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Abstract. Nowadays, drawing up plans to control and manage infrastructure assets has
become one of the most important challenges in most developed countries. The latter must
cope with issues relating to the aging of their infrastructures, which are getting towards
the end of their useful life. This study proposes an automatic approach for tunnel defects
classification. Starting with non-destructive investigations using Ground Penetrating Radar
(GPR), the deep convolutional neural networks (CNN), with and without the application
of 2D FT, have allowed the classification of several structural defects (e.g., crack, voids,
anomaly, etc.) with high accuracy. The proposed methodology eliminates the need for human
interpretation of Ground Penetrating Radar profiles and the use of integrative investigations
(e.g., video-endoscopy, core drilling, jacking, and pull-out testing) for defects classification.
As a result, it has significant speed and reliability that make it both time and cost-efficient.

Keywords: Road tunnels · Fourier transform · Convolutional Neural Network · Structural
Health Monitoring · Ground Penetrating Radar.

1 Introduction

The development of automated systems for monitoring infrastructure current structural state
is critical for the implementation of cost-effective maintenance plans that ensure a high level
of safety [1,2,3,4,5,6,7]. The extent of the infrastructure heritage in developed countries that
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need to be controlled is significant. As a result, developing robust, reliable, and timely struc-
tural health monitoring (SHM) programs are especially important for high-impact structures,
like bridges [8] and underground structures [9]. Focusing on tunnels, the number of them
in the proximity of their design life end, and so at high risk, is extremely high. Degradation
phenomena and structural damages may have irreversibly changed the original structural
characteristics and severe consequences may occur [10]. As a result, systems that rely exclu-
sively on traditional routine inspections are not sufficient and ineffective [11]. Since they are
based on human judgment and require specialist personnel who are frequently exposed to
dangerous environments, they are time-consuming and expensive [12]. Image recognition-
based structural health monitoring (SHM) algorithms are frequently leveraged to detect the
presence and nature of potential infrastructure deterioration [13]. The use of deep convolu-
tional neural networks (CNN) that exploit transfer learning processes has proven effective in
many applications [14]. It’s really interesting how much support they can provide in identify-
ing and classifying defects that can be extracted from the results of non-destructive structural
testing (NDT) techniques. Among the most relevant non-destructive methods, for the quan-
tity and quality of information that can be obtained, emerges the Ground Penetrating Radar
(GPR). It overcomes the limitations of visual inspections techniques that are only adapted to
detect surface defects [15]. Nevertheless, because GPR data is typically scaled and manually
interpreted or stored and subsequently processed off-line, the GPR data analysis is gener-
ally computationally costly [16]. This paper presents the results of a proposed multi-level
methodology for defect classification starting based on GPR profiles, with and without the
use of the 2D Fourier Transform as a pre-processing operation. The obtained outcomes are
promising and encourage further developments.

2 Monitoring road tunnels with Ground Penetrating Radar (GRP)

Among the several non-destructive testing (NDT) methods [17] for defect characterization
in engineering materials, the Ground Penetrating Radar has been chosen [18]. Due to the
ease of use and transportation [19] and to its penetration capacity, such an instrument turned
out to be a valuable tool for damage detection, localization, and classification. GPR is a
geophysical technique [20] that involves transmitting high-frequency electromagnetic wave
impulses into the investigated material using an antenna with a frequency of 10 to 2600
MHz. The propagation of such an impulse is influenced by the dielectric characteristics of
the material. The GPR campaign has been focalized on Italian tunnels dated between 1960s
and 1980s. Two types of GPR have been used in such campaign. The first uses a dual-
frequency antenna, the second involves a high-frequency one. The technical characteristics
are shown in the following Tables 1 and 2. GPR profiles have a vertical axis that shows the
depth of the examined thickness and a horizontal axis that indicates the progressive distance
from the structure’s beginning. In the investigation campaign, each Ground Penetrating Radar
profile was interpreted by specialized personnel. An example of a GPR profile with defect
interpretation is shown in the following Figure 1.
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Table 1. Technical characteristics of GPR with dual frequency antenna.
GPR with dual frequency antenna features value
minimum number of channels 4
pulse repetition frequency (kHz) 400
range (nsec) 0-9999
min. number of scans/second 400
power (Volt) 12
primary dual-frequency antenna (MHz) 400-900
secondary dual-frequency antenna (MHz) 200-600

