise, (7.7)

where 𝐷𝑘 indicates the 𝑘-th fuel pellet volume.

Equations (7.6) and (7.7) allow to evaluate the direct term explicitly for the case 𝑃 =𝜎𝑦,𝑗(𝐸):
𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 (𝐸) = 𝜎𝑦,𝑗(𝐸)𝑅𝑥1,𝑔 ⟨𝛿Σ𝑥⟩Φ𝑔𝛿𝜎𝑦,𝑗(𝐸)= 𝜎𝑦,𝑗(𝐸)𝑅𝑥1,𝑔 1𝛿𝜎𝑦,𝑗(𝐸) ∫𝑉 𝑑𝑟 ∫ 𝐸𝑔

𝐸𝑔−1 𝑑𝐸 𝛿Σ𝑥 (𝑟 , 𝐸)Φ(𝑟 , 𝐸)= 𝜎𝑦,𝑗(𝐸)𝑅𝑥1,𝑔 1𝛿𝜎𝑦,𝑗(𝐸) ∫𝑉 𝑑𝑟 ∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 𝐼∑𝑖=0 𝑁𝑖(𝑟)𝛿𝜎𝑖,𝑥 (𝐸)Φ(𝑟 , 𝐸)

= 𝜎𝑦,𝑗(𝐸)𝑅𝑥1,𝑔 𝐼∑𝑖=0 ∫𝑉 𝑑𝑟𝑁𝑖(𝑟)∫ 𝐸𝑔
𝐸𝑔−1 𝑑𝐸 Φ(𝑟 , 𝐸)𝛿𝜎𝑖,𝑥 (𝐸)𝛿𝜎𝑦,𝑗(𝐸) ,

(7.8)

The direct sensitivity coefficient vanishes if reactions 𝑥 and 𝑦 are independent or if

the nuclide species 𝑖 and 𝑗 are not the same, therefore the previous equation can be

simplified as follows,

𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 (𝐸) = 𝑁𝑗𝜎𝑦,𝑗(𝐸)𝑅𝑥1,𝑔 ∫𝑉𝐹 𝑑𝑟Φ(𝑟 , 𝐸)𝛿𝑥𝑦 , (7.9)
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where 𝛿𝑥𝑦 behaves as the standard Kronecker operator and 𝑉𝐹 indicates the total fuel

volume inside the volume 𝑉 considered for the homogenisation. As previously men-

tioned, the major difference between GPT and XGPT lies in the way the sensitivity

defined in eq. (7.4) is computed. GPT scores group-wise sensitivities,

𝑆𝑅𝑥𝑔𝑃,ℎ = ∫ 𝐸ℎ+1
𝐸ℎ 𝑑𝐸 𝑆𝑅𝑥𝑔𝑃 (𝐸), ∀ ℎ = 1,… , 𝐻 , (7.10)

while XGPT scores the projections of the sensitivity coefficient 𝑆𝑅𝑥𝑔𝑃 (𝐸) on continuous-

energy basis functions 𝑏𝑘(𝐸) generated from the covariance matrices,

𝑆𝑅𝑥𝑔𝑃,𝑘 = ∫ 𝐸max
𝐸min 𝑑𝐸 𝑆𝑅𝑥𝑔𝑃 (𝐸)𝑏𝑘(𝐸)

= ∫ 𝐸max
𝐸min 𝑑𝐸 (𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 (𝐸) + 𝑆𝑅𝑥1,𝑔𝑃,𝑖𝑛𝑑 (𝐸) − 𝑆𝑅𝑥2,𝑔𝑃 (𝐸))𝑏𝑘(𝐸), (7.11)

where the integration covers the interval between the minimum and maximum energies

considered for the intended calculation. Since the direct effect for a collapsed cross

section is influenced only by perturbations occurring within its energy limits, it can be

written in XGPT fashion as:𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 ,𝑘 = ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝑆𝑅𝑥1,𝑔𝑃,𝑑𝑖𝑟 (𝐸)𝑏𝑘(𝐸)

= 1𝑅𝑥1,𝑔 ∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 𝑁𝑗𝜎𝑗,𝑥 (𝐸)𝑏𝑘(𝐸)∫𝑉𝐹 𝑑𝑟Φ(𝑟 , 𝐸)= 1⟨Σ𝑥⟩Φ𝑔 ∫ 𝐸𝑔+1

𝐸𝑔 𝑑𝐸 Σ𝑗,𝑥 (𝐸)𝑏𝑘(𝐸)∫𝑉𝐹 𝑑𝑟Φ(𝑟 , 𝐸).
(7.12)

The denominator of eq. (7.12) can be evaluated by the definition of a suitable tally, but

the direct score of the scalar product over the basis functions cannot be carried out in

Serpent. Thus, the integration is performed a posteriori, estimating the reaction rate

over the whole volume of interest and over the same energy grid employed to define

the basis functions. This procedure allows to approximate the integral as follows:

∫ 𝐸𝑔+1
𝐸𝑔 𝑑𝐸 Σ𝑗,𝑥 (𝐸)Ψ(𝐸)𝑏𝑘(𝐸) ≅ 𝐻∑ℎ=1 Σ𝑗,𝑥,ℎΨℎ𝑏𝑘,ℎΔ𝐸ℎ, (7.13)

where Ψ is the flux integrated over the fuel volume. All the sensitivity and tally results

presented throughout this chapter have been processed exploiting the excellent open-

source serpentTools package (Johnson, Kotlyar, et al., 2020) and some in-house Python

scripts.

Despite the projection requires an ad hoc implementation in the Monte Carlo code,

it is remarkable to observe that this process could be carried out as an a posteriori step
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to obtain approximated projections using group-wise sensitivities evaluated on a suffi-

ciently fine energy grid:

𝑆𝑅𝑥𝑔𝑃,𝑏𝑘 = ∫ 𝐸max
𝐸min 𝑑𝐸 𝑆𝑅𝑔𝑥𝑃 (𝐸)𝑏𝑘(𝐸) ≅ 𝐻∑ℎ=1 𝑆𝑅𝑔𝑥𝑃,ℎ𝑏𝑘,ℎΔ𝐸ℎ. (7.14)

This approach would be non-intrusive and could potentially disclose the possibility of

using also deterministic codes to get approximated response distributions.

7.2.2 Determination of the basis functions
The basis functions required to perform the scalar product of the sensitivity coeffi-

cients can be extracted from the covariance matrix by means of the Proper Orthogonal

Decomposition (POD) algorithm (Volkwein, 2011), described in detail in algorithm 2

and sketched in fig. 6.3.

If a set of perturbed cross sections was available, the POD could be carried out with

the Singular Value Decomposition (SVD) of the snapshot matrix, i.e. the matrix ob-

tained by arranging the perturbed data along each column. The perturbed data can

be obtained, for instance, exploiting the open-source SANDY code (Fiorito, Žerovnik,

et al., 2017) or already mentioned T6 package A. Koning, 2020, which permits to ap-

ply continuous-energy perturbations to the ENDF tapes and, consequently, to obtain

continuous-energy sample covariance matrices. A more detailed description of this ap-

proach can be found in Aufiero, Martin, and Fratoni, 2016 and Abrate, Aufiero, et al.,

2019. In case ENDF-6 files storing the group-wise covariance matrix was available, the

POD could be carried out applying the SVD to the covariance matrix itself. In the fol-

lowing, this approach will be followed, in order to avoid the introduction of statistical

errors and biases related to the sample covariance matrix evaluation, in spite of its lim-

ited energy resolution.

