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by noticing that Gabor frames almost diagonalize the corresponding Weyl operators.
This approach also allows to give new and more natural proofs of related results such
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1 Introduction

The wide range of problems that one can tackle by means of Time-frequency Anal-
ysis bears witness to the relevance of this quite modern discipline stemmed from
both pure and applied issues in harmonic analysis. There is no way to provide here
a comprehensive bibliography on the theme, which would encompass studies in
quantum mechanics and partial differential equations. We confine ourselves to list
some references to be used as points of departure for a walk through the topic: see
[1, 4, 6, 10, 23, 26]. Besides the countless achievements as tool for other fields, Ga-
bor analysis is a fascinating subject in itself and it may happen to shed new light on
established facts in an effort to investigate the subtle problems underlying its foun-
dation. We report here the case of Gröchenig’s work [16]: the author retrieved and
extended well-known outcomes obtained by Sjöstrand within the realm of “hard”
analysis - cf. [24, 25], and this was achieved using techniques from phase space
analysis. We will give a detailed account in the subsequent sections, but let us briefly
introduce here the main characters of this story.
The (cross-)Wigner distribution is a quadratic time-frequency representation of sig-
nals f ,g in suitable function spaces (for instance f ,g ∈S (Rd), the Schwartz class)
defined as

W ( f ,g)(x,ω) =
∫
Rd

e−2πiyω f
(

x+
y
2

)
g
(

x− y
2

)
dy. (1)

It is possible to associate a pseudodifferential operator to this representation, namely
the so-called Weyl transform - it is a quite popular quantization rule in Physics com-
munity. Given a tempered distribution σ ∈S ′(R2d) as symbol (also observable, in
physics vocabulary), the corresponding Weyl transform maps S (Rd) into S ′(Rd)
and can be defined via duality by

〈OpW(σ) f ,g〉= 〈σ ,W (g, f )〉, f ,g ∈S (Rd). (2)

The Weyl transform has been thoroughly studied in [14, 30] among others. In
his aforementioned works, Sjöstrand proved that Weyl operators with symbols of
special type satisfy a number of interesting properties concerning their boundedness
and algebraic structure as a set. In terms that will be specified later in Section 3,
we can state that the set of such operators is a spectral invariant *-subalgebra of
B(L2(Rd)), the (C∗-)algebra of bounded operators on L2(Rd).

To be precise, given a Schwartz function g ∈ S (R2d) \ {0}, we provisionally
define the Sjöstrand’s class as the space of tempered distributions σ ∈ S ′(R2d)
such that ∫

R2d
sup

z∈R2d
|〈σ ,π(z,ζ )g〉|dζ < ∞.

As a rule of thumb, notice that a symbol in M∞,1(R2d) locally (i.e. for fixed z∈R2d)
coincides with the Fourier transform of a L1 function. Furthermore, it can be proved
that this somewhat exotic symbol class contains classical Hörmander’s symbols of
type S0

0,0, together with non-smooth ones.
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The crucial remark here is that Sjöstrand’s class actually coincides with a func-
tion space of a particular type, namely the modulation space M∞,1(R2d). In more
general terms, modulation spaces (and also related Wiener amalgam spaces of spe-
cial type) are Banach spaces defined by means of estimates on time-frequency con-
centration and decay of its elements - see Section 2 for the details. They were in-
troduced by Feichtinger in the ’80s (cf. the pioneering papers [7, 8]) and soon es-
tablished themselves as the optimal environment for time-frequency analysis. Nev-
ertheless, they also provide a fruitful context to set problems in harmonic analysis
and PDEs - see for instance [11, 13, 29].

Gröchenig deeply exploited this connection with time-frequency analysis by
proving that Sjöstrand’s results extend to more general modulation spaces and, more
importantly, he was able to completely characterize symbols in these classes by
means of a property satisfied by the corresponding Weyl operators, namely approx-
imate diagonalization. This is a classical problem in pure and applied harmonic
analysis - a short list of references is [2, 19, 21, 22]. We will thoroughly examine
Gröchenig’s results in Section 3. Here, we limit ourselves to heuristically argue that
the choice of a certain type of symbols assures that the corresponding Weyl oper-
ators preserve the time-frequency localization, since their “kernel” with respect to
continuous or discrete time-frequency shifts satisfies a convenient decay condition.

In the subsequent Section 4 we report some results on almost diagonalization
obtained by the author in a recent joint work with Elena Cordero and Fabio Nicola
- see [5]. Mimicking the scheme which leads to define the Weyl transform, in [1]
the authors consider a one-parameter family of time-frequency representations (τ-
Wigner distributions) and also define the corresponding pseudodifferential operators
Opτ via duality. Precisely, for τ ∈ [0,1], the (cross-)τ-Wigner distribution is given
by

Wτ( f ,g)(x,ω) =
∫
Rd

e−2πiyζ f (x+ τy)g(x− (1− τ)y)dy, f ,g ∈S (Rd), (3)

whereas the corresponding τ-pseudodifferential operator is defined by

〈Opτ(a) f ,g〉= 〈a,Wτ(g, f )〉, f ,g ∈S (Rd). (4)

For τ = 1/2 we recapture the Weyl transform and the usual Wigner distribution,
while the cases τ = 0,1 respectively cover the classical theory of Kohn-Nirenberg
and anti-Kohn-Nirenberg operators - whose corresponding distributions are also
known as Rihaczek and conjugate-Rihaczek distributions respectively.

