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Abstract
Quantum key distribution (QKD) is believed to represent a viable solution to achieve the-
oretically unconditionally secure key generation. However, the available optical systems 
for experimental QKD, based on photon transmission, are flawed by non-idealities that 
ultimately limit the achievable performance. Classical simulation of the optical hardware 
employed in these systems may take on a determining role in engineering future QKD 
networks. In this article, attempts for developing a QKD simulator based on low-compu-
tational-cost models of the employed hardware are presented. In particular, the simula-
tion infrastructure targets polarization-based QKD setups with faint laser sources, whose 
behaviour can be described by semiclassical coherent states and Mean Photon Number 
(MPN) per beam. The effects of passive optical components on the photonic qubit evolu-
tion are described by Jones matrices, whose coefficients, for some commercial devices, 
are stored in an ad-hoc library. Realistic eavesdropping attacks and non-idealities, such as 
optical losses, fibre attenuation, polarization misalignment and limited efficiency of single-
photon detectors, are also taken into account. The infrastructure allows the user to describe 
the desired QKD configuration and it provides in output the MPN at the receiver and two 
fiducial performance parameters: Quantum Bit Error Rate (QBER) and secure key rate. 
The comparison of the simulation results with experimental data in the state-of-the-art lit-
erature highlights that this work is a step forward towards the definition of compact models 
for the hardware-dependent simulation of quantum-assisted communication networks.
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1 Introduction

Cybersecurity is a fundamental part of our life: all of our personal information are online, 
banks handle our money, which has become mostly digital. Even our memories and knowl-
edge are entrusted to the network. For these reasons, cryptography and cryptosystems, 
the pillar of cybersecurity, must evolve to deal with the latest decryption methods, thus 
ensuring that private information or messages cannot be read by third parties. Two kinds of 
cryptosystems are mainly consolidated: 

1. Symmetric, where the same private key is used for encryption and decryption;
2. Asymmetric, where a public key and a private key are used to encrypt and decrypt a 

message respectively.

A consolidated cryptosystem is the asymmetric Rivest-Shamir-Adleman (RSA) (Rivest 
et  al. 1978), based on the prime numbers factoring of large numbers, from 2048 bits 
onwards, an operation that is extremely hard for classical computers. However, more pow-
erful traditional computers and algorithms executable on quantum computers may put at 
risk most of these cryptography methods in a couple of decades, or even less. The Shor’s 
algorithm (Shor 1994) is the most famous example of such a kind of algorithm: it is capa-
ble to factorise an integer number in its prime factors in polynomial time, thus making 
ciphers breaking extremely efficient (Djordjevic and Zhang 2004). The upcoming possibil-
ity of running Shor’s algorithm on many-qubit quantum computers is expected to jeopard-
ise asymmetric cryptography algorithms. For this reason, the exchange of secure data in the 
quantum era will require the adoption of post-quantum (Bernstein and Lange 2017) algo-
rithms, computationally hard for quantum computers, or symmetric cryptography, which 
shifts the security requirements from the algorithm to the distribution of private keys.

Quantum mechanics can help in distributing keys which are, from a theoretical point 
of view, unconditionally secure. In fact, the superposition principle, the no-cloning theo-
rem (Wootters and Zurek 1982) and the entanglement can be exploited for generating keys 
extremely hard to be detected. All quantum-based methods for key generation belong to 
Quantum Key Distribution (QKD) (Renner 2008; Gisin et al. 2002). The most consolidated 
QKD protocol is the one proposed by Charles Bennet and Gilles Blassard in 1984 (BB84) 
(Bennett and Brassard 1984), characterised by the absence of entanglement requirement, 
thus practically simplifying the implementation. Figure 1 shows the ideal protocol, without 
any eavesdropper, generating the key 1011. Information is encoded on the polarization 
of single photons, which substantially behaves as a qubit, and two users, Alice and Bob, 
exploit two non-orthogonal bases—one associated with horizontal and vertical polari-
zations (H/V), the other with those diagonal and anti-diagonal (D/A)—to transmit and 
receive photons sequentially. Alice randomly chooses the transmission basis for each pho-
ton to be sent to Bob through the quantum channel, while Bob measures in an arbitrarily 
chosen basis, too. According to the quantum uncertainty principle for qubit measurements, 
Bob would know exactly the polarization of the photon transmitted by Alice only if he 
chose the same basis of hers. After repeating the protocol multiple times, Alice and Bob 
compare on a classical channel the bases at each iteration, without declaring the values. 
This operation is ideally sufficient for both Alice and Bob to get the value of each key bit, 
because—considering what already said about uncertainty principle for measurements—
the choice of the same basis for transmission and detection ensures to Bob the recognition 
of the bit transmitted by Alice.
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In general, QKD requires single-photon generation, manipulation, transmission and detec-
tion,  in particular polarization manipulation with passive optical components. Apart from the 
possibility of having an eavesdropper on the quantum channel, ideal conditions for implement-
ing the protocol in a practical scenario cannot be easily achieved, because of the limitations 
of real hardware. For example, single-photon sources are not nowadays highly reliable (Lou-
nis and Orrit 2005) and they must be necessarily approximated. A consolidated approach is 
exploiting faint lasers (Al-Kathiri et al. 2008; Molotkov and Potapova 2016). As observable 
in Fig. 2, coherent light emitted by a pulsed laser can be seen as a packet of photons; each 
packet tries to overcome an attenuator, sufficiently opaque to force an output packet with at 
most one photon. Unfortunately, this is not a high-quality single-photon source, since the num-
ber of photons in a packet is probabilistic and described by a descending Poissonian prob-
ability distribution with mean value lower than 1, thus implying non-null probabilities of 
emitting no photons or more than one photon. In addition to the difficulties in generating sin-
gle photons, other non-ideality phenomena—such as the losses of passive optical components 

Fig. 1  Schematic representation of BB84 protocol

Fig. 2  Schematic representation of a faint laser
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for manipulating polarization, undetection of photon detectors and optical fibre attenuation 
and polarization misalignment—induce further deviations from ideality.

Even though the performance of real hardware for quantum and quantum-assisted com-
munication is generally limited, frameworks for developing applications are already available. 
In particular, simulators, allowing users to develop applications and protocols for quantum 
networks and quantum internet, are developed by academic research teams. Among them, it 
is important to remind (Coopmans et al. 2021) and (Dahlberg and Wehner 2018) from TU 
Delft, (Diadamo et  al. 2021) from Technische Universität München, the Quantum Internet 
Simulation Package (QUISP) (Matsuo et al. 2020) from Keio University and the Simulator 
for Quantum Networks and Channels (SQUANCH) (Bartlett 2018) from Stanford University. 
These infrastructures permit to design and evaluate the performance of quantum and quantum-
assisted communication in a protocol scenario. Moreover, some of these, e.g. NetSquid and 
SQUANCH, also introduce qubit errors and noisy channels, but in a hardware-independent sce-
nario, where all the non-idealities are considered as abstract operators affecting qubits.

