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Abstract—Deep Neural Networks (DNNs) are nowadays widely
used in low-cost accelerators, characterized by limited compu-
tational resources. These models, and in particular DNNs for
image classification, are becoming increasingly popular in safety-
critical applications, where they are required to be highly reliable.
Unfortunately, increasing DNNs reliability without computational
overheads, which might not be affordable in low-power devices, is
a non-trivial task. Our intuition is to detect network executions
affected by faults as outliers with respect to the distribution
of normal network’s output. To this purpose, we propose to
exploit Open-Set Recognition (OSR) techniques to perform Fault
Detection in an extremely low-cost manner. In particuar, we
analyze the Maximum Logit Score (MLS), which is an established
Open-Set Recognition technique, and compare it against other
well-known OSR methods, namely OpenMax, energy-based out-
of-distribution detection and ODIN. Our experiments, performed
on a ResNet-20 classifier trained on CIFAR-10 and SVHN
datasets, demonstrate that MLS guarantees satisfactory detection
performance while adding a negligible computational overhead.
Most remarkably, MLS is extremely convenient to configure and
deploy, as it does not require any modification or re-training
of the existing network. A discussion of the advantages and
limitations of the analysed solutions concludes the paper.

Index Terms—Image Classification, Open-Set Recognition,
Deep Neural Network, Reliability, Fault Detection

I. INTRODUCTION

An increasing number of applications exploit Deep Neural
Networks (DNNs) due to their effectiveness in tasks such as image
classification, image segmentation or speech detection [1], [2].
DNNs are employed in automotive, robotics, finance, and many
other sectors, thanks to their unprecedented performances. Not
surprisingly, DNNs are often used in safety-critical applications,
where there are strict requirements regarding fault tolerance and
resilience (e.g., the ISO 26262 for the automotive industry).

DNNs are complex structures made of a huge number of param-
eters called weights. The number of weights and artificial neurons
is often higher than the network needs, and this property, called
over-provisioning, apparently makes the DNNs intrinsically fault-
tolerant. Initially, neural network were believed to be inherently
fault-tolerant. However, many studies are showing that this is not
totally true (e.g., [3]–[5]). It is interesting to notice, for exam-
ple, that neural networks have a highly parallel and distributed
architecture where one weight is used for multiple computations.
Therefore, a single fault in a single parameter can impact multiple
computations. As many recent works have shown [6]–[8], analyz-
ing the fault resilience of a neural network is of vital importance.

An example of a safety-critical scenario is autonomous driving.
In this domain, the model’s resilience to faults and its accuracy
are not the only meaningful design criteria. A DNN running in a
car has rigorous computational requirements dictated by the low-
power hardware accelerators. However, while the computational
cost needs to remain low, the throughput of the network should
not decrease since it has to examine a continuous input stream.
Therefore, an additional design criterion is to minimize the latency
between the moment a DNN receives an input and produces an
output. There is a substantial interest from the scientific commu-
nity, in minimizing the latency, the energy, and the power require-
ments of a network. Examples of this can be seen in hardware-
aware Neural Architecture Search techniques [9], [10] that create
networks that minimize the costs mentioned above.

The mechanisms used to increase the fault tolerance in a setting
such as autonomous driving should not interfere with the other
design parameters. For this reason, we propose an extraordinarily
inexpensive Fault Detector that uses no more than a comparison
of a single output value with a threshold to decide whether a
fault has compromised the computation of the DNN. This, in
particular, corresponds to the most straightforward solution this
paper proposes, the Maximum Logit Score (MLS), which belongs
to the family of Open-Set Recognition (OSR) techniques. These
methods have been developed in the machine learning community
to automatically determine whether an input belongs to one of
the classes used to train the network [11]. To the best of our
knowledge, we are the first to use these techniques for fault
detection, and to illustrate how these inexpensively increase the
reliability of a DNN classifier. In particular, we test a few OSR
strategies from the most lightweight solutions, including MLS and
[12], [13], to more complex ones such as ODIN [14], and others
[15], [16], which have a considerable computational overhead. An
additional advantage of the presented methodologies is that they
treat the network as a black box: there is no need to know the DNN
architecture, as these methods do not require any form of training
or fine-tuning.