Table 2. Technical characteristics of GPR with high-frequency antenna.
GPR high-frequency antenna features value
minimum number of channels 4
pulse repetition frequency (kHz) 400
range (nsec) 0-9999
min. number of scans/second 400
power (Volt) 12
high-frequency antenna (GHz) ≥2

Fig. 1. An example of a GPR profile with defect patterns interpretation by human experts.
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3 Two dimensional Fourier Transform for image processing

The Fourier transform (FT) is one of the most powerful tools for signal processing which
provides a decomposition of a signal into its fundamental components. Moreover, it performs
a domain mapping by changing the representation of the problem by passing from the input
(spatial or time) domain to the Fourier or frequency domain. For continuous phenomena, the
FT expresses a signal as an infinite sum of harmonics characterized by different frequencies
and denoting the frequency content of each one. In real-world, even with the most sophisti-
cated instrumentation, data are collected discretely through a sampling process. The sampling
or Nyquist-Shannon theorem states that any continuous signal can be uniquely reconstructed
in a reliable way starting from its samples when the sampling frequency is two times the
Nyquist frequency, which represents the highest signal representable frequency [21]. Thus,
for discrete signals, the Discrete version of the FT (DFT) has been developed to deal with
real-world sampled signals.

In general, a digital image is represented by a matrix/tensor of pixels, where each pixel
contains certain values. An 8-bit precision gray-scale images is a matrix in which each pixel
can assume an integer value between 0 and 255. Whereas, with a red-green-blue (RGB)
image, the data are represented by a tensor with a depth-size of three, in which each pixel
is represented by three bytes in total because each color channel can assume integer values
between 0 to 255 [22]. Without loss of generality, an image can be interpreted as two-
dimensional signals of pixel values by looking to vertical and horizontal directions [23].
Therefore, the FT can be adopted to decompose a 2D discrete-space signal (digital image)
into its main sinusoidal components. Due to the sampling frequency, only a certain number
of harmonics is obtained, enough to fully describe the information contained in the image
[24]. Considering a digital image in the spatial domain 𝐴 of size 𝑛×𝑚 with components 𝑎𝑟𝑠 ,
with 0 ≤ 𝑟 ≤ 𝑛−1, 0 ≤ 𝑠 ≤ 𝑚−1, the discrete 2D-FT (2D-DFT) is a matrix 𝐹 in the Fourier
domain of size 𝑛 × 𝑚 with components [22]:

𝑓 (𝑘, 𝑙) =
𝑛−1∑︁
𝑟=0

𝑚−1∑︁
𝑠=0

𝑎(𝑟, 𝑠)𝑒−2𝜋𝑖( 𝑘𝑟
𝑚
+ 𝑙𝑠

𝑛 ) (1)

where 0 ≤ 𝑘 ≤ 𝑛 − 1, 0 ≤ 𝑙 ≤ 𝑚 − 1. The 2D-FT, in practice, performs a sum of the
products of the spatial image input with the sinusoidal basis functions, expressed in complex
exponential form. The term 𝑓 (0, 0) denotes the direct current (DC) component which is the
average brightness of the input image, whereas the last realization 𝑓 (𝑛−1, 𝑚−1) corresponds
to the highest frequency component [24]. The inverse 2D-FT (2D-IDFT) is defined as:

𝑎(𝑟, 𝑠) = 1
𝑛 · 𝑚

𝑛−1∑︁
𝑘=0

𝑚−1∑︁
𝑙=0

𝑓 (𝑘, 𝑙)𝑒2𝜋𝑖( 𝑘𝑟
𝑚
+ 𝑙𝑠

𝑛 ) (2)

