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Tip-timing measurements of transient vibrations in mistuned

bladed disks

S. Bornassi∗, G. Battiato, C.M. Firrone, T.M. Berruti

Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129 Torino, Italy

Abstract

Bladed disks are usually characterized by a rich dynamic response during service due to the

occurrence of several mode shapes that vibrate at resonance within the operative range. In

particular, during start-ups and shutdowns, the variable speed causes a temporary crossing

of resonance that cannot be neglected to determine stress envelope and safety margins of

the system during its whole mission. In fact, fluid flow induces fluctuating loads with

variable frequencies (non-stationary regime) on the blades being responsible of a dynamic

response which does not follow the so-called steady-state (stationary) response. This paper

proposes a novel post-processing method for Blade Tip-Timing (BTT) measurements for

the identification of the resonance parameters of mistuned bladed disks working in non-

stationary operative conditions. The method is based on a two degrees of freedom model

(2-DOFs) and focuses on transient resonances in which two mistuned modes with close

resonance frequencies are involved in the dynamic response. In such circumstances, the

identification method based on the single degree of freedom (1-DOF) model usually fails.

To verify the effectiveness of the method, numerical and experimental investigations have

been performed. First, a mathematical simulator based on a lumped parameter model of

a bladed disk system is used to generate the BTT simulated data. Experimental signals

are measured using a commercial BTT system through a set of optical probes mounted

circumferentially around a rotating dummy blisk. It is shown that the method produces

accurate predictions for the numerical simulation, even in the presence of considerable noise

levels. Moreover, experimental results confirm a successful implementation of the method

on the actual BTT measurements.

Keywords: Non-stationary vibration response, Linear sweep rate, Vibration parameters

identification, Frequency splitting, Blade tip-timing measurements
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1. Introduction

Turbomachinery rotor blades are extremely prone to vibration-induced fatigue failures,

which significantly threaten the safety and integrity of the whole mechanical assembly. In

fact, resonant vibration and flutter instability are the most common types of vibration

problems causing High Cycle Fatigue (HCF) damages in gas turbine engines [1]. Therefore,

monitoring the blade vibrations is of great importance for assessing the health of turboma-

chinery. In addition, the identification of the blades vibration parameters is of particular

interest for the mechanical designers, since this allows to validate and update the mathe-

matical model of the bladed disks from the early stages of the design.

Generally, detecting the vibratory response in turbomachinery is not a trival process, due

to the rotating environment and harsh operating conditions. The conventional method for

vibration measurement in turbomachinery consists of installing strain gauges on the blades’

airfoils. However, this method is not efficient due to several reasons, such as the direct

attachment of the strain gauges only to few blades, the complex and expensive installation

procedure, the complicated data transmission and finite lifetime. These drawbacks severely

limit the use of this technology for a cost-effective health monitoring of the turbine blades.

To overcome these difficulties, the Blade Tip-Timing (BTT) technique has been devel-

oped since the ’70s as an alternative to strain gauges. Currently, BTT is recognized as the

most promising non-contact technique in turbomachinery industry for the blade vibration

monitoring [2–5]. This technique enables simultaneous measurement of all the blades by non-

contact sensors (capacitive, optical, eddy current). With respect to the traditional strain

gauge technique, BTT measured signals are inherently under sampled due to the fact that

only one sample can be taken by each sensor within a single revolution. To work through this

problem, different signal post-processing analysis methods have been developed. The earli-

est one is the well-known single parameter method proposed by Zablotsky and Korostelev

[6] in 1970. The method is based on a single degree of freedom vibrating system and re-

quires the measurements from only one sensor. The maximum vibration amplitude can be

obtained by calculating the peak-to-peak value of the sensor signal during the crossing of a

resonance. Heath and Imregun in [7] then modified this method by considering the effects of

blade vibration for the calculation of the arrival time. Later in [8] Heath developed the two

parameters plot method for the identification of the maximum resonance amplitude and the

engine order (EO) of synchronous resonances by using two BTT sensors. An improvement of

∗Corresponding author.
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the two parameters plot was proposed by Rigosi et al. [9], with a focus on the Engine Order

(EO) and maximum vibration amplitude identification. They verified the method through

a BTT experimental campaign on a rotating dummy disk using optical BTT sensors, and

then compared the post-processed response with the one identified from the strain gauges

analysis.

The analysis methods introduced so far deal with 1-DOF models. In the cases of more

than one mode participation in the vibratory response the identification method must be

customized for multiple modes. To this end, Schlagwein and Schaber [10] proposed a multi-

degrees-of-freedom model for the identification of the vibration parameters of mistuned

bladed disks. The proposed method was validated by means of a comparison between

simulated data and tests on a small gas turbine.