Our contribution aims at enlarging the area of application of Gröchenig’s result
along two directions. First, one finds that symbols in the Sjöstrand’s class are in fact
characterized by almost diagonalization of the corresponding τ-pseudodifferential
operators for any τ ∈ [0,1]. While this is not surprising for reasons that will be
discussed later, it seems worthy of interest to get a similar result for symbols be-
longing to a function space closely related to M∞,1, namely the Wiener amalgam
space W (FL∞,L1). The connection between these spaces is established by Fourier
transform: in fact, the latter exactly contains the Fourier transforms of symbols in
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the Sjöstrand’s class. It is important to remark that even if the spirit of the result is
the same, numerous differences occur and we try to clarify the intuition behind this
situation in Section 4.

To conclude, we take advantage of this characterization in regards to bounded-
ness results. We were able to study the boundedness of τ-pseudodifferential opera-
tor covering several possible choices among modulation and Wiener amalgam space
for symbols classes and spaces on which they act. We mention that in a number of
these outcomes we have benefited from a strong linkage with the theory of Fourier
integral operators. Besides, the latter condition also made possible to establish (or
disprove) the algebraic properties considered by Sjöstrand for special classes of τ-
pseudodifferential operators.

2 Preliminaries

Notation. We write t2 = t · t, for t ∈ Rd , and xy = x · y is the scalar product on
Rd . The Schwartz class is denoted by S (Rd), the space of tempered distributions
by S ′(Rd). The brackets 〈 f ,g〉 denote both the duality pairing between S ′(Rd)
and S (Rd) and the inner product 〈 f ,g〉=

∫
f (t)g(t)dt on L2(Rd). In particular, we

assume it to be conjugate-linear in the second argument. The symbol . means that
the underlying inequality holds up to a positive constant factor C > 0 on the RHS:

f . g ⇒ ∃C > 0 : f ≤Cg.

. The Fourier transform of a function f on Rd is normalized as

F f (ξ ) =
∫
Rd

e−2πixξ f (x)dx.

Given x,ω ∈ Rd , the modulation Mω and translation Tx operators acts on a func-
tion f (on Rd) as

Mω f (t) = e2πitω f (t) , Tx f (t) = f (t− x) .

We write a point in phase space as z = (x,ω) ∈ R2d , and the corresponding phase-
space shift acting on a function or distribution as

π(z) f (t) = e2πiωt f (t− x), t ∈ Rd . (5)

Denote by J the canonical symplectic matrix in R2d :

J =

(
0d×d Id×d
−Id×d 0d×d

)
∈ Sp(2d,R) ,

where the symplectic group Sp(2d,R) is defined by
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Sp(2d,R) =
{

M ∈ GL(2d,R) : M>JM = J
}
.

Observe that, for z = (z1,z2) ∈ R2d , we have Jz = J (z1,z2) = (z2,−z1) , J−1z =
J−1 (z1,z2) = (−z2,z1) =−Jz, and J2 =−I2d×2d .

Short-time Fourier transform. Let f ∈S ′(Rd) and g ∈S (Rd)\{0}. The short-
time Fourier transform (STFT) of f with window function g is defined as

Vg f (x,ω) = 〈 f ,π(x,ω)g〉= F ( f Txg)(ω) =
∫
Rd

f (y)g(y− x)e−2πiyω dy. (6)

We remark that the last expression has to be intended in formal sense, but it truly
represents the integral corresponding to the inner product 〈 f ,π(x,ω)g〉 whenever
f ,g ∈ L2(Rd).

Recall the fundamental property of time-frequency analysis:

Vg f (x,ω) = e−2πixωVĝ f̂ (J(x,ω)) . (7)

Gabor frames. Let Λ = AZ2d , with A ∈ GL(2d,R), be a lattice in the time-
frequency plane. The set of time-frequency shifts G (ϕ,Λ) = {π(λ )ϕ : λ ∈Λ} for
a non-zero ϕ ∈ L2(Rd) (the so-called window function) is called Gabor system. A
Gabor system G (ϕ,Λ) is said to be a Gabor frame if the lattice is such thick that the
energy content of a signal as sampled on the lattice by means of STFT is comparable
with its total energy, that is: there exist constants A,B > 0 such that

A‖ f‖2
2 ≤ ∑

λ∈Λ

|〈 f ,π(λ )ϕ〉|2 ≤ B‖ f‖2
2, ∀ f ∈ L2(Rd). (8)

2.1 Function spaces

Weight functions. Let us call admissible weight function any non-negative contin-
uous function v on R2d such that:

1. v(0) = 1 and v is even in each coordinate:

v(±z1, . . . ,±z2d) = v(z1, . . . ,z2d) .

2. v is submultiplicative, that is

v(w+ z)≤ v(w)v(z) ∀w,z ∈ R2d .

3. v satisfies the Gelfand-Raikov-Shilov (GRS) condition:

lim
n→∞

v(nz)
1
n = 1 ∀z ∈ R2d . (9)
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Examples of admissible weights are given by v(z) = ea|z|b (1+ |z|)s logr (e+ |z|),
with real parameters a,r,s≥ 0 and 0≤ b < 1. Functions of polynomial growth such
as

vs (z) = 〈z〉s =
(

1+ |z|2
) s

2
, z ∈ R2d , s≥ 0 (10)

are admissible weights too. From now on, v will denote an admissible weight func-
tion unless otherwise specified. We remark that the GRS condition is exactly the
technical tool required to forbid an exponential growth of the weight in some direc-
tion. For further discussion on this feature, see [17].
Given a submultiplicative weight v, a positive function m on R2d is called v-
moderate weight if there exists a constant C ≥ 0 such that

m(z1 + z2)≤Cv(z1)m(z2) , z1,z2 ∈ R2d .