To lower the computational effort, it is possible to demonstrate that the 2D-DFT can be com-
puted as a series of 2𝑛 one-dimensional FT [24], which leads to a computational complexity
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of𝑂 (𝑛2). Fast Fourier formulations (2D-FFT) have been developed in order to further reduce
the complexity to 𝑂 (𝑛 log2 (𝑛)) [24]. The FT operation delivers a complex matrix which
can be displayed in terms of real and imaginary parts, or, usually, in terms of magnitude
and phase. Since most of the information are contained into the magnitude, the phase is not
considered in many applications. However, if it would be necessary to reconstruct again the
original image with the 2D-IDFT, the phase information is strictly required in order to avoid
corrupted image reconstruction [24]. Since the magnitude may present very scattered values
comparing the largest DC component with respect to the other frequencies, a logarithmic
transformation is usually applied to enhance the information contained in low-frequency
components:

𝑓 (𝑘, 𝑙) = 𝑐 log
(
1 +

��𝑀𝑘,𝑙

��) (3)

where c is a scaling factor set to unity in the present study, and

𝑀𝑘,𝑙 =

√︃
Re( 𝑓 (𝑘, 𝑙))2 + Im( 𝑓 (𝑘, 𝑙))2 (4)

is the magnitude for each pixel in the frequency domain. Among the many useful properties
of the FT, the most important in the present case is related to the convolution property: the
convolution operation in the input domain becomes a simple multiplication in the Fourier
domain. In image processing, digital filters can be used to smooth the image, by suppressing
high frequencies in the image, or to detect edges by removing the low frequencies [24].
These operations are accomplished by a filter kernel function ℎ(𝑟, 𝑠) which slides on the
image and compute a correlation between the kernel receptive field and the input image:
𝑔(𝑟, 𝑠) = ℎ(𝑟, 𝑠) ∗ 𝑎(𝑟, 𝑠). Specifically, the convolution is a correlation operation acting
with a flipped kernel ℎ(−𝑟,−𝑠). Throughout the convolution property, the above-mentioned
computation, which is the core of the convolutional neural networks (CNN), can be performed
more efficiently in the frequency domain.

In the present work, the 2D-FFT has been adopted to perform a pre-processing of the
road tunnel GPR linings profiles. This may help to compress data, maintaining the geometric
structure of the starting digital image. The 2D-FFT identifies the vertical and horizontal
patterns in the input image, preserving information of such alignments in the most dominant
frequency components in the Fourier domain. Furthermore, as evidenced in the Figure 1, the
2D-FFT allows removing such horizontal periodic components, typical of the GPR profiles
in the depth direction. In Figure 2, two illustrative examples have been depicted to highlight
the effects of the 2D-FFT pre-processing on the road tunnels GPR profiles.

4 Methodology

The dataset considered in the current study comes from tunnel lining defects classification
concerned structures dating from 1960s to 1990s. Specifically, after the human defect recogni-
tion, the entire GPR profiles were cut with a constant step of 5.00 m long along the horizontal
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(a) (b) (c) (d)

Fig. 2. Two examples of 2D-FFT pre-processing of road tunnels GPR profiles. (a) and (c):
samples extracted from the entire GPR profile; (b) and (d): 2D-FFT magnitude pre-processed
images.

axis. In this way, sample images were obtained for classification task. These samples have
been labeled according to the human experts defect-recognition phase. To avoid that some
defects were placed across two different images, the cutting step was occasionally manually
altered to provide samples which allowed for a more clear classification.

