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Abstract. Recently, the trend of incorporating differentiable algorithms
into deep learning architectures arose in machine learning research, as the
fusion of neural layers and algorithmic layers has been beneficial for han-
dling combinatorial data, such as shortest paths on graphs. Recent works
related to data-driven planning aim at learning either cost functions or
heuristic functions, but not both. We propose Neural Weighted A*, a dif-
ferentiable anytime planner able to produce improved representations of
planar maps as graph costs and heuristics. Training occurs end-to-end on
raw images with direct supervision on planning examples, thanks to a dif-
ferentiable A* solver integrated into the architecture. More importantly,
the user can trade off planning accuracy for efficiency at run-time, using a
single, real-valued parameter. The solution suboptimality is constrained
within a linear bound equal to the optimal path cost multiplied by the
tradeoff parameter. We experimentally show the validity of our claims
by testing Neural Weighted A* against several baselines, introducing a
novel, tile-based navigation dataset. We outperform similar architectures
in planning accuracy and efficiency.

Keywords: Weighted A*· Differentiable algorithms · Data-based planning.

1 Introduction

A* [13] is the most famous heuristic-based planning algorithm, and it constitutes
one of the essentials for the computer scientist’s toolbox. It is widely used in
robotic motion [27] and navigation systems [19], but its range extends to all
the fields that benefit from shortest path search on graphs [24]. Differently from
other shortest path algorithms, such as Dijkstra [10] or Greedy Best First [25],
A* is known to be optimally efficient [25]. This means that, besides returning
the optimal solution, there is no other algorithm that can be more efficient, in
general, provided the same admissible heuristic. Even though optimality seems a
desirable property for A*, it is often more of a burden than a virtue in practical
applications. This is because, in the worst case, A* takes exponential time to
converge to the optimal solution, and this is not affordable in large search spaces.
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Fig. 1. Can we learn to navigate a terrain effectively by just looking at its map? Neural
Weighted A* accurately predicts from the raw image of the navigation area the costs
of traversing local regions and a global heuristic for reaching the destination.

Another compelling issue of A* is that hand-crafting non-trivial heuristics is
costly and reliant on domain knowledge. Despite the prolific research in deep-
learning-based graph labeling [33], neural networks often struggle with data ex-
hibiting combinatorial complexity, such as shortest paths [23]. For this reason,
many researchers started including differentiable algorithmic layers directly into
deep learning pipelines. These layers implement algorithms with combinatorial
operations in the forward pass, while providing a smooth, approximated deriva-
tive in the backward pass. This approach helps the neural components to con-
verge faster with fewer data samples, promoting the birth of hybrid architectures,
trainable end-to-end, that extend the reach of deep learning to complex com-
binatorial problems. Many backpropagation-ready algorithmic layers have been
developed, such as [2,1,6,23,30,32]. Among these, some [6,23,32] propose differen-
tiable shortest path solvers able to learn graph costs from planning examples on
raw image inputs. However, none of the previous works tackles heuristic design,
which is the essential aspect that makes A* scale to complex scenarios.

With Neural Weighted A* (NWA*), we propose the first deep-learning-based
differentiable planner able to predict graph costs and heuristic functions from
unlabeled images of navigation areas (Fig. 1). Training occurs end-to-end on
shortest-path examples, exploiting a fusion of differentiable planners from [23,32].
Also, NWA* is the first architecture that enables the user to trade off planning
accuracy for convergence speed with a single, real-valued parameter, even at
runtime. Balancing search accuracy and efficiency from unlabeled images is cru-
cial in many navigation problems. Among the most notable examples, we find
hierarchical planning for robotic navigation, where accuracy and efficiency as-
sume a different priority depending on the spacial granularity at which planning
is executed, and real-world pedestrian modeling, where graph labeling from raw
images is not feasible by hand [32]. As a final remark, since our method arises
from the Weighted A* algorithm [12], the solution cost never exceeds the optimal
one by a factor proportional to the tradeoff parameter.

