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Abstract: Shape sensing is the reconstruction of the displacement field of a structure from some
discrete surface strain measurements and is a key technology for structural health monitoring. The
aim of this paper is to compare two approaches to shape sensing that have been shown to be more
efficient, especially for aircraft structures applications, in terms of required input strain measurements:
the Ko’s Displacement Theory and the Modal Method. An object of the shape-sensing analysis is the
half-wing of a multirotor UAV. The approaches are summarized in order to set the framework for the
numerical comparative investigation. Then, the multirotor UAV is presented and a finite element
model of its half-wing is used to simulate the static response to straight-and-level flight conditions.
For a given common set of surface strain measurement points, Ko’s Displacement Theory and the
Modal Method are compared in terms of accuracy of the reconstructed half-wing deflection and twist
angle. The Modal Method is shown to be more accurate than Ko’s Displacement Theory, especially
for the evaluation of the deflection field. Further numerical analyses show that the Modal Method
is influenced by the set of mode shapes included in the analysis and that excellent reconstructed
deflections can be obtained with a reduced number of sensors, thus assessing the approach as an
efficient shape-sensing tool for aircraft structures real applications.

Keywords: shape sensing; UAV; strains; Ko’s Displacement Theory; Modal Method

1. Introduction

Shape sensing is the reconstruction of the displacement field of a structure from
discrete strain measurements [1] and can play a crucial role in monitoring the health
of load-carrying structural components, especially composite multilayered ones that are
more prone to damage. Damage-tolerant designs are, in fact, strongly influenced by the
possibility of detecting the presence of non-visible damages. A method capable of indi-
rectly monitoring these critical conditions through the evaluation of other quantities, like
the displacement field, could bring significant benefits (more accurate determination of
maintenance-inspection cycles and identification of critical areas of a structure). Further-
more, real-time evaluation of the displacement field is important in smart structures to
implement a feed-back control system for morphing mechanisms [2].

Recent improvements in the strain sensing technology are also facilitating the progress
of shape sensing methods based on discrete strain measurements. The development of fiber
optic strain sensing systems gives the opportunity to have a multiplex, highly sensible and
highly integrated sensor for strain measurement, especially for composite structures. In fact,
fiber optic systems based on Fiber Bragg Gratings (FBGs) and, more recently, distributed sys-
tems based on Rayleigh scattering and Optical Frequency Domain Reflectometry (OFDR),
can be embedded in composite laminates during the layup phase [3,4].

Four main categories of shape sensing methods based on discrete strain measurements
have been proposed (refer to [1] for a more complete review and discussion):
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1. methods based on numerical integration of experimental strains, in particular the
Ko’s Displacement Theory (“Ko”) [5,6].

2. methods using global or piece-wise linear continuous basis functions to approximate
the displacement field, in particular the Modal Method (“MM”) [7,8].

3. inverse Finite Element Method (“iFEM”), based on a finite-element discretization and
on a variational principle [1,9–11].

4. methods based on the use of the Artificial Neural Networks (“ANNs”) [12,13].

The accuracy of methods based on ANNs is heavily biased by the choice of the training
load cases [12,13], therefore these approaches have found limited application. Esposito and
Gherlone, in [14,15], compared and assessed the other three main methods when applied
to the shape sensing of a composite wing box undergoing bending and torsion. iFEM
was showed to be the more accurate approach but at the cost of a large number of strain
sensors. On the other hand, the Modal Method and Ko’s Displacement Theory, although
exhibiting a reduced accuracy, were able to efficiently work with a limited number of local
strain measurements.

