
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Test, Reliability and Functional Safety Trends for Automotive System-on-Chip / Angione, F.; Appello, D.; Aribido, J.;
Athavale, J.; Bellarmino, N.; Bernardi, P.; Cantoro, R.; De Sio, C.; Foscale, T.; Gavarini, G.; Guerrero, J.; Huch, M.; Iaria,
G.; Kilian, T.; Mariani, R.; Martone, R.; Ruospo, A.; Sanchez, E.; Schlichtmann, U.; Squillero, G.; Sonza Reorda, M.;
Sterpone, L.; Tancorre, V.; Ugioli, R.. - (2022), pp. 1-10. (Intervento presentato al convegno 2022 IEEE European Test
Symposium (ETS) tenutosi a Barcelona (Spain) nel 23-27 May 2022) [10.1109/ETS54262.2022.9810388].

Original

Test, Reliability and Functional Safety Trends for Automotive System-on-Chip

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS54262.2022.9810388

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971400 since: 2022-09-20T13:08:34Z

IEEE

1

Test, Reliability and Functional Safety Trends for
Automotive System-on-Chip

F. Angione§, D. Appello‡, J. Aribido∗, J. Athavale∗, N. Bellarmino§, P. Bernardi§, R. Cantoro§, C. De Sio§,
T. Foscale§, G. Gavarini§, J. Guerrero§, M. Huch†, G. Iaria§, T. Kilian†¶, R. Mariani∗, R. Martone§, A. Ruospo§,

E. Sanchez§, U. Schlichtmann¶, G. Squillero§, M. Sonza Reorda§, L. Sterpone§, V. Tancorre‡, R. Ugioli‡
∗NVIDIA, US,†Infineon Technologies, DE, ‡STMicroelectronics, IT, §Politecnico di Torino, IT,

¶Technical University of Munich, DE

Abstract—This paper encompasses three contributions by in-
dustry professionals and university researchers. The contribu-
tions describe different trends in automotive products, including
both manufacturing test and run-time reliability strategies. The
subjects considered in this session deal with critical factors, from
optimizing the final test before shipment to market to in-field
reliability during operative life.

Index Terms—DNNs reliability, Inter-wafer performance vari-
ation estimation, SLT-BI automatic test equipment.

I. INTRODUCTION

Nowadays, major trends for Automotive Systems-on-Chip
are the extreme complexity and the massive usage in safety-
critical environments. Such a combination of leading factors
generates very strong quality requirements and it triggers cru-
cial objectives to reach ultra-dependable vehicle electronics.

Mitigation of potentially harmful behavior deviations due
to transient or permanent events is a must-have to ensure the
functional safety. A recurrent scenario concerns the reliability
of neural networks and how they could self-mitigate the effects
of a circuit misbehaviour. Section II investigates on Deep
Neural Networks intrinsic robustness against permanent faults.

To stably reach the expected performance from manufac-
tured chips is another consequence of the major trends. This
is not easy to ensure because nanotechnology suffers from
process variation. Section III illustrates how to use Machine
Learning applications to predict wafer to wafer performance
variation.

Section IV concludes the paper topics looking into test
equipment that could revolve Automotive tester scenario. A
promising solution permits to merge System-level-Test and
Burn-In steps into a single one, by enabling a micro-controller
to control the Design-for-Testability features of the device
under test other than establishing a functional cooperation.

II. SELF-MITIGATION PROPERTIES ON IMAGE
SEGMENTATION NEURAL NETWORKS

The adoption of artificial intelligence (AI)-based algorithms
is gaining increasing attention in the automotive area, particu-
larly for autonomous vehicles. Indeed, due to their near-human
computational capabilities in tasks like image recognition,
Deep Neural Networks (DNNs) are considered appealing solu-
tions in many applications, also in safety-critical areas. How-
ever, to safely deploy them in human contexts, it is crucial to
evaluate and ensure their functional safety and reliability, such

as compliance with the ISO 26262 auto safety standard. To
handle the complexity of the driving environment, autonomous
vehicles are powered with deep learning algorithms which
have learned how to manage situations, how to make decisions
based on input stimuli, how to recognize pedestrians or traffic
signs. In the last few decades, the research community has
invested a lot of effort in assessing and guaranteeing the
reliability of DNN models and DNN-based systems. Partic-
ularly, understanding their vulnerability to random hardware
faults has become of paramount importance. However, recently
proposed neural networks feature novel architectural details,
such as batch normalization or skip connections, which re-
quire deepening the reliability studies done on older neural
networks. The principal intent of this work is to study the
reliability of a neural network used for the image segmentation
task: its vulnerabilities and strengths are highlighted by means
of fault injection campaigns. Experimental results demonstrate
that the presence of the Rectified Linear Unit (ReLU) activa-
tion function halves the percentage of critical faults in layers.
It means that this activation function is not only important for
its computational role of the nonlinearity (the ReLU supports
accurate context-dependent transformations and its removal
substantially impairs model performance [1]) but also for the
fault tolerance perspective. In this light, the results of further
reliability assessment studies on neural networks used for the
classification task are shown to confirm the self-mitigation
property of the ReLU activation function. To conclude, the
fault tolerance of skip connections is investigated: indeed, they
introduce a double path for faults, which might be concerning
for the resilience of the neural network.