The set of all v-moderate weights will be denoted by Mv(R2d).
In order to remain in the framework of tempered distributions, in what follows we

shall always assume that weight functions m on Rd under our consideration satisfy
the following condition:

m(z)≥ 1, ∀z ∈ Rd or m(z)& 〈z〉−N , (11)

for some N ∈ N. The same holds with suitable modifications for weights on R2d .

Modulation spaces. Given a non-zero window g ∈S (Rd), a v-moderate weight
function m on R2d satisfying (11), and 1≤ p,q≤∞, the modulation space Mp,q

m (Rd)
consists of all tempered distributions f ∈S ′(Rd) such that Vg f ∈Lp,q

m (R2d) (weighted
mixed-norm space). The norm on Mp,q

m is

‖ f‖Mp,q
m

= ‖Vg f‖Lp,q
m

=

(∫
Rd

(∫
Rd
|Vg f (x,ω)|pm(x,ω)p dx

)q/p

dω

)1/q

,

with suitable modifications if p = ∞ or q = ∞. If p = q, we write Mp
m instead of

Mp,p
m , and if m(z)≡ 1 on R2d , then we write Mp,q and Mp for Mp,q

m and Mp,p
m .

It can be proved (see [14]) that Mp,q
m (Rd) is a Banach space whose definition

is independent of the choice of the window g - meaning that different windows
provide equivalent norms on Mp,q

m . The window class can be extended to M1
v , cf.

[14, Thm. 11.3.7]. Hence, given any g ∈M1
v (Rd) and f ∈Mp,q

m we have

‖ f‖Mp,q
m
� ‖Vg f‖Lp,q

m
. (12)

We recall the inversion formula for the STFT (see [14, Proposition 11.3.2]). If g ∈
M1

v (Rd)\{0}, f ∈Mp,q
m (Rd), with m satisfying (11), then

f =
1
‖g‖2

2

∫
R2d

Vg f (z)π(z)gdz , (13)
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and the equality holds in Mp,q
m (Rd).

The adjoint operator of Vg, defined by

V ∗g F(t) =
∫
R2d

F(z)π(z)gdz ,

maps the Banach space Lp,q
m (R2d) into Mp,q

m (Rd). In particular, if F =Vg f the inver-
sion formula (13) reads

IdMp,q
m

=
1
‖g‖2

2
V ∗g Vg. (14)

Wiener Amalgam Spaces. Fix g∈S (Rd)\{0} and consider even weight functions
u,w on Rd satisfying (11). The Wiener amalgam space W (FLp

u ,L
q
w)(Rd) is the

space of distributions f ∈S ′(Rd) such that

‖ f‖W (FLp
u ,L

q
w)(Rd) :=

(∫
Rd

(∫
Rd
|Vg f (x,ω)|pup(ω)dω

)q/p

wq(x)dx

)1/q

< ∞

with obvious modifications for p = ∞ or q = ∞.
Using the fundamental identity of time-frequency analysis (7), we have |Vg f (x,ω)|=

|Vĝ f̂ (ω,−x)|= |F ( f̂ Tω ĝ)(−x)| and (since u(x) = u(−x))

‖ f‖Mp,q
u⊗w

=

(∫
Rd
‖ f̂ Tω ĝ‖q

FLp
u
wq(ω) dω

)1/q

= ‖ f̂‖W (FLp
u ,L

q
w)
.

Hence the Wiener amalgam spaces under our consideration are simply the image
under Fourier transform of modulation spaces with weights of tensor product type,
namely m(x,ω) = u⊗w(x,ω) = u(x)w(ω):

F (Mp,q
u⊗w) =W (FLp

u ,L
q
w). (15)

For this reason among others, their inventor H. Feichtinger suggested to call them
modulation spaces too - although in a generalized sense, see [9] for an intriguing
conceptual account on the theme.

2.2 τ-Pseudodifferential Operators

Let us introduce the τ-pseudodifferential operators as it is customary in time-
frequency analysis, i.e. by means of superposition of time-frequency shifts:

Opτ (σ) f (x) =
∫
R2d

σ̂ (ω,u)e−2πi(1−τ)ωu (T−uMω f )(x)dudω, x ∈ Rd , (16)

for any τ ∈ [0,1]. The symbol σ and the function f belong to suitable function
spaces, to be determined in order for the previous expression to make sense. As an
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example, minor modifications to [14, Lem. 14.3.1] give that Opτ (σ) maps S
(
Rd
)

to S ′ (R2d
)

whenever σ ∈S ′ (R2d
)
.

Assuming that (16) is a well-defined absolutely convergent integral (for instance,
it is enough to assume σ̂ ∈ L1

(
R2d
)
), easy computations lead to the usual integral

form of τ-pseudodifferential operators, namely

Opτ (σ) f (x) =
∫
R2d

e2πi(x−y)ω
σ ((1− τ)x+ τy,ω) f (y)dydω.

We finally aim to represent Opτ(σ) as an integral operator of the form

Opτ (σ) f (x) =
∫
R2d

k (x,y) f (y)dy.

Let us introduce the operator Tτ acting on functions on R2d as

Tτ F (x,y) = F (x+ τy,x− (1− τ)y) , T−1
τ F (x,y) = F ((1− τ)x+ τy,x− y) ,

and denote by Fi, i = 1,2, the partial Fourier transform with respect to the i-th
d−dimensional variable (it is then clear that F = F1F2).

Since the operators Tτ and Fi are continuous bijections on S
(
R2d
)
, the kernel

k is well-defined (as a tempered distribution) also for symbols in S ′ (R2d
)

and we
finally recover the representation by duality given in the Introduction according to
[1].

