
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Spiker: an FPGA-optimized Hardware accelerator for Spiking Neural Networks / Carpegna, Alessio; Savino, Alessandro;
Di Carlo, Stefano. - ELETTRONICO. - (2022), pp. 14-19. (Intervento presentato al convegno 2022 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI) tenutosi a Pafos, Cyprus nel 04-06 July 2022)
[10.1109/ISVLSI54635.2022.00016].

Original

Spiker: an FPGA-optimized Hardware accelerator for Spiking Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISVLSI54635.2022.00016

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971596 since: 2022-12-19T14:25:59Z

IEEE

Spiker: an FPGA-optimized Hardware accelerator
for Spiking Neural Networks

Alessio Carpegna
Control and Computer Eng. Dep.

Politecnico di Torino
Torino, Italy

alessio.carpegna@polito.it

Alessandro Savino
Control and Computer Eng. Dep.

Politecnico di Torino
Torino, Italy

alessandro.savino@polito.it

Stefano Di Carlo
Control and Computer Eng. Dep.

Politecnico di Torino
Torino, Italy

stefano.dicarlo@polito.it

Abstract—Spiking Neural Networks (SNN) are an emerging
type of biologically plausible and efficient Artificial Neural Net-
work (ANN). This work presents the development of a hardware
accelerator for a SNN for high-performance inference, targeting
a Xilinx Artix-7 Field Programmable Gate Array (FPGA). The
model used inside the neuron is the Leaky Integrate and Fire
(LIF). The execution is clock-driven, meaning that the internal
state of the neuron is updated at every clock cycle, even in
absence of spikes. The inference capabilities of the accelerator are
evaluated using the MINST dataset. The training is performed
offline on a full precision model. The results show a good
improvement in performance if compared with the state-of-
the-art accelerators, requiring 215µs per image. The energy
consumption is slightly higher than the most optimized design,
with an average value of 13mJ per image. The test design consists
of a single layer of four-hundred neurons and uses around 40%
of the available resources on the FPGA. This makes it suitable
for a time-constrained application at the edge, leaving space for
other acceleration tasks on the FPGA.

Index Terms—Spiking Neural Networks, LIF, MNIST, FPGA,
Neuromorphic accelerator

I. INTRODUCTION

Artificial Neural Networks (ANNs) are complex computa-
tional learning models that often exploit the computing power
of enterprise data centers and public cloud infrastructures to
speed up training and inference. However, the cloud-based
ANN model is showing its limitations [1]. Moving a large
amount of data through the Internet implies a considerable
energy overhead spread along the communication channel.
Communication means a non-negligible latency, not com-
patible with performance-constrained applications (e.g., real-
time systems). This may create a severe bottleneck with the
increasing pervasiveness of the Internet of Things (IoT) that
risks saturating the network communication towards central-
ized servers [2]. Finally, there are applications in which, for
security reasons, data must be kept local.

All these factors push toward moving part of the ANN
processing, if not all, towards the edge of the network, closer
to where the data originated and where responses are required.
However, when ANNs are deployed at the edge, they cannot
feature the same computing power as in the cloud, where
high-performance GPUs and computing cores are available.
Specialized accelerators can cover this gap to speed up ANN
inferencing at the edge [3]. Nevertheless, hardware accelera-

tion alone is not enough to fully benefit from the power of
ANNs at the edge. Learning models must be adapted to this
new limited environment.

In Convolutional Neural Networks (CNNs), one of the dom-
inant ANN models, each neuron requires many calculations
(mainly multiplying and accumulating) at every cycle. This
creates a pattern suitable for massively parallel implementa-
tions but wastes resources. Moreover, if the goal of ANNs
is to mimic the behavior of the human brain, this model is
far from its biological counterpart. Spiking Neural Networks
(SNN), an emerging type of event-based neural network, can
make a difference in this sense [4]. In an SNN, the information
between neurons is exchanged in form of binary spikes,
thus minimizing resources to link neurons in the network.
Additionally, time is treated as an additional dimension in the
input and this makes SNNs more suitable for processing time
series.

