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Abstract— Deep Neural Networks (DNNs) enable a wide series
of technological advancements, ranging from clinical imaging,
to predictive industrial maintenance and autonomous driving.
However, recent findings indicate that transient hardware faults
may corrupt the models prediction dramatically. For instance,
the radiation-induced misprediction probability can be so high
to impede a safe deployment of DNNs models at scale, urging the
need for efficient and effective hardening solutions. In this work,
we propose to tackle the reliability issue both at training and
model design time. First, we show that vanilla models are highly
affected by transient faults, that can induce a performances drop
up to 37%. Hence, we provide three zero-overhead solutions,
based on DNN re-design and re-train, that can improve DNNs
reliability to transient faults up to one order of magnitude. We
complement our work with extensive ablation studies to quantify
the gain in performances of each hardening component.

Index Terms—Deep Learning, Reliability, Neutrons

I. INTRODUCTION

Deep Learning is more and more pervasive in our daily
lives, with the number of AI-based applications sharply in-
creasing and the deployment of intelligent systems becoming
ubiquitous. We count a number of novel technologies that are
enabled by machine learning, ranging from diagnosis of ma-
lignancies, to automatic predictive maintenance of industrial
machines, to fully autonomous vehicles. While the advantages
of this trend are tautological, the potential harm due to the
adoption of this technology should not be underestimated.
As an example, it has been observed that machine learning
methods are highly prone to adversarial attacks which, in
some instances, may completely change the desired behaviour
of neural networks [1]. Additionally, machine learning meth-
ods have been shown to be prone to radiation-induced soft
errors [2], [3]. The probability of experiencing a radiation-
induced corruption during interference is exacerbated by the
large size and complexity of the hardware required to execute
Deep Neural Network (DNN) models. Despite the low error
rate per device (in the order of one error every 3-4 years,
considering a natural flux of 13 neutrons/cm2/h [4], for
modern GPUs [3], [5]), the foreseen large-scale adoption of
DNNs in vehicles (10s of millions cars on the move in the EU,
on the average) and Internet of Things applications (billions
of devices connected), make DNNs reliability evaluation and
improvement mandatory. In this scenario, hardware protection
is too costly and most of the available software solutions to
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Fig. 1: Critical SDCs [%], Test Accuracy [%] in fault-free ex-
ecution, and Inference Time (for batch size 200) [s] for Base-
line and Hardened CIFAR10. The Hardened model shows a
significantly higher reliability to transient faults while roughly
preserving the accuracy with no execution time overhead.

improve reliability are either very inefficient (replication) or
simply adapt to DNNs strategies derived from the protection
of classical algorithms (e.g. selective hardening [6], [7] or
check-sums in convolutions [2], [8]). In this paper, we propose
to change the reliability paradigm for DNNs, exploiting their
potentialities and using intrinsic features of DNNs designs.
Our goal is to reduce as much as possible the impact of
transient faults without affecting the network performances.

Recent advancement of machine learning research demon-
strated that training and design of neural models can effec-
tively increase the robustness of DNNs to a variety of noise
typologies or adversarial attacks [1], without impacting per-
formances. Inspired by these findings, we investigate whether
-and to which extent- a proper re-design of existing deep
architectures, complemented with a fault-aware training, can
recover the accuracy drop caused by soft errors induced by
ionising particles strikes.

Our results, teased in Figure 1, demonstrate that a combi-
nation of three actions at training time, with zero overhead at
test time and almost no accuracy loss, is able to considerably
reduce the mispredictions induced by soft errors (from more
than 37.5% to 3.7% in the case of CIFAR10). We provide
an incremental ablation study to clarify the role of each
contribution we propose. Ultimately this paper advances the
State of the Art with the following:978-1-6654-7355-2/22/$31.00 ©2022 IEEE



• we discuss and quantify the effects of soft errors in image
classification tasks performed with standard DNNs;

• we propose three independent solutions that can increase
the robustness of neural models to hardware faults;

• we investigate and validate the contribution given by each
proposed solution and provide a proper combination to
fully exploit their potential. With high-level (Python) and
low-level Source And Assembly (SASS) fault injections
we show that our solutions reduce of up to one order
of magnitude the probability of mispredictions with zero
inference time overhead.

II. BACKGROUND

In this section, we provide a brief background on DNNs,
specifically focused on the concepts we exploit to train and
design more reliable networks. For each possible design choice
we also highlight its impact in the DNN reliability. Then, we
discuss the potential effects of radiations on computing devices
and DNNs.