Proposition 1. For any symbol σ ∈ S ′ (R2d
)

and any real τ ∈ [0,1], the map
Opτ(σ) : S

(
Rd
)
→ S

(
Rd
)

is defined as integral operator with distributional
kernel

k = T−1
τ F−1

2 σ ∈S ′
(
R2d
)
,

meaning that, for any f ,g ∈S
(
Rd
)
,

〈Opτ (σ) f ,g〉=
〈
k,g⊗ f

〉
.

In particular, since the representation

Wτ ( f ,g)(x,ω) = F2Tτ ( f ⊗g)(x,ω)

holds for f ,g ∈S
(
Rd
)
, we have

〈Opτ (σ) f ,g〉= 〈σ ,Wτ (g, f )〉 .

As a consequence of the celebrated Schwartz’s kernel theorem (see for in-
stance [14, Theorem 14.3.4]), we are able to relate the representations for τ-
pseudodifferential operators given insofar.



Almost Diagonalization of Pseudodifferential Operators 9

Theorem 1. Let T : S
(
Rd
)
→ S ′ (Rd

)
be a continuous linear operator. There

exist tempered distributions k,σ ,F ∈S ′ (Rd
)

and τ ∈ [0,1] such that T admits the
following representations:

(i) as an integral operator: 〈T f ,g〉=
〈
k,g⊗ f

〉
for any f ,g ∈S

(
Rd
)
;

(ii) as a τ-pseudodifferential operator T = Opτ (σ) with symbol σ ;
(iii) as a superposition (in a weak sense) of time-frequency shifts :

T =
∫
R2d

F (x,ω)e2(1−τ)πixω TxMω dxdω.

The relations among k, σ and F are the following:

σ = F2Tτ k, F = I2σ̂ ,

where I2 denotes the reflection in the second d-dimensional variable (i.e. I2G(x,ω)=
G(x,−ω), (x,ω) ∈ R2d).

To conclude this anthology, since the algebraic properties of pseudodifferential
operators families will be considered, recall that the composition of Weyl transforms
provides a bilinear form on symbols, the so-called twisted product:

OpW(σ)◦OpW(ρ) = OpW(σ]ρ).

Although explicit formulas for the twisted product of symbols can be derived (cf.
[30]), we will not need them hereafter. Anyway, this is a fundamental notion in order
to establish an algebra structure on symbol spaces: it is quite natural to ask if the
composition of operators with symbols in the same class reveals to be an operator
of the same type for some symbol in the same class. Also recall that taking the
adjoint of a Weyl operator provides an involution on the level of symbols, since
(OpW(σ))∗ = OpW(σ).

3 Time-frequency analysis of the Sjöstrand’s class

The study of pseudodifferential operators has a wide and long tradition in the field
of mathematical analysis, starting from the monumental work of Hörmander. It has
to be noticed that the classical symbol classes considered in these investigations
are usually defined by means of differentiability conditions. In the spirit of time-
frequency analysis, we hereby employ modulation and Wiener amalgam spaces
as reservoirs of symbols for pseudodifferential operator and hence the short-time
Fourier transform to shape the desired properties.
Recall that the Sjöstrand’s class is the modulation space M∞,1(R2d) consisting of
distributions σ ∈S ′(R2d) such that∫

R2d
sup

z∈R2d
|〈σ ,π(z,ζ )g〉|dζ < ∞.



10 S. Ivan Trapasso

The control on symbols can be improved by weighting the condition on their
short-time Fourier transform, i.e. the modulation space norm. In the following we
will employ weight functions of type 1⊗ v, where v is an admissible weight on
R2d , according to the properties assumed in the Preliminaries. Weighted Sjöstrand’s
classes of this type are thus defined as

M∞,1
1⊗v

(
R2d
)
=

{
σ ∈S ′

(
R2d
)

:
∫
R2d

sup
z∈R2d

|Vgσ(z,ζ )|v(ζ )dζ < ∞

}
.

A function space closely related to the previous one is the Wiener amalgam
space W (FL∞,L1

v)(R2d). As discussed in the previous section, we have indeed
W (FL∞,L1

v)(R2d) = FM∞,1
1⊗v(R

2d). Heuristically, a symbol in W (FL∞,L1)(R2d)

locally coincides with the Fourier transform of a L∞(R2d) signal and exhibits
global decay of L1 type. For instance, the δ distribution (in S ′(R2d)) belongs to
W (FL∞,L1)(R2d).

Although Sjöstrand’s definition of the eponym symbol class was quite different
from the one given here in terms of modulation spaces, in his works [24, 25] he
proved three fundamental results on Weyl operators with symbols in M∞,1.

Theorem 2.

(i) (Boundedness) If σ ∈ M∞,1
(
R2d
)
, then OpW(σ) is a bounded operator on

L2(Rd).
(ii) (Algebra property) If σ1,σ2 ∈ M∞,1

(
R2d
)

and OpW(ρ) = OpW(σ1)OpW(σ2),
then ρ = σ1]σ2 ∈M∞,1

(
R2d
)
.

(iii) (Wiener property) If σ ∈M∞,1
(
R2d
)

and OpW(σ) is invertible on L2(Rd), then
[OpW(σ)]−1 = OpW(ρ) for some ρ ∈M∞,1

(
R2d
)
.

For sake of conciseness, we can resume the preceding outcomes by saying
that the family of Weyl operators with symbols in Sjöstrand’s class (denoted by
OpW(M∞,1)) is an inverse-closed Banach *-subalgebra of B(L2(Rd)).