The POD computed via SVD allows to factorise the relative covariance matrix cov[𝑝] ∈ℝ𝑚×𝑚
as cov[𝑝] = �̂�Σ̂�̂�⊺, (7.15)

where �̂� ∈ ℝ𝑚×𝑚
is the column-wise set of cov[𝑝] left eigenvectors, [�⃗�1, �⃗�2,… , �⃗�𝑚], Σ̂ ∈ℝ𝑚×𝑚

contains cov[𝑝] singular values and �̂� ∈ ℝ𝑚×𝑚
is the column-wise set of cov[𝑝]

right eigenvectors. In this case �̂� = �̂�, since cov[𝑝] is square and symmetric.

Since the singular values 𝜎𝑖 of cov[𝑝] are a monotonically decreasing sequence (𝜎1 >𝜎2 > ... > 𝜎𝑚) that usually decays very quickly, the dimensionality reduction can be very

effective. Since each eigenvalue is proportional to the information content carried by

the corresponding basis function, the original matrix cov[𝑝] can be approximated using

a limited number 𝑡 of eigenvectors. As mentioned in chapter 6, the value of 𝑡 is often
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selected in order to reach a certain value of the POD energy, defined as

(𝑡) =
𝑡∑𝑘=1 𝜎 2𝑘𝑟∑𝑘=1 𝜎 2𝑘 . (7.16)

The POD energy is equal to 1 when 𝑡 = 𝑚, so the tolerance is checked against 1 −  .

7.2.3 XGPT uncertainty quantification
Once the projected sensitivities 𝑆𝑟𝑝,𝑏𝑘 ∀ 𝑘 = 1, ..., 𝑡 are available, the response variance

may be computed either thanks to the sandwich formula, or thanks to the XGPT model,

which can provide a first-order approximation to the response distribution. In the first

case, the uncertainty is estimated starting from the continuous version of the sandwich

formula Aufiero, Martin, and Fratoni, 2016,var[𝑟] = ∫ 𝐸max
𝐸min 𝑑𝐸 ∫ 𝐸max

𝐸min 𝑑𝐸′𝑆𝑟𝑝(𝐸)cov[𝑝](𝐸, 𝐸′)𝑆𝑟𝑝(𝐸′)
= ∫ 𝐸max

𝐸min 𝑑𝐸 ∫ 𝐸max
𝐸min 𝑑𝐸′𝑆𝑟𝑝(𝐸)�̂�(𝐸)Σ̂�̂�(𝐸′)⊺𝑆𝑟𝑝(𝐸′)

= (∫ 𝐸max
𝐸min 𝑑𝐸 �̂�(𝐸)⊺𝑆𝑟𝑝(𝐸))⊺Σ̂(∫ 𝐸max

𝐸min 𝑑𝐸 �̂�(𝐸)⊺𝑆𝑟𝑝(𝐸))= 𝑆𝑟⊺𝑝,𝑏 Σ̂ 𝑆𝑟𝑝,𝑏,
(7.17)

where 𝑆𝑟𝑝,𝑏 is the column vector obtained stacking the projected sensitivities 𝑆𝑟𝑝,𝑏𝑘 . SinceΣ̂ is a diagonal matrix whose entries are filled with the singular values of cov[𝑝], eq.

(7.17) turns out to be a weighted sum of contributions that are smaller and smaller.

With the same quantities, a first-order model can be devised to approximate the full-

order model output response. Starting from eq. (7.2) and assuming a linear variation,

the model yields: 𝑅𝑖 − 𝑅0𝑅0 = 𝑆𝑅⊺𝑃 𝑃 𝑖 − 𝑃 0𝑃 0 = 𝑆𝑅⊺𝑃 �⃗� 𝑖 = 𝑆𝑅⊺𝑃 𝐼 �⃗� 𝑖 == 𝑆𝑅⊺𝑃 �̂�𝑡 �̂�⊺𝑡 �⃗� 𝑖 = (�̂�⊺𝑡 𝑆𝑅𝑃 )⊺�̂�⊺𝑡 �⃗� 𝑖 = 𝑆𝑅⊺𝑃,𝑏�⃗� 𝑖 , (7.18)

where �̂�𝑡 is the truncated POD basis �̂� and �⃗� 𝑖 is the 𝑖−th response projection in the

reduced space. Rearranging the terms, eq. (7.18) finally yields

𝑅𝑖 = 𝑅0(1 + 𝑡∑𝑘=1 𝛼𝑖𝑘𝑆𝑅𝑃,𝑏𝑘). (7.19)
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Exploiting eq. (7.19), the output response to an input perturbation 𝑃 𝑖 can be estimated

consistently with respect to the continuous-energy Monte Carlo approach, disclosing

the possibility to carry out a first-order uncertainty propagation from the raw nuclear

data to the output homogenised coarse-group constants.

It is important to notice that, due to the way the basis functions are extracted,

eq. (7.19) may yield different approximations to the output distribution. If the basis

functions were computed directly via SVD of the covariance matrix, they would not

contain any information on the input parameter distribution. In this case, eq. (7.19) be-

haves as a linear model that approximates the output distribution of an input parameter

that is implicitly assumed to be normally distributed. This implies that also the output

distribution will be normal as well.

On the contrary, if the basis functions were obtained via POD of the snapshot ma-

trix, the basis functions would convey a richer statistical information, since they would

contain also an information related to the distribution of the samples. In this last case,

the model would behave as a linearisation of the TMC approach.

7.3 Application to the ALFRED reactor model
The methodology previously described is now applied to the same Monte Carlo

model of the ALFRED reactor design discussed in chapter 6. The geometry and ma-

terial specifications are taken from Grasso, Petrovich, et al., 2014 for the Lead-Cooled

Fast Reactor design, developed within the European project LEADER. The core is as-

sumed to be in the Beginning of Life (BoL) configuration, with all the safety and control

rods withdrawn.

For the sake of clarity, fig. 7.2 reports the zones defined for the spatial homogeni-

sation of the multi-group. On the left, the different types of assemblies are sketched,

while on the right their axial discretisation is provided. and thermal power distribu-

tion Nallo, Abrate, et al., 2020. The reference thermodynamic condition considered in

this chapter to account for the Doppler effect is a uniform temperature equal to 1073 K

for the whole system. All the Monte Carlo simulations have been performed with the

ENDF/B-VIII.0 nuclear data library.

Table 7.1: Six-group energy grid adopted to perform the macroscopic cross section energy
collapsing Nallo, Abrate, et al., 2020.

Group Upper boundary [MeV] Lower boundary [MeV]

1 2.000 ⋅ 101 1.353 ⋅ 100
2 1.353 ⋅ 100 1.832 ⋅ 10−1
3 1.832 ⋅ 10−1 6.738 ⋅ 10−2
4 6.738 ⋅ 10−2 9.119 ⋅ 10−3
5 9.119 ⋅ 10−3 2.000 ⋅ 10−5
6 2.000 ⋅ 10−5 1.000 ⋅ 10−11

287



Generalized Perturbation Techniques for Uncertainty Quantification in Lead-Cooled Fast Reactors

Figure 7.2: Radial section (left) and axial regions (right) of ALFRED 3D model, as in Nallo,
Abrate, et al., 2020.