The research described in this article tries to respond to the need of integrating hardware 
non-idealities in a simulation scenario, to evaluate the effects of real available infrastructures 
on the performance of a protocol. In particular, considering that currently available QKD and 
quantum network systems are mainly based on coherent light manipulation—such as the ones 
proposed in Allati and Baz (2015), Allati et al. (2011) and Lütkenhaus (2000)—a prelimi-
nary coherent state-based simulator of BB84 QKD systems, consisting of faint lasers and 
non-ideal optical devices, is here presented, with the whole mathematical formalism for simu-
lation and reliability estimation of the protocol. The simulation methodology is substantially 
the same adopted for quantum computing technologies in Simoni et al. (2022), Cirillo et al. 
(2019) and Cirillo et al. (2020)—where the performance of a quantum computer were evalu-
ated depending on degrees of freedom related to the control and physical parameters of hard-
ware affecting qubits—and it has been implemented in MATLAB environment. It is important 
to repeat that this work is currently focusing on hardware non-idealities, so only experimen-
tally plausible eavesdropper attacks are taken into account.

A theoretical overview of the quantum-mechanical description of coherent light emitted 
by faint lasers and of the polarization manipulation in terms of Jones calculus is reported 
in Sect. 2, as well as a description of the fundamental data structure of the simulator itself. 
Section 3 and Sect. 4 describe the non-ideal optical devices and channels required for the 
BB84 protocol, according to the notation of the simulator. Section 5 details the simulation of 
a BB84 setup described in the state of the art, proving that the results obtained with the simu-
lator are compatible with the experimental ones. Moreover, in order to prove the capability of 
the simulator of handling many physical degrees of freedom, the simulation results with dif-
ferent single-photon detectors and optical fibre lengths are provided and compared. Section 6 
discusses the behaviour of the simulator in presence of beam splitter attack (Sect. 6.1) and 
polarization misalignment effects (Sect.  6.2). Finally, future perspectives are discussed in 
Sect. 7.

2  Theoretical foundations

The optical simulator is based on the use of coherent states that fit very well with the 
description of the coherent light emitted by attenuated lasers, the light source most 
employed in current QKD systems. A generic coherent state is defined by the complex 
number � , which is associated with the mean photon number in the pulse � through the 
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relation � = |�|2 (Gazeau 2009). Equivalently, � is linked to the electric field amplitude 
of the electromagnetic wave. Moreover, � uniquely locates the coherent state in the opti-
cal phase space; in practice, the length of the phasor that represents the state is equal to |�| 
(Fox 2006).

A coherent state can be represented as a sum of Fock states, the so-called standard 
form, or using the displacement operator D̂(𝛼) acting on the vacuum state �0⟩ (Rosas-Ortiz 
2019):

Thanks to this last representation, it is possible to propagate the initial state across every 
component of the system modifying the displacement operator or, in other words, the crea-
tion and annihilation operators contained in it.

Furthermore, with this representation, it is possible to take in consideration more than 
one optical path, a convenient feature when studying complex optical systems. This can be 
done by involving more subspaces of the Fock space, one per each path. For example, an 
m-mode Fock space can be written by combining the subspaces in �n1, n2,… , nm⟩.

Another widely used characteristic of the displacement operator is that it can also take 
in account the polarization of the coherent state (Kučera 2007; C 2011) by considering 
a two-mode polarization Fock space, with the subspaces associated with the number of 
photons in horizontal and vertical polarization state �nH , nV⟩ . For example, a coherent light 
pulse diagonally polarized, oriented at + 45◦ from the horizontal axis, can be expressed as 
(Maitra and Das 2019):

where â(†)
H

 and â(†)
V

 are the annihilation (creation) operators for horizontally and vertically 
polarized photons, and �0H , 0V⟩ is the vacuum state in the two-mode polarization Fock 
space (Vintskevich et al. 2020).

In general, modifying the creation and annihilation operators contained in D̂ for hori-
zontal and vertical components, it is possible to describe the evolution of the coherent state 
across a generic optical structure, and, consequently, to develop the proposed simulator.

2.1  Propagation in quantum optics

In classical optics, fully polarized light can be described with Jones calculus. The light 
beam is described by a two dimensional Jones vector, which contains the complex compo-
nents of the electric field phasor (Jones 1942):
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(âH + âV )
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where the reference system is chosen to align the electric field polarization with the x-y 
plane (transverse to the direction of the wave vector). In order to determine the evolution of 
light along an optical path, this vector is multiplied by the Jones matrix associated with the 
optical device where the light passes through.

Thanks to canonical quantization, the equations that describe the evolution of crea-
tion and annihilation operators are identical to those of the classical complex amplitudes of 
the electric field in Jones calculus (Bachor and Ralph 2019; Kučera 2007; Maitra and Das 
2019; Prasad et al. 1987). In fact, if an optical component is described by a Jones matrix 
Jcomponent , such that its action on the Jones vector is:

it is possible to obtain the quantum description of the component passing to creation (or 
similarly annihilation) operators:

Therefore, a coherent state can be represented as a bi-dimensional vector, analogous of 
the classical Jones vector, whose components are the coefficients for horizontal and verti-
cal creation operators in the displaced vacuum state representation. They are nothing more 
than the eigenvalues of the annihilation operators. For example, the state ��+45◦⟩ can be 
written as:

where the two coefficients correspond to those in Eq. 2 for â†
H

 and â†
V
.

Then, using the Jones matrix of each component, the state can be propagated through 
the optical system, and one can obtain the mean photon number, or, equivalently, the elec-
tric field intensity in every point of the system. The proposed simulator exploits this vector-
based approach since it allows one to evaluate the evolution of information on an optical 
setup, as shown in Sect. 5.2, taking into account most of the non-ideal phenomena affecting 
optical devices (as discussed in Sects. 2.2 and 4) and looking for a compromise between 
computational complexity and physical accuracy. In particular, this approach is expected 
to reasonably estimate the evolution of coherent state along the whole system, with a total 
CPU time lower than the corresponding one required for solving density matrix-based mas-
ter equations.

As an example, the effect of a linear polarizer with horizontal transmission axis on 
��+ 45◦⟩ will be Fowles (1989):

So, basically, only half of the input photons will be transmitted, and the output state will be 
completely horizontally polarized.

As aforementioned, this model can also be extended to multi-mode systems. In fact, in 
the context of this simulator, it is important to take into account not only the polarization, 
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but also the photons paths. This is fundamental in order to consider two-input and two-out-
put optical devices, such as beam splitters. For example, the input state of a beam splitter, 
given by the coherent light states at the two input ports of the device, can be represented by 
a four-dimensional vector. This is obtained by the combination of the two-dimensional vec-
tors associated with the polarization in each input path:

where �{H,V}k
 are the eigenvalues of horizontal and vertical annihilation operators in path k.