Different solutions targeting to improve DNN reliability have
been implemented at very different levels and granularity, for
example, approaches that mainly protect the static parameters of
the DNN extensively exploit the Error Correcting Codes (ECC).
However, such mechanisms are less effective when multiple faults
occur, as described in [17]. Furthermore, ECCs cannot provide any
protection to different faults than those happening in the memory.
Santos et al. [18] propose an alternative algorithm to identify
and correct errors in the network kernel matrix multiplications,
dubbed Algorithm-Based Fault-Tolerance (ABFT). This technique
can recognise up to 60% of critical faults. A high-level solution978-1-6654-7355-2/22/$31.00 ©2022 IEEE



is provided by [19], where the authors propose a fault detector
called Reliable Maxpooling, where the output of all the network’s
Maxpool layers is compared against a threshold. On the one
hand, this solution can recognize many critical faults. On the
other, it requires an additional operation for every application of
the Maxpool operator. It is worth nothing that this method also
requires acting on internal operations of the network, which can be
problematic for end-users, that rarely have the means of modifying
the network. Instead, the solutions proposed in this paper treat the
network as a black-box, requiring only the network’s output to
recognize faults. Another approach to fault tolerance is process
replication [20], which consists of repeating the process to be
monitored to detect and react to faults occurred during processing.
Clearly, such a solution is often too expensive to be integrated in
low-cost systems. In [21], the authors tackle the problem of fault
tolerance in image processing applications, proposing the Fault
Impact Estimator, that substitutes the process replication with an
approximate replication followed by a lightweight detector based
on a neural network, triggering a re-computation when a fault is
detected.

The rest of the paper is organised as follows. Section II provides
a broad summary of OSR techniques. Section III formally intro-
duces the fault detection problem. Section IV describes the MLS
and the other OSR methods used as Fault Detectors, while Section
V outlines our case study. Then, Section VI reports the experimen-
tal results. Finally, Section VII draws some final conclusions.

II. BACKGROUND

In image classification, Open-Set Recognition [11] is the task
of recognizing when an input image does not belong to one of the
classes represented in the network’s training set. More precisely,
an input is said to be in-distribution when it belongs to one of
the pre-defined classes, otherwise, it is called out-of-distribution.
To better understand why OSR techniques are needed, consider
the CIFAR-10 dataset, composed of ten classes: aeroplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship and truck. A DNN
trained on this dataset will assign any input samples to one of
these in-distribution classes. When the network is fed with an
image depicting a helicopter, it will assign the helicopter to one of
the in-distribution classes, mislabelling the image. This is where
OSR comes into play. When the network is fed with an out-of-
distribution image (e.g., the helicopter), the OSR algorithm will
mark it as an outlier, therefore discarding the network prediction.

Distinguishing in-distribution and out-of-distribution samples
is a challenging task: many authors presented different solutions
to this problem. Some solutions achieve good results simply by
analysing the vector score or the logit, i.e., the output of the last
layer of the network prior to the application of the Softmax. A
simple solution used as a baseline in many works [15], [13], is
to study only the maximum element of the logit, the Maximum
Logit Score (MLS). Another example of this is OpenMax [12] that
compares the logit of an inference with the average logit recorded
during training. Other solutions (e.g., [15], [16]) require specific
network training or fine-tuning in order to make in-distribution
and out-of-distribution easier to distinguish. While an additional
training increases the performances of OSR methods, it makes
their application heavily context-dependent. Interestingly, there
are OSR methods, like energy-based out-of-distribution detection
[13], which achieve good results adding a negligible impact on

DNN computational cost. Still, by fine-tuning the network to
minimize a custom loss, it is possible to improve the performances
of the method. Finally, some OSR methods employ more so-
phisticated techniques, such as Generative Adversarial Networks
(GANs) [22].