4.1 Multi-level defect classification

The classification has been performed in a hierarchical multi-level procedure. As depicted
in Figure 3, this procedure allowed to perform a more precise classification of the defect.
Based on the structure of the hierarchical classification tree, 7 models were trained. Each of
them performs a binary classification task. Following in depth the tree depicted in Figure
3, the total number of available samples for each level gradually decrease. Moreover, since
each class presents an unbalanced number of images, in order to train a good classification
model, a balanced approach was forced by the class with the minimum number of samples.
To accomplish the classification tasks, a deep learning model has been trained based on
convolutional neural networks, discussed in the following section.

4.2 Convolutional Neural Network: ResNet50

Convolutional neural networks (CNN) algorithms are one of the most used deep learning
techniques capable of solving categorization problems based on image recognition. To solve
this kind of task, ResNet-50 was trained to detect structural states of tunnels lining through
the transfer learning approach. Indeed, such networks are pre-trained on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) dataset based on 1281167 training, 50000



Title Suppressed Due to Excessive Length 7

Fig. 3. Hierarchical tree multi-level classification representation.

validation, and 100000 test images [25,26]. The chosen CNN was used within the MAT-
LAB2020b programming environment. Its architecture is composed of 177 layers of which
49 are convolutional and 1 is fully connected and it is designed in 2015 by He K et al [27].
It is defined as a "feed-forward" neural network with "residual/skip connections" that lever-
ages Rectified Linear Units (ReLu) and softmax as activation functions exploiting 25 million
parameters. Among the different layers of the network, it is possible to acknowledge the four
types of layers that distinguish the neural networks as the activation and pooling layer in
addition to those convolutional and fully connected previously cited [28]. The convolutional
layer contains neurons that interact with the other one in the next layer through convolutional
kernels while the nonlinear features are extracted using the activation layer. The pooling one
can reduce the convolutional feature to improve the performance of the algorithm decreasing
the cost. The last one is the layer that interprets the extracted features and creates a vector
containing the membership probability of each class [29]. In the literature, deeper neural
networks are expected to perform better than shallower ones especially in the training phase,
as shown in several studies [30,31]. However, it is recognized that the increase in accuracy is
not always related to an increase in network depth, which could generate degradation prob-
lems. The innovative element that makes ResNet compared to other CNNs is the presence of
skip connections (residual units). This particular unit allows the learning of the differences
between the input and output layers mitigating, in this way, the problems deriving from
the excessive depth. The choice has fallen on ResNet for the depth of the network and for
the relatively reduced computational level. In particular, ResNet-50 has been adopted as a
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Table 3. ResNet50 hyperparameters set.
Parameter Value
Learning rate 0.001
Mini-batch size 32
Max epoch 12

pre-trained network to perform a binary classification of GPR profile image and their FFT
transform, previously described, using the following hyperparameters, as illustrated in Table
3.

5 Results and Discussion

The classification of tunnel lining defects concerned structures dating from 1960s to 1990s
following the procedure described in the previous sections. The results obtained by training
the network with the GPR profiles, obtained during the different investigation campaigns,
were compared with the results obtained by training the same network with the FTs of the
same profiles. Whereas the accuracy obtained following the first approach showed values
greater than 90% and with an average of 98.8% [29], the results obtained with the trained
ResNet-50 on FTs show values greater than 80% unless level 2b and with an average of
94.4%. Tables from 4 to 10 show the confusion matrices for each level obtained with the FT.

5.1 Confusion matrix for each level

Out of several useful methods for defining the performance of a classifier algorithm, the
most well-known is the confusion matrix. For each level of detail, the confusion matrix is
reported followed by the accuracy value. The mentioned matrices are composed of rows
showing the actual classes and columns representing the predicted labels. The accuracy
value is determined by the ratio between the matrix trace and the total sum of its terms. The
value of accuracy and the confusion matrix are presented for each level. They are relative to
an arithmetic mean of the results obtained through the application of the K-fold validation
technique. Besides, for each test fold, an error estimation through the RMSE (Root Mean
Square Error) index was performed and then their average was calculated and used as a final
indicator. The data for each classification were casually divided into k groups (folds) in which
a "fold" is used for testing, one for validation, and (k-2) for network training [32,33]. The
used value of k is equal to 10. The choice of this value is based on empirical demonstrations
that highlight the ability of it to produce test error rate estimates that have neither excessive
bias nor much variance [34].
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Table 4. Confusion Matrix – Level 1.
Real Class C1: predicted C2: predicted Performance Metrics
C1 87.9% 12.1% Accuracy: 88%
C2 11.4% 88.6% RMSE: 31.5%