We extensively test Neural Weighted A* against the baselines from [23,32],
and conduct experiments on two tile-based datasets. The first is adapted from [23],
while the second dataset is novel, and its goal is to provide a scenario more com-
plex than the first. Both datasets are publicly available (Sec. 5). In summary,
with Neural Weighted A*, we make the following contributions:
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– We develop the first deep-learning system able to generate both cost func-
tions and heuristic functions in a principled way from raw map images.

– We propose the first method to smoothly trade off planning accuracy and
efficiency at runtime, compliant with the Weighted A* bound on solution
suboptimality.

– We augment an existing dataset and propose a new one for planning bench-
marks on planar navigation problems.

2 Related Work

Connections between deep learning and differentiable algorithms arise from dif-
ferent domains. The first examples lie within the 3D rendering literature [16],
composing neural-network-based encoders with differentiable renderer-like de-
coders to learn the constructing parameters of the input scene. Differentiable
decoders spread to physics simulations [4,26], logical reasoning [30,31], and con-
trol [1,11,15]. Combinatorial optimization is also a topic of interest, from differen-
tiable problem-specific solvers [5,18,30] to general-purpose ones [2,6,23]. Indeed,
many combinatorial algorithms and their differentiable implementation have al-
ready been studied, such as Traveling Salesman [5,9], (Conditional) Markov Ran-
dom Fields [7,17,20,34], and Shortest Path [32]. Each of these works shows how
structured differentiable components enable deep learning architectures to learn
combinatorial patterns easily from data.

A handful of works started experimenting with convexity, one of the most
important properties of combinatorial optimization. The first is the neural layer
by Amos et al. [3], which is constrained to learn convex functions only. Following
this work, Pitis et al. [22] exploit the convex neural layer to design a trainable
graph-embedding metric that respects triangle inequality. This is beneficial for
learning graph costs that encode mathematically sound distances, even though
the method is limited to train on a single graph.

Among search-based planning research, some studies focus on a data-driven
approach where planning cues are inferred from raw image inputs [6,23,32].
In [23], Vlastelica et al. develop a technique to differentiate solvers for inte-
ger linear optimization problems, treating them as black-boxes. As the shortest
path belongs to this set of problems [28], the authors are able to map images of
navigation areas to extremely accurate graph costs, such that the paths evalu-
ated on the cost predictions closely resembles the ground-truth ones. At its core,
the technique from [23] consists of a smooth interpolation of the piecewise con-
stant function defined by the black-box solver. This technique is well suited for
learning accurate costs, but, due to its black-box nature, cannot address heuris-
tic design, the aspect that makes the search efficient, and which we study in this
work.

On the other side of the spectrum, Yonetani et al. [32], reformulate the canon-
ical A* algorithm as a set of differentiable tensor operations. Their goal is to
develop a deep-learning-based architecture able to learn improved cost functions
such that the planning search avoids non-convenient regions to traverse. In or-
der to train the architecture, the authors define a loss function that minimizes
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the difference between the nodes expanded by A* and the ground truth paths.
Therefore, the neural network is forced to learn shortcuts and bypasses that
severely accelerate the search, but may result in inaccurate path predictions.

Lastly, Berthet et al. [6] propose a general-purpose differentiable combinato-
rial optimizer based on stochastic perturbations with a strong theoretical insight.
Despite this work being more recent and general than [23], it was outperformed
by [23] in our experimental settings. Therefore, we choose to focus on [23] for the
rest of the paper. In fact, our work builds on [23,32] to develop the first learning
architecture that is not forced to choose to plan either accurately or efficiently,
but is able to smoothly tradeoff between these opposing aspects of planning.

3 Preliminaries

Let G = (N , E) be a graph where N is a finite set of nodes and E is a finite
set of edges connecting the nodes. Let s and t be two distinct nodes from N ,
called source and target. We define a path y on G connecting s to t as a sequence
of adjacent nodes (n0, n1, . . . , nk) such that n0 = s, nk = t, and each node is
traversed at most once.