The Displacement Theory of Ko, Tran, and Richards [5,16] is based on the classical
Bernoulli–Euler beam theory. Through axial strain measurements at discrete positions
along a line, it is possible to evaluate the curvature. Double integration of the curvature
provides the deflection shape at the same discrete locations. Using more than one sensing
line along the span of a wing structure, it is also possible to evaluate the cross-sectional
twist angle due to torsion. The Ko’s Displacement Theory was applied to the deformed
shape analysis of the wing of the Ikhana UAV. Two measurement lines were set along the
wingspan to rebuild the deflections and cross-sectional twist, then the data were compared
with those computed from a finite element model [16]. Jutte et al. [17] performed a ground
test of a full-scale wing using a fiber optic strain-sensing system. After reconstructing
the bending and twist deformation of the wing through the Ko’s Displacement Theory,
the results were compared with the experimental ones obtained with a photogrammetric
approach, and a very good degree of accuracy was obtained.

The Modal Method, developed by Foss and Haugse [8] and Pisoni, Santolini, Hauf,
and Dubowsky [18] in 1995, can reconstruct the displacement field of any structure using
its mode shapes and some strain measurements at discrete locations. The displacement
and strain fields are expressed in terms of known shape functions (the mode shapes and
the spatial derivatives of the mode shapes, respectively) and unknown weights (the modal
coordinates). The modal coordinates are computed by fitting the reconstructed strain field
on to the measured one at discrete locations. The knowledge of the modal coordinates
allows the reconstruction of the displacement field. The work by Bogert, Haugse, and
Gehrki [7] also included a criterion for selecting the most suitable mode shapes for the
application of the method. The selection criterion is based on the evaluation of the strain
energy contribution of each mode shape. Rapp et al. [19] examined in depth the influence
of the number and location of the strain sensors on the accuracy of the method, highlighting
the importance of sensors’ positioning, especially when using a small number of discrete
strain measurements.

The aim of the current effort is to investigate the shape sensing of an UAV composite
wing by means of the approaches that, in their current formulation, require a limited (and
practically affordable) number of strain sensors: the Modal Method and Ko’s Displace-
ment Theory. The paper is organized as follows. At first, the two approaches are briefly
introduced in order to set the numerical framework for the analysis. Then, the UAV wing
structure is described and its finite element model is built as a source for both the input
strain measurements and the reference displacement field. Both shape-sensing methods
are then applied and the reconstructed deformed shapes assessed trough comparison with
the reference displacement field.
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2. Summary of the Shape-Sensing Methods

In this section, the basic equations of the Ko’s Displacement Theory and of the Modal
Method are provided.

2.1. Ko’s Displacement Theory

Ko’s Displacement Theory exploits the Bernoulli–Euler beam theory to compute
the deflection of a beam-like structure along a line where axial strains are measured [5].
Considering the clamped structure in Figure 1, the marked line along the s coordinate
represents the path along which strain εss are measured. There are (N + 1) locations where
strains are measured, si (i = 0, 1, . . . , N), with s0 and sN denoting the coordinates at the
clamped end and at the tip of the beam, respectively. Therefore, the measured strains are
denoted by εi ≡ εss(si). Following the assumptions of the Euler–Bernoulli theory for pure
bending, it is possible to express the longitudinal strains in terms of the second derivatives
of the deflection (w,ss) [5]

εss(s) = −cw,ss(s) (1)

where c is the distance between the sensor and the neutral axis of the beam. Isolating for
w,ss(s), we have

w,ss(s) = −
εss(s)

c
(2)
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Figure 1. Half-wing with reference system and sensor markers.

The subscript ss will be omitted in the rest of the discussion, assuming that ε will
always be along the direction of the measurement line. The longitudinal strains are mea-
sured in (N + 1) discrete positions and they are assumed to change linearly between one
measurement station and the next one. In a variable-cross-section beam (for example, in
a tapered wing), c = c(s), and the assumption is made that it is a linear function of the
coordinate s between the measurement locations [5].

ε(s) = εi−1 − (εi−1 − εi)
s−si−1
si−si−1

c(s) = ci−1 − (ci−1 − ci)
s−si−1
si−si−1

(3)

si−1 < s < si(i = 1, 2, . . . , N)

For practical reasons, it is difficult to measure the strain value at the tip and at the
clamped end. However, this problem can be overcome by setting the strain at the wing tip
as εn = 0 and, for the strain at the clamp, by obtaining ε0 through extrapolation from the
near strain measurements.