A. Deep Neural Networks Design and Training
Neural Networks (NN) are universal function approxima-

tors [9] that, thanks to Backpropagation training [10] and a
sufficient network complexity, enable the solution of a variety
of tasks, e.g. classification, detection, and regression. Interest-
ingly, DNNs, and Convolutional Neural Networks (CNNs) in
particular, efficiently map in parallel processors and, therefore,
benefit from the heavy usage of GPUs computation for both
the training and inference processes.

The design process of DNNs consists of the identification
of the number and typology of layers that, once properly
interconnected, can be adapted to the specific task. The adap-
tation is performed through a training phase, in which the
parameters of the network are modified in such a way that,
for each training input-output pairs, the network response is
as close as possible to the ground-truth. The distance measured
between true and predicted values is called loss function.

The design choices, together with the methods that are used
to train the network, strongly impact the overall performances
of the model in solving the desired task. The network design
is responsible for the expressivity and the trainability of
the architecture, i.e. its capability to encode the knowledge
required by the task. The training oversees an effective tune
of all the network parameters. Only a judicious combination
of proper techniques can result in a neural architecture capable
of solving the task with good performances. Additionally, as
we show in this paper, only a proper design/training can make
the DNN intrinsically more reliable to transient faults.

Each network design has a specific set and organisation of
layers. Convolutional layers have different hyperparameters,
specifically kernel size, stride and padding. Each kernel is
independent and produces a different feature map, with as
many output feature maps as the number of filters.

Besides convolutions (that are layers that are most com-
putationally demanding and, thus, vulnerable to radiation),
activation functions are used for ensuring a non-linear input-
output relationship in DNNs and are very often implemented
through Rectified Linear Units (ReLU) [11] ReLU(x) =
max(0, x), where x stands for the input tensor. This definition

for activation layers enables an easy gradient flow, which is
fundamental for the Backpropagation operation performed
during training [12]. Building upon this function, several other
ReLU-like activations have been developed, e.g. SELU [13],
GELU [14], ReLU6 [15]. Normalisation layers play a role in
the stabilisation of neural architectures training, by smoothing
the optimisation landscape [16] and by preventing the weight
and gradient explosion. The most common normalisation layer
is BatchNorm, which learns at training time an approximation
of the first and second statistic moments of each feature map
to normalise the input tensors. After the normalisation, it is
standard practice to apply an Affine transform, namely an
additive bias β and a scale parameter γ. The normalisation
operation can then be defined as:

BatchNorm(x) =
x− E[x]√
Var[x] + ϵ

∗ γ + β, (1)

where E[x] is the expected value of the input tensor x, Var[x]
its variance and ϵ is a correction to improve stability [12].

In vanilla CNNs, the usual layer order is convolution-
normalisation-activation, but other design options have been
proposed in the last years. For example, in [17] the activation
function is moved before the convolution (pre-activation),
while in [18] the first operation is the normalisation (pre-
norm). However, there is no consensus in the community and
different architectures benefit from different choices in the
layer ordering. Of note, in this paper we show that this also
plays a role in the robustness of the model to transient faults.

The process of tuning the network parameters to fit the
dataset is called training and is usually performed via Back-
propagation of the output error from the last layer all the
way back to the input one. First, a batch of data is forwarded
through the network and the output is compared with the
ground-truth labels by means of a loss function, e.g. Cross
Entropy or L2. Since neural networks implement differentiable
operations only, it is possible to compute the gradients of
the loss w.r.t. the network weights. Given the gradients, an
optimiser, e.g. Stochastic Gradient Descent [19], update the
weights in order to minimise the loss function. This forward
and backward steps are repeated for each batch of training
data for a certain number of epochs (i.e. a complete pass over
the whole training set). It is of the utmost importance to use
as training set a highly heterogeneous set of data, because
this enhances the generalisation capabilities of the model.
Indeed, DNNs generally suffer a significant performance drop
when deployed to scenarios they were not trained for. For this
reason, it is standard practice to use heavy Data Augmentations
strategies to obtain a more varied training set that can contain
useful information not present in the original data, e.g. change
light conditions if the original training set presents day scenes
only. We apply a similar approach to transient faults.

B. Radiation effects on computing devices

It is well known that radiation can induce transient faults
in the hardware that can (1) be masked without affecting
the software, (2) lead to a Silent Data Corruption (SDC)
(incorrect application output) or (3) generate a Detected Un-
recoverable Error (DUE), which is a crash or a device reboot.
In this paper we will focus just on SDCs, that are particularly



problematic, as their silent nature makes them extremely hard
to be detected and can potentially lead to unstable or unknown
system states. Previous studies have already investigated the
reliability of DNNs executed on parallel and programmable
devices through radiation experiments [2], [7], [20], [21] and
fault injections [22]–[25].