In this work, we always refer to the 8-GridWorld setting [6,8,23,32] but the
techniques we describe can be easily applied to general graph settings, neverthe-
less. In 8-GridWorld, nodes are disposed in a grid-like pattern, and edges connect
only the nodes belonging to neighboring cells, including the diagonal ones. Each
node is paired with a non-negative, real-valued cost belonging to a cost function
W̄ ∈ RN+ . Paths are represented in binary form as Y ∈ {0, 1}N with ones corre-
sponding to the traversed nodes. The total cost of a path Y , denoted as 〈W̄ , Y 〉,
is the sum of its nodes’ costs. Given a graph G with costs W̄ , a source node s,
and a target node t, the shortest path problem consists of finding the path Ȳ
having the minimal total cost among all the paths connecting s and t.

3.1 A* and Weighted A*

We focus on A* [13], a heuristic-based shortest path algorithm for graphs. A*
searches for a minimum-cost path from s to t iteratively expanding nodes ac-
cording to the priority measure

F (n) = G(n) +H(n). (1)

G(n) is the exact cumulated cost from s to n, and H(n) is a heuristic function
estimating the cost between n and t. A* is known to be optimally efficient when
H(n) is admissible [25], i.e., it never overestimates the optimal cost between n
and t. An example of admissible heuristic on 8-GridWorld is

HC(n) = wmin ·DC(n, t) (2)

where wmin = minn∈N W̄ (n) and DC(n, t) is the Chebyshev distance between n
and t in the grid, i.e., DC(n, t) = max{|nx − tx|, |ny − ty|}.



Neural Weighted A* 5

Image 𝐼

Target 𝑇

BBA*

NA*

Costs 𝑊 Path 𝑌

Heuristic 𝐻𝜖 Exp. Nodes 𝐸

𝑤min, 𝑤max

𝐻𝐶 , 𝜖

Neural module

𝑊neural

𝐻neural

Solver module

True Path ത𝑌

ℒ𝐻

ℒ𝐻

⨁

True Path ത𝑌

ℒ

End-to-end training

Fig. 2. Schematics of Neural Weighted A*. The neural module (blue) predicts the
costs W and the heuristic function Hε. The solver module (yellow) runs two A* solvers,
differentiable according to the techniques described in [23,32]. The first solver computes
the shortest path Y , while the second computes the nodes expanded by A*, E.

For large graphs, A* may take exponential time to find the optimal solu-
tion [12]. Hence, in practical applications, it is preferable to find an approximate
solution quickly, sacrificing the optimality constraint. This idea is explored by
one of A*’s extensions, called Weighted A* (WA*) [21]. This algorithm is equiv-
alent to a standard A* search, but the heuristic H(n) in Eq. 1 is scaled up by
a factor of 1 + ε, where ε ≥ 0. Assuming H(n) to be admissible, WA* returns
the optimal path for ε = 0. Conversely, for ε > 0, the heuristic function drives
the search, leading to fewer node expansions, but influencing the path trajec-
tory. The cost difference between the WA* solution Y and the optimal path Ȳ
is linearly bounded [12]:

〈W̄ , Y 〉 ≤ (1 + ε) · 〈W̄ , Ȳ 〉. (3)

4 Neural Weighted A*

In the A* algorithm, the nodes are expanded according to the balance between
the cumulated costs G ∈ RN+ and the heuristic function H (Eq. 1). If G� H, A*
expands nodes mostly according to G, behaving similarly to Dijkstra’s algorithm.
If, on the other hand, H � G, then the A* behavior is closer to a Greedy Best
First search. Therefore, tuning the scale of the final cost and heuristic functions
is the key to control the tradeoff between planning accuracy and efficiency. We
propose to accomplish this goal with a novel, deep-learning-based architecture
for graph labeling from planning examples, called Neural Weighted A* (Fig. 2).
It is composed of two modules: the neural module (Sec. 4.1) and the solver
module (Sec. 4.2). The neural module generates planning-ready graph costs and
a heuristic function from the top view of the navigation area. The solver module
executes the planning procedure in the forward pass, while providing a smooth
derivative in the backward pass to enable end-to-end training.
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In the following, we indicate with the “neural” subscript values directly com-
ing out of neural networks, such as Wneural and Hneural, while we use the bar
superscript, as in W̄ and Ȳ , to indicate ground-truth values.