The transverse deflection at the strain-measurement points, wi ≡ w(si), (i = 1, 2, . . . , N),
can be obtained by double integrating Equation (2), considering appropriate boundary con-
ditions (w(s = 0) = 0 and w,s(s = 0) = 0) and the continuity of deflections (w) and
cross-section rotations (w,s) at each strain measurement point [5].
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By adopting an arrangement with two parallel sensor lines (distance d), it is possible
to evaluate the twist angle β generated by torsion by considering the deflections along one
line (wi) and deflections along the other line (w′i) [5].

βi = sin−1
(

wi − w′i
d

)
(i = 1, 2, . . . , N) (4)

2.2. Modal Method

The Modal Method is based on a modal transformation since it can reconstruct the
displacement field of any structure using its mode shapes and some discrete strain mea-
surements [8]. Assuming that a finite element discretization of the structure has been
introduced, the displacement and strain fields are expressed as a function of the modal
coordinates q [8]:

w = φd q (5)

ε = φs q (6)

where w is the vector contains the displacements degrees of freedom, ε is the vector
of discrete strains, and φd and φs are the modal matrices corresponding, respectively,
to displacements and strains (each column represents the displacement or strain vector
associated to the corresponding mode shape). Displacement mode shapes and strain
mode shapes can be easily computed through a finite element analysis, but they could be
significantly difficult to estimate experimentally [8]. From Equation (6) it is possible to
express modal coordinates as function of the strains

q = φ−1
s ε (7)

Then, replacing Equation (7) in Equation (5), we obtain

w = φdφ−1
s ε (8)

This allows us to obtain the displacement degrees of freedom as functions of the modal
matrices and of the strain vector. As in real situations it is unlikely that the number of
available strains (S) is equal to the number of calculated mode shapes (M), the method has
to deal with non-square φd matrices. This problem can be overcome using a least-square
approach via the Moore–Penrose pseudo-inverse matrix formulation, thus obtaining a more
general form of Equation (7) and of Equation (8) [8].

q =
(

φT
s φs

)−1
φT

s ε (9)

w = φd

(
φT

s φs

)−1
φT

s ε (10)

When S < M, the problem admits an infinite number of solutions, whereas, for
S > M, the number of equations exceeds the number of unknowns, and the problem can
be solved by using Equation (10). The condition that requires the number of available
strains to be higher than the number of mode shapes used in the displacements and strains
approximation leads to the need for a mode selection criterion. Bogert, Haugse, and Gehrki
have proposed an approach to select a reduced number of mode shapes that contribute to
representing the static deformation of the structure [7]. Once a reduced number of modes
(Mr) is selected, the relative modal displacement matrix φdr is generated. The so-obtained
matrix can be inserted into Equation (5) and, pseudo inverting it, we can obtain the modal
coordinates vector relative to the retained modes, qr

qr =
(

φT
drφdr

)−1
φT

drw (11)
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qr represents the modal coordinate vector that best fit, according to the least squares method,
the static deformation described by the displacement’s vector, w, using only a reduced
number of modes. Using the reduced modal coordinates vector, it is possible to compute
the approximated modal representation of the static solution, wr, using only the retained
modes [7]

wr = φdrqr (12)

The modal representation of the static solution can be written as the summation of the
contributions of each mode

wr =
Mr

∑
i=1

φdri
qri (13)

where φdri
is a column of the matrix φd and qri is the i-th modal coordinate. The contribution

of the i-th mode the displacement vector is

wri = φdri
qri (14)

From this contribution, it is possible to compute the strain energy associated with each
i-th mode [7]

Eri =
1
2

wT
ri

K wri (15)

where K is the stiffness matrix. Replacing Equation (14) into Equation (15)

Eri =
1
2

qT
ri

φT
dri

K φdri
qri (16)

Considering mode shapes normalized with respect to the mass matrix, we have that:

φT
dri

K φdri
= ω2

i (17)

where ω2
i is the angular frequency associated to the i-th mode. Therefore, Equation (16) can

be re-written as
Eri =

1
2

ω2
i q2

ri
(18)

This formulation allows the computation of the elastic strain energy of each mode. By
comparing it with the total elastic strain energy corresponding to the static deformation, it
is possible to evaluate the contribution of each mode to the total elastic strain energy. As a
consequence, the capability of each mode to represent the static deformation can be derived
evaluating this contribution. All this leads to the formulation of a selection criterion for the
modes, based on the strain energy.