7.3.1 Uncertainty quantification with GPT
In this section, the results of a UQ study carried out with the GPT technique Val-

tavirta, 2018 are shown and discussed. Among the various responses produced by Ser-

pent 2, in the following the attention will be focused on the effective multiplication

factor 𝑘𝑒𝑓 𝑓 and on the six-group fission and capture cross sections, Σ𝑓 ,𝑔 and Σ𝑐,𝑔 , ho-

mogenised over the inner and outer fuel regions of ALFRED. Concerning the perturba-

tions used to evaluate the sensitivity coefficients with GPT, the total fission (𝜎𝑓 or MT18

according to ENDF-6 format Herman, Trkov, et al., 2010) and the radiative capture (𝜎𝛾
or MT102) microscopic cross sections characterising the main fissile nuclides in the fuel

oxide are considered. The nuclides and their atomic densities are reported in table 7.2.

Table 7.2: Nuclides considered for the GPT UQ study.

Nuclide Inner fuel mass fraction % Outer fuel mass fraction %

U-234 2.07419 ⋅ 10−3 1.91216 ⋅ 10−3
U-235 2.79419 ⋅ 10−1 2.57515 ⋅ 10−1
U-236 6.91511 ⋅ 10−3 6.37300 ⋅ 10−3
U-238 6.88468 ⋅ 10+1 6.34847 ⋅ 10+1
Pu-238 4.41008 ⋅ 10−1 5.64897 ⋅ 10−1
Pu-239 1.07564 ⋅ 10+1 1.37778 ⋅ 10+1
Pu-240 5.10655 ⋅ 10+0 6.53959 ⋅ 10+0
Pu-241 1.15483 ⋅ 10+0 1.47901 ⋅ 10+0
Pu-242 1.45497 ⋅ 10+0 1.86386 ⋅ 10+0
Am-241 2.47320 ⋅ 10−1 3.16741 ⋅ 10−1

Figure 7.3 shows the typical behaviour of the six-group macroscopic cross section

relative sensitivity, scored on the ECCO 33-group structure for Pu-239 in response to a
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Figure 7.3: Sensitivity coefficients with respect to the total fission microscopic cross section
(MT18) of Pu-239 for Σ𝑓 ,𝑔 , scored on ECCO 33-group structure with GPT.

perturbation in the MT18 reaction. As one might expect on a physical ground, the sen-

sitivity per unit lethargy is very large for the sub-groups belonging to the coarse group

where the cross section is collapsed, while it is negligible for the other sub-groups, ex-

cept of the thermal region. In these cases, it can be noticed that both Σ𝑓 ,5 and Σ𝑓 ,6 are

sensitive to perturbations occurring in the sub-groups at higher energies, outside the

coarse groups within the thermal range.

The trend of the sensitivity energy profiles can be justified considering the differ-

ent rôle played by the direct and indirect terms appearing in eq. (7.5). In the fast and
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intermediate groups the overall sensitivity behaviour is dominated by the direct sen-

sitivity, while in the lowest-energy groups the contribution of the indirect sensitivity

from higher energies gets more relevant. These graphs also display the relative vari-

ance obtained from the 33-group covariance matrix, which is a useful information to

notice that there, in some cases, the lowest uncertainty is in correspondence of the the

largest sensitivity to the nuclear data.

It should be highlighted that, in spite of its limitations, GPT still is the best tech-

nique to carry out sensitivity analysis, thanks to the fact that the energy-dependent

sensitivities have a straightforward physical interpretation. On the contrary, the same

statement does not apply to the energy-integrated projected sensitivities provided by

XGPT.

The sensitivity coefficients have been calculated with 109 active neutron histories

(106 neutrons per generation, 103 generations divided in 25 batches), starting from an

already converged fission source, initialised with 5⋅108 inactive histories. The number of

neutron latent generations used for the adjoint estimator is 10, which seems an adequate

number according to the convergence trends depicted in fig. 7.4. This graph provides

the uncertainties of Σ𝑐,1 and 𝑘𝑒𝑓 𝑓 computed with the sensitivity coefficients estimated

considering different numbers of latent generations.

Figure 7.4: Latent generation convergence trend for Σ𝑐,1 (left) and 𝑘𝑒𝑓 𝑓 (right). In the right
plot the error bars are very small and, thus, not visible.

Figures 7.5 and 7.6 provide the contribution of each actinide present in the inner and

outer fuel compositions to the percentage uncertainty affecting both Σ𝑓 ,𝑔 and Σ𝑐,𝑔 , due

the uncertainties in the MT18 and MT102 reactions. As it could be expected, the major

contributions are due to Pu-239 and U-238, i.e. the most abundant fissile and fissionable

nuclides, respectively. By inspection of these graphs it can be also concluded that, in

spite of slightly different compositions and flux spectra, the uncertainties in the two

fuel regions are very similar.
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Figure 7.5: Nuclide contributions to the total % uncertainty on Σ𝑓 ,𝑔 homogenised over the
inner and outer fuel regions. The first group (the fastest) is on top-left, the sixth is on
bottom-right.

7.3.2 Comparison between XGPT and GPT results
In this section the uncertainty estimated with the GPT and XGPT methods is com-

pared, with the goal of highlighting better their different characteristics in the Monte

Carlo framework. The assessment is carried out focusing on the impact of two specific

isotopes, namely Pu-239 and U-238, on 𝑘𝑒𝑓 𝑓 and on the six-group capture and fission

cross sections homogenised over the inner fuel region of the ALFRED reactor. The

motivation for the selection of these isotopes is two-fold:

1. they are the most relevant from the uncertainty point of view, as concluded in

section 7.3.1;

2. their covariance matrices have different features that evidence the impact of the

POD-SVD truncation error on the final calculation results. To the authors’ knowl-

edge, this is the first application of XGPT for the propagation of the nuclear data

uncertainty throughout the overall homogenisation and collapsing procedure.

To quantify the impact of the energy group structures on the final uncertainties,

the XGPT evaluations are performed considering two sets of covariances. The first one

is scored on the ECCO 33-group grid, i.e. the same adopted for the GPT calculation,
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Figure 7.6: Nuclide contributions to the total % uncertainty on Σ𝑐,𝑔 homogenised over the
inner and outer fuel regions. The first group (the fastest) is on top-left, the sixth is on
bottom-right.

while the second one is processed on a fine-group structure consisting of 1500 groups.

It is worth mentioning that the ERRORR module of NJOY, used to process the ENDF-6

files, currently has some limitations that restrict the maximum number of groups to a

value which is around 1550. As a consequence, this 1500-group grid has been obtained

starting from the ECCO 1968-group and distributing the groups to obtain a consistent

coverage of the energy range, also considering the flux spectra of the fuel regions and of

the radial and axial reflectors, depicted in fig. 7.7. Since statistics in the lower and upper

energy range limits is very poor, as a consequence of the fast spectrum of LFRs, most

of the bins have been located in the epithermal region. The details of the fine-group

structure can be retrieved from table 7.3, while fig. 7.8 shows a graphical sketch of the

6, 33 and 1500-group grids adopted.