In the past, SNNs were mainly implemented on CPUs
using software frameworks such as Brian/Brian2 [5] or in
GPU-based frameworks such as CARLsim4 [6]. Since these
computing architectures cannot efficiently support the sparse
feature of SNNs, specific ASIC processors have been pro-
posed, e.g., TrueNorth from IBM [7] or SpiNNaker [8]. When
hardware resources are limited, Field Programmable Gate
Arrays (FPGAs) offer a great technology to implement several
accelerators on the same hardware block to speed up different
tasks thanks to their in-field programmability [9, 10, 11, 12,
13, 14]. However, the existing designs still face a complexity
that may prevent the deployment of extensive networks at the
edge.

This paper presents Spiker, a new FPGA-based SNN hard-
ware accelerator with off-line training based on the well-
known Leaky Integrate and Fire (LIF) neuron model. Spiker
aims to reduce at a minimum the size of the architecture, with
the specific goal of maximizing the allowed parallelism, reduc-
ing the required execution time to fit performance-constrained
applications at the edge. This is obtained by introducing well-
crafted approximations, reducing the size of the neuron. The
target dataset used to evaluate the designed accelerator is the
MNIST [15]. The training is performed offline with a full
precision model, using the Spike Timing Dependent Plasticity
(STDP) unsupervised learning method [16]. In contrast, the

inference is performed on the accelerator with the simplified
neuron structure. Experimental results show that this simplified
model introduces a slight accuracy loss compared to the full
precision counterpart, provides high throughput, and maintains
low hardware complexity.

II. BACKGROUND

Spiking neural networks have first emerged in compu-
tational neuroscience to model the behavior of biological
neurons. The body of a neuron (Figure 1-a), also called
soma, is characterized by an internal state associated with
a voltage across its membrane (i.e., membrane potential).
Stimuli (i.e., signal spikes) received at the input terminals of
the neuron (i.e., dendrites) can modify the membrane potential.
In particular excitatory stimuli cause an increment in the
membrane potential, while inhibitory stimuli decrease it. If the
potential exceeds a threshold, an action potential takes place.
The action potential is a sudden increase in the membrane
voltage, which then rapidly tends towards its rest value [17].
This generates a voltage spike propagating to other neurons
through the output terminals (i.e., axons).

+

-

-
+

SYNAPSE

SOMA (BODY)

DENDRITES AXON
TERMINALS

SOMA
(BODY)

AXON

SYNAPSE

DENDRITES

AXON

AXON
TERMINALS

AXON

-
+ -

+

AXONS
TERMINALS

ACTION
POTENTIAL

(a)

(b)

Fig. 1. SNN neuron concept: (a) biological structure, (b) equivalent circuit
of the LIF model.

Many mathematical models have been developed in the last
decade to quantitatively describe this kind of behavior. The
Hodgkin-Huxley model is the most accurate and precisely
describes the behavior of ions within the membrane [18]. It is
very realistic but too complex for hardware implementations.
The Izhikevich model exploits mathematical properties to sim-
plify the Hodgkin-Huxley model [19], and some works use this
model in hardware accelerators [20]. However, our architecture
aims to reduce the area occupation, and the Izhikevich model
is too complex to accomplish this goal. The simplest available
model is the Integrate and Fire (IF) model, which treats the
membrane as an ideal capacitance. However, this model is
too approximated and leads to behaviors quite different from
those observed in a biological neuron. Eventually, the Leaky
Integrate and Fire (LIF) model is a good trade-off between
simplicity and biological realism.