4.1 The neural module

The neural module is composed of two fully-convolutional neural networks. The
first one (upper network in Fig. 2) processes a color image I ∈ [0, 1]Γ×3 of
resolution Γ returning a cost prediction Wneural ∈ [0, 1]N . The second neural
network (lower network in Fig. 2) takes as input the concatenation of I and the
target T , i.e., a matrix with a one corresponding to the target position scaled up
to the image resolution Γ , and returns a heuristic prediction Hneural ∈ [0, 1]N .
This separation enforces the system to learn costs that are target-agnostic, since
T is not included in the input of the first neural network.

In order to control the relative magnitude between the costs and the heuristic
function, we uniformly scale the values of Wneural in the interval [wmin, wmax]
such that wmin > 0. We call W the new and final cost function. Then, we
compute the final heuristic function as

Hε = (1 + ε ·Hneural) ·HC (4)

where HC is the Chebyshev heuristic (Eq. 2), and ε ≥ 0 is the accuracy-efficiency
tradeoff parameter.

For any node n ∈ N , the purpose of ε and Hneural(n) is to modulate the
intensity of the final heuristic Hε(n) between two values, HC(n) and (1 + ε) ·
HC(n). When ε = 0,Hε(n) is equal to the admissible Chebyshev heuristicHC(n).
Therefore, the solution optimality is guaranteed. Conversely, when ε > 0, Hε(n)
is not admissible, in general, anymore. However, if n is a node likely to be
convenient to traverse, it is mapped to a value close to HC(n), as the neural
network learns to predict a value Hneural(n) ≈ 0. If, on the other hand, n seems
very unlikely to be traversed, its heuristic value is scaled up by a factor of 1+ε, as
Hneural ≈ 1. In this way, by increasing ε, we increase the difference in heuristic
values between nodes convenient and non-convenient to expand according to
the neural prediction, forcing A* to prefer the nodes where Hneural ≈ 0. Fig. 3
visually illustrates the relationship between HC , Hneural, and Hε.

Lastly, we observe that Hε(n) ≤ (1 + ε) · HC(n). Since HC is an admissi-
ble heuristic function for 8-GridWorld, we are guaranteed, by the Weighted A*
bounding result (Sec. 3.1, Eq. 3), to never return a path whose cost exceeds the
optimal one by a factor of 1 + ε.

4.2 The solver module

The solver module is composed of two differentiable A* solvers. The first, called
Black-Box A*, implements the A* algorithm with black-box differentiation as
in [23]. It computes the shortest path Y given the costs W , the admissible
Chebyshev heuristic HC (Eq. 2) and the source-target nodes. The second solver
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𝐼 𝐻𝐶 𝐻neural 𝐻𝜖

Fig. 3. From left to right, first: image sample from the Warcraft dataset (Sec. 5). The
target node is in the bottom left region of the map. Second: Chebyshev heuristic HC
(Eq. 2). Red indicates high values; blue indicates low values. Third: neural prediction
Hneural. Fourth: final heuristic Hε (Eq. 4) for ε = 9.

implements Neural A*, as in [32]. It returns the nodes E expanded during the
A* search given W , Hε (Eq. 4), and the source-target nodes. The two solvers
provide two separate gradient signals. As Y is computed following the black-box
derivative from [23], its value is differentiable only with respect to W . Follow-
ing the Neural A* approach [32], instead, the matrix of expanded nodes, E,
is differentiable only with respect to Hε. Within the solver module, we effec-
tively combine the two differentiation techniques, enabling the neural module
to learn both costs and heuristics with the proper gradient signal. To this end,
we stop propagating the gradient of Hε towards W in the computational graph
while running the Neural A* solver (dashed arrow in Fig. 2). This is because
Hε is evaluated considering the target T , and we want to be sure that T has no
influence whatsoever on the target-agnostic costs W .