The direct observation of fig. 7.9 shows the typical decay of the singular values of the

covariance matrices scored on the 33-group and the 1500-group structures. In the first

case, a similar number of basis functions, 56 and 65, is sufficient to approximate the Pu-

239 and U-238 covariances, respectively, within the prescribed tolerance (1 −  ≤ 10−8).
However, when the covariances are scored on 1500 groups, 191 and 1446 basis functions

are required to approximate the U-238 and Pu-239 matrices, respectively, within the

selected tolerance. The significant difference between the amount of basis functions
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Figure 7.7: Inner fuel, outer fuel and radial reflector (dummy element) flux spectra. The
red dashed line represent the six-energy groups while the black dashed-dotted lines identify
the ECCO 33-group grid.

Table 7.3: Energy groups specifications to construct the 1500-group grid employed for the
calculations.

Region Lower boundary [MeV] Upper boundary [MeV] Points in lethargy

Thermal 1 10−11 10−7 1

Thermal 2 10−7 10−5 20

Epithermal 10−5 101 1472

Fast 101 2 ⋅ 101 10

required by the covariance of each isotope in the two cases can be appreciated observing

the associated correlation matrices reported in fig. 7.1. In the U-238 case, the 1500-

group description does not add significant improvements to the correlation matrices

appearance, while the higher resolution in the fast and intermediate regions is patent

for the Pu-239 case.

Figure 7.10 provides the impact of the covariance truncation error on the final un-

certainty estimated with eq. (7.17). Even in the worst case scenario, represented by the

Pu-239 MT18 uncertainty on Σ𝑓 ,2, around 200 basis functions seem adequate to yield

a truncation error that is far below the statistical one. This behaviour justifies the

adoption of the POD reduction technique, showing that an acceptable accuracy can

be achieved with tolerances that are even larger than the one initially selected.

Of course, for reasons pertaining to linear algebra, the number of energy points

used to evaluate the sensitivity energy profiles should match the rank of the covariance

matrix in eq. (7.1). Thus, if a continuous-energy (i.e. an ultra-fine group) covariance

was available, the sensitivities should be evaluated on the same group structure. It is

clear that this calculation would not be practically feasible, neither by a deterministic
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Figure 7.8: Energy group structures employed for the sensitivity and uncertainty analyses.

Figure 7.9: POD eigenvalues decay for the covariance matrices of Pu-239 and U-238 evalu-
ated on ECCO 33-group (left) and on the 1500-group energy structures (right). The dashed-
dotted black line represents the tolerance level.

nor by a stochastic code, because of the too demanding computational resources. On the

contrary, if eq. (7.17) was employed, a reduced number of energy-integrated projected

sensitivities would be required, since the dimension of the POD basis, 𝑡 , is generally

much smaller than the rank 𝑚 of the covariance, because of the rapid singular values

decay. This fact has a very important implication, i.e. there is no limit to the energy

detail considered in the evaluation of the sensitivity, making this technique suitable for

stochastic methods or asymptotic theory (Dulla and Ravetto, 2020).

Tables 7.4 and 7.7 report the percentage uncertainty for the group-wise capture and

fission homogenised cross sections induced by the uncertainty of U-238 and Pu-239
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Figure 7.10: POD truncation error on the relative Σ𝑓 uncertainty due to Pu-239 MT18. The
statistical error is represented by the dashed-dotted red line.

MT18 and MT102. For all the results in the tables, the statistical uncertainty associ-

ated to the sensitivity coefficients is propagated through eq. (7.17) using the classical

linear uncertainty propagation and neglecting the cross-correlation among the terms.

Tables 7.4 and 7.5 show the uncertainties evaluated with GPT and XGPT, respectively,

scoring the sensitivity and the covariance on the 33-group grid. It can be concluded that

Table 7.4: Percentage uncertainties evaluated scoring both the GPT sensitivities and the
covariances on the 33-group structure.

𝑔 U-238 Pu-239𝜎𝑓 (MT18) 𝜎𝑐 (MT102) 𝜎𝑓 (MT18) 𝜎𝑐 (MT102)Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐
1 0.60903(39) 0.00460(24) 0.00225(42) 1.00988(81) 0.38327(79) 0.0220(14) 0.00270(95) 0.42913(68)

2 0.01813(13) 0.000161(94) 0.00414(18) 1.18629(27) 0.93934(38) 0.00658(29) 0.00659(43) 1.02227(29)

3 0.003286(33) 0.00024(13) 0.00240(20) 1.07346(27) 1.06370(41) 0.00557(36) 0.00242(35) 1.10009(38)

4 0.001834(20) 0.00097(17) 0.01290(17) 0.92626(34) 1.01347(39) 0.02507(42) 0.01231(38) 0.89525(54)

5 0.00557(33) 0.00246(39) 0.14641(67) 0.80428(92) 1.1121(16) 0.15478(96) 0.3103(18) 1.6214(22)

6 0.0055(42) 0.0055(43) 0.0149(67) 0.2118(99) 1.279(28) 0.103(17) 0.740(43) 1.297(33)

the general agreement between the methods is acceptable within the statistical confi-

dence interval, with some relevant exceptions, e.g. for the U-238 MT102 uncertainty onΣ𝑐 .
These discrepancies can be explained recalling eq. (7.13), where the evaluation of

the direct projected sensitivity is performed introducing an approximation. When both

the direct sensitivities and the basis functions are evaluated on the 1500-group grid, the

integration error is sufficiently reduced so that the overall agreement is good, at least

in the statistical sense (see table 7.6). Clearly, if the direct sensitivity was computed

directly by Serpent 2 during the transport process, the two methods would produce a

set of statistically equivalent results, since they share the same energy grid. It should

be noticed that columns Σ𝑐 for MT18 and Σ𝑓 for MT102 are identical in tables 7.5 and 7.6
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Table 7.5: Percentage uncertainties evaluated scoring both the XGPT sensitivities and the
covariances on the 33-group structure.

𝑔 U-238 Pu-239𝜎𝑓 (MT18) 𝜎𝑐 (MT102) 𝜎𝑓 (MT18) 𝜎𝑐 (MT102)Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐
1 0.83637(95) 0.00433(41) 0.00288(38) 2.1566(17) 0.7045(10) 0.0203(13) 0.00299(82) 1.0935(13)

2 0.003942(86) 0.00015(11) 0.00348(10) 0.87510(67) 0.68924(63) 0.00687(27) 0.00654(35) 0.87966(48)

3 0.002744(17) 0.00011(13) 0.00243(21) 1.6049(12) 1.2850(11) 0.00553(42) 0.00257(37) 1.7165(12)

4 0.0013672(59) 0.00094(16) 0.01136(20) 1.14865(41) 0.82977(69) 0.02489(43) 0.01207(34) 1.07996(65)

5 0.00725(22) 0.00246(37) 0.14365(66) 0.52445(91) 1.4452(28) 0.13179(90) 0.2971(20) 0.9774(20)

6 0.0064(82) 0.0117(77) 0.015(11) 0.156(11) 0.393(28) 0.097(21) 0.555(32) 0.441(32)

for both species, since the direct effect is exactly zero.

Table 7.6: Percentage uncertainties evaluated with XGPT scoring the indirect sensitivities
on the 33-group structure and the direct effect (including the basis functions) on the 1500-
group structure.