Presently, among the BTT specialists, the sine fitting [11] is the most accepted method for

the analysis of BTT data. It is based on the fitting of a sine wave with constant amplitude

and phase on the BTT samples recorded by the sensors (at least three) during one or

more revolutions and directly provides the forced response of all the blades. The vibration

parameters can then be obtained by analyzing the forced response curve via a standard fitting

procedure. This method is considerably different from the methods of single parameter and

two parameters plot. In particular, the latter actually uses the sensor data recorded over

the entire resonance region, while the sine fitting model applies to data detected during just

one or few revolutions where the rotation speed can be considered constant or averaged.

Following the idea developed by Heath and Imregun in [7], Liu et al. [12] considered the

effect of the blade vibration in the evaluation of the time-of-arrival (ToA) in the traditional

circumferential Fourier fitting method. To assess the feasibility of the method, a numerical

simulation was performed in order to obtain the EO and the response amplitude. Meanwhile,

the method accuracy was further assessed through experimental measuremnts. Carrington et

al. [13] formulated the determinant and autoregressive methods and compared the results of

the methods statistically using Monte Carlo simulations. Heller et al. [14] recently proposed

a novel technique on the basis of the sensor waveform for the identification of asynchronous

and synchronous single-harmonic and multi-harmonic blade vibration parameters.

An extension of the sine fitting for multiple frequency resonances was proposed by

Russhard [15] for the identification of the individual blades tip amplitude, frequency and

phase from the analysis of ToAs. Garrido and Dimitriadis [16] compared five different

auto-regressive based methods to recover the correct frequencies when two blade modes are

excited simultaneously by a synchronous vibration. The methods were validated on three
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test cases in which simulated data was used. It was shown that most of the methods could

precisely predicts the resonance frequencies, even in the presence of significant noise levels.

Zielinski and Ziller [17] described a practical application of the BTT measurement and the

signal analysis methods used at MTU for the treatment of compressors experimental data.

Battiato et al. [18] proposed a novel layout for BTT optical sensors that is particularly suit-

able for the measurement of shrouded bladed disks. Furthermore, an original method for the

identification of the operative deformed shape of bladed disks from the BTT measurements

of all the blades was presented and proved. In general, measuring the out-of-plane vibrations

of shrouded bladed disks is not a trivial task when using the traditional BTT layout where

the sensors are mounted in the radial direction, facing the blade tip. Di Maio and Ewins [19]

addressed this issue by applying a triangular wedge at the blade tip, so that the in-plane

BTT measurement at the blade tip can be used to detect out-of-plane vibrations of the

blades. A remarkable application of the BTT technology for a heavy duty gas turbine was

employed by Bornassi et al. [20] for the purpose of the design verification of the rotating

blades in compressor and turbine modules. In addition to the vibration parameters, the

damping and amplitude of the blades were also identified to confirm the safe functionality

of the machine in real operating condition.

BTT signals suffers from under-sampling, which makes difficult to identify the resonances

parameters with the conventional signal processing techniques. To address this problem,

Wang et al. [21] proposed a multiple signal classification method to extract the blade vi-

bration frequency. It was shown that the proposed method can well treat under-sampled

signals as well as to identify the resonance frequencies in multi-frequency vibration signals.

However, the applicability of such method is limited for varying speed and high acceleration

rates [22, 23]. To minimize the undersampling typical of BTT signals and achieve a good

resolution signal, multiple sensor layouts are usually adopted in the BTT setups. However,

the restriction in their installation is always a challenging task. In this regard, Cao et al.

[24] presented a single-probe BTT method for blade health monitoring. The method focuses

on the shift detection in the natural frequency of the cracked blades, which are extracted

using a frequency domain analysis of the product signal of two blades’ displacements. The

performance of the proposed method was demonstrated both numerically and experimen-

tally. Contamination of the BTT signals with various noise sources are unavoidable in real

measurements. Wang et al. [25] proposed a robust sparse representation model based on the

mixture of Gaussian to deal with the unknown noise in BTT measurement. Bouchain et al.

[26] dealt with the application of a spectral analysis method based on a simple structured
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sparsity model on the blade vibration spectrum. In fact, an estimation method for the anal-

ysis of sub-sampled BTT signals was proposed. The method, which was tested on simulated

signals characterized by multi-frequency components, shows a good agreement with other

well-established identification methods. Additionally, good achievements were obtained for

a real engine test data performed on a cracked blade test case.