In this context, “expanded” 4 × 4 Jones matrices will be involved and the evolution of 
the states will be written as:

As an example, the propagation through a polarizing beam splitter (PBS) is considered. For 
simplicity, assuming an ideal PBS that completely splits the incoming light in two sepa-
rate polarized beams, the quantum-mechanical relations are (Maitra and Das 2019; Nagata 
et al. 2010):

where the nomenclature for ports is reported in Fig. 3. If an antidiagonal state enters in the 
“a” port of a beam splitter, while the other port “b” is left unused, the input state for the 
beam splitter is:

where the vacuum state �0H , 0V⟩ is represented only with �0⟩ to lighten the notation, and the 
subscripts a and b indicate the input ports. The associated input vectors are:

From Eq. 10, one can obtain the output states:
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Correspondingly, the matrix relation for the PBS (which will be thoroughly presented in 
Sect. 3.3) permits to obtain the output associated vectors. In the ideal case it results:

andso:

These vectors correctly represent the output states reported in Eq. 13, as expected.

2.2  Losses treatment

In general, to consider losses, relations between input and output operators must be modi-
fied introducing the Langevin operators F̂ , also called noise operators (Barnett et  al. 
1998). However, in the case of coherent states, the treatment of losses can be simplified. 
In fact, passing through linear components, coherent states remain coherent states (Bachor 
and Ralph 2019). Hence, the input and output relations for creation (or annihilation) 
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ĉ
†

H

�
−

𝛼∗

√
2

�
ĉH
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Fig. 3  Naming convention for 
beam splitter ports
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operators are the same of the ideal case, but the reflection and transmission coefficients 
have a reduced amplitude due to losses, in order to take in account energy dissipation (Bar-
nett et al. 1998).

3  Quantum mechanical relations

After having described the foundations of the theoretical approach, in this section the quan-
tum mechanical relations for the most used optical components will be presented. It is 
important to precise that the components are described by taking into account the mini-
mum number of modes that permits their description. Hence, devices as waveplates, work-
ing on single photon paths, are described in terms of their effect on a single photon path 
with two polarizations.

3.1  Light source

The light emitted by a coherent light source, such as an attenuated laser, can be represented 
as a coherent state whose alpha factor is equal to the square root of the mean photon num-
ber � contained in the light pulse:

For example, if the laser produces a light pulse vertically polarized with a mean photon 
number equal to two, the coefficient of the coherent state will be � =

√
2 . Formally, the 

state is:

while its vectorial representation is:

3.2  Waveplates and Pockels cells

Pockels cells (Fig. 4) are voltage controlled waveplates, widely used in QKD systems both 
for modifying the logical value of the qubit in polarization-encoding systems and for com-
pensating for unwanted polarization deviations. Waveplates and Pockels cells are made of 
birefringent crystals in which the refractive index depends on polarization and propagation 
direction of light (Kemp 1969). They are characterized by two axes: ordinary, with refrac-
tive index n0 , and extraordinary, with refractive index ne . As a result, one component of the 
polarization is retarded with respect to the other; for this reason these types of components 
are generically called retarders. The effect of the waveplate depends on this retardation and 
also on the input polarization. The retardation describes the phase shift between the two 
polarization components, which is given by the following expression:
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where �0 is the wavelength in vacuum, d is the thickness of the plate, and n0 and ne the 
refractive indexes for light polarized along ordinary and extraordinary axis respectively 
(Hecht 2002).

Waveplates are classified according to their retardation: half-waveplates have � = � 
and they rotate the polarization of linearly polarized light (most of the Pockels cells used 
in QKD systems belong to this category); quarter-waveplates have � =

�

2
 and linearly 

polarized light oriented at 45◦ from the fast axis comes out circularly polarized. Similarly, 
incoming circularly polarized light comes out linearly polarized (Hecht 2002).

As mentioned above, the effect of the retarder depends also on its orientation. Calling � 
the orientation of the extraordinary axis (also called fast axis) with respect to the vertical 
axis, the Jones matrix associated with the retarder is:

where t is the transmittance of the retarder, under square root because it is usually related 
to the transmitted optical power. So, the effect of the retarder is modeled as follows:

where a and b label the input and output ports of the component. As already mentioned, 
half-wave Pockels cells are used in QKD systems to vary the photon polarization and con-
sequently the quantum information, changing the qubit value or the encoding basis. Some 
examples are reported in the following for t = 1 . A Pockels cell oriented at 45◦ with respect 
to the vertical axis can be used to flip the qubit in {H,V} basis, in fact:

On the other hand, a Pockels cell oriented at 22.5◦ with respect to the vertical axis can be 
employed to pass from {H,V} to {A,D} basis:
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Fig. 4  Schematic representation 
of Pockels cell changing polari-
zation from vertical to horizontal
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in fact the horizontally polarized state becomes diagonally polarized.
Finally, it is possible to prove that the combination of multiple Jret matrices permits to 

describe a generic rotation of the photon polarization state depending on three angles �U3 , �U3 
and �U3:

where the suffix of the three angles refers to the fact that the obtained matrix Jcomb
ret

 corre-
sponds to the U3 available in the Qiskit quantum information framework (Abraham 2019) 
for the arbitrary rotation of single qubits.

3.3  Beam splitters

Non-polarizing beam splitters (BS) and polarizing beam splitters (PBS) are essential compo-
nents in optical experiments, as also in QKD systems. For example, BS are used to join in a 
single optical path light beams coming from different sources and, in the detection sub-sys-
tems, to randomly select photons and consequently the measurement basis (Bachor and Ralph 
2019). PBS are practically always present in the detection units, in front of the detectors, in 
order to split light in its horizontally and vertically polarized components (Mailloux et  al. 
2015), or, better to say, in its Transverse Electric (TE) and Transverse Magnetic (TM) modes.

The non-trivial derivation of the quantum mechanical relation for the beam splitters should 
start considering that, in order to respect energy conservation, creation and annihilation opera-
tors must respect the well-known commutators (Gerry and Knight 2004; Loudon 2000):

where i and j label the ports of the component. It is worth recalling that these relations are 
valid for all optical components, not only for beam splitters. Combining the Jones vectors 
of inputs and outputs in four dimensional vectors and defining an “expanded” 4 × 4 Jones 
matrix for the beam splitter, the quantum mechanical relation results to be:
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analogous to the expressions shown in Nagata et al. (2010), Weihs (2001). The subscripts 
a, b, c and d label the ports of the device, as reported in Fig. 3. � is the difference in phase 
between horizontally and vertically polarized light. tH , tV , rH and rV are the transmissivi-
ties and reflectivities for each polarization component, under square root because they are 
related to the power of the light beam. This is the most generic beam splitter matrix and it 
is possible to get the matrices of characteristic beam splitters from it. For example, a 50:50 
non-polarizing beam splitter is used to split in two equivalently beams the incoming light, 
consequently it has all the terms tH = tV = rH = rV =

1

2
 and � depends on the specific com-

ponent. On the other hand, the matrix of an ideal PBS, reported in Eq. 10 and in Eq. 14, 
can be obtained from Eq.  26 with tH = rV = 1 , tV = rH = 0 and � = −

�

2
 and it properly 

describes the splitting of incoming light in its polarization components. Obviously, real 
PBSs are intrinsically lossy, so 

√
tH ,

√
rV ≲ 1 and 

√
rH ,

√
tV ≳ 0.