The LIF model treats the membrane as a leaky capacitance,
including a resistive part that forces the voltage towards a rest
value in the absence of input stimuli. The temporal evolution

of the membrane potential can be described through the
characteristic equations of the LIF equivalent circuit (Figure 1-
b). Equation 1 governs the membrane potential V (t), where
Vrest is the resting potential in the absence of stimuli, t0 is
the initial time (e.g., the instant in which the neuron receives a
spike), and τ is the time constant of the equivalent RC-circuit,
namely τ = Rmem · Cmem.

dV (t)

dt
=

1

τ
· (Vrest − V (t0)) (1)

Solving the differential equation leads to an exponential
evolution of the membrane potential in the form of:

V (t) = Vrest + (V (t0) − Vrest) · e−
t−t0
τ (2)

A specific conductance acting as a weight characterizes each
synapse, i.e., the interface between the dendrites and axons of
two neurons. The conductance modifies the incoming spikes,
leading to a variation in the membrane potential proportional
to the synapse’s weight. This conductance-based model is
complex despite being a faithful emulation of biological
behavior. A simpler alternative is the current-based synapse
model. In this case, the synapse is treated as a simple charge
amplifier. The input arrives in the form of an ideal current
spike that affects the membrane potential proportionally to the
charge it delivers.

Spike-timing-dependent plasticity (STDP) is among the
most used learning algorithms in SNNs [16]. This biologically
inspired learning rule modifies the synaptic strength (i.e.,
weights) as a function of the relative timing of pre- and
post-synaptic spikes. The details of the learning procedure
are not reported in this work since the accelerator has been
designed for inference. The user is free to decide the training
method enabling reaching the desired goal, such as accuracy
or biological plausibility.

III. ARCHITECTURE

This section overviews the general architecture of Spiker
(Figure 2). It focuses on the optimizations introduced to reduce
the hardware complexity and improve performance. Overall,
Spiker includes an input and an output layer used to interface
the spiking core of the network with the external data and
several hidden layers processing spikes. Spiker implements
a clock-driven neuron architecture, i.e., in the absence of
spikes, the membrane potential is updated at every clock
cycle following the exponential trend reported in Equation 2.
However, inputs are processed only when at least one spike
is present at the input of a layer. This solution is more
power-hungry than pure event-driven architectures but allows
reducing the required hardware resources to a minimum.
Finally, the architecture works with fixed-point arithmetic.

A. Input interface

SNNs process numerical data vectors that must be converted
into sequences of spikes. Spikes are represented as single bits
in the digital domain to minimize resources. There are different
methods available for this conversion, depending on the type
of input data [21]: (i) firing rate coding (i.e., information

90

30

50

INPUT
INTERFACE

OUTPUT
INTERFACE

INPUT
DATA

1

>

>>

0 1 1 0 1 0 0 1

0 0 1 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0

0 0 1 1 0 0 1 0 0

LA
YE

R
 1

LA
YE

R
 2

NETWORK
CU

RAM RAM

50

LA
YE

R

C
UEXC OR INH OR

NEURON
1

EXC SPIKE

INH SPIKE

INH
EXC
SEL

INH SEL

EXC SEL

2
1
0

1
0

1
0

OUT SPIKE 1
OUT SPIKE 2

SAMPLE
OUT

SPIKES

SAMPLE
IN

SPIKES

+/-
1
0

2
1
0

3

V TH INIT
V RESET

INH WEIGHT
EXC WEIGHT

V TH REG

V REG

FIRE CMP

U
PD

AT
E

AD
D

/S
U

B

V
SE

L

SA
M

PL
E

V
TH

SA
M

PL
E

V
R

ES
ET

 V

NEURON
CU

V
TH

 E
XC

EE
D

ED0

IN SPIKE 2
IN SPIKE 1
IN SPIKE 0

IN SPIKE
OUT

SPIKE

LAYER 1

NEURON 1

NEURON
2

(a)

(b)

(c)

NETWORK

Fig. 2. Network architecture

is encoded using the instantaneous average firing rate), (ii)
population rank coding (i.e., information is encoded using
the relative firing time of a population of neurons), or (iii)
temporal coding (i.e., information is encoded with the exact
timing of individual spikes). Temporal encoding is the most
biologically realistic encoding suited for dynamically evolving
data. Nevertheless, Spiker uses firing rate coding that works
well for static data such as images and enables compact and
optimized hardware implementation.