A. Deep Neural Networks for Image Segmentation

Image segmentation neural networks are used to partition
an image into different segments (or classes). They can be
distinguished in two main categories, depending on the number
of segments they have been purposely trained to segment. We
refer to semantic segmentation if there are only two possible
segments to partition, otherwise, when multiple regions must
be identified, we refer to instance segmentation. A DNN used
for this task takes as input an image and returns as output a
segmentation mask, where each pixel of the input is assigned
to a given segment. U-Net [2] is a semantic segmentation DNN
developed in the field of biomedical image segmentation. It
features an encoder-decoder architecture, and it is composed
of four consecutive encoder blocks, a bottleneck and four

2

consecutive decoders blocks. The encoders, each containing
two convolutional layers and a max-pooling, extract the latent
representation from the input image. This information is then
used by the decoders, each one composed of a transpose
convolution and two convolutional layers, as a starting point
to build the segmentation mask. Noteworthy, the decoders
receive high-level information of the input image though direct
connections with the encoders, called skip connections.

B. Experimental Analysis
Reliability assessments on DNNs are performed through

software fault injection campaigns. Under the single fault
assumption, permanent faults are injected in static parameters,
i.e., weights, and the faulty results are compared with the
golden ones. To measure the effects of the injected stuck-at
faults, a common evaluation metric for semantic image seg-
mentation is the mean Intersection over Union (m-IoU). For an
individual class, the IoU is defined as the intersection between
the ground truth area of that class and the segmentation mask
area of the same class, over the union of the twos. For a
segmentation task, the m-IoU is the defined as the mean IoU
for all the possible classes. Comparing the m-IoU of a run
affected by fault with the same metric of the equivalent golden
run, we can measure the impact of the fault. Therefore, we can
classify a fault based on the variation in m-IoU (expressed as
a percentage) between the faulty and the golden run. A fault
can be:

• Masked: No difference is observed between the faulty
DNN and the golden one.

• Observed: The m-IoU of the golden network and the
faulty DNN are different.

Observed Faults can be further classified as Accept if the m-
IoU varies less than 5 %, Warning if there is a difference in
m-IoU between 5 % and 10 %, and Critical if the variation
is more than 10 %. The segmentation neural network under
assessment is U-Net, a 27-layer convolutional neural network
for biomedical image segmentation [2]. In more details, we
used a freely available pre-trained version from PyTorch. Static
parameters are internally represented as 32-bit single precision
floating point numbers and account for a total of 7,757,153
weights. Evaluating exhaustively all the possible stuck-at faults
would have been out of the timing and computational possibil-
ities. To deal with this complexity, typically a statistical fault
injection is performed. Initially, we set the number of fault
injections by following the methodology proposed in [3] with
an error margin of 1% and a confidence level of 99.80%: a total
of 23,870 fault injections have been performed, corresponding
to the 0.004% of the total possible stuck-at faults. However,
the very low number of injected faults in some layers was
a limiting factor to be able to draw meaningful conclusions.
As a consequence, we performed a further fault injection
campaign by injecting the same amount of faults in every
layer (excluding the max pooling ones), for a total of 168,935
injected stuck-at faults.

A similar procedure was used to perform reliability as-
sessments on DNNs performing image classification. Three
different CNNs performing image classification were analysed:
LeNet, AlexNet, and Darknet19. The LeNet model classifies
images taken from the MNIST dataset, while AlexNet and

Darknet19 from the ImageNet one. LeNet, AlexNet, and
Darknet19 include about 3M, 62M, and 20M parameters, re-
spectively, represented in a 32-bit floating point representation.
As in the U-Net case, running exhaustive fault simulations
was unfeasible. Therefore, a statistical fault injection was
performed by considering a confidence level of 99% and an
error margin of 1%, for each layer.

C. Experimental Results

The outcomes of the permanent fault injection on U-Net
show that, overall, the 89.87 % of fault is classified as Masked
and the 10.13 % as Observed, of which the 6.18 % is classified
as Accept, the 0.05 % as Warning, and the 3.90 % as Critical.
Going in more details, it turned out that the 99.21 % of
critical faults were due to stuck-at-1s affecting the 30th bit
of the U-Net weights (i.e., the most significant bit of the
exponent part of the 32-bit floating point data representation).
This is in line with the literature [4]. In Table I we report
the U-Net experimental results divided by layers (the same
number of faults is injected in each of them). The m-IoU
percentage is given for every above-mentioned category. The
first observation that can be drawn is related to the different
per-layer resilience: the first and the last layers seem to be
less robust with respect to the middle ones. As stated, the U-
Net features an encoder-decoder architecture: layers from 0 to
7 belong to the encoder; layers from 8 to 10 hold the latent
information of the DNN; layers from 11 to 22 constitute the
decoder block. The percentage of Masked faults increases as
we get deeper into the intermediate layers.

Fig. 1: First Scenario

Fig. 2: Second Scenario

Fig. 3: Third Scenario

The second important observation refers to the class of
Critical faults: the highest percentage of critical faults is

3

evidenced in layers L0, L10, L13, L16, and L19. They exhibit
double as many critical failures as the others on average.
The investigation of those scenarios led us to an interesting
consideration about the role of the ReLU activation function
(Eq. 1) which is applied after the neuronal computations,
almost after every convolutional layers.

f(x) = max(0, x) (1)

Nevertheless, particularly in modern DNN architectures, there
are specific layers applying deconvolution or transpose con-
volution that are used to perform upsampling. In many cases,
they do not apply the ReLU activation function after the de-
convolution operations. They are particularly useful to decode
the latent information stored in the bottleneck sections; and
therefore are part of the decoder section in U-Net. In our U-
Net architecture, layers L10, L13, L16, and L19 are upsam-
pling layers. The lack of the ReLU after their deconvolution
operations do not prevent the propagation of stuck-at faults on
negative weights to the output, resulting in an increased rate
of critical faults. Indeed, negative values are cut away from
the ReLU (Eq. 1), and consequently also faults on negative
weights, leading to a negative value at the output of the neuron.
We summarize and clarify the observed scenarios in Fig. 1, 2,
and 3. Hereinafter, motivated by the above-mentioned source
of critical faults, the three graphs shown in Fig. 1, 2, and 3
plot the effect of the most critical one: a stuck-at-1 affecting
bit 30th of the weight.