III. PROBLEM FORMULATION

We denote as Mθ : I → C a DNN classifier, which maps an
image x ∈ I , belonging to the set of images I of a fixed size,
to a label Mθ(x) belonging to the set of labels C. We want to
detect faults affecting the DNN, which can be either Silent Data
Corruptions (SDC) [23] of parameters θ, or faults deriving from
the hardware running the network. In this paper, we consider faults
following the single-fault case, i.e., only one fault can affect the
network at a given time. In particular, we are interested in detecting
faultsMθ 7→ M̂θ that are critical for an image x provided as input,
namely faults that change the label the classifier would otherwise
associate to x:

Mθ(x) ̸= M̂θ(x). (1)

In the following, we refer to the output of the network not affected
by faults as the golden output, as opposed to the faulty output.

Our primary desiderata is that critical faults are detected by an
algorithm adding an inexpensive computational overhead. More-
over, the fault detection algorithm has to be practical to use,
avoiding sophisticated configuration, as well as additional network
training phases or fine-tuning. To develop our detector of critical
faults, we assume that the golden outputs of the test set TS of
images are provided.

IV. PROPOSED APPROACH

Open-Set Recognition methods have been presented in the
machine learning literature to detect when an input x does not
correspond to any label represented in the training set TR, thus
when x is unknown to the network. Most of OSR methods build
upon the assumption that images from unknown classes result in
some out-of-distribution quantity during processing, which can be
detected by specific statistical or machine learning techniques. Our
intuition is that OSR methods can also detect when a critical fault
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Fig. 1: The proposed Fault Detector (in red) analyzes the logit
score f(x) produced by the classification network (in blue) to
detect critical faults. The detection consists in the computation
of a score s(x) and the comparison with a threshold γ, set to
guarantee the FPR of the algorithm. In this work, we consider
scores s(·) inspired by the OSR literature: the Maximum Logit
Score MLS (·) (4), the energy-based score ET (·) (5), and the
OpenMax score OM (·) (6).



occurs, as this might result in some out-of-distribution quantity
which an OSR method is expected to detect.

Typically, given an input image x, a classification network
computes the score vector f(x) ∈ R|C|, called logit, comprising
the scores associated to each class. The higher the score, the most
likely x belongs to the corresponding class. The logit is then
fed to the Softmax activation function, that normalizes it into a
probability vector, yielding the classifier’s result. As a matter of
fact, the Softmax normalization rescales extreme values in the
logit, thus preventing the detection of out-of-distribution samples.
For this reason, most OSR techniques analyze the logit vector f(x)
rather than its normalized counterpart.

In this work and for the very first time, we frame Fault Detection
as an open set recognition problem, by using logit scores as sam-
ples to be classified as in-distribution (ID) or out-of-distribution
(OOD). Indeed, we assume that logits from golden outputs follow
a similar distribution, defining the in-distribution density. In our
modeling assumption, non-critical faulty outputs are assimilated to
golden ones, as we are not interested in detecting these. Finally, we
expect outputs associated to critical faults to follow a different dis-
tribution (see [14], [15]), which gives rise to OOD samples. In this
regard, the critical-fault detector becomes an out-of-distribution
detector in the logit space.

Our approach to inexpensively detecting critical faults can be
formulated as designing a function D : R|C| → {0, 1} that
analyzes the logit f(x) to detect whether a critical fault affected
the output:

D (f(x)) =

{
1 if M(x) ̸= M̂(x)

0 otherwise
. (2)

Remarkably, in most of the considered OSR techniques, D
simply performs a thresholding on a score s(x) that can be directly
computed from the logit f(x), resulting in a negligible overhead
with respect to the DNN operations. Such a detector, illustrated in
Figure 1, can be expressed as:

D (f(x)) =

{
1 if s(x) ≤ γ

0 otherwise
, (3)

where s(x) is a score directly depending on f(x) and on the
considered OSR method, and γ is the detection threshold.