𝑔 U-238 Pu-239𝜎𝑓 (MT18) 𝜎𝑐 (MT102) 𝜎𝑓 (MT18) 𝜎𝑐 (MT102)Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐
1 0.60075(62) 0.00433(41) 0.00288(38) 0.65441(87) 0.38291(79) 0.0203(13) 0.00299(82) 0.3229(10)

2 0.026123(90) 0.00015(11) 0.00348(10) 0.79698(47) 0.67001(51) 0.00687(27) 0.00654(35) 0.54147(31)

3 0.004379(12) 0.00011(13) 0.00243(21) 1.47092(83) 1.6264(10) 0.00553(42) 0.00257(37) 1.62678(95)

4 0.0016899(69) 0.00094(16) 0.01136(20) 1.15964(35) 1.01185(74) 0.02489(43) 0.01207(34) 1.05397(60)

5 0.00508(28) 0.00246(37) 0.14365(66) 0.63134(82) 1.5018(22) 0.13179(90) 0.2971(20) 1.0821(20)

6 0.0064(82) 0.0117(77) 0.015(11) 0.396(12) 1.191(38) 0.097(21) 0.555(32) 1.069(37)

Table 7.7 presents the uncertainties provided by the XGPT approach scoring both

direct and indirect sensitivities on the 1500-group grid. Since this is the finest group-

structure adopted in the calculations, these values should be considered as the refer-

ence. Their agreement with the GPT results is very good, except for the impact of

Pu-239 MT18 on Σ𝑓 ,6 and Σ𝑐,6, where GPT gives underestimated results. This difference

is remarkable, and can be justified by the adoption of a larger number of low-energy

groups in the 1500-group grid (XGPT) with respect to the ECCO 33-group grid (GPT),

as it can be noticed in fig. 7.8.

On the contrary, by inspection of table 7.8 it can be concluded that the total un-

certainty on 𝑘𝑒𝑓 𝑓 coming from MT18 and MT102 and computed with GPT and XGPT

using the two grids yield very similar results. This accordance is a consequence of two

aspects. First, the direct contributions, which can induce large discrepancies between

the two methods, are missing. Second, the effective multiplication factor is an integral

parameter, thus it is less sensitive to the group-structure adopted in the calculation.

The results presented in this section allow to draw two important observations:

1. from the methodological point of view, XGPT is proved to yield a higher energy
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Table 7.7: Percentage uncertainties evaluated scoring both the XGPT sensitivities and the
covariances on the 1500-group structure.

𝑔 U-238 Pu-239𝜎𝑓 (MT18) 𝜎𝑐 (MT102) 𝜎𝑓 (MT18) 𝜎𝑐 (MT102)Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐 Σ𝑓 Σ𝑐
1 0.61121(54) 0.00494(17) 0.00230(40) 0.95971(69) 0.38295(86) 0.0216(13) 0.00399(80) 0.42283(95)

2 0.01783(10) 0.000224(70) 0.00440(13) 1.18858(63) 0.94018(65) 0.00666(26) 0.00682(38) 1.02393(41)

3 0.003328(27) 0.000057(30) 0.00251(23) 1.07471(59) 1.06230(74) 0.00533(41) 0.00228(39) 1.09587(82)

4 0.001930(16) 0.00098(14) 0.01188(18) 0.91814(43) 1.00993(71) 0.02518(43) 0.01190(38) 0.89899(61)

5 0.00609(26) 0.00276(26) 0.14526(72) 0.80626(88) 1.0021(19) 0.14730(95) 0.2197(17) 1.6575(20)

6 0.0059(68) 0.0040(36) 0.0126(48) 0.202(16) 2.121(57) 0.075(27) 0.646(47) 1.240(47)

Table 7.8: 𝑘𝑒𝑓 𝑓 relative uncertainty in 𝑝𝑐𝑚.

Nuclide GPT 33 XGPT 33 XGPT 1500

U-238 101.55(11) 99.66(11) 101.53(12)

Pu-239 259.61(23) 259.63(23) 259.18(34)

resolution compared to the stochastic version of GPT. The superior accuracy is

particularly evident when the responses are not integrated on the whole energy

axis;

2. from the physical point of view, an appropriate number of low-energy groups is

mandatory even in the case of a fast spectrum system analysis.

7.3.3 Multi-group constant distributions
The first-order model expressed by eq. (7.19) is now employed as a surrogate of the

original model, i.e. the Serpent code, to sample the group-wise fission and capture cross

sections in the inner fuel region. Figure 7.11 provides the average and perturbed fis-

sion and capture cross sections for Pu-239. The perturbations are obtained by sampling

according to the 1500-group covariance matrix. Figure 7.12 shows the best-estimate ho-

mogenised and collapsed cross sections and their uncertainties. The purpose of these

graphs is to help the visualisation of how the uncertainty in the raw nuclear data is

propagated to the multi-group cross sections through the homogenisation and collaps-

ing procedure. Since the perturbations in the basic nuclear data have been sampled

assuming a multi-variate normal distribution, which is a standard assumption in the

absence of information on the underlying distribution of the data, also the final output

are normally distributed, due to the linearity of the model. The distributions can be

observed by inspection of fig. 7.13. For sake of conciseness, only the group with the

largest uncertainty is shown for both responses. The standard deviations featuring the

distributions in fig. 7.13 are fully consistent with the ones reported in table 7.7.
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Figure 7.11: Best-estimate and set of perturbed MT18 (left) and MT102 (right) cross sections
for Pu-239. The black band is obtained by superposition of 100 perturbed values.

Figure 7.12: Best-estimate (red) and 2-𝜎 uncertainty (black) on 6-group values of fission
(left) and capture (right) cross sections for Pu-239.

Finally, fig. 7.14 reports the correlation matrices of the input raw nuclear data, pro-

cessed on the 1500-group grid, and of the effective cross sections computed by Serpent

2 on the 6-group grid. The output correlation matrix has been estimated with 105 sam-

ples, generated with eq. (7.19).

7.4 Conclusions
In this chapter, the GPT and XGPT methods, both implemented in the Serpent 2

Monte Carlo code, are compared within the framework of uncertainty and sensitiv-

ity analysis. In particular, the comparison has been carried out focusing on the un-

certainty propagation from the raw nuclear data to the energy collapsed and spatially

homogenised cross sections for the ALFRED reactor design.
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Figure 7.13: Sample distributions for Σ𝑓 ,6 (left) and Σ𝑐,6 (right) due to the uncertainty in
Pu-239 MT18 and MT102. The histograms have been constructed with 105 samples. The
superimposed black line follows the Gaussian function.

Figure 7.14: Structure of the correlation matrices for the Pu-239 raw nuclear data scored on
the 1500-group grid (left) and for the collapsed and homogenised cross section of the inner
fuel region (right). The energy range is the same for all graphs.

In the first part of the chapter, the features of each method are presented and dis-

cussed, outlining the calculation steps needed to estimate the direct sensitivity con-

tributions in the case of a linear reaction rate response. Both GPT and XGPT allow

to obtain a first-order estimates of the sensitivity coefficients, which are then inserted

in the sandwich rule to estimate the response variance. The most relevant difference

between the two methods lies within the energy treatment: XGPT is an inherently

continuous-energy approach, whilst GPT requires the multi-group approximation.

Then, an uncertainty quantification study is carried out exploiting the GPT ap-

proach, focusing on all the heavy nuclides constituting the MOx fuel whose adoption

is foreseen in the ALFRED reactor core. This assessment has shown that the two most
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abundant nuclides, i.e. Pu-239 and U-238, are also the top contributors to the overall un-

certainty on the few-group cross sections Σ𝑓 and Σ𝑐 for both the fuel regions considered

in the homogenisation process, i.e. the inner and outer fuel assemblies.