In the context of the modes’ selection, it is important to consider that only a subset
of the mode shapes of a structure is computed during a modal analysis. Although the
computed modes may be able to represent the static deformation of the structure, sometimes
the omission of higher-frequency modes can lead to significant loss in the accuracy of the
Modal Method. In fact, higher-frequency modes can help to improve the representation of
the structure’s static deformation. To reduce the lack of information due to the omission of
the high-frequency modes, the effect of including the residual vectors within the retained
modes is explored in this work. The residual vectors are mode shapes based on the static
response of the structure to given loads [20]. They can be computed using FE commercial
codes. In the present investigation, the residual vectors computed by MSC NASTRAN
and based on the formulation introduced by Rose in 1991 [21], Dickens in 2000 [22], and
reported by Wijker in [23], are considered.

3. Multirotor UAV

In this section, we describe the ICON V2 UAV and its half-wing, object of the present
shape-sensing comparative study, and we provide details on the finite element model that
has been used to simulate the static response of the structure.
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3.1. Geometry and Material Properties

ICON V2 is a multirotor (Figure 2) provided by the company PROS3 [24]. ICON V2 is
able to take off at a fixed point, as a tilt-rotor aircraft, by using 4 propellers mounted on the
support arms. During the cruise phase, the aircraft is pushed by a propeller mounted on
the back of the fuselage, while the other 4 are disabled. The UAV is designed to be able
to perform both aero-photogrammetry and search and rescue missions. The fuselage, the
wing, the tail, and the support arms that connect the wing to the tail are made of compos-
ite materials (both glass fiber reinforced polymers—GFRP—and carbon fiber reinforced
polymers—CFRP). Table 1 reports the main properties of the UAV.
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view of the UAV during take-off, the rear propeller is switched off during this phase.

Table 1. Main features of ICON V2.

ICON V2

Wingspan 2.4 m
Length 0.9 m
MTOW 12 kg
Engines 5, brushless

In Figure 3, a disassembled half-wing of the aircraft is shown. Figure 3 summarizes
the dimensions of the structure. The wing also has two CFRP tubular spars that cross the
fuselage, connecting the two half-wings.

The half-wing structure is made up of multilayered parts (CFRP, GFRP, and balsa) and
of a foam that allows the connection of the tubular spars with the panels (Table 2). The
adopted composite materials mechanical properties are confidential and the multilayered
parts lay-ups are confidential as well. Therefore, standard mechanical properties have been
used in the numerical model of the UAV (Table 3). Moreover, all composite and balsa parts
are assumed to consist of 10 layers with the stacking sequence [0/45/–45/90/0]◦s. For
spars and panels, the 0◦-direction is aligned with the wing-span direction, whereas, for the
ribs, the 0◦-direction is aligned with the rib major dimension.
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Figure 3. Geometry of the half-wing, dimensions reported in millimeters. (a) ICON V2 disassembled
half-wing (tape is attached on the external surface as a guide to indicate the position of ribs and spars),
(b) drafting with quotations, TOP view, (c) axonometry with quotations, ribs height, (d) axonometry
with quotations, ribs length, (e) wing airfoil (for confidentiality reasons, the airfoil type is not specified
and its geometry has been directly taken from the CAD model provided by the PROS3 company).

Table 2. Material and thickness of the sub-components of the half-wing.