Since the golden outputs computed from the test set TS are
provided, as stated in Section III, we can use them to categorize
critical and non-critical faulty outputs. Hence, we propose to set
the threshold γ to control false alarms, and we can compute its
value from the set of non-critical faulty outputs yielded by TS
(or a portion of it). Precisely, we compute the score function
associated to every non-critical output, and we compute the α-
quantile of that distribution, where α is the desired Fault Positive
Rate (FPR) that we want our detector to achieve. Thanks to
the statistical fault injection process [24] that we employ in our
experiments and that will be presented in Section V, the threshold
computed by setting the empirical FPR over TS guarantees that
the desired FPR will be mantained over unseen faults (within a
specific confidence level and error margin).

In the following, we employ some of the most interesting OSR
techniques as a part of our low cost fault detection scheme. For
each OSR technique, the corresponding score function used in (3)
is also defined.

A. Maximum Logit Score

Several methods in the OSR literature [14], [15] investigate the
relationship between the Maximum Logit Score (MLS), namely
the maximum element of the logit, and samples from unknown
classes. They have found that inputs that do not belong to one
of the classes considered in the training set usually result in a
significantly smaller MLS. Furthermore, they propose additional
methods to increase the MLS of ID samples and decrease the
one of OOD inputs, enhancing the difference between the two.
Since our goal is to design a fault detector that does not require
specific training and has a low computational cost at inference
time, we consider to directly threshold the MLS, hence exploiting
this characterization of OOD samples. The score function s(·)
associated to the MLS is:

MLS (x) = max
c

[f(x)]c, (4)

where [f(x)]c denotes the c-th component of the logit score.

B. Energy-Based

The Energy-Based OSR [13] proposes to compute an energy
score based on the logits to discriminate between ID and OOD
samples, to avoid the compression caused by the Softmax function.
According to [13], the energy score tends to be lower for OOD
samples than for ID ones, making it possible to linearly separate
them with a threshold. We setup a Fault Detector where the score
s(·) is defined as the energy function ET : I → R:

ET (x) = −T · log
∑
c∈C

e[f(x)]c/T , (5)

where T ∈ R is the temperature characterizing the shape of the
energy function. The temperature parameter is used to smooth the
energy function output: using high values for this parameter results
in similar values for the energy even for two samples that have very
different logits.

Furthermore, [13] shows that the network can be fine-tuned to
create a larger energy gap between non-critical and critical outputs.
However, this is not viable for the considered application since
it requires a deeper knowledge of the network and an additional
fine-tuning phase, while this work focuses only in methods that
can be used off-the-shelf on pre-trained DNNs. We set up our
Fault Detector with a temperature parameter T = 1, without any
additional training.

C. OpenMax

Following the same principle, [12] proposes to replace the
Softmax activation function with the OpenMax function. The
idea behind OpenMax is to compute the Mean Activation Vector
(MAV) for each of the ID classes. The MAV for a given class
is the average logit of all the correctly-classified samples in the
training set. The further away a sample’s logit is from the MAV
of its predicted class, the higher the probability that such input is
OOD. At inference time, the distance between the computed logit
and the MAV distribution is used to revise the logit and add an
open-set class (OC) score, yielding the OpenMax vector, namely
a new score vector fOM (x) ∈ R|C|+1. Notice that fOM (x) can
be computed directly from the MAV and the logit f(x), without
additional training or fine-tuning.



We define the score function s(·) associated to OpenMax as
follows:

OM (x) =

{
−∞ if argmax [fOM (x)]c = OC

maxc [f
OM (x)]c otherwise

, (6)

where fOM is computed as in [12] and OC represents the open-
set class. We set OM(x) to be equal to −∞ when the predicted
class is OC , such that the Fault Detector (3) always detects it
as a critical fault. While not modifying the network, this solution
requires to compute the MAV from a labeled set of images, which
makes it slightly less practical than plain MLS.