Lately, various hardening solutions have been proposed
with the aim of reducing the impact of transient faults in
DNNs. Algorithm-Based Fault Tolerance (ABFT) [2], [22],
[26], filters to detect propagating errors in MaxPool layers [2],
[23] and (selective) replication with comparison [7], [27] have
been shown to significantly increase DNNs reliability. While
these solutions have been shown to be effective, they are
sub-optimal since they do not exploit DNN programming
philosophy but rather adapt hardening solutions, derived from
classical computation, to DNNs. Zahid et. al [28] propose a
first attempt of a fault-aware training for Quantised Neural
Networks (QNNs) and Hoang et al. [29] propose to clip
ReLU values to improve reliability. However, the proposed
techniques are limited to QNNs in FPGAs or are limited to
single bit-flips and are not suitable for DNNs and complex
accelerators like GPUs. With this paper we intend to move a
step forward in the quest of efficient reliability of DNNs by
taking advantage of network training and network design.

Independently on the DNN model and on the underlying
hardware architecture, previous works have shown that: (i) not
all SDCs are critical for a DNN, since some output errors still
allow the correct detection/classification; (ii) the convolution
tends to spread the hardware fault: a single bit flip can corrupt
a significant portion of the feature map; (iii) the value of the
transient corruption (i.e., how much the corrupted output is
different from the correct output) is neither random nor can
be simplified with a single bit flip model.

To have an effective DNN hardening it is paramount to
select a realistic fault model to present at training time.
Using a synthetic fault model (e.g. single bit flip) would lead
to unrealistic evaluations and hardening solutions that result
ineffective, once employed in the field. In this paper, as a case
study, we consider the recently published fault model, based
on beam experiments and RTL injections, for convolutions
executed in GPUs [2], [30], [31]. What has been highlighted
is that a single transient fault spreads and corrupts multiple
elements of the convolution output. These corrupted elements
are distributed in a block, on a line, or randomly distributed.

C. Main Idea and Contribution

Our idea is to make a DNN more reliable proposing im-
provements at the design/train stage. We intend to choose the
DNN design (activation functions, layers order) that is more
likely to reduce the number of misclassifications caused by
hardware faults but still guarantees the highest performances.
Additionally, we perform fault-aware training to improve the
DNN ability to properly classify the objects even in the event
of a transient fault. By injecting faults in specific moments
of the training process we force the DNN to learn how to
properly deal with the most critical errors.

III. DNNS RELIABILITY IMPROVEMENT METHODOLOGIES

We propose three non intrusive methods, derived from the
knowledge on DNN models and on previous experimental
observations, to improve the reliability of DNNs, with zero
overhead at inference time.

A. Activation Function

It has been showed that most of the critical faults for
DNNs (i.e., the faults that cause misclassification or misde-
tection) typically modify significantly the values propagated
through the network [2], [32]. Intuitively, given the intrinsic
approximation of DNNs, if the corrupted value is close to
the correct one we do not expect major output corruptions.
Previous works have introduced specific layers in the DNN
with the sole role to detect these high-magnitude faults [32].
While this solution is effective, it requires to add extra layers,
reducing the network performances in terms of computations
and inference speed. We show that this is not necessary, since
DNNs already have intrinsic features to filter excessive values.

The first reliability improvement we propose is to replace
the standard ReLU activation with its clipped counterpart,
ReLU6 [15], and train the DNN (dissimilarly to [29]) with
this new activation function. ReLU6 is a ReLU in which all
values greater than six are clipped to six:

ReLU6(x) = min(max(0, x), 6). (2)

This activation was originally proposed for mobile devices,
with the aim of improving the quantisation of the weights.
Indeed, ReLU6 was successfully applied in various Computer
Vision tasks such as classification and detection [15].

It is worth noting that using ReLU6 is not the same as
reducing the precision of the DNN operations. ReLU6 does
not force the network to use only values from 0 to 6, but
simply clips the values that reach the layer. In other words,
convolutions can still output values outside of [0; 6] and the
network can still have weights outside of [0; 6] but, when
the values propagate to the ReLU6 layer they are clipped. By
training the DNN with ReLU6 we ensure to force the DNN
to reduce as much as possible the use of values outside the
bounds while not loosing performances.