In Spiker, one input data (e.g., the intensity of a pixel
in an image) is treated as an instantaneous firing rate (i.e.,
the probability that a spike occurs within an interval). The
conversion process starts selecting the duration of the spike
sequence (∆t in Figure 2-a) that is the same for all inputs. The
sequence is split into computation steps of duration dt, each
able to accommodate a single spike. This parameter defines
the temporal resolution of the network. The product of the
numerical input (rate) by dt provides the average number of
spikes ASPS = total spikes/total steps = rate · dt that
must be generated in each step of the whole spike sequence.
ASPS is a number between zero and one since one spike per
step can occur at most. The conversion process finally requires
generating a random number n between zero and one. If n is
greater than ASPS, a spike takes place. This method allows

generating a random sequence of statistically independent
spikes whose timing follows a Poisson distribution [22].

This approach requires the generation of random values both
during training and inference. During training (performed off-
line), a statistically independent random value is generated for
each network input. This guarantees high accuracy, leading
the network to generalize the input patterns better. However,
Spiker uses a single random value for all input data in parallel
once the network has been trained. This strongly reduces
the hardware cost with a negligible effect on the accuracy
during inference. The generation of a pseudo-random value
on-board uses a Linear Feedback Shift Register (LFSR). The
substantial area reduction introduced by the use of a single
LFSR for all inputs allows to increase the period of the
generated random sequence, equal to 2bit−width in a maximal
LFSR, thus improving the quality of the random numbers with
a negligible impact on the global area.

B. Output interface

The output interface translates the sequences of spikes
generated at the network’s output into numerical information
that can be further processed. Spiker implements this interface
using simple counters, one for each output neuron. The value
of these counters should be normalized by the duration of the
spike sequence (∆t) to obtain the firing rate of the output
neurons. However, being ∆t the same for all neurons, this
operation can be avoided, thus saving area. The computed
firing rates can then be used to infer, for example, by looking
at which neuron has been the most active for a specific input
pattern.

C. Network architecture

The network can be composed of an arbitrary amount of
layers, connected in a feed-forward structure (Figure 2a). A
central control unit (CU) manages the elaboration that is
organized into temporal steps. When all the layers are ready,
the CU orders the input interface to generate a new set of
spikes, corresponding to one temporal step dt. The spikes are
generated in parallel for all the inputs. Then the CU enables
all layers in parallel to start a new elaboration on the inputs.
The first layer takes directly the input spikes. All the others
use the output generated by the corresponding previous layer
as an input. In this way the information is propagated in the
feed-forward direction in a sort of pipeline.

When a layer ends its computation, it informs the central CU
that it is ready and then waits. Since elaboration in different
layers can take different time, the main CU waits for all layers
to finish and then starts a new elaboration cycle. This process is
repeated until the entire sequence of input spikes is elaborated.

D. Layer

A layer (Figure 2-b) can be composed of an arbitrary
number of neurons, updated in parallel. A dedicated layer CU
manages the elaboration. In particular, in Spiker, each neuron
can elaborate one spike at a time. The first role of the layer

CU is to provide the input spikes one-by-one to all the neurons
in parallel.

Spiker gives the possibility to implement inter-layer in-
hibitory connections. Each neuron can be connected to all the
other neurons of the layer using links with negative weights.
This creates an inhibitory effect that reduces their membrane
potential, preventing a neuron from firing a spike. The layer
control unit also manages the elaboration of the spikes coming
from inhibitory connections. The process is the same seen for
the excitatory connections. The spikes are sampled in parallel,
and then, once the elaboration of the excitatory spikes ends,
the control unit switches to the inhibitory ones providing them
one-by-one to all the neurons.

Since spikes are elaborated one by one, a complete update
cycle can take considerable time. One of the advantages of
the SNNs is that, if the model and the input encoding are
well designed, the spike sequences received and generated
are pretty sparse. To evaluate this characteristic, a statistical
analysis is performed considering the MNIST dataset used in
section IV in our experimental setup. The goal is to verify
how many steps dt within the sequence ∆t contain at least
one active spike.