D. ODIN
The final method examined by this work is ODIN [14], a

technique that builds upon the analysis of the MLS by proposing
temperature scaling and a pre-processing of the input. In particular,
ODIN applies a small perturbation to the input image, a technique
often used in adversarial attacks. However, while in an adversarial
setting, the aim is to decrease the score of the prediction, here, the
objective is to increase it. The authors in [14] show that the noise
added to the input has a more significant impact on ID than on
OOD samples, making it easier to separate them. The perturbation
added by ODIN is the gradient of the network loss function with
respect to the input. Clearly, ODIN is much more expensive than
the methods presented until now, as it requires the computation of
the perturbation δ (via a backward pass) and an additional forward
pass, where it computes a new logit f(x′), where x′ = x + δ.
However, this technique can serve as an interesting benchmark for
the other methods as it does not require any additional training or
fine-tuning of the network.

We setup a Fault Detector based on ODIN, where the score
function s(·) is defined as:

ODIN (x′) = max
c

[f(x′)]c, (7)

where x′ = x+δ is the perturbed input image computed as in [14].
Notice that this solution does not align with the scheme depicted
in Figure 1.

V. CASE STUDY

This work assesses the performance of various OSR methods
in detecting faults injected in ResNet-20 [2], a convolutional
neural network for image classification. ResNet-20 consists of 19
convolutional layers and one fully connected layer, for a total of
268,346 parameters. In our experiments, we train and test ResNet-
20 on two different datasets, CIFAR-10 [25] and SVHN [26].
CIFAR-10 contains 60k 32x32x3 images belonging to 10 different
classes. SVHN contains almost 100k 32x32x3 images representing
digits in real-world photos. Our instances of ResNet-20 reach a
95.41% accuracy on the CIFAR-10 test set and an accuracy of
96.12% on the SVHN test set.

In this work, we target permanent faults affecting the weights
of the network under the single fault assumption. In the literature,
this is a common approach to model faults happening in memory
and caused by phenomena such as radiation, aging or temperature
[23]. We simulate a permanent fault in memory affecting a network
weight as a stuck-at fault in one of its bits. Since each weight is
represented as a 32-bit floating-point number, it is possible to inject
64 different faults for each weight (for each bit, stuck-at-zero or

stuck-at-one). In particular, ResNet-20 contains 268,346 weights,
and an exhaustive fault injection campaign requires 17,174,144
single-fault injection campaigns. However, we avoid the cost of an
exhaustive search by taking advantage of statistical fault injection
[24], and computing the number of injection campaigns necessary
to model the behaviour of the network in case of faults. With this
method, we avoid injecting all the N possible faults by selecting
a subpopulation of n sample faults. In particular, the number of
samples n is selected so that the difference between the percentage
of critical faults in the population pN and the percentage of critical
faults in the sample pn is lower than a fixed error margin e
(i.e., pN ∈ [pn − e, pn + e] with a confidence level t. In our
experiments, by selecting a confidence level t = 99% and an error
margin e = 1%, we only need 16,609 fault injection campaigns to
produce a statistically sound assessment of the network behavior.
In fact, using a statistical fault injection guarantees that the metrics
used to assess the detection performance presented below are in
line with those that would be measured with an exhaustive fault
injection campaign.

In the following experiments, a fault that changes the prediction
of the network (SDC-1 [27]) is considered a critical fault. The
performances of the proposed Fault Detector are measured using
the same metrics used for evaluating OSR methods:

1) False Positive Rate (FPR): the percentage of non-critical
faults flagged as critical;

2) True Positive Rate (TPR): the percentage of critical faults
detected;

3) Area Under The Curve (AUC): the area under the Receiver
Operating Characteristic (ROC) curve that plots FPR against
TPR. The closer the AUC is to 1, the better a detector is.