Our intuition is that ReLU6 also naturally allows DNNs
to significantly reduce the impact of transient faults. Indeed,
even if a neutron strike could in theory perturb a feature
map generating high-magnitude values, these would be simply
scaled down to six, reducing the impact of the error and
possibly allowing the DNN to recover from this perturbation
with much less effort. Our experimental results shown in
Section V confirm this intuition.

B. Fault-Aware Training

DNNs are very powerful tools to perform the tasks they have
been trained for. However, DNNs usually perform poorly when
deployed in scenarios not seen during the training phase. For
instance, a model trained exclusively with day scenes is going
to experience a significant drop in performances when tested
on night scenes with poor illumination. The most common
solution to address this problem is to use a dedicated Data
Augmentation (DA) strategy (i.e. solarisation or greyscaling in
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Fig. 2: Scheme showing the fault-aware training pipeline. We randomly select the fault model to apply at the output of a
random convolution layer. During a training, we perform ≈ 3.75 millions of injections.

this case) that enables the network to also experience situations
not present in the original training data. We propose to adopt
the very same strategy to transient faults. Our intuition is
that, if the DNN is trained to properly classify objects even
with some selected transient faults, we could produce a more
reliable DNN, maintaining the original performances.

Our second reliability improvement is to allow the
DNN to familiarise with the occurrence of neutron-induced
errors by injecting noise (transient faults) during training
(see Section IV-C for details about injections). In particular,
as shown in Fig. 2, while performing the forward pass of
the DNN training, we randomly corrupt the feature maps
(convolution output) in a given layer of the network, injecting
a realistic fault model. As a result, we allow the model itself
to autonomously learn how to properly deal with this kind of
fault by adjusting the learned weights in order to reduce the
likelihood of a misprediction. The challenge to address is the
selection of the faults to present to the DNN in the training
phase. Considering a high number of faults could increase the
network experience in dealing with faults, but risks to prevent
the training convergence. A low number of faults will result in
a quick training but might be ineffective. Moreover, we cannot
be sure that a certain random fault in a given layer is going to
lead to an error (thus, the DNN will learn how to deal with it).
From our experience, injecting single bit flips, for instance, is
transparent to the network training. The approach we adopt
is to identify the fault models that are more likely to induce
mispredictions and inject these faults in the majority of the
training samples (see Section IV-C for more details). During
training, injections lead to a limited time overhead of ≈ 20
minutes per training, increasing the training time from ≈ 50
minutes to ≈ 70.

C. DNN Design

The third contribution we propose is to re-design the
DNN to minimise the probability of fault propagation. We
have observed that in vanilla neural networks each computa-
tional block is typically composed by an ordered juxtaposition
of convolution, normalisation and activation operations. In the
case of noise affecting the inner layers of neural architectures,
as for the soft errors discussed in this paper, the probability of
fault occurrence in the convolution operation is higher than the
other operators, since the first is by far the most computing-
expensive operation [33]. When a corrupted sample is for-

warded within the network, at the feature level this appears as
an outlier w.r.t. the distribution of features. As a consequence,
training with these outliers can alter the learned statistics in the
normalisation layers, with a negative impact on performances
even for clean data. Therefore, to limit this possibility, it
is reasonable to expect that a clipping of features through
ReLU6 before the actual computation of normalised features
can not only limit the error propagation but also reduce the
role of single outliers in the distribution (i.e. corrupted sam-
ples) during training. As discussed in Section III-A, ReLU6
can greatly reduce the impact of high-magnitude errors. By
inverting the order of normalisation and activation layers, as
shown in Figure 3, ReLU6 is directly applied after the most
critical and compute-hungry operation (i.e., convolution). The
same layer ordering was adopted, for example, in [34]. Thus,
the error propagation is hindered before feeding the feature
maps to normalisation layers, which are then able to learn
more accurate statistics and a proper Affine transform. Our
results demonstrate that, without this architectural change, the
improvement given by the fault-aware training may be limited
by poorly learned statistics (see Section V).

IV. HARDENING AND EVALUATION METHODOLOGY

A. Case Study
While our methodology can be applied to any network,

hardware architecture, and fault model, to evaluate the effec-
tiveness of the proposed DNNs hardening solution we have
selected, as a case study, a standard ResNet44 [35] trained
from scratch on two common Computer Vision benchmarks,
namely CIFAR10 and CIFAR100. The two datasets contain
50,000 32x32 images for training and 10,000 for testing with

Convolution

BatchNorm

ReLU6

Convolution

ReLU6

BatchNorm

Fig. 3: Scheme of the operation order for a vanilla DNN (left)
and our proposed order (left). Red: layers with high probability
of fault propagation. Green: layers with cropped errors.