Part Material Thickness [mm]

Upper and lower panels GFRP 1.6
Ribs Balsa 3

Spars Balsa 3
Tubular spars CFRP + foam 1 + 5

3.2. Half-Wing Finite Element Model

In order to perform a shape-sensing analysis of the ICON V2 half-wing with the G’s
Displacement Theory and the Modal Method, since experimental data are not available,
a FE model has been created with MSC/PATRAN. This model should provide: (1) the
reference displacement field to assess the accuracy of both shape-sensing methods, (2) the
input strains for both approaches, (3) the mode shapes for the Modal Method. Figure 4
shows an overall view of the model. The upper and lower panels are discretized with
QUAD4 elements, the ribs, and non-tubular spars with QUAD4 and few TRIA3 elements,
and tubular spars with BAR2 and QUAD4 elements (BAR2 elements model the tubular
spars, whereas the foam allowing the connection with the upper and lower panels is
modelled with QUAD4 elements. Refer to Figure 4). Shell elements have been used for
thin-walled components (mainly QUAD4 elements with a few TRIA3 elements where
needed to fit sharp corners, as obtained by the automatic mesh utility of MSC/PATRAN).
BAR2 elements have been used for the tubular spars (instead of shell elements) since
these components do not require a high-fidelity evaluation of strains (no strain sensors
are used on the tubular spars). A total of 1615 QUAD4 elements, 86 TRIA3 elements,
19 BAR2 elements, and 1500 nodes have been used. A sensitivity and convergence analysis
has been performed, revealing that more refined meshes would improve the accuracy on
displacements and strains no more than 1%. In Figure 4b, the rectangular opening on
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the trailing edge is actually occupied by the aileron not currently displayed. The aileron
has the same characteristics as the upper and lower panels (1.6 mm of GFRP) and is
in fact considered part of them. In some figures ahead, it is not displayed for merely
graphical reasons.

Table 3. Material properties.

Properties GFRP CFRP Balsa Foam

E1 [MPa] 47,712 104,556 1900
36E2 12,997 7339 50

G12 4723 4826 40
14G13 4723 4826 40

G23 4723 4826 40
Poisson ratio [-] 0.115 0.335 0.490 /
Density [g/cm3] 1.15 1.27 0.08 0.018

The nodes of the root cross-section have been totally constrained in order to simulate
the clamping boundary condition coming from the connection with the fuselage. The
loading condition corresponds to a straight-and-level flight. By using the XFOIL [25] and
AVL [26] software packages, the aerodynamic loads distribution on the upper and lower
panel has been obtained and then condensed as concentrated forces acting on the ribs
(Figure 5). Figure 6 shows the static deformation of the half-wing.
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associated properties: Balsa (green) for ribs and spars, Foam + CFRP (red) for the tubular spars, GFRP
(blue) for the upper and lower panels, (c) Tubular spars discretization: BAR2 elements (yellow) for
the CFRP spars and QUAD4 elements (white) for the connection with the skin, (d) 3D visualization
of tubular spars.
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4. Results
4.1. Shape-Sensing Comparative Investigation

This section presents the results of the shape-sensing of the half-wing undergoing
a static deformation under flight loads by using the Ko’s Displacement Theory and the
Modal Method.
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Ko’s Displacement Theory has been applied to the half-wing by considering two
measurement lines along the span of the upper panel and by measuring the upper-panel
external surface axial strain (εss) at some locations (Figure 7). At each location, the strain
has been evaluated from the FE model (when the location corresponds to the centroid of
an element, the value is simply read from the results report whereas, when the location
corresponds to a mesh node, the strain is averaged over the elements sharing that node,
appropriate coordinate transformation has been applied in order to obtain the strain along
each measuring line). Strains at the root were not read directly from the FE model at that
location, but evaluated through an extrapolation procedure based on the three measurement
locations close to the clamped end and on the same measurement line. The two lines have
the same number of strain-measuring locations and are located at the same distances from
the root cross-section in order to evaluate the twist rotation.
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Figure 7. Half-wing with strain measuring lines on the upper panel for the application of the Ko’s
Displacement Theory.