The first scenario covers the U-Net upsampling layers,
where the deconvolution operations do not go through the
ReLU activation function, neither other types. As shown in
Fig. 1, stuck-at-1s affecting both negative or positive weights
on bit 30th are propagated to the output as critical faults. In
this figure, the upsampling layer L10 is illustrated. The same
reasoning applies to the other U-Net upsampling layers. On
the contrary, Fig. 2 shows the self-mitigating effects of the
ReLU. In layers adopting such activation function at their
output, and (importantly) preceded by layers using ReLU as
well, all stuck-at-1s affecting negative weights on bit 30th

are masked (they are cut away from the computation). The
illustrated weight distribution is related to the layer L8, but
the same trend is observed for similar-feature layers in U-Net.

Worthy of note is the last scenario (Fig. 3). As evident, the
target layer is provided with the ReLU activation function.
One could think that all faults on negative weights are masked.
However, the weight distribution shows that also stuck-at-1s
on negative weights are propagated to the output as critical
faults (orange bars in the negative x-axis). The reason is
straightforward: the previous layer is devoid of the ReLU.
It means that the target layers receives negative inputs as
well, which, multiplied by negative weights (faulty in our
case) become positive (faulty) values, and are propagated to
the output. Values illustrated in the graph of Fig. 3 refer to
layer L17 and, generally, correspond to all the U-Net layers
following the upsampling ones. As also shown in Table I, all
those layers (L11, L14, L17), and L20 have a m-IoU% of
critical faults higher than average (but lower than upsampling
layers). This third scenario is also applicable to L0, where
inputs are standardized around the mean, and thus can be both
negative and positive.

(a) LeNet

(b) AlexNet

(c) Darknet19

Fig. 4: Impact of the ReLU activation function on the propa-
gation of critical faults in DNN classifiers.

Regarding the classification DNNs, similar outcomes are
observed: the 30th bit is the most critical one, producing an
accuracy degradation of up to 70% for Darknet19 and up to
25% for AlexNet. Noteworthy, it is important to mention the
ReLU role also in these DNNs: faults affecting the positive
weights generate a significant amount of wrong classifica-
tion results than the ones affecting the negative parameters.
This can be explained by the ReLU (Eq. 1), which blocks
any negative operation result in the neurons but allows the
propagation of positive values. Fig. 4 shows the percentage of
wrong classification results produced by critical faults in the
weights of different neural networks. Clearly, the CNNs that

4

TABLE I: U-Net fault injection results

IoU [%] Layer

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22

Masked 69.68 84.28 83.15 86.36 87.20 89.01 93.20 94.66 95.19 95.76 92.31 94.21 95.25 91.43 91.44 92.30 89.63 90.27 92.84 89.25 92.12 93.70 76.58

Accept 24.06 12.44 13.13 10.68 9.40 7.55 3.88 2.54 1.62 0.91 0.78 1.21 1.92 2.60 4.99 4.64 4.89 5.43 4.64 5.04 3.82 4.14 20.75

Warning 0.25 0.07 0.04 0.04 0.03 0.02 0.00 0.01 0.01 0.01 0.07 0.03 0.02 0.07 0.04 0.04 0.12 0.06 0.04 0.06 0.10 0.04 0.07

Critical 6.01 3.21 3.68 2.92 3.37 3.42 2.92 2.80 3.18 3.31 6.85 4.54 2.81 5.90 3.54 3.02 5.36 4.24 2.48 5.64 3.96 2.12 2.60

Fig. 5: U-Net Skip Connections and Fault Propagation.

incorporate the ReLU activation function (Fig. 4a, Fig. 4b)
generate a high rate of wrong predictions for faults affecting
positive weights and are resilient to faults that cause large
negative parameters. In both cases, more than 97% of the
incorrect classification results are produced by faults impacting
positive weights. In contrast, the Darknet19 neural network im-
plements a different activation function, named Leaky ReLU,
where negative parameters are attenuated instead of being set
to zero. According to the results, this activation function makes
Darknet19 vulnerable to faults in the whole range of weight
values producing wrong classification results when faults yield
large values for positive and negative parameters (see Fig. 4c).

To investigate how hardware faults propagate in DNNs
having skip connections, a further resilience analysis was
performed. We generated four different fault lists, one for
each skip connection. For each fault lists, three distinct FI
campaigns were performed: it was injected (one fault at a
time) in the corresponding encoder and propagated through
the original network. Then, we injected the same faults only
through the skip connection (horizontal propagation, Fig. 5),
and finally only in the deep part of the network (vertical
propagation, Fig. 5). In Table II, we can observe that the
number of critical faults tends to be the same for the three
scenarios for deeper encoders. Only in the first encoder we
can observe a marginal variation in critical faults: 3.16% for
the original scenario, 2.98% for the horizontal scenario and
3.26% for the vertical scenario. Since there is no substantial
difference, we can claim that skip connections do not amplify
critical faults, rather they might slightly mitigate them.

TABLE II: Skip Connections Experimental Results

Encoder Layer Critical Faults [%]
Original Vertical Horizontal

1 1 3.16 3.26 2.98
2 3 1.48 1.51 1.45
3 5 1.73 1.76 1.74
4 7 1.41 1.41 1.41

D. Conclusions and Future Works

In this work, the main outcomes of reliability assessments
on DNNs performing segmentation and classification tasks are
reported. Experimental results on U-Net show that the ReLU
activation function reduces by half the propagation of critical
faults thought the neural network. This self-mitigation effect
is also verified in CNN used for image classifications (i.e.,
LeNet, AlexNet, and Darknet19). Finally, experiments on the
U-Net skip connections demonstrate that the effect of faults is
not amplified by the presence of double connections.