10 different classes in the former and 100 in the latter. We
choose Titan V GPUs as supporting hardware, and choose the
open-source transient fault model available in [36].

To show the impact of the three proposed actions, we
performed an incremental ablation study: first, we report the
results of a standard ResNet44 with ReLU and with ReLU6,
then we perform a fault-aware training with the ReLU6 archi-
tecture and finally we invert the order of normalisation and
activation. To evaluate the reliability of the hardening solution
we report Test Accuracy for the fault-free and faulty (“noisy”)
execution. The drop in performance (accuracy) between the
two is hereinafter named regret. We further validate the
improved reliability with a low-level fault injection.

B. Fault Injections
To inject faults during the DNN training, we use a specially

crafted Python-level fault injector, which is extremely fast
(nearly zero-overhead). Since the training process is very time
consuming, injecting errors using low-level fault injectors is
unfeasible. During training we inject faults at the output of
convolution. To ensure effective hardening solutions, we inject,
the convolution fault models that we have observed with beam
experiments or RTL fault injections [2], [30], [31]. In other
words, we tracked the transient fault propagation from the
hardware to the manifestation at the output of a convolution
and inject these during training. The fault model consists of
the geometry observed on the output tensor of a convolution
(e.g., if the fault corrupted a single line or multiple lines of the
tensor) and the statistical distribution of the incorrect values
(how much the values diverge from the expected value). The
fault model used for this work is available at [36]. It is worth
noting that, as faults are injected in software, if we inject a
single bit flip (i.e., we assume that the hardware fault results
in a single bit corrupted in the output of a convolution), we
would train the DNN to deal with a naı̈ve and unrealistic fault
model. The resulting DNN would then be hardened against a
much less critical fault than the realistic one.

After the fault-aware training, we validate the proposed
DNN reliability improvements solutions through both the
high-level fault injection via Python and with a Source And
Assembly level fault injection using NVBitFI [24]. SASS-level
injections are more realistic than application-level injections as
we can simulate errors in the microinstructions of the DNN.
However, the SASS-level injections on large applications such
as DNNs impose a high overhead (i.e., in the order of minutes
for a single injection). This is impractical to be integrated in
the complex training process (we inject thousands to millions
faults for a single training set). We inject two fault models
on SASS-level fault injection, Single Bit Flip on the floating
point instruction output and Warp Random Values. On Warp
Random Value injection, we select all the threads within a
GPU warp (i.e., the smallest thread execution group on a GPU)
and replace the output of a float instruction with a random
value following a power-law distribution [31].

C. Training Details
Since our goal is to mitigate the neutron-induced faults

effect, rather than achieving the maximum possible Test Ac-
curacy, we trained for 100 epochs without applying other
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Fig. 4: Weights distribution for Baseline and Hardened models
on CIFAR10. X-axis is restricted in [-0.5, 0.5] for visualisation
purposes. A similar plot can be drawn for CIFAR100.

data augmentation strategies beyond random crop and hori-
zontal flipping. We adopted a standard Stochastic Gradient
Descent [19] optimiser, a Cosine Annealing [37] scheduler
and a Binary Cross Entropy loss. The initial learning rate is
set to 2, we used a batch size of 128, weight decay of 1e-
5 and gradient clipping of 1. When performing fault-aware
training, for each batch of images which is forwarded in the
network we first sample the convolution or linear layer which
is affected by the injection. Once the batch is forwarded to the
chosen layer, we sample 0.75 of the images which the noise
will be applied to. At this point, we sample the error magnitude
(sampled from a Uniform [0, epoch], i.e. we linearly increase
the maximum possible magnitude during training) and the
channels which are affected by the injection. At training time
only “block” errors, i.e. errors which affect a random block in
the feature map, are injected, while when testing we randomly
choose between single value, line and block errors. In case of
single value noises all channels are corrupted, while in case of
line noises the probability of channel perturbation is 0.75 and
0.3 for the block ones. The same procedure is adopted when
validating with high-level injections, with the difference that
at test time all images in a batch are corrupted.