Since the strain measurement locations are at different distances (c) from the neutral
axis of the half-wing and since the neutral axis is different at different cross-sections along
the span, a procedure is required to determine the position of the neutral axis at some key
cross-sections [27]. According to the Bernoulli–Euler beam theory, the axial stress has a
linear distribution over any cross-section

σxx = b1 + b2 y + b3 z (19)

If, for a given cross-section, three values of σxx are available, the coefficients b1, b2
and b3 can be calculated and, by setting σxx = 0, the local neutral axis equation can be
determined. Three cross-sections (at 0, 245, and 645 mm from the root rib, respectively)
have been considered and the relative neutral axes have been determined. Between the root
and the 2nd cross-section, the neutral axis has been considered to be the one determined
for the root cross-section, similarly between the 2nd and 3rd cross-section. The neutral axis
of the 3rd cross-section has been assumed to be valid until the wing-tip (Figure 8).
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For the application of the Modal Method, the selection of the mode shapes is performed
according to the procedure described in Section 2.2. Figure 9 shows the energy carried by
each mode (Equation (18)) as a percentage of the total strain energy associated with the
static deformation of the half-wing. Almost all the energy is carried by the first mode shape
since it is very similar to the static deformed shape, and three modes, carrying more than
99% of the total energy, are considered for the application of the Modal Method (Table 4):
the first and the second mode shape and the residual vector (21st among the calculated
modes), Figure 10.
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Table 4. Detail of the chosen mode shapes.

Total Strain Energy Associated with
the Static Deformation [J] 15.012

Mode Shape Strain energy [J] Percent strain energy w.r.t.
the total strain energy [%]

1 14.7 98.1
2 0.0619 0.412

Residual vector 0.1068 0.712

Tot 14.9 99.27

The same locations and strain evaluation procedures already applied for the Ko’s
Displacement Theory have been adopted for the Modal Method.
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The Ko’s Displacement Theory and the Modal Method are compared in terms of
accuracy of the reconstructed shape w.r.t. to the reference FEM static deformation, in
particular using the following percent errors
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In Equation (20), wi is the deflection evaluated at the ith location by any of the two
shape-sensing methods, wre f

i is the corresponding reference deflection of the finite element

model, wre f
max is the maximum FEM deflection and n is the number of available reconstructed

deflections. Since Ko’s Displacement Theory is only able to evaluate deflections at the
same locations where strains are known as input data on a specific measurement line, the
error is evaluated per each sensing line and n = 10, whereas the Modal Method allows a
full-field reconstruction of deflections, thus n = 1500, i.e., the whole set of nodes of the
half-wing. A similar equation and similar definitions apply for the error related to the
twist angle, Equation (21). In this case, n = 10 for both methods since the evaluation of
the twist angle according to Equation (4) is performed on the 10 pairs of points along the
wing-span belonging to the two sensing lines (Figure 7). Table 5 provides the %ERMSw
and %ERMSβ of the Ko’s Displacement Theory and of the Modal Method, and Figure 11
shows the deflection and twist angle distribution along the wing span as calculated with
the FE model and reconstructed by the shape-sensing approaches.
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Table 5. Overall errors for Ko’s Displacement Theory and Modal Method.

Ko MM

Line 1 Line 2
Mode shapes 1st
and 2nd (residual
vector omitted)

Mode shapes 1st, 2nd
and residual vector

%ERMSw 11.07 10.31 1.434 1.334
%ERMSβ 20.13 12.05 13.19
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Results collected in Table 5 highlight the superior accuracy of the Modal Method
compared with the performance of Ko’s Displacement Theory. This is particularly true for
the deflection, whereas the twist angle reconstruction generally leads to poorer results by
using both shape-sensing approaches. The Ko’s Displacement Theory seems to provide
less accurate results as a consequence of some additional approximations (extrapolation to
obtain the strain at the root of the sensing line, evaluation of the neutral axis at different
cross-sections along the wing span). On the other hand, the Modal Method is devoid of
similar approximations and is able to reconstruct the displacement field over the whole
structural domain. The inclusion of the residual vector among the considered mode shapes
slightly contributes to the reconstruction of the deflections (and has a small negative effect
in terms of twist angle evaluation).