The second part of the paper compares the uncertainties on Σ𝑓 , Σ𝑐 and 𝑘𝑒𝑓 𝑓 calcu-

lated previously with GPT to the ones estimated with XGPT, focusing on the impact of

the different energy grids where the sensitivities are scored. The major outcome of this

comparison is that a more accurate energy resolution can be obtained with the XGPT

method, making it the preferable choice among the perturbation techniques for uncer-

tainty and sensitivity analyses in a Monte Carlo framework, thanks to its continuous-

energy feature. However, according to the specific system (e.g., a thermal reactor) and

to its output responses of interest, the use of a coarse-group GPT approach could be

sufficiently accurate if only a rough estimate of the uncertainty is required or if the

energy effects are less relevant. Different systems and responses should be analysed in

the future to draw some more general conclusions.

Moreover, this analysis has also proved that an adequate number of low-energy

groups is mandatory also if the system under analysis is featured by a fast spectrum.

Finally, the output correlation matrix for the output responses Σ𝑓 and Σ𝑐 is compared to

the correlation matrix of the input Pu-239 nuclear data, showing the covariance prop-

agation from the raw nuclear data to the final output response of interest.

As a further development to this activity, it would be extremely useful to evaluate the

impact of adopting continuous-energy covariances, extracted from the random evalua-

tions produced by the T6 package, instead of fine-group covariances on the final output

of XGPT calculations. Such an analysis would shed some light on the influence of the

input parameter distributions on the final output and could highlight the importance

for point-wise covariances with respect to fine-group ones.

Data availability
In the spirit of open-science, the complete datasets and scripts employed to pre- and

post-process the Serpent calculations presented in this chapter are available in the open

access Zenodo repository 10.5281/zenodo.4540785.
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Chapter 8

Conclusions and future
perspectives

There must be some kind of way outta here.

[...]

There’s too much confusion

I can’t get no relief

[...]

So let us stop talkin’ falsely now

The hour’s getting late

All along the watchtower

Jimi Hendrix (Bob Dylan)

8.1 Summary
The main purpose of the thesis is developing new methods for the safety and stability

analyses of nuclear reactors, without loosing sight of the industrial requirements and

needs concerning the adoption of qualified codes.

The first part of the thesis is focused on the analysis and development of new meth-

ods in the frame of reactor physics and their application to simplified systems, with

the aim of grasping better their physico-mathematical features without loosing track

of the real-life applications. In the first chapter, the classical PN and SN approxima-

tions are presented, in order to approach numerically the solution of the eigenvalue

problems arising in neutron transport. After addressing some old-fashioned but still

relevant questions concerning the angular parity order, the equivalence between odd

and even angular orders and the possibility to accelerate numerically the angular con-

vergence of these methods, some numerical benchmarks are carried out to check the

305



Conclusions and future perspectives

implementation of these methods in an in-house Python package, called TEST.

Then, the classical eigenvalue formulations to the neutron transport equation, i.e.

the multiplication eigenvalue, the collision eigenvalue, the time eigenvalue and the den-

sity eigenvalue, are presented and discussed, focusing on their physico-mathematical

peculiarities and analysing their eigenvalue spectra.

Exploiting the results of the eigenvalue formulation analysis, a possible application

of the eigenfunctions associated to the various formulations are proposed as alternative

weighting functions for the group collapsing procedure. The behaviour of the different

weighting functions is assessed by comparing the main integral parameters obtained

by multi- and few-group calculations.

Then, a generalisation of the standard eigenvalue formulations is proposed, with the

final aim of deriving a new eigenvalue problem which allows to act on specific portions

of the phase space and nuclides, for design-oriented applications. After discussing the

main physico-mathematical aspects of this formulation, relevant engineering problems,

like the determination of the critical boron concentration, are evaluated using this new

approach.

In the remaining chapters, more realistic systems are analysed, focusing on 2D and

3D models of some Gen-III+ and Gen-IV reactor concepts. This last part of the work

mainly aims at proposing computationally efficient methods for the safety analyses of

the neutronic behaviour of the core, trying to reduce as much as possible any interven-

tion in the code. This goal is accomplished by means of Non-Intrusive Reduced-Order

Modelling (NIROM) techniques, which permit a fair reduction of the computational

time without any code modifications at the price of small approximations.

A non-intrusive reduced-order model based on a combination of Proper Orthogonal

Decomposition and Radial Basis Function techniques is presented as an efficient way of

reducing the computational cost of the original, high-fidelity models. Then, this model

is applied to three different industrial application, with the goal of proving the NIROM

effectiveness.

The first application deals with the spatial stability stability of the Gen-III+ core, and

aims at developing an efficient NIROM to perform a sensitivity analysis of the flux and

power tilt behaviour at the full-core level with respect to a random, localised perturba-

tions.

The second application concerns the parametric safety analysis of accidental tran-

sient scenarios in LFR, which require accurate evaluations of the safety-critical param-

eters in different operational and accidental conditions.

In order to show that the methods proposed have a wide applicability range also

outside the nuclear field, the last application presents another variation of the NIROM

approach, which is applied to model accidental high-pressure gas releases in industrial,

congested environments.

Finally, the last chapter focuses on the nuclear data uncertainty quantification, which

is a relevant topic in the safety analysis of nuclear system. More specifically, this chap-

ter is devoted to perform an assessment of the main techniques used in the Monte Carlo
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framework to carry out the sensitivity and uncertainty analysis, focusing on the propa-

gation of the uncertainty from the raw nuclear data to some relevant neutronic output

quantities, focusing on the lead-cooled fast reactor ALFRED design.

8.2 Conclusions and future perspective
The thesis has been organised in two parts, one more theoretical and devoted to the

development of reactor physics methods, and one more practical, focused on industrial

applications.

In the following, the main outcomes and contributions of this work are summarised:

• In chapter 2, the numerical framework based on the PN and SN multi-group models

is presented, with the goal of solving the eigenvalue problem formulations arising

in neuron transport. After proving the equivalence between the odd PN equation

and the succeeding even order PN+1, the numerical implementation of the in-house

TEST is verified with several benchmark values taken from the available literature

on the topic. Then, the impact of the boundary conditions and of the parity or-

der on the angular convergence of the fundamental eigenvalues was assessed. In

this case, it was interesting to show that, with a proper selection of the boundary

conditions, it is possible to realise even and odd sequences that converge to the

asymptotic value from two opposite directions. This interesting feature is thus

exploited to study the possibility to accelerate the eigenvalue sequences, which

suffers from the energy and spatial modelling error, to the asymptotic values. In

this case, the Wynn-𝜀 scheme is employed, showing its applications to estimate

the numerical errors.

• In chapter 3, the different eigenvalue formulations to the neutron transport equa-

tion available in the literature, i.e. the time, the multiplication, the collision and

the density eigenvalues, and a newly introduced capture eigenvalue, introduced

here for the first time, have been presented, discussing thoroughly both their ad-

vantages and their disadvantages. The attention has been focused mainly on the

behaviour of the different eigenvalue spectra according to the spatial, angular and

energetic models employed and to the spatial heterogeneity. The analysis of the

spectrum, led using the TEST code, has been extremely useful to highlight the

tight connection between the spectra and the approximation used to solve the

neutron transport equation and to draw some important, practical conclusions to

drive the eigenvalue solver towards the fundamental eigenpair according to the

spectral formulation employed. Finally, a possible application of the spectrum as a

concise figure of merit for the optimal selection of the group boundaries has been

suggested as a future perspective.

