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Abstract—This work studies the reliability of a FreeRTOS
operating system when affected by Single Event Upset faults. The
methodology is based on fault injection to target the most relevant
variables and data structures. Results confirm the selectivity in
the OS fault tolerance, paving the way to a tailored design of
fault-tolerant mechanisms, such as selective hardening of the OS.
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I. INTRODUCTION

A deep analysis of the system helps achieve System de-
pendability so that, by identifying weaknesses, proper mitiga-
tion techniques can be introduced into the system. However,
extensive testing phases come at the cost of money and time.
For those reasons, during the design phase, the goal is to find
an optimal trade-off between mitigation and expenses.

In the literature, all times the whole system is considered,
the target is the application-layer [6]. Excluding bare-metal
system scenarios, the assumption is that the probability of
a fault affecting the middle layer is much lower than the
application level due to its shorter execution time. Neverthe-
less, the lifespan of OS data structures (e.g., process control
blocks) is even longer. Moreover, the OS is usually considered
a mediator for the data exchange between the hardware and
the application, leaving the impact of fault on the application
manipulation only. This is only a lucky case.

Authors in [4] proved the above assumption. By performing
a fault injection campaign on three different configurations,
(i) bare metal, (ii) FreeRTOS, and (iii) Linux OS, they show
that the OS significantly impacts the reliability. More partic-
ularly, they have shown that the number of observed failures
increases with the OS complexity. Therefore, it is mandatory
to profoundly investigate the contribution of OS data structure
to system reliability.

This work aims to study the reliability of a FreeRTOS [1]
when affected by Single Event Upset (SEU) faults. The
methodology directly targets all the most relevant variables
and data structures of the FreeRTOS operating system to
evaluate the system’s impact in terms of system integrity, data
integrity, and the overall resistance to faults. This kind of
comprehensive analysis aims to identify the weak spots in the
FreeRTOS so that it can be hardened in different ways, to help

designers optimize the error tolerance mechanisms, reducing
their impact.

The following sections will present the injection targets (i.e.,
where faults are injected), the system behaviors classification,
and the experimental results.

II. FAULT INJECTION TARGETS

The fault is selectively injected into OS locations (e.g.,
variables or data structures). This way, it is possible to analyze
the impact of faults on the FreeRTOS. Targets are grouped by
their usage, and for each group, we also specify the number
of fault locations.

• FreeRTOS global variables (GKVARS - 10 locations):
Global variables used by the kernel to share data among
the various kernel functions and to save the state of the
system.

• Task control block (TCB): the TCB contains, for each
task, all data to guarantee the proper execution of the
task, including the context switching. Two sets exist in
FreeRTOS: (i) the TCB of running tasks (CURTCB - 19
locations) and (ii) the TCB of ready tasks list (RDYTCB
- 19 locations).

• Tasks list: Two lists retain the queue of TCB of task: (i)
the ready task list (RDYLST - 5 locations) and (ii) the
delayed task list (DLDLST - 5 locations).

• Mutex and Queue structure (MTXQVARS - 22 loca-
tions): The queue is a structure that can be used as a
semaphore or mutex by the kernel.

•

III. CLASSES OF MISBEHAVIOR

The system behavior due to a fault can be classified as
follows:

• OK: the system produces the same results as the golden
execution.

• Silent Data Corruption (SDC): according to [5] and
others, when the output of the computation is altered,
there is an SDC. The correctness is verified by providing
a CRC code of the output values of the golden execution
to be compared with the one produced by the single run.

• Crash: When a critical error occurs on the DUT, the
system crashes, and the internal reset handler is called.

• Freeze: if a task does not end after the supposed deadline
(defined through a time window of observation). This



time window is user-defined, and the reported experimen-
tal results refer to a dynamic time window defined as 50%
more of the expected timing of the more extended task.

• Delays: if the execution presents no error, but the time ex-
ceeds the expected one, the difference can be interpreted
as a missing deadline.

IV. EXPERIMENTAL RESULTS

Experimental data have been gathered resorting to the
EEMBC® Automotive suite [2] to select the benchmark tasks.
The complete set of benchmarks comprises 16 applications
and, among them, three models have been extensively tested:

• a2time (Angle to time conversion): it simulates a
counter which measures the real-time delay between
pulses sensed from a toothed wheel (gear) on the
crankshaft of an engine.

• tblook (Table lookup and interpolation): it stores a
limited amount of data pairs coming from one or more
resources (sensors, connections, calculations) and inter-
polates missing pairs.

• idctrn (Inverse Discrete Cosine Transform): the In-
verse Discrete Cosine Transform is applied to an input
data-set representing a matrix of 64 bits values.

The setup is completed by two other dummy tasks that are
performing operations on some hardware resource that has
been treated as a shared one to stress the synchronization
mechanism also for single-threaded reference benchmarks, i.e.,
the a2time and the tblook.

Injection campaigns have been carried out by injecting faults
per location list. Their number follows the approach presented
in [3] to obtain statistically significant results with an error
margin of 1% and a confidence level of 95%.

A. Results Analysis

Since there was no evidence that SDCs have been produced
among all experimental results, all further classifications do
not include the SDC label for simplicity.

Looking more closely, the experimental results demonstrate
that the resiliency of a system depends on the OS too.
They clearly show how the FreeRTOS is affected by some
vulnerabilities that lead to crashes. Figure 1 shows that the
effects are statistically very similar among all benchmarks.
This is not entirely unexpected because most fault locations are
pointers to memory structures and indexes used to access and
index elements of lists or vectors. Moreover, the low number
of freezes probably relates to the injection location, making
the system more efficient to crash instead of leaving it in an
endless loop of unresponsive tasks altogether.

Figure 1 also suggests that the overall number of crashes
and freezes does not depend on the benchmark, which is
consistent with the fact that no internal memory of the tasks
has been altered. On the contrary, delays are likely linked with
the specificity of the benchmark, as the difference between
tblook and the other two suggests. Still, on the broadside, it
must be said that it also gives a wrong perspective among
the several target groups, as Figure 2 is highlighting: due

to the very different functional purposes of each group, the
contribution in crashes, freezes, and delays vary a lot among
them.
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Fig. 1: Classification for all target locations by benchmarks
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Fig. 2: Classification for all different target location groups

Figure 2 reports the classification across all six target loca-
tion groups to appreciate the sensibility to the fault injection.
It can be easily noticed how the GKVARS group does generate
crashes, as CURTCB (almost 40%), RDYTCB and RDYLST do.
Freezes are equally generated by alteration on any OS structure
but the RDYLST and DLDLST. This is not forthcoming and
probably relates to the high number of crashes when the
RDYLST is corrupted and the even a higher number of delays
produced by the DLDLST corruption. Regarding the delays,
they also come from the GKVARS group, revealing a certain
level of resiliency of the TCBs. When the corruption affects
(parts of) the TCB that are not directly involved in the next
cycle of scheduling, the outcome is still a properly running
task but not necessarily the expected one. Eventually, the
MTXQVARS group generates mainly freezes, delays, or no
alteration at all, which confirms the accuracy of the tool since
the MTXQVARS group includes all locations controlling mutex
and semaphores.



V. CONCLUSIONS

This paper evaluates the dependability of FreeRTOS to SEU
by building a Fault Injection Environment able to target data
belonging to the operating system and trace the effects on the
entire system. The results display the wide variety of impacts
that FreeRTOS data structure disruption can lead to and allow
us to suggest which are more sensitive to SEUs.
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