In principle, having two separate solvers for the evaluation of Y and E may
lead to inconsistencies, asHε, for ε > 0, affects the trajectory of the shortest path.
In such a case, Y may contain nodes not belonging to E. However, this side-effect
is unavoidable during training to guarantee the correct gradient information
propagation and to ensure that W does not depend on T . These theoretical
reasons are confirmed by a much lower performance during the experiments
when trying to include Hε as heuristic function in Black-Box A*. At testing
time, to guarantee the output consistency, the solver module is substituted by
a standard A* algorithm with W , Hε, and the source-target pair as inputs,
returning Y and E in a single execution.

4.3 Loss function

The only label required for training Neural Weighted A* is the ground-truth
path Ȳ ∈ {0, 1}N . In the ideal case, both Y and E are equivalent to Ȳ , meaning
that A* expanded only the nodes belonging to the true shortest path. In a more
realistic case, Y is close to Ȳ following the same overall course but with minor
node differences, while E contains Ȳ alongside some nodes from the surrounding
area. Since all of these tensors contain binary values, we found the Hamming
loss LH , as in [23], to be the most effective to deal with our learning problem.
The final loss is

L = α · LH(Ȳ , Y ) + β · LH(Ȳ , E) (5)
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Table 1. Datasets’ summary statistics.

Warcraft Pokémon

Maps I (train, validation, test) 10000, 1000, 1000 3000, 500, 500
Map resolution Γ 96× 96 320× 320
Tile resolution 8× 8 16× 16
Grid shape N 12× 12 20× 20
Cost range [0.8, 9.2] [1.0, 25.0]
Targets per image 2 2
Sources per target 2 2
Total number of samples 48000 16000

where α and β are positive, real-valued parameters that bring the loss compo-
nents to the same order of magnitude. A possible alternative to the Hamming
loss is the L1 loss, as in [32]. However, we did not find any reason to prefer it
over the Hamming loss. The behavior of L1 in terms of gradient propagation is
similar, but the experimental results were worse.

5 Data Generation

To experimentally test our claims about Neural Weighted A*, we use two tile-
based datasets.1 The first is a modified version of the Warcraft II dataset from [23]
(Sec. 5.1). The second is a novel dataset from the FireRed-LeafGreen Pokémon
tileset (Sec. 5.2). In the latter, the search space is bigger, and the tileset is richer,
making the setting more complex. However, Neural Weighted A* shows similar
performance in both scenarios outperforming the baselines of [23,32]. Tab. 1
collects the summary statistics of the two datasets.

5.1 The Warcraft dataset

The original version of the Warcraft dataset [23] contains paths only from the
top-left corner to the bottom-right corner of the image. To make the dataset
more challenging, we randomly sampled the source-target pairs from N . For
each image-costs pair in the dataset, we chose two target points. The targets
lie within a 3-pixel margin from the grid edges. Then, we randomly picked two
source points for each target, making four source-target pairs for each map. Each
source point is sampled from the quadrant opposite to its target to ensure that
each path traverses a moderate portion of the map, as shown in Fig. 4.

5.2 The Pokémon dataset

The Pokémon dataset is a novel, tile-based dataset we present in this paper.
It comes with 4000 RGB images of 320 × 320 pixels generated from Cartog-
rapher [29], a random Pokémon map generation tool. Each image is composed

1 https://github.com/archettialberto/tilebased_navigation_datasets

https://github.com/archettialberto/tilebased_navigation_datasets
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Fig. 4. From left to right, first: image sample from the Warcraft dataset. Second to
fourth: examples of valid source-target pairs. Red indicates the target sampling regions,
while green indicates the source sampling regions.