0 10 20 30 40 50 60
Number of active cycles

0

500

1000

1500

2000

2500

Oc
cu

re
nc

es

Fig. 3. Statistics of the active elaboration steps (i.e., cycles with at least
one spike) on all images of the MNIST dataset. Obtained values have been
computed with a window of 3,500 elaboration steps.

Figure 3 shows that, on average, twenty-three steps are ac-
tive on a total of 3,500, which corresponds to less than the 1%.
A similar result has been obtained for the inhibitory spikes.
Spiker uses this characteristic to improve its performance. In
all steps without active spikes, performing computations would
be a waste of time and power. A simple OR operation applied
on all spikes (both excitatory and inhibitory) enables Spiker
to skip the elaboration in all steps without active spikes.

E. Neuron

The architecture of the neuron is minimal (Figure 2-c). This
is the strong point of the designed accelerator. Being the ar-
chitecture clock-driven, the exponential decay, corresponding
to Equation 1, is solved as:

V [n] = V [n− 1] +
dt

τ
· (Vrest − V [n− 1]) (3)

Here is where the two main optimizations are performed.
First, the internal voltage parameters, that are the rest potential,
the reset potential and the threshold, are moved, using an off-
set, in order to obtain Vrest = 0V . This simplifies Equation 3
to:

V [n] = V [n− 1] − dt

τ
· V [n− 1] (4)

thus removing the need to add Vrest, reducing the required
computations by one. See section IV for a practical example.

Second, the equation still involves a multiplication (dtτ ·
V [n − 1]), which requires a lot of hardware resources. To
avoid it the quantity dt

τ is approximated to the nearest negative
power of two. In this way the multiplication can be substituted
with a simple bit shift, which can be computed with zero cost
in terms of hardware components. The advantage of such an
approximation is that, if the model is designed properly, so
choosing dt and τ such to make their ratio equal or near
to a negative power of two already in the training phase,
the approximation has no, or at least a small, impact on the
accuracy.

The other operations that the neuron can perform are: (i)
resetting the membrane potential to Vreset when it exceeds the
threshold, forcing it to Vrest = 0V (through the synchronous
reset signal RESET V) at the end of the complete elaboration
in order to start all the elaborations from the same state, and
(ii) add an excitatory or inhibitory weight to the membrane
potential when an active spike is received.

Finally, one additional advantage of the designed structure
is that it allows initializing the threshold to an arbitrary value,
which can be different for all the neurons. This provides the
freedom to use it as an additional hyperparameter that can be
tuned for each neuron during the learning phase.

F. Weights memory

The memory required by the weights is generally too big to
fit into the flip-flops available in an average FPGA. For this
reason, Spiker stores the weights in an external memory. In
this case, the access parallelism of the memory becomes the
main performance bottleneck since it determines how many
weights can be accessed, and so how many neurons can
be updated in parallel. Many FPGAs, like the one used in
this paper (see section IV), are equipped with Block RAM
(BRAM). A BRAM is a memory, divided into blocks that
are directly integrated within the FPGA. The blocks can be
accessed in parallel, enabling a high degree of parallelism in
the accelerator. Quantization of the weights is performed to
reduce the required bit-width to a minimum, thus reducing the
memory occupation and increasing the number of weights that
can be accessed in parallel with the same memory bandwidth.

While processing the spikes sequentially, the layer provides
the index of the currently analyzed spike as an output. A
dedicated circuit is then required to translate such an index to
the physical address for all the BRAMs that must be accessed
in parallel.

IV. EXPERIMENTAL RESULTS

A. Experimental set-up

Spiker has been tested on the MNIST dataset, a database of
28x28 grey-scale images with eight-bit per pixel. The SNN
network developed by Diehl and Cook [23] is taken as a

reference. Table I summarizes the original parameters of the
model and the values used in Spiker after shifting Vrest to
0mV (i.e., a shift of 65.0mV) as proposed in subsection III-E.
The evaluation of the accelerator is performed using the whole
test set, composed of 10,000 images.