Table 5. Confusion Matrix – Level 2a.
Real Class C3: predicted C4: predicted Performance Metrics
C3 79.3% 20.7% Accuracy: 83.1%
C4 13.0% 87.0% RMSE: 37.2%

Table 6. Confusion Matrix – Level 2b.
Real Class C5: predicted C6: predicted Performance Metrics
C5 73.5% 26.5% Accuracy: 76.3%
C6 20.9% 79.1% RMSE: 44.3%

Table 7. Confusion Matrix – Level 3.
Real Class C7: predicted C8: predicted Performance Metrics
C7 97.8% 0.22% Accuracy: 94.4%
C8 9.0% 91.0% RMSE: 20.6%

Table 8. Confusion Matrix – Level 4.
Real Class C9: predicted C10: predicted Performance Metrics
C9 83.9% 16.1% Accuracy: 85.1%
C10 13.6% 86.4% RMSE: 38.3%

Table 9. Confusion Matrix – Level 5.
Real Class C11: predicted C12: predicted Performance Metrics
C11 85.7% 14.3% Accuracy: 90%
C12 5.9% 94.1% RMSE: 28.6%

Table 10. Confusion Matrix – Level 6.
Real Class C13: predicted C14: predicted Performance Metrics
C13 92.4% 7.6% Accuracy: 91%
C14 11.3% 88.7% RMSE: 25.8%
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5.2 Comparison with the previous work [29]

The strategy proposed in this work is related to the possibility of using as input data of a CNN,
not only GPR profile images, but also the FTs of the same ones. The outcomes obtained with
this last one showed a decrease in accuracy for levels 1, 2a, 2b and 4 (keeping an accuracy
higher than 90% for the remaining levels) with respect to the results obtained by training
ResNet-50 with GPR profiles [29]. Comparing the results of the two different training and
test valuation of the ResNet-50 proposed, level 1 (healthy and reinforced/damaged) shows an
accuracy of 88% compared to 92.6% previously obtained, level 2a (healthy/reinforced) shows
an accuracy of 83.1% compared to 97.3%. The accuracy for level 2b (warning mix/warning)
shows a value of 76.3% compared to the respective value of 90.4%. Regarding the accuracy
in level 3 (crack/C8) the value obtained by training on the FTs of the GPR profiles equal to
94.4% is very similar to the previous one equal to 95.9%. Level 4 (Anomaly/mix void) shows
an accuracy of 85.1%compared to 91.8%. In the last two levels, the CNN with FTs showed
the highest accuracy values of 90% and 91% for levels 5 and 6 respectively, compared to the
values of 98.2% and 95.3% of the same CNN trained with simple GPR profiles.

6 Conclusions

In the present work, a hierarchical multi-level classification approach is discussed related
to road tunnels linings GPR tests for automated defects classification. The GPR profiles
are sampled and pre-processed with 2D-FFT technique performing data compression and
making convolution more efficient. Seven different CNN models have been trained with the
transfer learning approach starting from pre-trained ResNet-50 model. A final comparison
with respect to the model trained without image pre-processing pointed out the reliability
of the proposed approach for automated road tunnel defects classification. However, the
pre-processing phase probably produces an excessive compression of the data, providing
lower accuracy levels with respect to the model trained on raw GPR images samples. Fu-
ture developments of the present work may virtually involve some further comparisons not
only from the pre-processing side, but even on the neural architecture which could lead to
further improvements and a more reliable system for automated road tunnels linings defect
classification.
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