Fig. 5. From left to right, first: image from the Pokémon dataset. Second: wall regions
(black), number of steps from the target region (red-to-green gradient), and source-
sampling region (green). Third and fourth: examples of valid source-target pairs.

of 400 tiles, each of 16 × 16 pixels, arranged in a 20 × 20 pattern. Each tile is
linked to a real-valued cost in the interval [1, 25]. The training set comprises 3000
image-costs pairs, while the test and validation sets contain 500 pairs each. For
each image-costs pair, we sampled two target points, avoiding non-traversable
regions in the original Pokémon game, i.e., where W̄ (n) = 25. We refer to these
regions as walls. Then, we sampled two sources for each target, such that the
number of steps separating them is at least 12 (Fig. 5).

The Pokémon dataset provides a setting more challenging than Warcraft.
First, the number of rows and columns increases from 12 to 20, making the
search space nearly four times bigger. Also, the tileset is richer. Warcraft is lim-
ited to only five terrain types (grass, earth, forest, water, and stone), and there
is a one-to-one correspondence between terrain types and cost values. These as-
pects make the tile-to-cost patterns very predictable for the neural component of
the architectures. Pokémon, on the other hand, has double the number of indi-
vidual cost values, spread between the tilesets from four different biomes: beach,
forest, tundra, and desert. Also, each image sample may contain buildings. The
variability in terms of visual features is richer, and similar costs may correspond
to tiles exhibiting very different patterns.

6 Experimental Validation

In the following, we describe the experiments to test the validity of our claims.
Each time we refer to results obtained with Neural Weighted A*, we note the ε
value used for the evaluation of Hε.
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Table 2. Metrics’ definitions.

Metric Definition

Cost Ratio 〈W̄ , Y 〉/〈W̄ , Ȳ 〉
Generalized Cost Ratio 〈W̄ , Y (rnd s)〉/〈W̄ , Ȳ (rnd s)〉
Expanded Nodes

∑
n∈N E(n)

Generalized Expanded Nodes
∑
n∈N E(rnd s)(n)

6.1 Metrics

To measure the path prediction accuracy of the compared architectures, we use
the cost ratio, as in [23]. In order to account for cost-equivalent paths, we define
the cost ratio as the ratio between the predicted path cost and the optimal path
cost, according to the ground-truth costs W̄ . A cost ratio close to 1 indicates
that the system produces cost functions correctly generalizing on new maps.

The cost ratio involves paths that start from the sample source and end in
the sample target. Our goal, however, is to generate costs and heuristics that are
source-agnostic. In principle, the cost function depends only on the image, while
the heuristic also considers the target. The source point should not influence any
of the two functions. To account for this behavior, we define the generalized cost
ratio as the cost ratio measured according to Y (rnd s), i.e., the path prediction
from a random source point to the target. This new source is sampled uniformly
from the valid sampling regions of the two datasets at each metric evaluation.

To measure the efficiency of the architectures, we simply count how many
nodes have been expanded at the end of the A* execution. We refer to this metric
as expanded nodes. Also, we provide the generalized expanded nodes metric to
account for randomly sampled sources. Tab. 2 collects the metrics’ definitions.

6.2 Experiments

We compare Neural Weighted A* (NWA* ) against the following baselines:

BBA* (Black-Box A* [23]). A fully convolutional neural network computes
W from I. Then, a Black-Box A* module evaluates the shortest path Y . We
follow the implementation of [23], except for the Dijkstra algorithm, substituted
by A* with admissible Chebyshev heuristic (Eq. 2).