• In chapter 4, one of the current open issues in reactor physics, i.e. the cross sec-

tion group-collapsing, has been addressed from the point of view of the weighting
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spectrum used to perform the integration over the energy range. In particular, the

use of the fundamental eigenfunctions associated to the different eigenvalue for-

mulations arising in neutron transport is investigated as an alternative to the usual

choice of considering the 𝑘-eigenvalue spectrum. Due to the problem complexity

and to the large number of parameters affecting the group constant generation,

the analysis was carried out performing some numerical experiments for a sim-

plified system, i.e. a homogeneous slab, for which the calculation of the various

eigenfunctions is possible using the TEST code. The choice of neglecting any het-

erogeneity effect allowed to focus on the energy effects related to the system spec-

trum, to the choice of the weighting function and to the energy group structure

used for the cross sections and diffusion coefficient condensation.

The analysis showed that it is actually very difficult to foresee the performances

of each weighting eigenfunction only relying on physical considerations, because

of the appearance of numerical error compensations in the condensation scheme

that depend on the type of the reactivity insertion, on the few-group grid, on the

type of the eigenfunction and, of course, on the system energy spectrum.

Nevertheless, it is possible to conclude that, in most of the cases, the 𝑘 eigenfunc-

tion, which is the one traditionally employed in the group constant generation

process, is certainly the one yielding the worst results, especially when the sys-

tem is far from criticality. In this respect, the best option for the condensation

procedure seems to be 𝛾 energy spectrum. Actually, other eigenfunctions like

the 𝜔 and the 𝜃 ones may provide slightly more accurate results than the ones

produced with the 𝛾 condensation, but the evaluation of these eigenfunctions is

always much more computationally expensive. On top of that, the performances

of 𝛾 can found a justification on a physical ground, since, among the static eigen-

value formulations presented in the thesis, it is the one which distorts the less the

energy spectrum of the system.

From this perspective, the low relative error obtained with the 𝜃 collapsing may

be explained by the fact that both the nature of the perturbation and the 𝜃 eigen-

value definition involve the capture cross section. In order to shed some light on

this aspect, the reactivity should be driven by the change of other parameters, for

example the fission cross section or the density of the system, which are strongly

related to 𝑘 and 𝛿 , respectively.

In order to draw some more general conclusions, other numerical experiments

should be envisaged in the future. In addition to the analysis of the influence of the

kind of perturbation triggering the reactivity insertion, the spatial and energy ef-

fects related to the presence of heterogeneities in the system should be definitively

taken into account. Finally, the thermal feedback should be introduced, especially

for the analysis of heavily off-criticality.

• In chapter 5, it has been shown how the eigenvalue formulations to the neutron
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transport equation could be traced back to a generalised eigenvalue formulation,

called 𝜁 . This eigenvalue can be introduced in order to filter specific regions of

the phase space. In particular, bearing in mind the possible practical constraints

arising during the core-design process, the 𝜁 eigenproblem has been cast in a form

that extends the applicability of the density eigenvalue 𝛿 to specific nuclides and

regions of the phase space.

This novel approach has been applied to a wide range of different classical yet

realistic problems in reactor physics, considering the main types of materials en-

countered in the design of a reactor core, e.g., the fuel, the coolant, the moderator

and the localised absorbers. These applications provided remarkable results. First,

the 𝜁 eigenvalue yields equivalent results to the iterative method commonly ap-

plied in such framework, but with a strong reduction of the computational effort.

More importantly, the existence of one or more design solutions seems related to

the presence, in the 𝜁 spectrum, of one or more real and positive eigenvalues as-

sociated to positive eigenfunctions. This is a remarkable feature, which should

facilitate to rigorously assess whether criticality can be attained or not acting on

the selected nuclides, even in case of complex systems. Moreover, the knowledge

of all the possible criticality arrangements of a system is of the utmost importance

for the safety studies involving the re-criticality phenomena. This study of the 𝜁
eigenvalue spectrum suggests that, in some situations, featured by the absence of

competing interaction phenomena, there may exist only one positive solution, as-

sociated to an eigenvalue separation which is large enough to ensure an efficient

numerical convergence on the dominant one.

Due to its novelty, there are many open questions that should be addressed in

future activities. First of all, the 𝜁 spectrum should be studied more thoroughly,

starting from a more rigorous physico-mathematical framework and taking into

account the impact of the different spatial, angular and energy approximations of

the neutron transport equation. Moreover, the physico-mathematical meaning of

the higher-order 𝜁 harmonics should be investigated as well. A better comprehen-

sion of the 𝜁 superior modes could disclose the possibility to apply perturbation

methods, like the Generalised Perturbation Theory, which could be very useful for

design-purpose calculations. Then, the action of the eigenvalue on more specific

portions of the phase space should be studied, involving for example only some

reaction channel, e.g. the capture, and a reduced energy range, e.g. the thermal

region. Finally, some research efforts should be devoted to incorporate the 𝜁 cal-

culation in the cross sections collapsing and homogenisation process, in order to

properly account for the self-shielding effects.

• In chapter 6, a non-intrusive reduced order model has been introduced for the

efficient computational analysis of complex problems. This chapter presents three

different applications of this methodology.
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The first deals with the stability analysis of Gen-III+ systems, which require full-

core diffusion calculations to assess the core behaviour in presence of local dis-

turbances. Due to the two-step nature of the full-core calculations, which require

a set of few-group homogenised constants, a two-step meta-model has been pro-

posed, combining the polynomial chaos expansion method for the estimation of

the multi-group data and the POD-RBF model for the estimation of the assembly-

wise power distribution obtained in response to a localised perturbations, which

are assumed to be variations in the coolant density and in the fuel pellet diameter.

The first-order polynomial chaos expansion is sufficient to reproduce within an

acceptable accuracy the cross sections behaviour as a function of the two input

perturbations, with only a few full-order model evaluations. However, it must be

acknowledged that, in presence of larger variations, probably more training points

would be required to match the target accuracy.

Concerning the full-core calculations, some precautions are needed to handle the

spatial arrangement of the perturbations. First of all, an algorithm for the defini-

tion of the perturbation and its constraints, e.g., the perturbation shape, is envis-

aged. Then, two different sampling techniques are devised to produce the training

dataset. The first one draws the first perturbed FA according to an importance

probability density function based on the neutron importance, and then randomly

selects the surrounding FAs, assigning a random value to the physical perturbation

as well. The second sampling technique works in the same way, but the perturba-

tion intensity is sampled according to a deterministic rule.

The last precaution regards the distance evaluation among the input parameters:

due to the spatial arrangement of the disturbance, the classical euclidean distance

between the various input parameter is not adequate to distinguish similar per-

turbations, engendering the learing capabilities of the model. Thus an alternative

algorithm for image recognition is selected, to guarantee a consistent evaluation

of the training samples distance with respect to a new parameter point.

When it is assumed that more perturbations can occur in the core, the parameter

space of the problem becomes huge. However, according to the results obtained,

it seems that the random sampling technique is adequate to provide good results.

Nevertheless, it seems difficult to strongly reduce the error, due to the large vari-

ability in the input space.

If a simpler problem is addressed, assuming that only one batch of perturbed FA

can occur, the overall accuracy of the model improves a lot, also thanks to the

adoption of the hybrid sampling process. This observation suggests that more

specialised meta-models could be the most efficient solution to the problem.