TABLE I
OPTIMIZED MODEL PARAMETERS

Parameter Original Value Used Value
Vrest -65.0mV 0mV
Vreset -60.0mV 5.0mV
Vth0 -52.0mV 13.0mV
τ 100ms -

winh -15 -15
∆t 350ms 350ms
δt 0.1ms 0.1ms

Cycles 3500 3500
δt
τ

0.1ms
100ms

= 10−4 2−10

According to the reference model, the parameters are tuned
for a network structure with 400 neurons and inhibitory con-
nections between the neurons. This structure allows reaching
acceptable accuracy results, even if non-optimal, as seen in the
dedicated section, with a total number of neurons reasonable to
integrate on an average FPGA. It is important to remark here
that the goal of the evaluation is not to show the superiority of
this model compared to other neural networks (e.g., CNNs).
This model was selected since it is used in other studies
proposing FPGA-based SNN hardware acceleration and allows
us to compare Spikers with its competitors.

The network works with fixed-point precision. The bit-width
used inside the neuron is set to 16 bit (3 fractional and 13
integer). Instead, the quantization of weights is down to 5 bit
(3 fractional and 2 integers). The total memory required is
therefore 400 × 28 × 28 × 5 bit = 196 KByte. The training is
performed in full-precision using STDP on a custom python
simulation of the model.

B. Accuracy results

Table II shows the effect of the neuron approximations
introduced in Spiker on the accuracy of the network. The
training accuracy is reported only for the reference and the
Spiker LIF full precision models, since the training is always
performed in full precision. The various simplifications are
then applied only during inference, for which the accelerator
is designed. Table II shows that:

1) Changing the model from a conductance-based [23]
solution to a lighter current-based alternative has no
significant impact on the training phase and implies a
relatively small 1.42% reduction during inference.

2) Using a single random number generator in the input
interface, (Current-based 1 LFSR in Table II), causes an
additional 2.19% accuracy reduction.

3) Working with an internal parallelism of 16 bits and
quantizing the weights down to a 5 bits width implies a
further 1.01% accuracy decrease.

4) The approximation of the ration between δt and τ has
no effect on the accuracy, since the starting value was
quite near to 2−10.

TABLE II
TRAINING AND TEST RESULTS WITH DIFFERENT SIMPLIFICATIONS

Model Training Inference
Peter Diehl[23] 80.54% 78.58%

Spiker LIF model full precision 80.22% 77.16%
Spiker LIF model 1 LFSR - 74.97%

Spiker LIF model 16bit/5bit - 73.96%

So the overall accuracy reduction of the completely simpli-
fied model, when compared to the reference one, is around
4.5%, which is more than acceptable considering the substan-
tial hardware simplification.

C. Area and performance results

The designed accelerator has been synthesized on a
medium-size Xilinx Artix-7 FPGA. All the four-hundred
neurons are instantiated as physical components and can be
updated in parallel. The available BRAM allows accessing all
the required weights in parallel. The routing gives no issues.

TABLE III
REQUIRED AREA

HW component LUT FF BRAM
Single neuron 62 40 -
400 neurons 23885 15614 -

Complete layer 26038 16846 -
Spikes generator 6343 6311 -

Weights - - 45
Complete accelerator 29145 (55%) 26853 (25%) 45 (32%)
Total FPGA Available 53200 106400 140

Table III shows the required hardware resources. The last
row summarizes all the available components. Overall, the
FPGA usage is around 55% for the LUTs, 25% for the FFs
and 32% for the available memory. This is a significant result
considering the high number of instantiated neurons.