NA* (Neural A* [32]). A fully convolutional neural network computes W
from I, using s and t as additional input channels. Then, a Neural A* module [32]
evaluates the expanded nodes E. The non-admissible heuristic

HNA*(n) = DC(n, t) + 0.001 ·DE(n, t) (6)

is used to speed up the search, as in [32]. This heuristic is the weighted sum
of the Chebyshev distance DC and the Euclidean distance DE between n and
t in the grid. The non-admissibility arises from the fact that the scaling term
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wmin is missing, differently from Eq. 2. Despite reducing the expanded nodes,
this heuristic adds a strong bias towards paths that move straight to the target,
greatly penalizing the cost ratio.

ADM NA* (Admissible Neural A*). We propose this architecture as a
clone of the original NA* architecture [32], but we substitute the non-admissible
heuristic HNA* (Eq. 6) with the admissible Chebyshev heuristic HC (Eq. 2). Our
goal is to minimize the influence of the fixed, non-admissible heuristic HNA* [32]
on the expanded nodes E. In this way, the numerical results reflect more accu-
rately the neural predictions, ensuring a fair comparison with NWA*.

NS NA* (No-Source Neural A*). This architecture is equal to ADM NA*,
except for the source channel, not included in the neural network input. Differ-
ently from NA* and ADM NA*, by hiding the information related to the source
node location, we expect NS NA* to exhibit no sensible performance downgrade
between the cost ratio values and the generalized cost ratio values. The same
holds for the expanded nodes and the generalized expanded nodes.

6.3 Implementation details

Each architecture uses convolutional layer blocks from ResNet18 [14], as in [23],
to transform tile-based images into cost or heuristic functions, encoded as single-
channel tensors. We substitute the first convolution to adapt to the number of
input channels, varying between 3 (BBA* ), 4 (NS NA*, NWA* ), and 5 (NA*,
ADM NA* ). In BBA*, we perform average pooling to reduce the output channels
to 1. Then, to ensure that the weights are non-negative, we add a ReLU for
Warcraft and a sigmoid for Pokémon. All the baselines involving Neural A*
(NA*, ADM NA*, and NS NA* ), instead, include a 1× 1 convolution followed
by a sigmoid. Finally, in NWA*, the channel-reduction strategy depends on
the neural network. The cost-predicting ResNet18 is followed by an average
operation and a normalization between wmin = 1 and wmax = 10. The heuristic-
predicting ResNet18 is followed by a 1 × 1 convolution and a normalization in
the range [0, 1]. Each architecture trains with the Adam optimizer. The learning
rate is equal to 0.001. The batch size is 64 for Warcraft and 16 for Pokémon
to account for GPU memory usage. The λ parameter of the black-box solvers
of BBA* and NWA* is 20. The τ parameter of the Neural A* solvers of NA*,
ADM NA*, NS NA*, and NWA* is set to the square root of the grid width,
so 3.46 for Warcraft and 4.47 for Pokémon. In Eq. 5, we impose α = 1 and
β = 0.1 to bring the loss components to the same order of magnitude. We
found that the training procedure is not affected by small deviations from the
parameters described in this section. Finally, we detected sensible improvements
in the efficiency when training NWA* with random ε, as it expanded noticeably
fewer nodes than training with fixed ε. Since the other metrics do not exhibit
sensible differences, we always refer to the test results of NWA* obtained after
training with ε sampled from [0, 9] at each Hε evaluation. To ensure the full
reproducibility of our experiments, we share the source code.2

2 https://github.com/archettialberto/neural_weighted_a_star

https://github.com/archettialberto/neural_weighted_a_star
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Table 3. Quantitative results on the Warcraft and Pokémon datasets.