4  Quantum channels

The quantum channel is the link between transmitter and receiver that allows one to exchange 
the qubits, i.e. the properly encoded photons. The two most used solutions are optical fibers 
and open air, both with advantages and disadvantages.

The usage of optical fiber as quantum channel has several advantages; it has a low and 
pretty constant attenuation, slightly dependent on temperature and mechanical vibrations. It 
also allows one to establish quantum communication systems where an infrastructure already 
exists.

In the current implementation of the channel model, two main phenomena affecting the 
photons transmission are taken into account. The first one is polarization misalignment, con-
sisting, at quantum mechanical level, in random variations of photons polarization state due to 
external perturbations on the optical fiber, such as mechanical stresses (bending and twisting) 
or thermal expansion and contraction.

The model for polarization misalignment in the current version of the simulator is sub-
stantially inherited from Xu et al. (2013) and Higgins et al. (2020), where the phenomenon is 
described in terms of aleatory unitary rotations of the polarization state by an angle 𝜉 . In the 
simulator described in this article, a combination of Jret matrices—responsible of changing �H 
and �V of the input beam—are exploited for the description of misalignment. The input and 
output ports of the equivalent Pockels cell are related according to the following relation:

where 𝛿 =
𝜉

2
 describes the random rotations and its value depends on the characteristics of 

the simulated optical fiber. Those two Jret matrices were chosen to obtain exactly the same 
matrix for polarization misalignment reported in Xu et al. (2013). In addition to polariza-
tion misalignment, light beam intensity attenuation along the channel is also taken into 
account. This phenomenon can be quantum-mechanically described in terms of a reduction 
of � , thus of the mean numbers of horizontally and vertically-polarized photons:

(27)
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where a and b label input and output ports respectively, and �dB, fibre is the attenuation of 
the fiber in dB. The attenuation depends on the communication wavelength; typical values 
of attenuation are 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm (Corning 2005).

Attenuation of open air quantum channel, employed in quantum-based satellite com-
munication (Liao et al. 2017), can also be evaluated with the same expression reported in 
Eq. 28. A feature of this channel is that polarization noise is practically absent (Elser et al. 
2009), thus implying that open air can be exploited for QKD protocols encoding informa-
tion onto photon polarization. It is important to remind that �dB, air is often higher than 
�dB, fibre and that at sea level, it tends to fluctuate because of atmospheric conditions and 
pollution (Kim et al. 2001).

5  System analysis

In order to validate the proposed simulative methodology, the QKD system presented in 
Wang et al. (2017) will be analysed. It is a polarization-encoding BB84 system, where 
classical and quantum channels coincide in the same optical fiber. The quantum com-
munication sub-system is shown in Fig.  5; the optical paths are labelled in red. Alice’s 
transmitter contains four lasers that, in association with two polarizing beam splitters and 
a polarization controller (a voltage controlled retarder), generate the four non-orthogonal 
polarization states. From the top two (labelled A and B) horizontally and vertically polar-
ized photons are generated, while, from the lower two (C and D), coupled with a polariza-
tion controller, diagonally and anti-diagonally polarized photons are produced. These two 
optical paths (1 and 2) are joined in path 3 using a beam splitter. At the end of Alice’s sub-
system, a Variable Optical Attenuator (VOA) is used to reduce the signal intensity down 
to quasi single-photon level. In this setup, decoy state method is employed to increase the 
communication security; Alice sends signal states in the 75% of cases whose Mean Photon 
Number (MPN) is 0.6, weak decoy states in the 12.5% of cases whose MPN is 0.2, and 
vacuum states in the remaining 12.5% of cases.

Fig. 5  Schematic of the quantum communication subsystem (Wang et al. 2017). The four lasers, in combi-
nation with the polarizing beam splitters (PBS) and a polarization controller (PC), generate one of the four 
non-orthogonal states (qubit) at a time. The first two light paths (labeled with 1 and 2, in red) are combined 
using a beam splitter (BS). Then, the light pulse is attenuated down to signal state or weak decoy state 
through a variable optical attenuator (VOA) and sent to Bob through an optical fiber. At the beginning of 
Bob’s receiver a band pass filter (BPF) is used to filter out the Raman noise. Then, a BS splits the incoming 
photons in order to select the measurement basis. The other two polarization controllers are used to com-
pensate alterations in the SOP caused by the fiber and, the lower one, also to rotate the light polarization of 
45◦ in order to measure in {A,D} basis. The PBSs, in combination with the single-photon avalanche diodes 
(SPAD), form the effective measurement units
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Alice and Bob are connected through an optical fiber, as aforesaid. It has an attenuation 
equal to 0.33 dB/km at 1310 nm, the quantum communication wavelength used in this system.

At the beginning of Bob’s receiver, a 100 GHz bandpass filter centered at 1310 nm is 
present in order to suppress the noise added by the classical communication, mainly due to 
Raman scattering. Then a beam splitter is used to randomly select the measurement basis: 
photons directed in path 5 towards the upper PBS are measured in {H,V} basis; conversely, 
photons directed in path 6 first pass in a polarization controller that rotates their polarization 
of 45◦ and then in the PBS to be measured in {A,D} basis. A polarization controller is present 
also in path 4 in order to compensate unwanted deviations in the SOP, mainly caused by the 
optical fiber (polarization misalignment), which are here neglected. It is reminded here that 
another simulation, reported and commented in Sect. 6.2, takes into account this non-ideality 
phenomenon. The last element of Bob’s sub-system is made by the single-photon detectors, in 
this case Single-Photon Avalanche Diodes (SPAD). They are a fundamental part of the QKD 
system because their performance strongly influences the secure key rate and the quantum bit 
error rate.

5.1  Example of qubit propagation across the system

Employing the formalism presented in Sect. 2, here the propagation of a qubit from Alice’s 
laser to Bob’s detector is calculated. It is a concrete example of the simulative methodology, 
where ideal components will be considered in order to simplify the understanding. Obviously, 
in MATLAB, the real parameters of the system components will be used in order to evaluate 
the Quantum Bit Error Rate (QBER) and the secure key rate.

Assuming ideal optical components, �L is the alpha parameter (Eq. 16) for the coherent 
light emitted by the lasers, while �A is the parameter after the attenuation of the VOA.

The encoding scheme used in these types of systems is the following one: binary “1” cor-
responds to vertical or diagonal photons, while binary “0” corresponds to horizontal or anti-
diagonal photons.