III. A MACHINE LEARNING FRAMEWORK TO CATCH
INTER-WAFER PROCESS VARIATIONS IN

MICROCONTROLLERS’ PERFORMANCE PREDICTION

In safety-critical applications, such as automotive or avion-
ics, microcontrollers (MCs) must be tested to satisfy strict
quality constraints and performance in terms of maximum
operating frequency (Fmax). Several works in literature have
demonstrated that on-chip ring-oscillator (the speed monitors,
or SMONs) measurements can be related to the performance
of integrated circuits. SMONs have been used in machine
learning (ML) models as features for Fmax prediction for per-
formance screening and speed binning during the production
[5]. However, the trained ML models can become significantly
inaccurate over time due to shifts in the data distribution
caused by variations between wafers or changes in industrial
manufacturing processes. Previous research has demonstrated
how to predict, using regression, the MC performance from
SMON data using corner-lot wafers [5], [6]. This work aims
to show how to extend this approach to cope with inter-wafer
process variations. We exploit a novelty detection procedure
that is only based on wafer-level information derived by
SMON measurements on single dice. Test engineers can use
this method to evaluate new production lots and understand
whether to retrain the model to achieve a better generalization.

A. Process Variations in IC Manufacturing

The CMOS manufacturing process is continuously affected
by process variation. Generally speaking, such variations can

5

Fig. 6: A 2D PCA representation of 26 corner-lots wafers.
Each colored-blob is a wafer

be local (i.e., intra-die) or global (i.e., inter-die). Local process
variation has an impact inside each die. It is not the focus of
this work. Global process variation can occur from die-to-die,
wafer-to-wafer, and lot-to-lot [7]. In this work, we focus on
wafer-to-wafer, also known as inter-wafer, process variation.

Design corner analysis is a standard method to represent the
process variation. The corner analysis represents the device
behavior under different process, voltage, and temperature
(PVT) conditions. Especially for the device performance, the
worst-case corner has to be considered. Voltage and tem-
perature are deterministic values aside from potential noise
and will be set to the most critical values. However, process
variation has more parameters that need to be considered,
and this is done with the help of corner-lot wafers. Corner-
lot wafers are manufactured to observe the corners of the
process parameter space. Those wafers mimic these process
variations to understand parameter shifts and their influence
on the performance. The corner-lot wafers distinguish between
nMOS and pMOS transistor shifts in the process parameters.
The nMOS transistor respective the pMOS transistor can be
designed fast (F), typical (T), or slow (S). Each permutation of
the transistor designs is applied in one lot with the corner-lot
wafer [7]. With those variabilities in the process parameters,
devices can be artificially changed, and plenty of combinations
can be used to cover as many process shifts as possible.

The process parameters of the entire manufactured popu-
lation is usually modeled as a normal distribution. The delay
and the performance are also assumed as a normal distribution.
The observation of the device performance of the left or right
tail devices of this distribution is challenging because those
tail devices are seldom in the production flow — especially
when they deviate several sigmas from the mean. The corner-
lot wafers have exactly this desired property: they differ sig-
nificantly from the typical devices. A substantial number can
be collected and characterized by the slow and fast tail of the
distribution using the manufactured corner-lot wafer. Hence,
the initial training set for performance screening contains
various corner-lot wafers that imitate the whole manufacturing
distribution.

However, as corner-lots are manufactured in the engineering
phase to understand and improve process shifts for the product
ramp-up, their characteristics might be intrinsically different

from the production, and therefore be deleterious for the final
model accuracy.

In Figure 6, it is possible to see a 2D representation of
the devices that comes from the 26 corner-lots wafers used
for our analysis. This was created using a PCA representation
able to extract the 2 principal components of the SMONs in
the dataset.

B. Machine Learning Background

1) Dataset Shift: Dataset shift is a common problem in
predictive modeling that occurs when the joint distribution of
inputs and outputs differs between training and test stages.
This problem can be a consequence of data sparsity or how
training and test sets are built, in the sense of the presence
of bias in experimental design, due to the non reproducibility
of the testing conditions at training time, or because of the
intrinsic nature of the problem that has changed over time. The
hypothesis of i.i.d (independent and identically distributed)
data between training and test set often does not hold in real-
world application, and this can lead to a machine learning
model that is suboptimal for a part of the data. Dataset
shifting occurs within supervised learning paradigm or semi-
supervised learning, often involving the label of the task we
are facing. Dataset shift manifests in different forms:

• Covariate shift
• Prior probability shift
• Concept shift
• Internal covariate shift (a sub-type of covariate shift)

Covariate Shift occurs when only the input distribution
changes among training and test set. This is normally due to
changes in state of latent variables, which could be temporal or
spatial, facing non-stationary environment. Naming D(x) the
distribution of the input feature, covariate shift is in formula:

D(x)train ̸= D(x)test (2)

Prior Probability Shift occurs when the dependent variable dis-
tributions (i.e. the labels or class distributions, D(y)) between
test and training set are different:

D(x|y)train = D(x|y)test, D(y)train ̸= D(y)test (3)

An intuitive way to think about it might be to consider an
unbalanced dataset. Concept drift means that the statistical
properties of the target variable, which the model is trying
to predict, change over time in unforeseen ways. This causes
problems because the predictions become less accurate as time
passes. Concept shift is defined as:

D(x)train = D(x)test, D(y|x)train ̸= D(y|x)test (4)

Internal covariate shift is problem related specifically to the
deployment of a Deep Neural Network. This happen due
to the variation in the distribution of activations from the
output of a given hidden layer. Since this is used as the
input to a subsequent layer, the network layers can suffer
from covariate shift which can impede the training of deep
neural networks. The most common causes of dataset shift
are bias in sample selection and non-stationary environment.
Bias in sample selection can occur also in Cross Validation
split schemes without noticing. Non-stationary environments