BTT usually needs a Once-Per-Revolution (OPR) sensor as a reference for the ToAs. In

the cases where the installation of the OPR sensor is difficult, BTT methods which do not

require the OPR sensor are rather welcome. To overcome this issue, Guo et al. [27] presented

an identification method based on BTT data measured by at least three sensors. The method

is based on the detection of the changing on the vibration response of a blade seen by a

pairs of sensors placed next to each other. The identification of the vibration parameters of

a blade can also be obtained applying the fitting displacement formula on individual BTT

sensor signal. Guo et al. [28] further applied the same concept of the sine fitting method

for the measurement of synchronous vibrations in blades. The accuracy of the proposed

method was proved through experimental tests on a high speed rotor monitored by a BTT

system using optical fiber sensors. In this context, Chen et al. [29] developed an efficient

and more accurate no-OPR BTT method. Two methods based on straight line fitting and

compound reference model were presented. The efficiency of the proposed methods were

proved by numerical simulation, test rig implementation and a large scale turbo fan test.

The majority of the works about the vibration measurement with BTT refer to station-

ary operating conditions. However, when engines run with high acceleration rates, transient

behavior is observed in the vibratory response. In this regard, Ayers et al. [30] developed a

reduced order model based on the so-called Fundamental Mistuning Model for predicting the

vibration response of bladed disks under high engine acceleration rates. They proposed a cri-

teria for the critical engine acceleration rate, above which transient effects play a major role

in the response. In particular, passing through a resonance with high acceleration (transient)

for a tuned system has two main effects: 1) usually, it leads to a reduction of the maximum

amplitude of the vibration, 2) it shifts the rotating speed at which resonance occurs. As

a consequence, the steady-state response model no longer represents the actual vibration

behavior of the blade during the transient resonance transition, and more realistic models

should be adopted for these cases [31–33]. The identification of the vibration parameters

with the classical stationary based methods leads to overestimation of damping, maximum

amplitude and resonance frequency. To solve this problem, Carassale et al. [34] proposed an

identification procedure based on the continuous wavelet transform. Recently, Bornassi et

5



al. [35] proposed a model to fit the BTT data detected during a transient resonance crossing

in the presence of one isolated mode. In many BTT system, the shaft speed during each

revolution is often assumed as constant for detection of the ToAs. During fast transient

run up and run downs, this assumption may no longer be acceptable and can lead to an

erroneous estimation of the blade tip deflection. Diamond et al. [36] addressed this problem

by proposing an algorithm for the linear transient condition. The method application on a

set of experimental data proved its higher accuracy than other conventional methods. Yue

et al. [37] investigated the parameter identification for asynchronous vibration under a vari-

able speed. A novel identification method based on the two sensors data interpolation was

developed, and its accuracy was verified by means of a simulated model with four blades.

It is commonly accepted that the blades usually experience lower maximum amplitude

under transient resonance crossings. However, this statement just holds in the case of

perfectly tuned bladed disks, while higher vibration amplitudes are reported for mistuned

disks operating in a transient (non-stationary) regime. In particular, it is state of the art

that the maximum amplitude for a mistuned bladed disk in transient resonance sweeps can

even exceed the maximum amplitude in the steady-state resonance condition [38–45]. In

particular, Bohang et al. [41] proved the occurrence of transient amplification factor for a

mistuned test case both numerically and experimentally.

This paper presents a novel post-processing analysis method for the identification of

vibration parameters in a mistuned bladed disks during transient resonance crossings. Mis-

tuning is unavoidable in the real bladed disk assembly [46, 47]. It is due to the perturbation

of the cyclic symmetry characteristics of the disks, leading in most cases to the so-called

frequency splitting phenomenon [48, 49]. Typical vibrating responses of tuned and mistuned

(with frequency splitting) systems in stationary and non-stationary conditions are shown in

Figure 1. The beating phenomenon due to transient effect is well evident in both figures.

In the tuned system, the amplitude of fluctuation and the associated beating gradually de-

crease over time after the peak amplitude, while in the mistuned system the response is

slightly different. In the mistuned system, due to the presence of two adjacent modes with

two similar but different frequencies, two beating phenomena overlap giving rise to an extra

modulation as visible in the red curve of Figure 1(b). A two degrees-of-freedom (2-DOFs)

vibration parameters identification method for mistuned bladed disks in stationary condi-

tions was recently presented by Bornassi et al. [50]. For the case of double mode resonances

coming from the splitting phenomenon, they demonstrated the applicability of the method

through numerical demonstrators. An analytic solution to compute the response in the cases
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Figure 1: Comparison of the vibration response in the resonance region during stationary and non-stationary
sweeps, for (a) tuned and (b) mistuned bladed disks. The grey curves are the vibratory responses of the
bladed disk and the black lines show their envelopes. Red lines represent the overall behaviour of the
transient envelope (for the sake of better visualization of the difference between the tuned and mistuned
transient vibration response). An extra modulation of the response due to the presence of two close modes
are clearly observable from the red lines associated with the mistuned case (Figure 1b). The stationary
response envelopes are shown by the blue lines in order to highlight the distinction between the stationary
and non-stationary cases.

where both the mistuning and transient condition was proposed by Carassale et al. [51].