Assuming that Alice wants to send a “1” in the {H,V} basis, she activates laser B, taking 
the other 3 lasers deactivated. Consequently, after the PBS, the state in path 1 is:

and its associated vector is:

Instead, in path 2 there is the vacuum state, so the global state is:

Light from path 1 and path 2 is combined using a 50:50 BS. Using Eq. 26 with � = 0 and 
tH = tV = rH = rV =

1

2
 , one obtains that the output state is:
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where b̂ and ĉ are the operators at the output ports. In the following steps the alphabetical 
order will be followed. Note that the plus in the displacement operator of path four is a 
consequence of the complex conjugation of the imaginary unit.

This result is confirmed using the matrix relation employed in the simulator:

whose result can be written as follows:

Note that the imaginary unit i as vertical component of vector V4 is only a phase shift of �
2
.

One of the two output states (4) is discarded, while the other one (3) passes through 
the VOA to obtain a signal or a decoy state that is sent to Bob:

After the optical fiber and the Raman filter, which in the ideal case do not affect the state, 
the light pulse reaches Bob’s beam splitter. Obviously, in the simulator, the attenuation 
of these two components is taken in account using Eq.  28. As aforementioned, this last 
BS separates the photons in order to select the measurement basis. Following the same 
approach, one can find that the output states of the BS are:

and equivalently, using the matrix relations, the output vectors are:
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Photons that reach path 5 are measured in {H,V} basis. In fact, after having crossed the 
voltage controlled retarder used to compensate polarization drifts (which can be neglected 
in this ideal example), the coherent state is split in path 7 and 8 by a PBS, obtaining the 
following states:

Equivalently, similarly as done in Eq. 14, their vectorial representation is:

From the previous calculations, one can easily understand that, if all the photons of thelight 
pulse are directed towards path 5 to be measured in {H,V} , the qubit is correctly measured. 
In fact, only the SPAD connected to path 8, associated with vertically polarized photons, 
is triggered. The fact that the vacuum state is present in path 7 indicates that no photon 
reaches the upper detector, at least in the case of an ideal system. Obviously, in the real 
case, imperfections in optical components bring some photons to this detector, resulting in 
occasional erroneous detections.

On the other hand, photons directed towards path 6 are measured in {A,D} basis. In fact, 
the polarization controller present in this path is always active and primarly used to rotate the 
state of polarization of the photons of 45◦ . Applying Eq. 21 (with � = � and � =

�

8
 to describe 

a rotator of 45◦ ) one finds that, after this polarization controller, the state becomes antidiago-
nal, in fact:

This rotation will lead to totally random measurements, as expected. In fact, after the PBS, 
the input path is splitted in a couple of horizontally-polarized and vertically-polarized 
states, and the global state can be computed similarly as in Eq. 14:

Equivalently, using the matrix relation of the PBS, one can easily find that the associated 
vectors are:
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In practice, the mean photon number (i.e. the sum of the square of the components of the 
associated vectors) reaching the two detectors is equal, and thus the two SPADs have the 
same probability to be triggered. In other words, a single photon that crosses path 6 is 
directed in the 50% of cases towards detector C measuring “0”, while, in the remaining 
50%, towards detector D, measuring “1”. So, the measurement in {A,D} basis is totally 
random, as expected.

To sum up, the simulator proposed in this article works in aggregate way; launching 
only once the simulation, the user obtains the mean photon number in every optical path 
and several useful parameters, such as the light intensity in every point of the system, the 
transmissivity, the polarization contrast (the probability that the photon hits the erroneous 
detector), and consequently the measurement probability.

5.2  MATLAB implementation

Since this simulator is mainly based on the matrix calculation, MATLAB results a suitable 
development environment, simple and efficient.

In order to automate the simulations, a series of MATLAB functions have been devel-
oped to easily describe and simulate a generic QKD system, but, in principle, it is possible 
to study any optical experiment based on coherent light where it is prominent to analyse 
the state of polarization. A function for each passive optical component has been devel-
oped; it contains the matrix relation of the component that allows one to compute the prop-
agation of the coherent light state, from input to output. The matrix takes into account the 
non-idealities of the component mainly through the transmission and reflection coefficients 
reported in the datasheets. It is important to precise that no information about the values 
of � of BS and PBS is usually available. For this reason, it is assumed equal to 0 and − �

2
 

for BS and PBS respectively, according to the matrices employed in the ideal simulation 
described in Sect. 5.1.

Each function contains also a sort of library storing the list of parameters necessary for 
the simulation. The functions for Pockels cells, non-polarizing and polarizing beam split-
ters are precompiled with the parameters of some commercial components. In this way, the 
real components can be quickly inserted in the simulation of a QKD system by their name, 
without having to rewrite their parameters every time. Moreover, being this structure fully 
modular, the user can freely add components to the libraries. For example, to insert a beam 
splitter in a simulation, the user can write:

[V_c,V_d]=beamsplitter_known(V_a, V_b,
BS_Name)

where “BS_Name” recalls one of the saved beam splitters, and the vectors V are the 
bi-dimensional vectors that describe the coherent state in a certain optical path: in this 
case V a and V b are the input vectors, instead V c and V d are the output vectors. So, after 
having described the QKD optical system using these functions and initialised the vectors 
linked to the coherent states emitted by the light sources, the user can launch the simulation 
obtaining the � eigenvalues for every light state in every optical path, similarly as in the 
example of Sect. 5.1, with the difference of being able to consider the non-idealities of the 
components.

The presence of the libraries allows the user to quickly insert and compare different 
optical components, observing how the performance of the system varies. This is very 
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useful from an engineering point of view because it allows one to easily do a cost-benefit 
analysis during the design phase of the system, choosing the components that guarantee 
acceptable performance in the desired working region. An example of this methodology 
will be shown in Sect. 5.4, where the system discussed at the beginning of Sect. 5 will be 
simulated by comparing different SPADs.

5.3  Quantum bit error rate and secure key rate estimation

After having described the system in a MATLAB script, it is possible to calculate the 
parameters that define the efficiency of the system: QBER and secure key rate. It shall be 
highlighted that, since the proposed simulator works in an aggregate way, the finite size 
effect is neglected. Hence, the results are obtained in the asymptotic limit.

5.3.1  Quantum bit error rate

First, the quantum bit error rate must be calculated because it is necessary to evaluate 
the secure key rate. It is a fundamental parameter since it defines if the communication 
is secure or not; it can be shown that, if QBER < 11% , Alice and Bob can obtain a secure 
private key, after having carried out error correction and privacy amplification procedures 
(Shor and Preskill 2000).