6

occurs when training and test sets environments are different
due to temporal or spatial change. In a conventional Machine
Learning problem, we assume that the input data distribution
does not vary over time. But if the input data distribution
changes over time during the testing/operating phase, because
of the presence of non-stationarities, covariate-shift happens.
This requires the developments of a method that should be
computationally efficient and that has to be able to detect the
shift-point in the underlying distributions of the data stream.
Online or real time classification may seen as problems in
which dataset shift is present and for which exist several
methods presented in the literature to deal with, such as
completely retraining the classifier on the new received data in
an offline mode or retraining the classifier (sample-by-sample)
in an online mode fashion. Active learning approaches can be
helpful to solve these problems, with the aim of finding an
optimal training set able to generalize well on new unseen
data. Also Novelty Detection techniques can be applied to
model the data source distribution.

2) Novelty detection: Novelty detection has the aim of
classifying data that differ from known data available during
the training. This may be seen as “one-class classification”
problem, which goal is to build a model able to describe
“normal” training data and identify data that are different in
some way.

In our case, the “novelty” can be seen as the inter-wafers
variations: without special measures, a model built using
only the information contained in the corner wafers cannot
always be applied in the prediction of the maximum operating
frequency of devices in the production phase because, due to
the dataset shift, it would not be able to generalize. Novelty
detection techniques allow us to monitor the model as soon
as it encounters new data, estimating the accuracy of the
prediction.

The novelty detection is performed by measuring the Local
Outlier Factor (LOF) among the wafers. The LOF algorithm
[8] measures the local deviation of density of a given sample
with respect to its neighbors. It is “local” in the sense that
the anomaly score depends on how isolated the object is
with respect to the surrounding neighborhood, indicating the
degrees of outlierness for each point in the dataset, not relying
on a binary classification problem. Local outlier factor is based
on “local density”, where locality is given by the k-neighbors
of a point. By comparing the local density of a sample to
the local densities of its neighbors, one can identify samples
that have a substantially lower density than their neighbors.
In our case, the anomaly score LOF(wn) is computed as the
mean value of all anomaly scores LOF(xi ∈ wn) of the
samples in the new wafer wn. LOF model is trained on the
wafer inserted in the training set, while it is tested on new
wafers that comes from production. Outliers have high LOF
values (greater than 1), thus the wafer with the highest LOF
is marked as novel/outlier. The features of the LOF model are
the SMONs value only. Since this approach do not require the
labels (i.e. Fmax) to mark a point as outlier, it can be identified
as an unsupervised method.

Fig. 7: Proposed performance screening flow.

C. Proposed Approach
The initial Fmax prediction model is trained with corner-

lot wafers during the engineering phase. All corner wafers
are characterized, and the regression model is finalized. Some
parameters are tuned or shifted during production ramp-up and
high volume production due to the changes in the manufactur-
ing process. Hence, the initial data on which the model was
trained might considerably differ from the data in production,
and this novelty must be identified and eventually used to give
feedback to the training process. Novelty detection can be used
for this purpose, to check if the new wafers are statistically
different from the ones available at training time.

Once the problem is identified, the challenge is how to
achieve high generalization capabilities in the model. One
opportunity is retrain the model adding the novel-detected
wafers, or by using different methods. Active learning is one
of these: it can be used to minimize the amount of new wafers
to characterize. This is crucial for two reasons: the labeling
process of new data is time-consuming and, even worse, stop-
ping the production and accessing productive devices is costly
and should be done only when strictly necessary. Thus, only
a small number of wafers from the production can be labeled
with a feasible effort. The use of active learning techniques
was discussed in [6], while in this work we are interested in
the novelty detection phase, to identify unpredictable wafer
that comes from production lines.

Apart from the novelty detection aspects during production,
the initial training set can be validated and improved. For a
new product, corner-lot wafers are used for an initial model
buildup. Then, novelty detection is performed and novel wafer
are selected. Active Learning can now be used to rank the
wafers on the basis of how much information they would add
to the model and on their impact on the regression model. This
rank can be used possibly to retrain the model if a shift in the
production has been detected. Figure 7 graphically depicts the
above flow.

D. Experimental Evaluation
Our dataset is composed by about 2,400 labelled devices

that from come from 26 corner-lots wafers. Each device is
a state-of-the-art automotive microcontroller. For each wafer,
the number of devices ranges from 46 to 204 with an average
of 139. For each devices, the measurements of 27 SMONs are
collected, and these are used as ”features” by our algorithms.
A second set of data was used for the novelty detection,
composed of 44,476 samples from 125 production wafers.

7

Fig. 8: Quality assessment in new production wafers using
LOF novelty detection and active learning.

We tested the novelty detection mechanism on the dataset of
production wafers. We used the LOF model trained with all 26
corner wafers as the baseline — however, the same experiment
can be repeated using k steps of the active learning approach;
we reference this model as T0. The novelty of a dataset can be
calculated as the amount of devices where the model cannot
be used because the value of LOF is higher than the threshold
τ . The threshold therefore must be set according to the degree
of accuracy required, and it influences the total number of
retrains. Five values are reported, namely 1.05, 1.1, 1.25, 1.5,
and 1.75.

The trend of the detection using those thresholds is shown
graphically in Figure 8, starting from T0 and adding new
wafers from the production. Data with τ = 1.05 is reported as
an extreme case: we observe about 3.8% of novelty even in the
corner-lot devices used for the training. When evaluating the
LOF of production devices, we observed a high-percentage
of novelty even with τ = 1.50, while only 8% of devices
were above τ = 1.75. By adding a new wafer in the training
set of the novelty detection model, all wafers get below the
threshold τ = 1.75, and less than 4% remain above 1.5. With
3 new wafers added to the set, no novelty is recorded with
τ = 1.25; with 8, the threshold can be reduced to τ = 1.10;
finally, 10% of novelty is still observed in the extreme case of
τ = 1.05 adding 15 new wafers.