VI. EXPERIMENTAL RESULTS

This work proposes to study the ability of the Open-Set Recog-
nition approaches presented in Section IV to detect critical faults
affecting a DNN through a statistical fault injection campaign,
as described in Section V. The first step is to execute the fault-
free network over the test set, obtaining the golden output. Then,
we repeat the fault injection a statistically significant number of
times. For each fault injection, we compute the faulty outputs and
categorize the results as critical when they change the golden pre-
diction, and non-critical in the contrary case. During this process,
we filter out all the vector scores and logits that contain at least
one NaN or infinite value, since they do not constitute silent faults.
Finally, we compute the score that each of the considered OSR
method associates to the outputs. We use the score of the non-
critical outputs to set a detection threshold γ (see Section IV), and
we perform the detection as in (3). To assess the performance of
the methods, we compute the metrics presented in section V.

The MLS can be easily computed from the faulty output by
taking the maximum of the logit (4). Similarly, the energy-based
approach only requires to apply the energy function (5) to the logit
vector. On the other hand, to evaluate the OpenMax function it
is necessary to compute the MAV of each class from the training
set, which is required to revise the faulty outputs logit. Then, it is
only a matter of taking the maximum of the newly-computed logit
vector (6). Finally, the application of ODIN requires to derive the
gradient loss associated to each faulty output, which is used to
compute fault-and-image specific perturbations of the input. Then,
the MLS of the logits computed from the perturbed inputs (7) are
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Fig. 2: Distributions of the critical (red) and non-critical (blue) scores associated to each of the considerd OSR methods,
computed over the test set TS by ResNet-20 trained on CIFAR-10 (top) and SVHN (bottom). Our solution (3) consists of a
thresholding of the depicted scores, hence the performance increase when these are clearly separable.

used for detection. It is worth nothing that, for all the methods that
require a temperature hyper-parameter, we tested various values.
However, the best results were achieved by setting temperature
T = 1 both for Energy-Based method and for ODIN.

The Fault Detectors proposed in this work are setup in a su-
pervised manner. In fact, the detection thresholds are computed
from the distribution of the scores yielded by non-critical faults to
achieve a fixed FPR. Precisely, the threshold γ is the α-quantile
of the non-critical scores, where α is the target FPR that we want
to achieve. Setting up the considered methods with the same FPR
allows us to perform a fair comparison.

A. Score Distributions

In Figure 2, we report the scores achieved by the considered
OSR methods over critical and non-critical outputs computed from
CIFAR-10 (above) and SVHN (below). The distribution of the
scores achieved by MLS (Figure 2a) over critical and non-critical
outputs have clearly different means, which makes them linearly
separable, even if their overlap is non-negligible. The energy
score (Figure 2b) exhibits a similar trend. However, as proven
by the results further in this section, the overlap between the two
distributions is more considerable than for the MLS. Conversely,
OpenMax presents a different behaviour: the distributions of the
scores of critical and non-critical outputs, reported in Figure 2c,
result in very distinct peaks. However, it is important to notice the
tails of the two distributions present a significant overlap. Finally,
ODIN paints a completely different picture (Figure 2d). While the
score of critical faults is almost evenly spread, the value of non-
critical faults rarely goes under a certain value. As such, ODIN

has the potential for a greater separation of critical and non-critical
faults, especially for lower thresholds.

B. Results
Section IV presents the proposed solution, which consists in

thresholding the score values computed from faulty outputs. In
order to compare different models, we set them up with a threshold
that guarantees the same FPR, namely the same rate of non-critical
faults detected as critical. Indeed, FPR and TPR usually increase
when the threshold decreases, thus we set the same desired FPR to
perform a fair comparison.