Before introducing the expression for the QBER, it is convenient to define some usefull 
concepts widely used in literature to analyse the performance of the system and to calculate 
QBER and key rate. First of all, the yield Y i  of a light pulse made by i-photons is the prob-
ability of detection at Bob’s side, given that Alice sends an i-photon pulse (Ma et al. 2005). 
When Alice sends a vacuum state, i.e. she does not send photons to Bob, the yield Y 0 is 
linked to dark counts, hence to the background noise (such as Raman noise in this case) 
and especially to the dark counts of the photon detectors. According to Ma et al. (2005, 
2006), the theoretic expression for the yield of a generic i-photon state when an infinite 
number of decoy states are used is:

where �i is the transmittance of the i-photon state, which is given by:

� is the overall transmittance, obtained considering the power attenuation caused by the 
quantum channel (in this case the optical fiber, with an attenuation equal to 0.33 dB/km), 
the optical components at Bob’s side and also the photon detection efficiency of the detec-
tors (Wang et al. 2017). The overall transmittance for every optical path is easily obtainable 
in the MATLAB simulator: assuming that Alice sends to Bob a photon vertically polarized, 
it is sufficient to make the ratio between the mean photon number reaching the correct 
detector and the mean photon number leaving Alice’s apparatus, multiplied by the photon 
detection efficiency (PDE):

where path_X2 are the components of the “quantum” Jones vector used to calculate the 
mean photon number in horizontal (1) and vertical (2) polarization states.

(43)Yi = Y0 + �i − Y0�i ≅ Y0 + �i,

(44)�i = 1 − (1 − �)i.

(45)� = PDE ⋅

path_det(1)2 + path_det(2)2

path_Alice(1)2 + path_Alice(2)2
,



A simulator of optical coherent‑state evolution in quantum…

1 3

Page 19 of 32   689 

Returning to the QBER, its expression in BB84 QKD systems, widely used in litera-
ture (Wang et al. 2017; Ma et al. 2005, 2006), is the following one:

where:

• Q� : the probability of a detection event when Alice sends a signal state. It is also 
called signal gain, and it is equal to (Ma et al. 2005): 

 where � is the signal mean photon number. In general, the aforementioned Y0 can be 
easily obtained by the datasheet of the detector or by making hardware level simula-
tions (for example using Verilog-A models, as in Xu et al. (2018)). In this case, also 
the Raman noise contributes to Y0 because the classical communication happens on the 
same fiber used as quantum channel. Y0 is assumed equal to 2.45 × 10−6 , considering 
the dark count probability per clock cycle of the used detector (equal to 1 × 10−6 ) plus 
the Raman noise probability reported in the reference article (Wang et al. 2017). The 
transmittance � is computed using the simulator;

• evac : the error rate of the background. Dealing with the BB84 protocol, it is usu-
ally considered completely random, consequently evac is assumed equal to 0.5 (Ma 
et al. 2005);

• eopt : the probability that the photon hits the erroneous detector, due to a finite 
polarization contrast. It fixes the QBER at small communication lengths. In this 
system setup, it is mostly caused by the polarizing beam splitter. This parameter 
can be easily computed with the simulator; it is sufficient to divide the light inten-
sity reaching the wrong detector by the total light intensity reaching the pair of 
detectors: 

 where the subscripts “i” and “c” stay for incorrect and correct detectors, respectively. 
Unfortunately, since no details are given regarding the optical components used in this 
experimental setup, this parameter is obtained by the fit of the theoretical QBER plot 
shown in the article, which gave eopt = 1.2 . In general, this parameter is independent 
from the quantum channel length, and it ranges between 0.5 and 3.3 (Ma et al. 2005), 
therefore the fitted value is reasonable.

The comparison of simulated and experimental values is shown in Fig. 6; the simula-
tions well approximate the experimental values, slightly underestimating them between 
50 km and 75 km and overestimating them beyond this point. This discrepancy is 
attributable to the fact that the optical components used in this system are not men-
tioned. In particular the parameter eopt , connected to the quality of the used optical 
components, strongly influences the QBER fixing its minimal value when the quantum 
channel length tends to zero.
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5.3.2  Secure key rate

To determine a worst-case scenario, it is useful to evaluate the lower bound of the 
secure key rate. According to Ma et al. (2005), the lower bound for the secure key rate 
per clock cycle in a BB84 protocol can be calculated as follows:

The parameters in the formula are:

• q: is the probability that Alice emits a signal state (0.75, as reported in the article) 
and Alice and Bob choose the same basis (0.5). Hence q = 0.75 × 0.5 = 0.375;

• f: the inefficiency of the error correction, which is 1.25 in this system;
• H2 : the binary entropy function, equal to: 

• E� : the QBER of the system;
• QLB

1  : is the lower bound for single-photons signal states. Considering that in the 
setup of Wang et  al. (2017) a two-decoy state-protocol is adopted, with a vacuum 
decoy state and a weak decoy state, its values is calculated using the following for-
mula (Ma et al. 2005): 

 where � is the MPN for signal state, while � the MPN for the weak decoy state. Q� is 
the weak-decoy state gain, calculated as in Eq. 47;

• eUB
1  : the upper bound for the quantum error rate due to single photon. Considering 

the two decoy state-protocol, it can be estimated with the following formula (Ma 
et al. 2005): 
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Fig. 6  Comparison between the 
experimental QBER and the 
simulated one
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 In this formula YLB
1

 is the lower bound for the single-photon yield, calculated with the 
following equation (Ma et al. 2005): 

The list of the parameters employed in the simulations is reported in Table 1. The simu-
lated secure key rate is shown in Fig. 7, where the black dots represent the experimen-
tal values. The simulated curve, in red, tends to slightly overestimate the key rate also 
because the previously calculated QBER was lower than the experimental one. Never-
theless, since the simulated and the experimental values show the same trend, one can 
be reasonably optimistic about the accuracy of the proposed modelling methodology.

Considering the few information given by the researchers, the presence of Raman 
noise, and the simplifications introduced by this simulator, the results are satisfactory. 
Probably, having a more detailed description of the system would allow the proposed 
simulator to provide more accurate results.

(52)eUB
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.
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.

Fig. 7  Comparison between the 
experimental secure key rate and 
the simulated one

Table 1  List of the parameters 
employed in the simulation

Variable Value Source Simulable

Y
0 2.45 × 10−6 Wang et al. (2017) –

� Variable Simulator Yes
� 0.6 Wang et al. (2017) –
� 0.2 Wang et al. (2017) –
evac 0.5 Literature –
eopt 0.012 Wang et al. (2017) Yes
q 0.375 Wang et al. (2017) –
f 1.2 Wang et al. (2017) –
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5.4  Comparison of different SPADs

The possibility to easily observe how the performance of the system varies changing its 
components is a very useful feature of this simulator; it allows one to perform all the 
needed cost-benefit analysis during the design phase of the system.

In order to present this feature, the QBER of the system presented in Sect. 5 is simulated 
again, changing only the detectors. It is interesting to observe how the maximum achiev-
able communication distance, where the QBER reaches the 11%, changes. For consistency, 
it was decided to compare only single photon avalanche diodes, the same type of detectors 
employed in the original setup.