Such an analysis can be done during production to mon-
itor the novelty detection given by process variations: test
engineers can evaluate new production lots and understand
whether to add generalization to the Fmax model to cope
with new process variations; alternatively, they can decide to
relax the novelty detection threshold and lose some accuracy
in the Fmax model and consequently tweak the performance
screening threshold as discussed in [5]. After the assessment
of the Fmax model with new data, they can repeat the same
analysis using T1 (i.e., using the wafers in the new model) and
new production lots.

E. Conclusions and Future Works

We presented an innovate work based on active learning and
novelty detection for the performance screening of microcon-
trollers. We demonstrated that process variations introduced
during production can be identified with unsupervised novelty
detection algorithms using only speed monitors’ readouts
during the wafer sort. Novelty detection methods helps test
engineer in finding the shift-point during the production, sup-
porting the decision of retrain or not a machine learning model.

Experiments showed that LOF model is an appropriate novelty
detection method and can be easily applied to new wafers that
come from production lines. Anomaly detection can be further
improved. Also model accuracy can be improved, to achieve a
better yield during the production. Active Learning techniques
to create an optimized training set was discussed in [6], but
also Transfer Learning techniques can be useful to reuse the
knowledge acquired by the models trained on corner-lots and
to adapt it on new wafers. This may come from an additional
outlier detection step that takes into account measurement
error that may happen during the Fmax acquisition phase.
Future works can be done in this area by introducing new
algorithms for novelty detection.

IV. SYSTEM-LEVEL TEST AND BURN-IN ORIENTED TEST
EQUIPMENT

In the last decades, the importance and the use of electronic
devices have grown day by day. Today, we have microcon-
trollers in almost every everyday device, from a simple house-
hold appliance to the high-end, latest trending automobile.
Those embedded devices have grown in complexity in such
a way that never before happened, thanks to the possibility of
miniaturizing those components, the appearance of more cores
inside the microcontroller, and, last but not least, some ad-
hoc design plan to achieve optimal performance in minimum
space.

The massive presence of electronic devices, achieved only
with mass production, led us to the necessity of finding a
new suitable way to test those devices [9]. Testing a device
is a crucial, and essential way to guarantee that a product
will work as intended when it was conceived, but not only.
When a device is tested, it also reduces infant mortality. This
is done by highlighting the devices that present some defects
and by discarding them. Identifying those faulty devices leads
to a reduction of errors, inoperability, or malfunctioning of the
complex systems, precedently mentioned.

When a testing procedure is in effect, primary importance
is taken by the time invested in the ongoing testing program’s
execution [10]. Since modern electronic devices have grown
in complexity, also the number of internal components and
peripherals has grown. Consequently, the time required to
drive effective results has increased with the complexity of
modern devices.

To achieve those goals, the testing procedure must be carried
out with mastery because the identification of a fault could be
very difficult. But, with the appropriate methodology, tools,
and design the result will be a successfully tested device.

One of the most important and widely used testing tech-
niques is the so-called “Burn-In”. To use the burn-in technique
is a major requirement that the device to test is designed for
testability, this means that the flip-flop inside the device must
be of type mux-scan. In such a way it’s possible to insert inside
the scan-chain, which is the chain of all the flip-flops of the
device, a specific pattern (more details about the insertion and
the pattern in the next section). After that, all the flip-flops
that compose the scan-chain are forced to a predetermined
value. The system status will be evolved to the next one.
This passage could be performed during stressful conditions
like higher or lower voltage than the nominal one, warmer

8

or colder temperature than operative one, etc. After that, the
values inside the flip-flops are extracted and matched with a
“golden pattern”, which represents the expected status after
the system’s evolution.

An innovative testing technique, today more and more
widespread, is the “system-level test” [11]. This particular
technique is used to test devices as close as possible to opera-
tional conditions, verify the correct behavior of the system, and
identify possible defects. This is possible by testing the whole
device or only part of it. One of the most common procedures
makes use of an operative system to simulate as close as
possible to the real stress condition the normal workflow that
the device should do if it will pass the test phase.

It’s a good common practice when a test is performed
to use multiple testing techniques in different production
phases. This should be done to identify as soon as possible
defective components and to avoid spending resources on
costly manufacturing processes.

In these few pages will be exposed the proposed architecture
(section IV-A), the experimental results (section IV-B), and in
the end (section IV-C) together with the conclusion of this
article what will be our future works on this topic.

A. Proposed architecture for SLT and BI ATE

In this section, you will be informed about the background
knowledge used to implement the testing functionality of the
tester (that will be discussed in section IV-B).

To better comprehend how the tester works it’s necessary
to start from the different types of testing techniques. There
is a profusion of approaches that could be used to perform
a test. Our choice fell back to the burn-in, this technique, as
was previously mentioned works with patterns and scan-chain.
Before treating those arguments, it’s better to explain what is a
“design for testability”, in which category the burn-in belongs.

Design for testability means that the circuit was designed,
as the definition, to facilitate the testing phase, and allow
a more punctual control of the components of the system
during the testing phase. To achieve this result, a possibility
is to modify the circuit’s flip-flops in such a way that from
standard flip-flops it is composed only with mux-scan flip-
flops. The so-called scan-chain of flip-flops allows one to
deal with a sequential circuit as a combinational one. Usually,
when a device is designed for testability, it also has some
dedicated port that could be used to guarantee easier access
to the pin used for the testing purpose. One of the most
common standards widely used is the JTAG (Joint Test Action
Group), which takes its name from the homonym consortium.
By using the FSM (Finite State Machine) logic implemented
inside the TAP (Test Access Port) Controller it is possible to
set the device under test (also known as DUT) in test mode.
Those concepts are now the state of the art, and more relevant
information about those standards can be found here: [12].