They presented a solution based on a 2-DOFs system through asymptotic expansions. In

case of experimental data, this kind of response, mistuned and non-stationary, will need a

suitable fitting model. In this paper, it is proposed to use, as a fitting function, the one

given by Markert and Seidle [33] for 1-DOF, non-stationary response under a harmonic force

excitation, here extended to two degrees of freedom. This function, although approximate,

has the advantage of fitting experimental data with a satisfactory convergence time. The vi-

bration characteristics of the blades, such as the amplitude, frequency, damping, and phase,

can be extracted from the 2-DOFs fitting of the recorded BTT sensor signals. The fitting

analysis is performed through the nonlinear least square optimization technique.

The structure of the paper is organized as follows. In Section 2, a brief description of the

BTT measurement technique is presented. Section 3 introduces the mistuning characteristics

and splitting phenomenon. Section 4 presents the non-stationary vibration identification

model based on a 2-DOFs vibrating system. Additionally, the BTT representation of the

model and the identification algorithm are described. The performance of the proposed
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method is then investigated under simulation and experimental test cases in Sections 5 and

6 respectively. The conclusions are finally summarized in Section 7.

2. Tip-Timing technique

The working principle of the BTT technique is based upon the concept of ToA. As shown

in Figure 2, each non-contact sensor, mounted on the stationary casing, detects and records

the ToA of the passing blade. By comparison of the ToA of the vibrating blade (recorded by

the sensors) with the expected ToA for the non-vibrating blade (theoretically calculated),

the time difference (lead or lag) due to vibration can be computed. This time difference is

then interpreted as the blade tip displacement. The displacement data can be analyzed to

determine the vibration properties of the blades: resonance peak amplitude and frequency,

damping and number of waves along the hoop direction corresponding to the engine order

excitation.

The procedure behind the BTT technique can be briefly described in three steps:

− Recording ToA of the vibrating blade.

− Converting ToA to the blade tip deflection.

− Extracting vibration parameters though the identification algorithms.

3. Mistuning Frequency splitting

This paper focuses on cases where the frequency response of the blade does not have a

single peak at resonance, but two peaks close in frequency, as in the case of the blue curve

in Figure 1(b). This phenomenon is called ”frequency splitting” and it is due to the lack of

a perfect cyclic symmetry in a bladed disks, i.e. mistuning [52, 53]. In fact, although the

turbine bladed disks are designed to be cyclically symmetric, a slight discrepancy from the

ideal design shape is unavoidable in the real turbines. Variations from blade to blade or

sector to sector are typically caused by manufacturing tolerances, material imperfection and

wear during machine operation. Destruction of cyclic symmetry has an effect on the forced

response of the bladed disk. If the asymmetry is relatively small, a typical effect is that two

orthogonal modes, related to the same nodal diameter, which in cyclic condition vibrate in

resonance at the same frequency, vibrate at two different frequency values. This leads to

the presence of two peaks instead of one, at the resonance in the frequency response curve.
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W
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Bladed disk

Figure 2: Schematic setup of a BTT measurement system. The non-contact sensors installed on the sta-
tionary casing so as to detect the vibration response of the blades while passing in front of them. The
BTT signals are then transferred to the acquisition box for pre-processing analysis like filtering of the noises
and converting the electric signals to the meaningful blade vibration signals. Finally, the deflection signal
are post-processed by special under-sampled signal analysis approaches in order to extract the vibration
characteristics of the blades (e.g. natural frequency, damping and amplitude).

The paper analyses the case where the resonance with a double peak is detected with a high

acceleration (or deceleration) ramp. Thus the blade response is a non-stationary response

as depicted in Figure 1(b).

4. Mathematical formulation

In this section, the theoretical aspects behind the proposed transient method based on

the dynamics of a 2-DOFs system, as well as the fitting procedure for the identification of

the blades’ vibration parameters are presented.

