POLITECNICO DI TORINO Repository ISTITUZIONALE

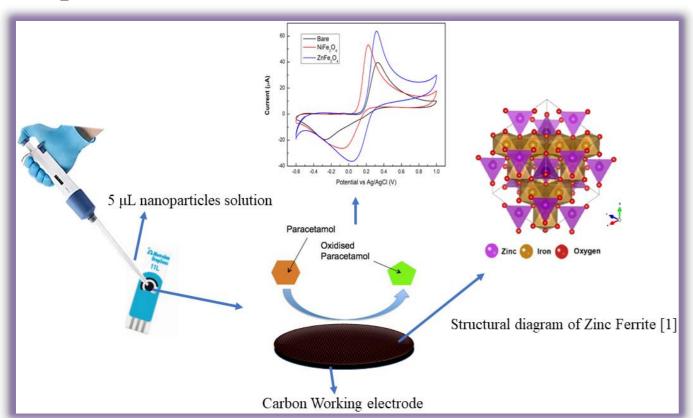
Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications.

Original Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications / Madagalam, Mallikarjun; Rosito, Michele; Bartoli, Mattia; Padovano, Elisa; Carrara, Sandro; Tagliaferro, Alberto ELETTRONICO (2022). (Intervento presentato al convegno NanoInnovation 2022 tenutosi a Roma nel 19-23 Settembre 2022) [10.13140/RG.2.2.15124.58244].
Availability: This version is available at: 11583/2971556 since: 2022-09-21T12:44:26Z
Publisher: the organizing committee of the meeting
Published DOI:10.13140/RG.2.2.15124.58244
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

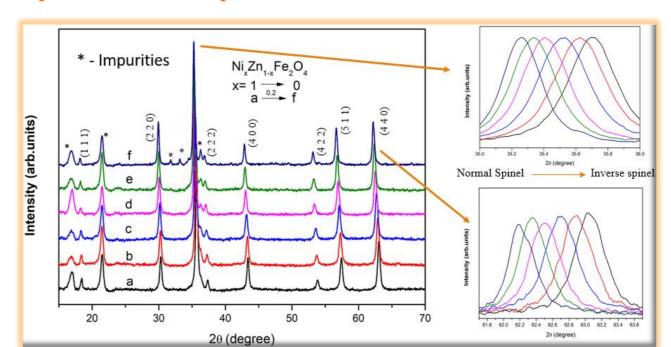
(Article begins on next page)

Ferrite-based Nanoparticles: Synthesis, Characterization, and Non-enzymatic Electrochemical Sensing Applications

Mallikarjun Madagalam^{1,2,3,*} · Michele Rosito¹ · Mattia Bartoli^{3,4} · Elisa Padovano¹ · Sandro Carrara² · Alberto Tagliaferro^{1,3}


¹Department of Applied Science and Technology, *Politecnico di Torino*, Italy. ²Bio/CMOS Interfaces group, École Polytechnique Fédérale de Lausanne, Switzerland. ³National Interuniversity Consortium of Materials Science and Technology (INSTM), Italy. ⁴Center for Sustainable Future Technologies, *Istituto Italiano di Tecnologia*, Italy.

* mallikarjun.madagalam@polito.it



Graphical abstract

X-ray diffraction spectra of Ni-Zn mixed ferrites and zoomed part of the phases (3 1 1) and (4 4 0) clearly show the transition from spinel to inverse spinel.

Materials and methods

Materials

- $Zn(NO_3)_2.6H_2O$
- Ni(NO₃)₂.6H₂O
- $Fe(NO_3)_3.9H_2O$
- CH₄N₂O (Urea)
- DI Water, Methanol
- Paracetamol, PBS buffer

Synthesis

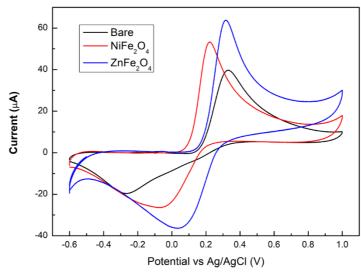
Autocombustion 600°C [2]

- Annealed at 600°C (2h)

Electrodes modification

- Methanol as solvent
- 3:1 material to solvent
- Carbon working electrode
- 5 μ L solution
- Drop casting
- Overnight drying

Cooled and grounded


Materials characterization

Electrolytic solution

- Paracetamol
- 0.1M PBS buffer
- pH 6.9

Electrochemical measurements

Cyclic voltammograms of 1mM paracetamol in 0.1M PBS pH 6.9 with different electrodes and their corresponding oxidation currents and potentials.

Bare

NiFe₂O4 ▲ ZnFe₂O₄

140

current (⊬A)

Electrode	Oxidation Potential (mV ± SEM)	Oxidation Current (µA ± SEM)
Bare	326.80 ± 0.73	39.11 ± 0.16
NiFe ₂ O ₄	246.6 ± 3.2	51.53 ± 0.80
ZnFe ₂ O ₄	307.0 ± 6.0	59.17 ± 0.63

SEM - standard error mean

FE-SEM pictures of NiFe₂O₄ (left) and ZnFe₂O₄ (right)

Concentration (mM)

NiFe₂O₄ and ZnFe₂O₄ have lesser peak to peak separation compared to the bare electrode which gives an indication of faster reaction at the interface leading to higher kinetic rate constant.

Sensitivity ΔE_{p} **Electrode** $(\mu A/mM \pm SEM)$ $(mV \pm SEM)$ 30.2 ± 1.0 Bare 594.4 ± 1.2 NiFe₂O₄ 43.6 ± 1.1 290.6 ± 1.3 50.26 ± 0.98 278.3 ± 2.7 ZnFe₂O₄

 ΔE_p – Peak to peak separation

Calibration curves of 3 different electrodes and the slopes indicate the sensitivity of respective electrochemical sensors.

Spherical shape particles with an average particle size of 30 - 40 nm

Spinel to Inverse spinel NiFe ₂ O ₄ Ni _{0.8} Zn _{0.2} Fe ₂ O Ni _{0.4} Zn _{0.4} Fe ₂ O Ni _{0.2} Zn _{0.8} Fe ₂ O Ni _{0.2} Zn _{0.8} Fe ₂ O ZnFe ₂ O ₄	ZnFe ₂ O ₄	
600 625 650 675 700 725 750	560 580 600 620 640 660 680 700 720 740	
Raman shift (cm ⁻¹)	Raman shift (cm ⁻¹)	

Microraman spectra of intensive A_{1g} band showing the transition from spinel to inverse spinel (left). The band shows a doublet and triplet-like shape due to pure and mixed ferrites [3, 4, 5]. The right figure shows three red arrows indicating 3 different molecular vibrations due to the presence Fe, Ni, and Zn whereas two blue arrows indicating only two molecular vibrations because of Fe and Zn.

Future work

Electrochemical measurements of the other mixed ferrite-based sensors.

Calculation of kinetic rate constant (k), electron transfer rate coefficient (α).

Chronoamperometric measurements to calculate the active surface area of the working electrodes.

Computational approach to calculate the kinetic rate constant.

References

- [1] ACS Appl. Nano Mater. 2021, 4, 4026-4036.
- [2] JOURNAL OF MATERIALS SCIENCE **37** (2002) 3569 – 3572.
- [3] Journal of Alloys and Compounds 563 (2013) 6-11.
- [4] J. Raman Spectrosc. 2011, 42, 1087-1094.
- [5] Ceramics International40(2014)12855-
- [6] Electrochimica Acta 317 (2019) 701 -710.