The procedure to set the DUT in test mode takes the name
of “test mode entry”. It’s a device-dependent mechanism that
has the necessity of setting in specific registers inside the DUT,
specific values. This is done to configure the DUT properly.

After the “test mode entry”, if everything goes as planned,
the DUT has entered the “test mode”, from this moment it is
possible to force the flip-flops by shifting inside the scan-chain

Fig. 9: close-up on a real scan-chain. Notice the NOT port
present on the Q output of the second flip-flop

a pattern in case of a burn-in test, simulate the circuit of the
DUT or stimulate a component by the SLT testing procedure.
A pattern could be described as the state of the system at a
specific time. In fact, after the shifting procedure, the system
will have all the flip-flops set in a state determined by the
pattern.

At this point, by applying a capture beat, it’s possible to
make the system evolve like one clock stroke at a time.
The circuit will work as a sequential device, which it is.
According to the test that wants to be performed and the
“golden pattern” which could be described as the desired
output after a specific number of clock strokes, the value of
the flip-flops are extracted by another shifting procedure.

The way a pattern is shifted inside the scan-chain could
be multiple, is it possible to use GPIO (General Purpose
Input/Output) or the SPI (Serial Peripheral Interface) protocol.
The shift-in (that’s what is generally called the insertion
shifting part of the scan test) is the most time-demanding part
of the burn-in test. It follows that to optimize the test procedure
a good practice is to shift data as quickly as possible (an above
limit is introduced by the maximum shifting speed of the scan-
chain which is device-dependent).

The last step that must be performed is to check if the
extracted output from the scan-chain is compatible with the
expected pattern. The patterns that must shift inside the scan-
chain and the expected patterns are usually provided by the
device’s producer, as a result of a simulation of the circuit or
in some cases as a result of some pseudo-random generation
process. Every time a pattern is generated it is fundamental
to consider that the scan chain, differently from what one
might think, is not only a sequence of identical flip-flops.
The scan-chain could contain some flip-flops which have
the output as Q and could contain other flip-flops which
have the output as QN. Moreover, the scan-chain is not only
composed of flip-flops but we could find inside also some NOT
logic ports. Those are present downstream every flip-flop with
the Q output, to have the input of every flip-flop coherent
(figure 9). Those considerations must be taken into account
by modifying the pattern according to the design of the scan-
chain. Unfortunately also this procedure is device-dependent
and could be performed by using some offline parsing tool.
Which will modify the patterns as requested by the position
of the NOT port in the scan-chain.

Furthermore, the verification of the correctness is a bottle-
neck of the entire test process. So, it’s crucial to deal with it
as quickly as possible. There are several ways to accelerate
the verification phase: instead of checking one single flip-flop
value to the expected ones, it’s possible to make a signature
that will be used to compare the obtained signature to the
desired one or implement the comparison in hardware using,

9

Fig. 10: flow-chart of a burn-in test

Fig. 11: proposed architecture of the tester and the DUT

for example, an FPGA (Field Programmable Gate Array) or
some dedicated hardware. If the use of dedicated hardware is
unapproachable, a fine alternative should be the use of parallel
programming to reduce as much as possible the time required
to perform the comparison task.

Another salient factor to keep in mind is the availability
of the patterns. Normally an embedded testing device doesn’t
have much memory to store those patterns. This problem leads
to the poor possibility to perform multiple testing procedures,
inject specifically designed patterns, or, even else, rely only
on pseudo-random pattern generation which could focus the
test, not on critical parts of the DUT. A solution, adopted
in this proposed architecture, plans to use an SD (Secure
Digital) card to store those patterns, by using a large amount
of memory available on those memory peripherals. This allows
not only to store all the patterns that the tester needs to operate
independently but also to store eventually log file reports of
error that could be analyzed offline by using ad-hoc tools.
In such a way, a device is tested but in case of a detected
defect, the error found is listed to ulterior and more detailed
investigation.

The tasks prior described , which represent a common burn-
in test procedure using the proposed approach are represented
in figure 10.

The proposed architecture of the tester (represented in figure
11) dispose of:

• PS (Processing System, also known as CPU): implements
the logic of the tester, interfaces with the FPGA’s IP core
(Semiconductor Intellectual Property Core), interfaces
with the memory and handles read and write operation
with the SD card. A major duty under its responsibility

is to handle the test-mode entry to put the DUT in test
mode. Also, the comparison is handled by this component
but could be moved inside the FPGA in case a speed-up
is necessary.

• FPGA: implements every IP core necessary for every
function of the testing procedure, in particular through
the FPGA the tester will send and receive data with the
DUT

• SD card: external memory used to store patterns and
results from the testing phase. The patterns, with the
auxiliary of the CPU, are read from the SD card and
temporarily stored inside the RAM. Here for every burn-
in test cycle (see the second line of figure 10), two
different patterns are extracted from the SD card and
placed in memory (red and blue part inside RAM, figure
11). Those patterns represent for every cycle the pattern
to shift inside the scan chain and the expected result of
the previously inserted pattern

B. Experimental results
In this section, the reader will be made aware of the real

cause of the study, enriched with some experimental data (table
III) about the tester implementation.

For the implementation of a tester based on programmable
architecture, case of study of this paper, it was used the Xilinx
Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit, and for the
DUT the chip SPC58x produced by STMicroelectronics. The
SPC58x is mounted inside a daughterboard which is placed
above the motherboard. The motherboard brings the power
supply to the SPC58x chip, while the daughterboard brings
the JTAG port used to put the chip in “test mode” and to
shift in the pattern to carry out the scan test. The working
set-up could be seen in figure 12, in particular, on the left, the
DUT with the LFBGA 292 housing for the SPC58x chip, on
the right, the Xilinx Zynq UltraScale+ MPSoC ZCU104 who
represent the tester.