Warcraft dataset Pokémon dataset
Experiment ε CR Gen. CR EN Gen. EN CR Gen. CR EN Gen. EN

BBA* - 1.0 1.0 69.8 69.94 1.57 1.65 79.78 79.29
NA* - 1.29 1.41 9.81 9.82 2.15 2.57 15.02 14.64
ADM NA* - 1.04 1.17 13.12 22.48 1.11 1.24 26.57 37.03
NS NA* - 1.12 1.11 21.19 21.19 1.16 1.17 39.76 39.44

NWA* 0.0 1.0 1.0 68.42 69.04 1.06 1.05 124.06 121.2
NWA* 1.0 1.01 1.01 49.54 50.57 1.03 1.03 80.21 78.43
NWA* 4.0 1.03 1.03 26.61 27.15 1.08 1.06 56.4 56.21
NWA* 9.0 1.1 1.09 14.2 14.47 1.22 1.14 31.54 31.04
NWA* 11.0 1.13 1.11 12.74 13.0 1.22 1.24 23.37 23.06
NWA* 14.0 1.15 1.13 11.94 12.12 1.22 1.35 20.09 19.84

6.4 Results

We collect the quantitative results of our experiments in Tab. 3. The table is
split into four sections, two for each dataset. Each section contains either base-
line experiments or NWA* -related experiments measured on the same NWA*
architecture fixing different ε values at testing time. We comment on the exper-
iments’ results by answering the following three questions:

Does NWA* learn to predict cost functions correctly? By observing
Table 3, NWA* reaches a nearly perfect cost ratio on both datasets for a consid-
erable range of ε values. This was expected for ε ≈ 0, but the (generalized) cost
ratio remains very low for ε up to 4, which is an excellent result considering the
corresponding expanded nodes speedup. In Warcraft, NWA* behaves as BBA*
cost-ratio-wise, while, in Pokémon, it outperforms all the baselines. Since, by
setting ε to low values, the path predictions do not take into account Hε, the
positive cost-ratio-related performance implies that NWA* learned to predict
cost functions that make A* return paths close to the ground-truth.

Does NWA* learn to predict heuristic functions correctly? By setting
ε� 0, Hε drives the search. A* converges faster, but it may return suboptimal
paths. Therefore, we expect a small penalty on cost ratios, but a noticeable de-
crease in the node expansions. Again, the empirical results confirm this trend on
both datasets. For ε = 14, we outperform all the baselines in terms of generalized
node expansions. The only exception is NA*, which expands fewer nodes, but
exhibits an extremely higher cost ratio. NWA* trades off few node expansions
to be much more reliable than NA* in terms of path predictions.

Can NWA* trade off planning accuracy for efficiency? By setting ε
close to 0, NWA* behaves accurately (low cost ratio, high expanded nodes). By
increasing ε, NWA* becomes more efficient (higher cost ratio, lower expanded
nodes). To visually illustrate the extent of the tradeoff capabilities of NWA*, we
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Fig. 6. Comparison between generalized cost ratio and generalized expanded nodes
across the experiments for several ε values (mean ± std over five restarts). For low ε,
NWA* is the most accurate model, while for higher ε, it is the most efficient. The only
exception is NA*, which is barely faster but much less reliable in terms of cost ratio.

plot in Fig. 6 the generalized metrics (y-axis) for all the experiments with respect
to several ε values (x-axis). Since the baseline architectures do not depend on ε,
their behavior is plotted as a horizontal line for comparison. NWA*, on the other
hand, smoothly interpolates between the accuracy of BBA* and the efficiency of
NA* -related architectures, offering to the user the possibility of finely tuning ε
to the desired planning behavior, from the most accurate to the most efficient.

7 Conclusions

With Neural Weighted A*, we propose a differentiable, anytime shortest path
solver able to learn graph costs and heuristics for planning on raw image inputs.
The system trains with direct supervision on planning examples, making data
labeling cheap. Unlike any similar data-driven planner, we can choose to return
the optimal solution or to trade off accuracy for convergence speed by tuning a
single, real-valued parameter, even at runtime. We guarantee the solution sub-
optimality to be constrained within a linear bound proportional to the tradeoff
parameter. We experimentally test the validity of our claims on two tile-based
datasets. By inspecting the numerical results, we see that Neural Weighted A*
consistently outperforms the accuracy and the efficiency of the previous works,
obtaining, in a single architecture, the best of the two worlds.
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