The original detectors are able to work up to 625 MHz, with a PDE equal to 10% and a 
dark count rate of 1 × 10−6 (Wang et al. 2017). The original QBER, simulated with these 
parameters, is plotted in black. The SPAD developed by Zhang et  al. (2010)  is the only 
one of the comparison that offers better results. In fact, it is a very performing detector, 
able to work up to 2.23 GHz, with a PDE of 14% when the dark count probability per gate 
is approximately 1 × 10−6 . Its simulation is reported in red. The SPAD presented in Jiang 
et al. (2017) allows one to obtain a QBER very similar to the original one. In fact it is a 
SPAD able to work up to 1.25 GHz, with 10% of PDE when the dark count probability per 
gate is 1.6 × 10−6 . Its simulation is plotted in orange. The other two SPADs selected for 
the comparison give worse performance. The detector presented in Ruggeri et al. (2015) is 
able to work up to 1.3 GHz, with a very high PDE (30%) which corresponds to an equally 
high dark count probability per gate ( 2.2 × 10−5 ). Its simulation is reported in blue. The 
worst results are obtained using the detector of Scarcella et al. (2014). It can work up to 
1.3 GHz, with a PDE of about 6% and a corresponding dark count probability per gate of 
2 × 10−5 . Its results are plotted in green.

From this comparison, it is clear how the single-photon detectors are crucial compo-
nents in QKD systems. The best detector (red) permits to establish secure communications 
up to 106 km, approximately, versus the 67 km achievable with the worst one (green).

With the presented simulator it is possible to repeat this kind of comparison for each 
component, looking for the desired compromise between costs and performance.

6  Additional results

The target experimental setup of Wang et al. (2017) and the related article do not include 
a discussion on eavesdropping attacks nor on fiber polarization misalignment. Therefore, 
to validate the proposed coherent state-based simulator by comparing its results with the 
experimental ones of Wang et al. (2017), Sect. 5 does not consider attacks or polarization 
misalignment effects. However, the simulation methodology proposed in this article is suf-
ficiently generic to model these phenomena, as discussed in the following.

6.1  Beam splitter attack

Even though an ideal QKD exchange allows Alice and Bob to share an unconditionally 
secure key, real-world setups, as discussed in the previous sections, are flawed by sev-
eral non ideal phenomena. The latter can be exploited by an eavesdropper, conventionally 
known as Eve, to steal information about the key, for instance, through a so-called intercept 
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and resend attack (Bennet et al. 1992). Several attacks exploit the fact that currently avail-
able QKD setups mainly use attenuated coherent lasers as photon sources. Therefore there 
will be some pulses consisting of more than one photon, and Eve can try to steal photons 
from the quantum channel. Among the most analysed attacks directed towards coherent 
states, one can cite the photon number splitting attack (Calsamiglia et al. 2001) and the 
beam splitter attack (Bennet et al. 1992; Calsamiglia et al. 2001; Allati and Baz 2015; 
Ramos and Karlsson 2004). The former is a theoretical attack in which Eve carries out 
a quantum non-demolition measurement on every pulse received from Alice to count the 
number of photons: for every pulse containing more than one photon, Eve deterministi-
cally takes away a single photon, which she stores in a quantum memory, waiting for Alice 
and Bob to declare the chosen basis for every pulse. Conversely, the latter is an experi-
mentally feasible attack on current physical setups, to which this section is devolved. In a 
beam splitter attack, Eve introduces a beam splitter (Fig. 9) in the quantum channel with 
transmittance te towards Bob and reflectance re towards herself: varying these parameters, 
she can control the percentage of photons that are deviated towards herself. Since Eve aims 

Fig. 8  Simulated QBER of 
the system (Wang et al. 2017) 
comparing different SPADs. The 
black line represents the original 
QBER, simulated using the 
information about the detector 
reported in the reference article 
(Wang et al. 2017).

Fig. 9  Schematic representation of a beam splitter attack. t
e
 and r

e
 represent the transmission and reflection 

coefficients of the beam splitter added by Eve. U
A
 , U

B
 and U

E
 symbolically represent the Pockels cell used to 

choose the basis
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to maximise the cases for which both she and Bob measure at least one photon, it is clear 
that the optimum, from Eve’s perspective, is to choose re = te = 0.5 (Ramos and Karlsson 
2004).

To simulate the effect of a beam splitter attack—while preserving the low-complexity 
low-CPU-time hardware-oriented approach of the proposed methodology—the same QKD 
network of Fig. 5 and the same methodology of Sect. 5 are employed, with the only addi-
tional assumption that Eve places a beam splitter halfway between Alice’s variable optical 
attenuator and Bob’s bandpass filter. The presence of Eve’s beam splitter reduces the effi-
ciency � of the setup, thus leading to an exponential increase of the QBER, according to 
Eq. 46. Indeed, the QBER is a function of the efficiency, which in turn becomes a function 
of Eve’s reflectance re . Figure 10 shows the exponential dependence of the QBER on re . It 
shall be highlighted that, as expected, when re = 1 , then E� = 0.5 . As a matter of fact, if all 
photons are rerouted towards Eve, Bob’s measurements are exclusively due to background 
noise (modelled by evac ), and no information is shared between Alice and Bob.

Figure 11 reports the simulated behaviour of QBER as a function of the fiber length, 
when re = te = 0.5 (best choice for Eve). Comparing Fig. 11 with Fig. 8, it can be stated 

Fig. 10  Simulated QBER of the 
system (Wang et al. 2017) under 
beam splitter attack, as a function 
of the beam splitter reflectance 
r
e
 towards Eve’s subsystem. The 

fiber length is fixed at 80 km

Fig. 11  Simulated QBER of the 
system (Wang et al. 2017) under 
beam splitter attack, as a func-
tion of fiber length. The red line 
shows the QBER when Eve uses 
a beam splitter with reflectance 
equal to 0.5: as expected, it is 
higher respect to the case without 
eavesdropper, and, consequently, 
the 11% QBER threshold is 
reached at a shorter fiber length
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that the increase of the QBER due to Eve’s attack reduces the maximum length of the fiber 
that guarantees QBER < 11% , as expected from the above discussion.

6.2  Fiber polarization misalignment

Analogously to the beam splitter attack, the QKD setup in Fig. 5 and the simulation meth-
odology of Sect. 5 permit to evaluate the effects of polarization misalignment along the 
fiber. A schematic representation of the simulated optical system is shown in Fig. 12. The 
most interesting part is undoubtedly the central one, where channel is highlighted: the 
effects of random polarization rotations are described in terms of a sequence of equivalent 
Pockels cells characterized by the random angle 𝛿 =

𝜉

2
 (Eq. 27), located exactly in the mid-

dle of the channel, whose total length is equal to L, and which is, as usual, affected by the 
intensity attenuation phenomenon (Eq. 28).

The information available in Xu et al. (2013) is useful not only for the construction of 
the model based on the effective Pockels cell, but also to choose the 𝜉 value in all the exe-
cuted simulations. In particular, in that reference, the random angle is assumed to belong 
to a normal distribution with mean number equal to 0 and standard deviation �std—which 
is related to the misalignment error emis = sin2(�std) employed in the reported results—
thus implying that the aleatory angle is considered between −3�std and +3�std (99.73% of 
the normal distribution). For these reasons, in order to consider a worst-case simulative 
scenario, the effects of polarization misalignment in the setup of Fig. 5 are examined for 
𝜉 = +3𝜆std , with different emis values (thus different 𝜉 = +3 sin−1(

√
emis)).