D. Comparison with other accelerators

Table IV shows the comparison between different accel-
erators tested on MNIST. The table reports the key results
to highlight the contributions of this work and to compare
it to other similar works. Comparison is performed with
accelerators based on the same neuron model (LIF) and
targeting the same dataset (MNIST). For a fair compari-
son of the performance, the time required to elaborate an
image is normalized, considering a working frequency of
100MHz for all the accelerators. The reported computation
time for Spiker (215µs) is the fastest among the considered
accelerators, demonstrating how all the design optimizations
described before make the processing structures required for
the computation simpler and more efficient. This result is also
significant considering that the number of synapses that can
be instantiated in the fastest competitor is half the number
instantiated with Spiker. From the energy standpoint, while the

TABLE IV
COMPARISON TABLE

Design [10] [11] [12] [13] This work
Clock frequency(MHz) 75 120 25 100 100

Data format 16bit Fixed 8bit Fixed 32bit Fixed 16bit Floating 16bit Fixed
Computing scheme Event-Driven Clock-Driven Event-Driven Adaptive Clock/Event-Driven Clock-Driven

Neuron model LIF LIF LIF LIF LIF
FPGA platform Spartan 6 Virtex 6 Spartan 6 Virtex 7 Artix 7

Neurons 1794 1591 1794 1094 1384
Synapses 647000 638208 647000 177800 313600

Task MNIST MNIST MNIST MNIST MNIST
Computation time 0.53s/image 8.40s/image 0.16s/image 3.15ms/image 215µs/image

Computation time @100MHz 0.40s/image 10.08s/image 40.00ms/image 3.15ms/image 215µs/image
Energy 0.80J /image 1.12J /image Not reported 5.04mJ /image 13mJ /image

Energy/Synapse 1.2µJ /synapse 1.76µJ /synapse Not reported 0.028µJ /synapse 0.041µJ /synapse

reported energy per image is twice the best design, i.e., [13],
the energy per synapse makes the energy consumption almost
comparable. Nevertheless, considering that the best competitor
in terms of energy consumption relies on a mixed strategy
that includes an event-driven part, this makes the developed
architecture particularly promising. As a reference, the test of
the model using Brian 2 [5] required 0.2s on a 2GHz Intel i5
dual-core processor.

V. CONCLUSIONS

This work presented Spiker, a small high-performance SNN
hardware accelerator synthesized on a Xilinx Artix-7 FPGA
and tested on the MNIST dataset. Spiker significantly accel-
erates inference, with a competitive energy consumption and
a limited impact on the accuracy. Presented results are a good
starting point for future work, in which different and deeper
network structures will be considered. The main goal will be
to improve the classification accuracy, making it comparable
with other state-of-the-art accelerators. This, together with
its competitive performance, can make Spiker a very good
solution for performance-constrained applications at the edge.

REFERENCES

[1] Alberto Marchisio et al. “Deep learning for edge computing: Current
trends, cross-layer optimizations, and open research challenges”. In:
2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE. 2019, pp. 553–559.

[2] Muhammad Shafique et al. “An overview of next-generation architec-
tures for machine learning: Roadmap, opportunities and challenges in
the IoT era”. In: 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2018, pp. 827–832.

[3] Tianshi Chen et al. “Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning”. In: ACM SIGARCH Computer
Architecture News 42.1 (2014), pp. 269–284.

[4] Rachmad Putra et al. “FSpiNN: An optimization framework for
memory-efficient and energy-efficient spiking neural networks”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39.11 (2020), pp. 3601–3613.

[5] Marcel Stimberg et al. “Brian 2, an intuitive and efficient neural
simulator”. In: eLife 8 (Aug. 2019), e47314. ISSN: 2050-084X.

[6] Ting-Shuo Chou et al. “CARLsim 4: An open source library for large
scale, biologically detailed spiking neural network simulation using
heterogeneous clusters”. In: 2018 International joint conference on
neural networks (IJCNN). IEEE. 2018, pp. 1–8.

[7] Filipp Akopyan et al. “Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip”. In: IEEE trans-
actions on computer-aided design of integrated circuits and systems
34.10 (2015), pp. 1537–1557.