V. RESULTS

As teased in Fig. 1 on the CIFAR10 dataset our hardened
model shows no overhead at inference time and a with a
very limited accuracy drop in the fault-free case. Similarly,
the hardened CIFAR100 experience a negligible drop in ac-
curacy in the fault-free case, from 69.53% to 69.48%. Fig. 4
shows the weight distribution of the hardened model shows
visible differences w.r.t. the baseline. On average, the hard-
ened weights have half the magnitude (-4.13e−3 vs -2.31e−3

on CIFAR10, -1.72e−3 vs -9.78e−4 on CIFAR100) and are
much more concentrated around zero). Hence, the fault-aware
training modified the DNN weights and the hardened model
is less affected from perturbations in the feature maps, whose
propagation is limited not only by ReLU6 but also by the
lower magnitude of the weights.
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A. High-level Fault Injections

As a first evaluation to understand the behaviour of the
different configurations we consider high-level injections.
Specifically, we measure the Regret, i.e. the difference in Test
Accuracy for the fault-free and the faulty (“noisy”) cases.
The baseline ResNet on average shows an accuracy drop of
more than 15% on both the considered dataset. By replacing
the ReLU activation with ReLU6, we provide an already
significant protection with a ≈ 8% and 3% improvement on
CIFAR10 and CIFAR100 respectively. This result supports
our hypothesis that ReLU6 can limit the magnitude and
propagation of the error in the architecture and can therefore
play a crucial role in the design of robust DNNs. Interestingly,
the improvement given by the fault-aware training alone is
very limited (see Fig. 5). We claim that this is a consequence
of poorly learned statistics in the normalisation layers due
to the perturbations induced by noise-injections at training
time. This behaviour is strongly related to the architecture
structure which prescribes normalisation before activation. In
other words, in this vanilla design the normalisation acts
on non-clipped features, thus leading to improper learned
statistics and Affine transform. Indeed, by changing the order
of normalisation and activation layers, we obtain an increase
of Noisy Test Accuracy up to ≈ 12% and 9% on CIFAR10 and
CIFAR100 respectively. This attests that fault-aware training
alone might not be sufficient, and the network design must
also be considered to maximise the training effect.

B. SASS-level Fault Injections

Figure 6 depicts the Architectural Vulnerability Factor
(AVF) for the SASS-level fault injections performed with
NVBitFI. We select two low-level fault models to validate
the hardened DNNs, the Single Bit Flip and Warp Random
Value. Both fault models have been observed in low-level
instructions on GPUs [31]. The main difference between the
Python and SASS injections is that the former inject the
faults after convolution is completed, the latter allows the fault
to propagate from the machine instruction till the output of
convolution and of the DNN.

To have a detailed evaluation we divide the fault outcomes
in three categories, Tolerable SDCs, Critical SDCs, i.e., mis-
predictions, and fault that are Masked. We limit the low-level
fault injection to the Baseline and the most advanced Hardened
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Hardened (ReLU6+Training aware+Order inversion) versions.

network (ReLU6 + Training aware + order inversion). Figure 6
shows that the hardened DNN has a much lower probability
to experience Critical SDCs (mispredictions) for both datasets,
CIFAR10 and CIFAR100.

For Single Bit Flip injections the hardened DNNs has
almost zero mispredictions while for the Warp Random Value
injections the AVF for Critical SDCs is reduced of more than 1
order of magnitude for CIFAR10 and of 3.2× on CIFAR100.
This result, obtained with a low-level fault-injection, further
validates the achieved reliability of the hardened DNNs.

Interestingly, the overall number of SDCs (Tolera-
ble+Critical) is basically the same between the Baseline and
Hardened DNN. This suggests that the injections modify the
DNN execution and, in both the Baseline and Hardened DNN,
the fault is manifested at the output. However, in the Hardened
DNN the network is able to deal with the fault and still
produce the correct prediction. This observation attests that
the improved reliability is not achieved thanks to a higher
fault masking but rather to a better DNN design.

VI. CONCLUSIONS

In this paper we have exploited DNNs potentiality and
the knowledge about the fault generation and propagation to
reduce the number of radiation-induced mispredictions. The
three proposed hardening solutions we propose include the use
of a clipped activation function, the fault-aware training, and
the re-design of the DNN. These solutions are very effective
in improving the DNN ability to deal with transient faults
since, as shown with both high-level and low-level injections,
we can reduce of 1 order of magnitude the occurrences of
mispredictions. The most interesting contribution relies on
the lack of overhead imposed by the hardening strategies,
since the interference time remains unaltered. We strongly
believe that our findings opens to the possibility of adapting to
reliability various solutions of DNN design improvements. In
the future we plan to study more advanced DNN architectures,
investigating data augmentation strategies.
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