4.2. Enhancement of the Modal Method results

Since the Modal Method outperforms the Ko’s Displacement Theory, it is worthwhile
investigating further possible improvements.

An analysis on how the considered mode shapes affect the accuracy of the recon-
structed deflection has been conducted. The number and location of strain measure-
ment points are the same as in the previous comparison with Ko’s Displacement Theory
(Figure 7).

Table 6 reveals, at first, that those mode shapes that heavily contribute to describe
the static deformation have to be included in the analysis (1st mode shape in the current
case). On the other hand, simply adding mode shapes to increase the amount of strain
energy representation w.r.t. the total strain energy does not always guarantee an increase
of accuracy (using mode shapes 1:5 provides less accurate results w.r.t. using only the 1st
mode shape even if the latter choice leads to a lower representation of the strain energy).
In other words, the strain energy-based mode selection criterion can provide preliminary
guidelines to detect fundamental modes, but additional mode shapes should be selected
using different approaches.
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Table 6. %ERMSw errors for different sets of used mode shapes with the Modal Method (1:5 = from
mode 1 to 5).

Used Mode Shapes
Percent Strain Energy

Represented w.r.t. the Total
Strain Energy [%]

%ERMSw

2:17 1.13 51.71
1 98.14 1.924

1:5 98.83 3.408
1:15 99.23 3.319

1, 2, 21 99.27 1.334
1:3, 21 99.30 1.450
1:5, 21 99.54 2.169

Moreover, by keeping the choice of mode shapes 1, 2, and the residual vector that
provides the best results (Table 6), an optimization of the number and location of strain
sensors is performed in order to assess the capability of the Modal Method to be accurate
also with a reduced set of input strain data. A genetic algorithm has been used to minimize
the %ERMSw error. Each individual is represented by a set of 5 strain gauges, each located
at the centroid of any of the finite elements of the upper panel external surface. For a
given centroid/element, the available measurement directions are those of the in-plane
element reference system. The genetic algorithm adopts a fitness-proportional ranking
method and 1% mutation probability, 20 individuals are present in each generation, elitism
strategy is included, and the stop criterion is based on either reaching a limit number of
generations (100) or achieving %ERMSw = 0.4. The optimal sensors configuration and
strain measurement directions (%ERMSw = 0.38) is based on 5 strain gauges, as shown in
Figure 12. This excellent result, together with the reduced number of used strain gauges,
further proves the efficiency of the Modal Method.
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5. Conclusions

The paper presents a comparative study of two shape-sensing approaches, Ko’s
Displacement Theory and the Modal Method, applied to the deflection and twist-angle
reconstruction of a multirotor UAV half-wing from discrete surface strain measurements.
Both approaches are briefly presented and the UAV half-wing finite element model is
described, which simulates the static response to straight-and-level flight conditions.

The deformed shape reconstructed by the Modal Method is globally very accurate,
especially in terms of the deflection, whereas poorer results are found for the twist angle.
Ko’s Displacement Theory, with the same set of strain input data, is less accurate and this
performance can be attributed to some further approximations that the approach inherently
requires (extrapolation procedures to obtain the strain at the root cross-section, where it
is expected to be practically impossible to set strain gauges, and the need to determine
the location of the neutral axis along the wing span). The Modal Method can be further
enhanced by investigating which mode shapes better contribute to the reconstruction of
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the deflected shape, thus revealing that a criterion based on the static deformation strain
energy contribution can provide important but only preliminary guidelines. Moreover, an
optimization of the strain sensors’ location is shown to be an efficient tool to reduce the
number of required input strains to practically affordable values while keeping high levels
of accuracy.

Further investigations, also experimental, are required to assess the accuracy and
robustness of the Modal Method when different loading conditions and wing geometries
have to be taken into account. Nevertheless, the Modal Method appears to be a very
promising method for wing-structures shape-sensing in terms of accuracy and reduced
number of required sensors.
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