Table I reports the TPR achieved by the considered methods
over both datasets for different values of FPR, and we can ap-
preciate how the performance of different methods change with
the increase of the FPR. In particular, we notice that MLS and
the energy-based method perform similarly on both datasets at

TABLE I: Comparison between FPR and TPR for the pre-
sented methods, with ResNet-20 on CIFAR-10 and SVHN

Dataset FPR [%]
TPR [%]

MLS Open-Max Energy-Based ODIN

CIFAR-10
1 33.85 2.21 33.28 20.82

10 72.63 38.90 70.01 85.67

20 85.58 89.66 84.36 96.27

SVHN
1 18.95 12.80 15.91 28.12

10 69.98 67.74 65.27 84.77

20 87.19 88.18 83.14 94.84
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Fig. 3: The ROC curves of the proposed Fault Detector set up with different OSR methods to detect faults in ResNet-20 trained
on CIFAR-10 (left) and SVHN (right). The plot only shows FPR values between 0 and 0.2, since higher values are deemed
to be insignificant for the task of fault detection.

every FPR level, with the former being always slightly better than
the latter. Moreover, OpenMax achieves the lowest TPR when the
FPR is low, surpassing MLS and energy-based only when the FPR
reaches 20%. Surprisingly, despite being far more expensive, the
performance of ODIN are always comparable with those of MLS
and energy-based, especially for low values of FPR.

Another useful metric to compare different methods is the
AUC, which measures the area under the Receiver Operating
Characteristic (ROC) curve, namely the line plotting FPR values
against the corresponding TPR values. Larger values of AUC
correspond to better performance, 1 being the best. Figure 3
reports the ROC curves for the considered methods over CIFAR-
10 (a) and SVHN (b). Consistently with the data shown in Table
I, the better performing method is ODIN, even if for lower FPR
MLS provides comparable results. OpenMax and energy-based lag
behind, with the former performing badly on CIFAR-10. However,
all the methods reach a 100% TPR when FPR is between 40%
and 70% for CIFAR-10, while around 98% for SVHN, as shown
in Table II. ODIN is an exception, since it never reaches a 100%
TPR for CIFAR-10. The reader should be aware that, while a full
coverage of critical faults is achieved only for very high false
positive rates, the ROC curves reach 90% TPR rate early on,
tending asymptotically to 100%.

Finally, in Table III reports the AUC values for all the proposed
methods.

C. Considerations on ODIN
In this work, we compare extremely inexpensive methods with

ODIN, which is prohibitively expensive compared to the others. In

TABLE II: FPR necessary to reach 100% TPR for the different
methods on both datasets.

FPR [%] for 100% TPR
CIFAR-10 SVHN

MLS 69 98
Energy-Based 56 98
Open-Max 45 99
ODIN - 97

TABLE III: AUC of the different methods for ResNet-20 on
CIFAR-10 and SVHN.

AUC
CIFAR-10 SVHN

MLS 0.93 0.91
Energy-Based 0.93 0.90
Open-Max 0.85 0.91
ODIN 0.95 0.95

fact, for each inference, ODIN requires computing the gradient of
the network loss function (often referred to as backpropagation)
and then to compute the classification output associated to the
input image perturbed by the gradient. Consequently, the cost of an
inference is more than tripled. Proper triplication strategies, such
as the one proposed in [28] can provide better results. As such,
ODIN is an example of an expensive OSR solution that is used
in this work as a benchmark of the capability of other OSR-based
solutions, but cannot compare with equivalent-cost fault detection
solutions in the literature.

VII. CONCLUSIONS

Reliability and Fault Detection in Deep Neural Networks are
crucial problems for many applications. In this work, we success-
fully used well-known Open-Set Recognition methods adapted to
the detection of critical faults affecting classification networks,
namely faults leading to a change in the predicted label. Re-
markably, most of the considered methods only rely on the logit
produced by the network, leading to inexpensive solutions, char-
acterized by a very low computational cost at inference time
and no need for network retraining. The results obtained in this
paper, other than demonstrating the effectiveness of simple OSR
techniques, encourage the application of more sophisticated OSR
methods. However, using more elaborated methods brings new
challenges and requires a more precise definition of in-distribution
and out-of-distribution samples in a fault-affected DNN. Remark-
ably, we are working on the extension of the proposed approach
while targeting different fault models, affecting for example the
processing elements running the DNN.
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