Both these results and their original proofs might appear fairly technical at first
glance. Nonetheless, they unravel a deep and fascinating analogy between Weyl op-
erators with symbols in the Sjöstrand’s class and Fourier series with `1 coefficients.
Similarities of this kind come under the multifaceted problem of spectral invariance,
a topic thoroughly explored by Gröchenig in his insightful lecture [17].

In view of the structure of τ-pseudodifferential operators as superposition of
time-frequency shifts (cf. Equation (16)), it can be fruitful to study how operators
interact with time-frequency shifts. A measure of this interplay is given by the en-
tries of the infinite matrix which we are going to refer to as channel matrix, ac-
cording to traditional nomenclature in applied contexts like data transmission. First,
fix a non-zero window ϕ ∈ M1

v (Rd)
(
Rd
)

and a lattice Λ = AZ2d ⊆ R2d , where
A ∈ GL(2d,R), such that G (ϕ,Λ) is a Gabor frame for L2

(
Rd
)
. Therefore, the

entries of the channel matrix are given by
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〈OpW(σ)π(z)ϕ,π(w)ϕ〉, z,w ∈ R2d ,

or
M(σ)λ ,µ := 〈OpW(σ)π(λ )ϕ,π(µ)ϕ〉, λ ,µ ∈Λ ,

if we restrict to the lattice Λ . In this context, we could say that OpW is almost
diagonalized by the Gabor frame G (ϕ,Λ) if its channel matrix exhibits a suitable
off-diagonal decay. The key result proved by Gröchenig in [16] is a characterization
of this type: a symbol belongs to the (weighted) Sjöstrand’s class if and only if time-
frequency shifts are almost eigenvectors of the corresponding Weyl operator. More
precisely, the claim is the following.

Theorem 3. Let v be an admissible weight and fix a non-zero window ϕ ∈M1
v (Rd)

(
Rd
)

such that G (ϕ,Λ) is a Gabor frame for L2
(
Rd
)
. The following properties are equiv-

alent:

(i) σ ∈M∞,1
1⊗v◦J−1

(
R2d
)
.

(ii) σ ∈S ′ (R2d
)

and there exists a function H ∈ L1
v
(
R2d
)

such that

|〈OpW (σ)π (z)ϕ,π (w)ϕ〉| ≤ H (w− z) , ∀w,z ∈ R2d .

(iii) σ ∈S ′ (R2d
)

and there exists a sequence h ∈ `1
v (Λ) such that

|〈OpW (σ)π (µ)ϕ,π (λ )ϕ〉| ≤ h(λ −µ) , ∀λ ,µ ∈Λ .

This characterization is very strong: in particular, by applying Schwartz’s kernel
theorem, we also have:

Corollary 1. Under the hypotheses of the previous Theorem, assume that T :
S
(
Rd
)
→S ′ (Rd

)
is continuous and satisfies one of the following conditions:

(i) |〈T π (z)ϕ,π (w)ϕ〉| ≤ H (w− z) , ∀w,z ∈ R2d for some H ∈ L1.
(ii)|〈T π (µ)ϕ,π (λ )ϕ〉| ≤ h(λ −µ) , ∀λ ,µ ∈Λ for some h ∈ `1.

Therefore, T = OpW (σ) for some symbol σ ∈M∞,1
1⊗v◦J−1

(
R2d
)
.

The proof of the main result heavily relies on a simple but crucial interplay be-
tween the entries of the channel matrix of OpW and the short-time Fourier transform
of the symbol, which will be discussed in complete generality in the subsequent sec-
tion. We mention that at this point Gröchenig establishes a strong link with matrix
algebra, hence heading towards a more conceptual discussion of the almost diago-
nalization property. In particular, it is easy to prove that σ ∈ M∞,1

1⊗v◦J−1 if and only
if its channel matrix M(σ) belongs to the class Cv(Λ) of matrices A = (aλ ,µ)λ ,µ∈Λ

such that there exists a sequence h ∈ `1
v which almost diagonalizes its entries, i.e.

‖aλ ,µ‖ ≤ h(λ −µ), λ ,µ ∈Λ .

It can be proved that Cv(Λ) is indeed a Banach *-algebra and this insight allows a
natural extension if one considers other matrix algebras and investigates the relation
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between symbols and the membership of their Gabor matrices in a matrix algebra.
For further investigations in more general contexts, see for instance [18].

Thanks to this fresh new formulation, the proofs of Sjöstrand’s results provided
by Gröchenig are to certain extent more natural. Furthermore, they extend the previ-
ous ones since weighted spaces are considered. We summarize the main outcomes
in the following claims.

Theorem 4 (Boundedness).
If σ ∈ M∞,1

1⊗v◦J−1 , then OpW(σ) is bounded on Mp,q
m for any 1 ≤ p,q ≤ ∞ and any

m ∈Mv. In particular, if σ ∈M∞,1, OpW(σ) is bounded on L2(Rd) and

• if 1≤ p≤ 2, OpW(σ) maps Lp into Mp,p′ ;
• if 2≤ p≤ ∞, OpW(σ) maps Lp into Mp.

Theorem 5 (Algebra property).
If v is a submultiplicative on R2d , then M∞,1

v is a Banach ∗-algebra with respect to
the twisted product ] and the involution σ 7→ σ .

Theorem 6 (Wiener property).
Assume that v is a submultiplicative weight on R2d . OpW

(
M∞,1

v

)
is inverse-

closed in B(L2(Rd)) (i.e. if σ ∈
(

M∞,1
v

)
and OpW(σ) is invertible on L2, then

[OpW(σ)]−1 = OpW(ρ) for some ρ ∈
(

M∞,1
v

)
) if and only if v satisfies the GRS

condition (9).