As a future development, hybrid techniques based on data- and physics-driven

should be investigated. For example, it would be interesting to use the legacy Gen-

eralised Perturbation Theory technique to provide a set of sensitivity coefficients
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to drive the sampling phase towards the most relevant perturbations.

Concerning the second application, the model has been extended to treat also time-

dependent models, proposing an algorithm that suitably combines the algorithms

already implemented in the ROMpy package.

The case study regarded the accidental insertion of a control rod in a close-to-

critical initial configuration of the ALFRED core design, considering as free pa-

rameters the insertion times of the rod, which have the effect of changing the

insertion speed of the CR.

The full-core snapshots, representing the power density of the system, are gener-

ated with the FRENETIC nodal diffusion code. In spite of the relatively low number

of samples, the ROM shows a good accuracy (the global error is below 4%) with

respect to the full-order model for the validation points considered, on both the

local and global spatial scales and for the whole transient duration. From the com-

putational burden point of view, excluding the off-line training phase, which is

though affordable with a laptop compute due to the fairly low number of training

points, the ROM outperforms FRENETIC, providing the full-core power density

time snapshots in less than a dozen of seconds, with respect to the 3 hours re-

quired by the code.

As a future development, efforts will be devoted to improve the training parame-

ters sampling, trying to reduce the number of samples needed to match the target

accuracy. Since the Smolyak grid based on the Chebyshev polynomials is more

dense at the corners, the sampling performances could be improved a lot consider-

ing alternative point distributions, like the evenly-space Clenshaw-Curtis points.

Finally, the ROM will be improved to fully exploit the time adaptive features of

the predictor-corrector algorithm, thus considering only the snapshots that are

more significant for the reactor dynamics, in contrast to the uniform time binning

employed in this work.

The last application regarded the reduced-order modelling of QRA-oriented CFD

simulations. This class of NIROMs has been recently applied in many research

fields, yet most of the applications do not show satisfactory assessment and propa-

gation of the ROM approximation errors, in particular in the presence of functional

(e.g., time- and/or space-dependent) outputs.

In this respect, since the final aim of this application is the adoption of these sur-

rogate models to minimise the computational effort associated to QRA studies

(where it is of paramount importance to endow the simulation model responses

with confidence intervals), a methodology for the assessment of the ROM uncer-

tainty in the estimation of functional (in this case, space-dependent) safety-critical

quantities is proposed. To test this methodology and prove its effectiveness, the

ROM is applied to the case of high pressure, accidental gas release in an off-shore

oil&gas plant, where the critical output variables of interest are the flammable gas
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volume, which is related to the irreversible injuries area.

First, the NIROM is trained exploiting a set of nested parameter samples in order

to adaptively refine it with a reduced computational burden. The validation er-

ror, computed as a weighted sum of the sourcebox face-wise errors, is considered

sufficiently low (<15%) using the first level of training cases plus additional cases

above 50 bar.

Then, to estimate the model response variability to the training samples, the boot-

strap method is employed to obtain the statistical distributions from the ensemble

of ROM responses. Since, in this case study, the ROM response is used as input

for the CFD dispersion simulation, a quantitative assessment of the impact of the

ROM approximation error is mandatory.

The propagation of the uncertainty from the ROM response distribution to the

dispersion model output is achieved combining the POD and the UT techniques.

The first is employed to reduce the input data dimensionality, while the second is

adopted to select the input data for the dispersion calculations and finally to esti-

mate the dispersion output confidence intervals. The main quantities of interest in

such calculations, pertinent to the QRA analysis, are in very good agreement with

the same results obtained using the profiles computed by CFD, with a relative error

between the two approaches below 10% and a reduction of the computational time

of about three orders of magnitude, suggesting that the POD-RBF NIROM is ade-

quate to obtain fast yet very accurate results. It should be remarked that a QRA

study has an intrinsically high level of uncertainty, which makes the additional

10% introduced by the ROM model acceptable.

A future development of this activity could be to increase the number of training

points considering also other input parameters affecting the SB, namely the break

size and the obstacle features. Since these parameters have a strong influence on

the SB dimension, a more sophisticated strategy should be devised in order to

handle the snapshots defined on a different spatial domain. Moreover, adaptive

sparse sampling techniques should be employed in order to progressively refine

the parameter space where the error is not acceptable.

In parallel to these activities, a surrogate model for the dispersion phase should be

trained as well, in view of a coupling with the source-box ROM, allowing to realise

a real-time simulation framework, featured by the capability of providing confi-

dence intervals on the main results thanks to the combination of bootstrapping

and UT.

• In chapter chapter 7, the GPT and XGPT methods, both implemented in the Ser-

pent 2 Monte Carlo code, are compared within the framework of uncertainty and

sensitivity analysis. In particular, the comparison has been carried out focusing

on the uncertainty propagation from the raw nuclear data to the energy collapsed

and spatially homogenised cross sections for the ALFRED reactor design.
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In the first part of the chapter, the features of each method are presented and

discussed, outlining the calculation steps needed to estimate the direct sensitivity

contributions in the case of a linear reaction rate response. Both GPT and XGPT

allow to obtain a first-order estimates of the sensitivity coefficients, which are then

inserted in the sandwich rule to estimate the response variance. The most relevant

difference between the two methods lies within the energy treatment: XGPT is

an inherently continuous-energy approach, whilst GPT requires the multi-group

approximation.

Then, an uncertainty quantification study is carried out exploiting the GPT ap-

proach, focusing on all the heavy nuclides constituting the MOx fuel whose adop-

tion is foreseen in the ALFRED reactor core. This assessment has shown that the

two most abundant nuclides, i.e. Pu-239 and U-238, are also the top contributors

to the overall uncertainty on the few-group cross sections Σ𝑓 and Σ𝑐 for both the

fuel regions considered in the homogenisation process, i.e. the inner and outer

fuel assemblies.

The second part of the paper compares the uncertainties on Σ𝑓 , Σ𝑐 and 𝑘𝑒𝑓 𝑓 cal-

culated previously with GPT to the ones estimated with XGPT, focusing on the

impact of the different energy grids where the sensitivities are scored. The ma-

jor outcome of this comparison is that a more accurate energy resolution can be

obtained with the XGPT method, making it the preferable choice among the per-

turbation techniques for uncertainty and sensitivity analyses in a Monte Carlo

framework, thanks to its continuous-energy feature. However, according to the

specific system (e.g., a thermal reactor) and to its output responses of interest, the

use of a coarse-group GPT approach could be sufficiently accurate if only a rough

estimate of the uncertainty is required or if the energy effects are less relevant.

Different systems and responses should be analysed in the future to draw some

more general conclusions.

Moreover, this analysis has also proved that an adequate number of low-energy

groups is mandatory also if the system under analysis is featured by a fast spec-

trum. Finally, the output correlation matrix for the output responses Σ𝑓 and Σ𝑐 is

compared to the correlation matrix of the input Pu-239 nuclear data, showing the

covariance propagation from the raw nuclear data to the final output response of

interest.

As a further development to this activity, it would be extremely useful to evaluate

the impact of adopting continuous-energy covariances, extracted from the random

evaluations produced by the T6 package, instead of fine-group covariances on the

final output of XGPT calculations. Such an analysis would shed some light on

the influence of the input parameter distributions on the final output and could

highlight the importance for point-wise covariances with respect to fine-group

ones.
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