In compliance with the background discussed in section
IV-A, the Xilinx Zynq UltraScale+ MPSoC ZCU104 imple-
ments most of the features described before. Its duty begins
with sending the data required to the test mode entry for the
DUT, this is done by using the AXI GPIO implemented in
the PL (Programmable Logic, also known as FPGA). The
logic to entry in the test mode, since it is device-dependent, is
directly implemented in software, in such a way that follows
the TAP Controller FSM. After that, the tester provides a
CLI (Command Line Interface), by using it, the tester can

10

Fig. 12: operative set-up

TABLE III: execution time of a single burn-in test

Read configuration file 3.95 ms
Enter in test mode 612.93 ms
Read file with pattern to be sent 90.28 ms
Read file with expected result 90.28 ms
SPI transfer 125.91 ms
Capture beat 16.25 µs
Result comparison 2.35 ms
Total time for a burn-in pattern
(excluding reading the configuration
file and test mode ingress) 311.84 ms

communicate with a host PC using serial communication.
Through the CLI it is possible to send commands to the
tester to configure the execution of the various command and
burn-in test methods present inside the firmware of the tester.
When the burn-in test command is sent to the tester, the
software starts to read, from the SD card present on-board, files
previously parsed by external programs. Those files contain the
pattern that must be sent into the scan-chain and the expected
output. Since the scan-chain works as a queue, every time
a new value is inserted a value is extracted from the end
of the scan-chain. The shift-in and shift-out are performed
using the SPI protocol at a speed of around 6.25MHz, this
is due to an upper limit of the scan-chain shifting speed. To
avoid unnecessary waste of time for every injection in the
scan-chain the current value of the scan-chain is extracted and
compared to the expected one. Moreover, the tester gave the
user the possibility to save the result into the SD card, to
have feedback, and to log errors that could be studied offline
by using appropriate tools. Those tools just mentioned, are
necessary because to fully exploit the SD card memory the
patterns are coded in a binary format and saved in binary files.
The tools will encode the patterns used by the tester, or decode
the pattern received by the tester to provide human-readable
files to the user.

C. Conclusions and Future Works
This paper presented a way to implement a testing proce-

dure using jointly user-defined hardware design, FPGA, and
software firmware to speed up the so-called testing phase.
Especially by using the FPGA, the design is very scalable
and easily customizable as needed, but keeping optimum
performance.

Our aims for the future are to extend the testing capability
for the previously described tester. This extension foresees
adding the burn-in delay test, which should make the tester
able to detect more and more defective devices. Furthermore,
we intend to start to test in an improved stressful condition
the SPC58x chip, regulating the supply tension by using a
controlled board, capable of a voltage regulator.

V. REMARKS

This paper touches extremely relevant topics and it shows
solutions addressing crucial issues in the production of today’s
System-on-Chip designed for the Automotive segment.

The three contributions from major players in the Automo-
tive arena cover self-mitigation abilities estimation for DNNs,
AI-based analysis of inter-wafer performance variation, and
effective test equipment to minimize the cost of Burn-In and
System-Level-Test.

REFERENCES

[1] T. Ito, G. Yang, P. Laurent, D. Schultz, and M. Cole, “Constructing
neural network models from brain data reveals representational trans-
formations linked to adaptive behavior,” in Nature Communications,
vol. 13, 2022.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.
[Online]. Available: http://arxiv.org/abs/1505.04597

[3] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
Test in Europe Conference Exhibition, 2009, pp. 502–506.

[4] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS), 2019, pp. 1–6.

[5] R. Cantoro, M. Huch, T. Kilian, R. Martone, U. Schlichtmann, and
G. Squillero, “Machine learning based performance prediction of mi-
crocontrollers using speed monitors,” in 2020 IEEE International Test
Conference (ITC), 2020, pp. 1–5.

[6] N. Bellarmino, R. Cantoro, M. Huch, T. Kilian, R. Martone, U. Schlicht-
mann, and G. Squillero, “Exploiting active learning for microcontroller
performance prediction,” in 2021 IEEE European Test Symposium (ETS),
2021, pp. 1–4.

[7] V. Champac and J. G. Gervacio, Timing Performance of Nanometer
Digital Circuits Under Process Variations. Springer International
Publishing, 2018.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
Identifying density-based local outliers,” in 2000 ACM SIGMOD
International Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 2000, p. 93–104. [Online].
Available: https://doi.org/10.1145/342009.335388

[9] D. Appello, C. Bugeja, G. Pollaccia, P. Bernardi, R. Cantoro, M. Restifo,
E. Sanchez, and F. Venini, “An optimized test during burn-in for
automotive soc,” IEEE Design Test, vol. 35, no. 3, pp. 46–53, 2018.

[10] N. Sumikawa, L.-C. Wang, and M. S. Abadir, “An experiment of burn-
in time reduction based on parametric test analysis,” in 2012 IEEE
International Test Conference, 2012, pp. 1–10.

[11] F. Almeida, P. Bernardi, D. Calabrese, M. Restifo, M. S. Reorda, D. Ap-
pello, G. Pollaccia, V. Tancorre, R. Ugioli, and G. Zoppi, “Effective
screening of automotive socs by combining burn-in and system level
test,” in 2019 IEEE 22nd International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), 2019, pp. 1–6.

[12] W. Lu, R. Wang, C. Zeng, C. Liu, and X. Wang, “A general fault
injection method based on jtag,” in 2018 Prognostics and System Health
Management Conference (PHM-Chongqing), 2018, pp. 604–608.