Corollary 2 (Spectral invariance on modulation spaces).
Assume that v is an admissible weight, σ ∈

(
M∞,1

v

)
and OpW(σ) is invertible on L2.

Then, OpW(σ) is simultaneously invertible on every modulation space Mp,q
m (Rd),

for any 1≤ p,q≤ ∞ and m ∈Mv.

Remark 1. The intuition behind the last result is that the spectrum of an operator
with suitably likable properties does not truly depend on the space on which it acts.
In order to establish a link with Beals’ theorem on spectral invariance in the context
of classical pseudodifferential operators, notice that Hörmander’s class

S0
0,0(R2d) = {σ ∈C∞(R2d) : ∂

α
σ ∈ L∞(R2d)∀α ∈ N2d

0 }

can be recast as intersection of Sjöstrand’s classes with polynomial weights (cf.
[18]), namely

S0
0,0(R2d) =

⋂
s≥0

M∞,1
vs (R2d).

The Wiener property of these spaces leads to the conclusion that OpW

(
S0

0,0

)
is

inverse-closed in B(L2) too.
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4 Almost diagonalization of τ-pseudodifferential operators

In a recent joint work of the author with E. Cordero and F. Nicola, an attempt has
been made to follow the path outlined by Gröchenig. The two directions investigated
are

1. the extension of the almost-diagonalization theorem to more general operators;
2. the search of an almost-diagonalization-like characterization of other symbol

classes.

For what concerns the first point, τ-pseudodifferential operators were investigated
instead of those of Weyl type. We already discussed in the Introduction how this
general class of operators extends in a natural way the previous one, which can be
recovered as the case τ = 1/2. We were able to obtain an identical result with an
identical proof - apart from the substantial modifications in the preliminary lemmas
- see [5] for the details.

Theorem 7. Let v be an admissible weight on R2d . Consider ϕ ∈ M1
v
(
Rd
)
\ {0}

and a lattice Λ ⊆ R2d such that G (ϕ,Λ) is a Gabor frame for L2
(
Rd
)
. For any

τ ∈ [0,1], the following properties are equivalent:

(i) σ ∈M∞,1
1⊗v◦J−1

(
R2d
)
.

(ii) σ ∈S ′ (R2d
)

and there exists a function Hτ ∈ L1
v
(
R2d
)

such that

|〈Opτ (σ)π (z)ϕ,π (w)ϕ〉| ≤ Hτ (w− z) ∀w,z ∈ R2d .

(iii) σ ∈S ′ (R2d
)

and there exists a sequence hτ ∈ `1
v (Λ) such that

|〈Opτ (σ)π (µ)ϕ,π (λ )ϕ〉| ≤ hτ (λ −µ) ∀λ ,µ ∈Λ .

This result is not surprising for at least two reasons. Looking at the mapping
relating the symbols of different τ-quantizations, namely (see for instance [20, 27])

Opτ1
(a1) = Opτ2

(a2) ⇔ â2(ξ1,ξ2) = e−2πi(τ2−τ1)ξ1ξ2 â1(ξ1,ξ2),

we see that the map that relates a Weyl symbol to its τ-counterpart is bounded in
the Sjöstrand’s class. At a more fundamental level, it is instructive to give a look
at the crucial ingredient of the proof, which is the relation between the channel
matrix of the τ-pseudodifferential operator and the short-time Fourier transform of
the symbol.

Proposition 2. Fix a non-zero window ϕ ∈S (Rd) and set Φτ =Wτ (ϕ,ϕ) for τ ∈
[0,1]. Then, for σ ∈S ′ (R2d

)
,

|〈Opτ (σ)π (z)ϕ,π (w)ϕ〉|= |VΦτ
σ (Tτ (z,w) ,J (w− z))|= |VΦτ

σ (x,y)| (17)

and
|VΦτ

σ (x,y)|= |〈Opτ (σ)π (z(x,y))ϕ,π (w(x,y))ϕ〉| , (18)
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for all w,z,x,y ∈ R2d , where Tτ is defined as

Tτ (z,w) =
(
(1− τ)z1 + τw1
τz2 +(1− τ)w2

)
z = (z1,z2), w = (w1,w2) ∈ R2d . (19)

and

z(x,y) =
(

x1 +(1− τ)y2
x2− τy1

)
, w(x,y) =

(
x1− τy2

x2 +(1− τ)y1

)
. (20)

The main remark here is that the controlling function Hτ ∈ L1
v(Rd) in the almost

diagonalization theorem can be chosen as the so-called grand symbol associated to
σ ∈M∞,1

v◦J−1 (according to [15]): for the general τ-case, we have

Hτ(v) = sup
u∈R2d

|VΦτ
σ(u,Jv)| .

The choice of the grand symbol is quite natural if one looks at the modulation norm
in the Sjöstrand’s class. However, it is clear that the dependence from τ is com-
pletely confined to the window function Φτ and does not affect the variable v∈R2d ,
which corresponds to the frequency variable for the short-time Fourier transform of
the symbol. The proof of the general case can thus proceed exactly as the one for
Weyl case. We remark that also Corollary 1 generalizes in the obvious way.

It is reasonable at this stage to ask what happens if a slight modification of the
grand symbol is taken into account, that is: what happens if we look at the time de-
pendence of VΦτ

σ? This is equivalent to wonder if similar arguments extend in some
fashion to Fourier transform of symbols in the Sjöstrand’s class, namely symbols in
a suitably weighted version of Wiener amalgam space W

(
FL∞,L1

)
= FM∞,1 -

hereinafter referred to F -Sjöstrand’s class. The main outcome we got is the follow-
ing.