[8] Eustace Painkras et al. “Spinnaker: A multi-core system-on-chip for
massively-parallel neural net simulation”. In: Proceedings of the IEEE
2012 Custom Integrated Circuits Conference. IEEE. 2012, pp. 1–4.

[9] Alessio Carpegna. “Design of an hardware accelerator for a Spiking
Neural Network”. Supervisors: Stefano Di Carlo, Alessandro Savino.
MA thesis. Politecnico di Torino, Oct. 2021.

[10] Daniel Neil and Shih-Chii Liu. “Minitaur, an Event-Driven FPGA-
Based Spiking Network Accelerator”. In: IEEE transactions on very
large scale integration (VLSI) systems 22.12 (2014), pp. 2621–2628.
ISSN: 1063-8210.

[11] Qian Wang et al. “Energy efficient parallel neuromorphic architectures
with approximate arithmetic on FPGA”. In: Neurocomputing (Amster-
dam) 221 (2017), pp. 146–158. ISSN: 0925-2312.

[12] De Ma et al. “Darwin: A neuromorphic hardware co-processor based
on spiking neural networks”. In: Journal of systems architecture 77
(2017), pp. 43–51. ISSN: 1383-7621.

[13] Sixu Li et al. “A Fast and Energy-Efficient SNN Processor With Adap-
tive Clock/Event-Driven Computation Scheme and Online Learning”.
In: IEEE transactions on circuits and systems. I, Regular papers 68.4
(2021), pp. 1543–1552.

[14] Charlotte Frenkel et al. “A 0.086 −mm2 12.7-pJ/SOP 64k-Synapse
256-Neuron Online-Learning Digital Spiking Neuromorphic Processor
in 28-nm CMOS”. In: IEEE transactions on biomedical circuits and
systems 13.1 (2019), pp. 145–158. ISSN: 1932-4545.

[15] Li Deng. “The mnist database of handwritten digit images for machine
learning research”. In: IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142.

[16] Daniel E Feldman. “The Spike-Timing Dependence of Plasticity”. In:
Neuron (Cambridge, Mass.) 75.4 (2012), pp. 556–571. ISSN: 0896-
6273.

[17] Michael H. Grider, Rishita Jessu, and Rian Kabir. Physiology, Action
Potential. 2021. URL: http://europepmc.org/books/NBK538143.

[18] A. L Hodgkin and A. F Huxley. “A quantitative description of
membrane current and its application to conduction and excitation in
nerve”. In: The Journal of physiology 117.4 (1952), pp. 500–544. ISSN:
0022-3751.

[19] E.M Izhikevich. “Simple model of spiking neurons”. In: IEEE trans-
actions on neural networks 14.6 (2003), pp. 1569–1572. ISSN: 1045-
9227.

[20] Kit Cheung, S.R Schultz, and P.H.W Leong. “A parallel spiking
neural network simulator”. In: 2009 International Conference on
iField-Programmable Technology. IEEE, 2009, pp. 247–254. ISBN:
9781424443758.

[21] Balint Petro, Nikola Kasabov, and Rita M. Kiss. “Selection and
Optimization of Temporal Spike Encoding Methods for Spiking Neural
Networks”. In: IEEE Transactions on Neural Networks and Learning
Systems 31.2 (2020), pp. 358–370.

[22] David Heeger et al. “Poisson model of spike generation”. In: Handout,
University of Standford 5.1-13 (2000), p. 76.

[23] Peter U. Diehl and Matthew Cook. “Unsupervised learning of digit
recognition using spike-timing dependent plasticity”. In: Frontiers in
Computational Neuroscience 9 (Aug. 2015). ISSN: 1662-5188.

http://europepmc.org/books/NBK538143

	Introduction
	Background
	Architecture
	Input interface
	Output interface
	Network architecture
	Layer
	Neuron
	Weights memory

	Experimental results
	Experimental set-up
	Accuracy results
	Area and performance results
	Comparison with other accelerators

	Conclusions