Figure  13 shows the simulated behaviour of the secure key rate as a function of the 
misalignment error 0 ≤ emis ≤ 0.08 for a channel length equal to 75 km. It is possible to 
ascertain, as expected from theory, that a higher rotation implies a more significant reduc-
tion of the secure key rate. In particular, emis = 0.08 reduces the plotted quantity by about 
five times, with respect to the case in which misalignment error is totally absent.

The available model of polarization misalignment also permits to evaluate the effects 
of this phenomenon on the maximum secure achievable distance, i.e.  the channel length 
where QBER overcomes 11%. Figure 14 shows the QBER as a function of fiber length, 
with different constant polarization misalignment values. As expected, when the polari-
zation misalignment error increases, the maximum secure achievable distance decreases. 
In particular, with the simulation setup under analysis, a polarization misalignment 
emis ≃ 0.08 reduces this distance by more than 10 km with respect to the corresponding 
value with emis = 0 , which is slightly higher than 100 km.

Fig. 12  Schematic representation of a fiber polarization misalignment simulation. The effective Pockels cell 
used to describe random rotations is located in the middle of a channel with total length L. Simulation also 
takes into account the intensity attenuation
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7  Conclusions and future perspectives

The theoretical model and the MATLAB implementation discussed in this article rep-
resent a necessary starting point for the development of a simulator for the analysis and 
the design of Quantum Key Distribution systems based on polarization encoding. The 
simulation of a real system presented in Sect. 5.3 provides reasonable results, which are 
in good agreement with the experimental QBER and key rate reported in the reference 
article (Wang et  al. 2017). Moreover, the proposed simulator provides a preliminary 
support for polarization misalignment phenomena, as discussed in Sect. 6. Even though 
this work does not propose a definitive model for QKD systems, the obtained results 
are encouraging and represent a first step towards the validation of the reliability of the 
proposed approach. A comprehensive definitive simulator undoubtedly requires more 
research; some of the future steps required to approach this goal are reported in the 
following.

A first step should be the integration of new functions for other passive optical compo-
nents usually employed in QKD systems, for example mirrors. Moreover, the model of the 

Fig. 13  Simulated secure key 
rate of the system (Wang et al. 
2017) taking in account the 
polarization misalignment effect. 
When the polarization error emis 
and consequently the rotation 
angle 𝜉 = +3 sin−1(

√
emis) 

increase, the secure key rate rap-
idly decreases. The simulations 
are performed with a quantum 
channel 75 km long

Fig. 14  Simulated QBER of the 
system (Wang et al. 2017) as 
a function of the fiber length, 
taking in account the polariza-
tion misalignment effect.When 
the polarization error emis and 
consequently the rotation angle 
𝜉 = +3 sin−1(

√
emis) increase, the 

secure communication distance, 
where QBER is lower than 11%, 
decreases
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quantum channel can be improved and expanded. Indeed, the current version of the simula-
tor only takes into account the attenuation and the polarization misalignment effects of the 
channel, whereas other channel non-ideal phenomena, such as the frequency dispersion, 
are neglected. The two phenomena already available could be also evaluated in other simu-
lative scenarios. For example, the model of polarization misalignment based on Jret is suf-
ficiently generic for being employed with probability distributions of 𝜉 different from the 
normal one inherited from Xu et al. (2013). An interesting use-case could be the simulation 
of time-correlated aleatory 𝜉 values. Even though the time variable is not explicitly availa-
ble in the simulator, it could be possible to emulate it with repeated photons transmissions. 
This approach could also open the way for the future integration in the simulator of "real-
time" polarization mismatch compensation procedures based on an iterative methodology, 
similar to that described in Higgins et al. (2020). This simulative approach could be also 
exploited for the evaluation of a more generic misalignment based multiple random angles, 
exploiting the generic Jcomb

ret
 matrix (Eq. 24). A potential strategy for real-time polarization 

misalignment compensation is schematized in Fig. 15; this is based on the comparison of 
the expected transmitted and the received states of photons not encoding information, to 
obtain an estimation of a triplet of random angles �U3,r , �U3,r and �U3,r associated with the 
equivalent Jcomb

ret
 matrix. If this values are available it is possible to apply to the photons 

state the inverse evolution Jcomb
ret

†
= Jcomb

ret
(−�U3,r,−�U3,r,−�U3,r) (Abraham 2019), with a 

set of Pockels cells available to the receiver.
In addition to all possible improvements associated with optical fiber, since open-air 

QKD is at the root of satellite QKD, the interest in this technology has been recently 
increasing. Therefore, a detailed analysis should be dedicated to the air used as the 
quantum channel.

As mentioned above, the photon detection efficiency and the dark count rate of single-
photon detectors strongly influence QBER and key rate of QKD systems. Hence, it would 
be valuable to integrate into the infrastructure a low-level (for instance, circuit-level 
or hardware-level) simulation tool for photon detectors, as depicted in Fig.  16. A possi-
ble approach would be to combine the optical simulator presented in this article with an 

Fig. 15  Schematic representation of a potential iterative procedure for compensating fiber polarization mis-
alignment. Transmitted and received states could be compared to define the rotation angle � of the compen-
sation angle available to Bob
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analysis tool for photon detectors (based for example on Verilog-A, as the one reported in 
Xu et al. (2018)), able to evaluate performance of the latter depending on the structure and 
the operating conditions of the devices. In this way, the user would be allowed to easily 
estimate and compare the performance of the QKD system, by employing custom detectors 
and reproducing the real operating conditions.

Currently, as discussed in Sect. 6.1, the simulator supports a preliminary model of the 
beam splitter attack. The possibility to simulate additional eavesdropper attacks should be 
another interesting future feature of this simulator.

Thereafter, it will be interesting to broaden the horizons of the simulator, allowing the 
design of other types of QKD systems, not only based on polarization-encoding. In fact, 
at the moment, the simulator is suited to analyse systems based on polarization-encoding 
protocols without entangled photons (such as BB84 or Lucamarini and Mancini 2005). A 
potential solution would be the evolution of the theoretical model, moving to the density 
matrix formalism, which is expected to bring at least two main benefits. Firstly, this for-
malism would allow one to simulate a larger variety of QKD systems, including those that 
employ real single-photon light sources, such as defect clusters in diamond and quantum 
dots in solid-state semiconductors. Secondly, it would provide wider support for the simu-
lation of environment interactions and non-ideal phenomena, such as the loss of quantum 
information due to decoherence and relaxation.

Even though some features must be clearly improved, the activity described in this arti-
cle could be a good starting point for the development of an accurate simulator of quantum-
assisted communication systems, employable by network designers with the awareness of 
the discrepancies between the simulated results and those expected in an experimental 
setup.
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Fig. 16  Flow chart of the simulation framework. The data obtained from the optical simulator and the sin-
gle-photon detector simulator are combined in a post-processing phase in order to calculate QBER and key 
rate of the system
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