Theorem 8. Let v be an admissible weight function on R2d . Consider ϕ ∈M1
v
(
Rd
)
\

{0}. For any τ ∈ (0,1), the following properties are equivalent:

(i) σ ∈W
(
FL∞,L1

v◦Bτ

)(
R2d
)
.

(ii) σ ∈S ′ (R2d
)

and there exists a function Hτ ∈ L1
v
(
R2d
)

such that

|〈Opτ (σ)π (z)ϕ,π (w)ϕ〉| ≤ Hτ (w−Uτ z) ∀w,z ∈ R2d , (21)

where the matrices Bτ and Uτ are defined as

Bτ =

( 1
1−τ

Id×d 0d×d

0d×d
1
τ

Id×d

)
, Uτ =−

(
τ

1−τ
Id×d 0d×d

0d×d
1−τ

τ
Id×d

)
∈ Sp(2d,R) .

(22)
If τ ∈ [0,1], the estimate in (21) weakens as follows:

(ii′) σ ∈S ′ (R2d
)

and there exists a function Hτ ∈ L1
v
(
R2d
)

such that

|〈Opτ (σ)π (z)ϕ,π (w)ϕ〉| ≤ Hτ (Tτ(w,z)) ∀w,z ∈ R2d . (23)
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A number of differences arise with respect to its counterpart for Sjöstrand’s sym-
bols. First, the almost diagonalization of the (continuous) channel matrix is lost, but
this is still a well-organized matrix: in the favourable case τ = (0,1), (21) can be
interpreted as a measure of the concentration of the time-frequency representation
of Opτ(σ) along the graph of the map Uτ . If we include the endpoints, the estimate
loses this meaning too.

Furthermore, notice that the discrete characterization via Gabor frames is lost, the
main obstruction being the following: for a given lattice Λ , the inclusion UτΛ ⊆Λ

holds if and only if τ = 1/2, i.e. Uτ =U1/2 =−I2d×2d . In this particular framework,
the matrix B1/2 then becomes B1/2 = 2I2d×2d and the symmetry of Weyl operators
is rewarded by an additional characterization:

(iii′) σ ∈S ′ (R2d
)

and there exists a sequence h ∈ `1
v (Λ) such that

|〈OpW (σ)π (µ)ϕ,π (λ )ϕ〉| ≤ h(λ +µ) ∀λ ,µ ∈Λ .

5 Consequences of almost diagonalization

5.1 Boundedness

We are now able to study the boundedness of τ-pseudodifferential operators cov-
ering several possible choices for symbols classes and spaces on which they act. If
one considers the action of τ-pseudodifferential operators on modulation spaces, a
Sjöstrand-type result for symbols in the Sjöstrand’s class can be inferred by means
of the same arguments applied in the Weyl case.

Theorem 9. Consider m ∈Mv
(
R2d
)

satisfying (11). For any τ ∈ [0,1] and σ ∈
M∞,1

1⊗v◦J−1 the operator Opτ(σ) is bounded on Mp,q
m (Rd), and there exists a constant

Cτ > 0 such that
‖Opτ(σ)‖Mp,q

m
≤Cτ‖σ‖M∞,1

1⊗v◦J−1
. (24)

In order to address the problem of boundedness of τ-pseudodifferential operators
on modulation spaces with symbols in F -Sjöstrand’s class, a different strategy is
needed. Following [3], the idea is to recast Opτ(σ) as the transformation (via the
short-time Fourier transform and its adjoint) of an integral operator with the chan-
nel matrix as distributional kernel. Therefore, the almost diagonalization property
allows to obtain the desired estimates and claim the following result.

Theorem 10. Fix m ∈Mv satisfying (11). For τ ∈ (0,1) consider a symbol σ ∈
W (FL∞,L1

v◦Bτ
)
(
R2d
)
, with the matrix Bτ defined in (22). Then the operator

Opτ(σ) is bounded from Mp,q
m
(
Rd
)

to Mp,q
m◦U −1

1−τ

(
Rd
)
, 1≤ p,q≤ ∞.

We now turn to consider the boundedness of τ-pseudodifferential operators on
Wiener amalgam spaces. Looking for a big picture and given that modulation and
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Wiener amalgam spaces are intertwined by the Fourier transform, it is natural to
wonder if continuity properties of an operator acting on modulation spaces may
still hold true when it acts on the corresponding amalgam spaces. In the case of
τ-pseudodifferential operators the answer is yes but heavily relies on the particu-
lar way Fourier transform and τ-pseudodifferential operators commute. This phe-
nomenon is a special case of the symplectic covariance property of Shubin calculus,
which we briefly recall - see [12] for a comprehensive discussion on the issue.

Lemma 1. For any σ ∈S ′ (R2d
)

and τ ∈ [0,1],

FOpτ (σ)F−1 = Op1−τ

(
σ ◦ J−1) .

This property, along with other preliminary results, allows to quickly prove the
desired claims for symbols in both Sjöstrand’s class and the corresponding amalgam
space.

Theorem 11. Consider m = m1⊗m2 ∈Mv
(
R2d
)

satisfying (11). For any τ ∈ [0,1]
and σ ∈M∞,1

1⊗v

(
R2d
)
, the operator Opτ(σ) is bounded on W

(
FLp

m1 ,L
q
m2

)(
Rd
)

with

‖Opτ(σ)‖W(FLp
m1 ,L

q
m2)
≤Cτ‖σ‖M∞,1

1⊗v
,

for a suitable Cτ > 0.

Theorem 12. Consider m = m1 ⊗ m2 ∈ Mv
(
R2d
)

satisfying (11). For any τ ∈
(0,1) and σ ∈ W

(
FL∞,L1

v◦Bτ◦J−1

)(
R2d
)
, the operator Opτ σ is bounded from

W
(
FLp

m1 ,L
q
m2

)(
Rd
)

to W
(

FLp
m1◦(U −1

1−τ)1
,Lq

m2◦(U −1
1−τ)2

)(
Rd
)
, 1≤ p,q≤∞, where

(
U −1

1−τ

)
1 (x) =−

τ

1− τ
x,

(
U −1

1−τ

)
2 (x) =−

1− τ

τ
x, x ∈ Rd .

We finally remark that even if the results with symbols in F -Sjöstrand’s class do
not hold for the endpoint cases τ = 0 and τ = 1, it is still possible to use the weak
characterization (23) to construct ad hoc examples of bounded operators.

Proposition 3. Assume σ ∈W (FL∞,L1)(R2d).

1. The Kohn-Nirenberg operator OpKN(σ) (τ = 0) is bounded on M1,∞(Rd).
2. The anti-Kohn-Nirenberg Op1(σ) (τ = 1) is bounded on W (FL1,L∞)(Rd).

5.2 Algebra and Wiener properties

To conclude, we give a brief summary on the extension of the other properties stud-
ied by Sjöstrand, namely algebra and Wiener property, to τ-pseudodifferential op-
erators. Wiener algebras of pseudodifferential operators have been already inves-
tigated by Cordero, Gröchenig, Nicola and Rodino in several occasions, see for
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instance [2, 3]. Let us recall the definition and the relevant properties of generalized
metaplectic operators, introduced by the aforementioned authors.

Definition 1. Given A ∈ Sp(2d,R), g ∈ S (Rd), and s ≥ 0, a linear operator
T : S (Rd)→ S ′(Rd) belongs to the class FIO(A ,vs) of generalized metaplec-
tic operators if

∃H ∈ L1
vs(R

2d) such that |〈T π(z)g,π(w)g〉| ≤ H(w−A z), ∀w,z ∈ R2d .

Theorem 13. Fix Ai ∈ Sp(2d,R), si ≥ 0, mi ∈Mvsi
, and Ti ∈ FIO(Ai,vsi), i =

0,1,2.

1. T0 is bounded from Mp
m0

(
Rd
)

to Mp
m0◦A −1

i

(
Rd
)

for any 1≤ p≤ ∞.

2. T1T2 ∈ FIO(A1A2,vs), where s = min{s1,s2}.
3. If T0 is invertible in L2

(
Rd
)
, then T−1

0 ∈ FIO
(
A −1

0 ,vs0

)
.

In short, the class

FIO(Sp(2d,R),vs) =
⋃

A ∈Sp(2d,R)
FIO(A ,vs)

is a Wiener sub-algebra of B(L2(Rd)). In view of the defining property of op-
erators in FIO(A ,vs), we immediately recognize that for any τ ∈ (0,1), if σ ∈
W (FL∞,L1

vs) then Opτ(σ)∈ FIO(Uτ ,vs). Therefore, if we limit to consider admis-
sible weights of polynomial type vs on Rd , s≥ 0, we are able to establish a fruitful
connection and to derive a number of properties without any effort. For instance, we
have another boundedness result.

Corollary 3. If σ ∈W (FL∞,L1
vs)(R

2d), s≥ 0, then the operator Opτ(σ) is bounded
on every modulation space Mp

vs(Rd), for 1≤ p≤ ∞ and τ ∈ (0,1).

For what concerns the algebra property, we in fact have a no-go result. By in-
specting the composition properties of matrices Uτ , we notice that there is no
τ ∈ (0,1) such that Uτ1Uτ2 = Uτ . This implies that there is no τ-quantization rule
such that composition of τ-operators with symbols in W

(
FL∞,L1

vs

)
has symbol in

the same class. We can only state weaker algebraic results, such as the following
property of “symmetry” with respect to the Weyl quantization.

Theorem 14. For any a,b ∈W
(
FL∞,L1

vs

)
(R2d) and τ ∈ (0,1), there exists a sym-

bol c ∈M∞,1
1⊗vs

(R2d) such that

Opτ (a)Op1−τ (b) = Op1/2 (c) .

Also notice that, given a ∈W
(
FL∞,L1

vs

)
, b ∈M∞,1

1⊗vs
and τ,τ0 ∈ (0,1), we have

Opτ0
(b)Opτ (a) = Opτ (c1) , Opτ (a)Opτ0

(b) = Opτ (c2) ,
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for some c1,c2 ∈W
(
FL∞,L1

vs

)
. This means that, for fixed quantization rules τ,τ0,

the amalgam space W
(
FL∞,L1

vs

)
(R2d) is a bimodule over the algebra M∞,1

1⊗vs
(R2d)

under the laws

M∞,1
1⊗vs
×W

(
FL∞,L1

vs

)
→W

(
FL∞,L1

vs

)
: (b,a) 7→ c1,

W
(
FL∞,L1

vs

)
×M∞,1

1⊗vs
→W

(
FL∞,L1

vs

)
: (a,b) 7→ c2,

with c1 and c2 as before.
Finally, after noticing that U −1

τ =U1−τ for any τ ∈ (0,1), a Wiener-like property
comes at the price of passing to the complementary τ-quantization when inverting
Opτ .

Theorem 15. For any τ ∈ (0,1) and a ∈W
(
FL∞,L1

vs

)
(R2d) such that Opτ (a) is

invertible on L2
(
Rd
)
, we have

Opτ (a)
−1 = Op1−τ (b)

for some b ∈W
(
FL∞,L1

vs

)
(R2d).
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14. Gröchenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic
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