4.1. 2-DOFs transient model

When the vibrating response of a system is dominated by only two modes, the system

can be modelled as a 2-DOFs oscillator. In the case of mistuning frequency splitting, this

approximation is not quite far from the actual dynamical behaviour. Whenever the two

orthogonal modes are well separated from the rest of the modes in the same modal family,
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i.e. when the two modes are isolated [49], the dynamic response of the bladed disk can be

obtained as the superposition of these two active modes. Therefore, the two modes represent

a good modal basis that well represents the bladed disk dynamics.

The equations of motion of a bladed disk in generalized coordinates ηj by considering

two active modes involved in the dynamic response can be written as:

η̈j + 2ζjωnj
η̇j + ω2

nj
ηj = fj (t) , j = 1, 2 (1)

where ζj, ωnj
and fj (t) denote the damping ratio, natural frequency and the generalized

force corresponding to the j-th mode, respectively.

Assuming a harmonic excitation fj (t) = f̄je
iωt, the solution of Eq. 1 can be expressed

as:

ηj (t) = Qje
iωt (2)

where Qj is the complex amplitude function, given by

Qj = |Qj| e−iψj (3)

where Qj and ψj represent respectively the magnitude and phase of the complex amplitude

function.

In stationary conditions, the so-called steady-state complex amplitude is expressed as

[54]:

Qj =
δj(

1− r2j
)
+ (2ζjrj)

(4)

in which

rj =
ω

ωnj

, δj =
f̄j
kj

(5)

whit kj representing the modal stiffness of the mode j.

In non-stationary condition, when the rotating speed changes linearly as:

Ω(t) = at+ Ω0 (6)

Markert and Seidle [33] proposed the following approximate closed form solution for Qj:

Qj = Bj

{
2e−v

2
j +

i√
π

2vj
2v2j − 1

}
(7)
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in which

Bj =
1− i

4
√

1− ζ2j

√
π

αj
δj ; vj = − 1 + i

2
√
αj

(rj + iλj) ; λj = −ζj + i
√

1− ζ2j ; αj =
EO a

ω2
nj

(8)

being a the sweep rate of the rotating speed, Ω0 the initial rotating speed and EO the engine

order of the excitation.

The response of the system can be obtained as a linear combination of the two modes,

ϕ1 and ϕ2. Since the EO excitation corresponds to a traveling force for the bladed disk, the

two modes will participate to the response according to a π/2 phase shift in time, i.e., the

two modes are orthogonal in time, The response of the system can thus be expressed as:

x (t) = ℜ
(
ϕ1 η1 (t) + e

iπ
2 ϕ2 η2 (t)

)
(9)

4.2. BTT implementation

When a blade passes in front of a sensor located at a given angular position θ, the angular

distance traveled by the blade at the k-th revolution can be obtained as:

(ωt)k = EO(ε+ θ + 2πk) (10)

where ε is the angular position of the blade at t = 0.

Substituting Eq. 10 into Eq. 2, the generalized coordinates from the sensor point of view

for the k-th revolution can be rewritten as:

ηjk = Qje
iEO(ε+θ+2πk) (11)

After introducing ϕ̄1 = ϕ1δ1 and ϕ̄2 = ϕ2δ2, the blade response seen by the sensors in k-th

revolution is obtained as:

xk = ℜ
(
ϕ̄1 η1k + e

iπ
2 ϕ̄2 η2k

)
(12)

This equation is the main framework of the current BTT identification procedure. The

unknown parameters in Eq. 12 are two natural frequencies (ωn1 , ωn2), two damping ratios

(ζ1, ζ2), two modal factors
(
ϕ̄1, ϕ̄2

)
and a phase angle ε̄ = EOε. By fitting of Eq. 12 to the

BTT data collected by the sensors during the resonance, the unknown vibration parameters

can be determined. Due to the nonlinear nature of Eq. 12, the curve fitting is performed

through a nonlinear least square optimization technique. If EO is known, the data from

11



only one sensor can be used to estimate the resonance parameters. Otherwise, for unknown

EO, all the sensors data are considered for the fitting. The goodness of fitting is assessed by

checking the fitting residual, since the best fitting corresponds to the minimum residual. In

the current work, all sensors signals are simultaneously used for the curve fitting analysis.

The flow chart in Figure 3 illustrates the identification procedure. It should be noted that

Eq. 7 respectively holds for the data placed at rj >
√
1− ζ2j + ζj for acceleration sweeps,

and before rj <
√
1− ζ2j − ζj for deceleration sweeps [22]. This means that not all the data

will be used for the fitting. For example, in the case of acceleration, the fitting procedure can

be used just considering the data recorded after the rotor speed at which the corresponding

steady state peak is crossed, as proved in [35].

Modal factors

Figure 3: Flow chart represents the proposed 2-DOFs transient fitting procedure. The BTT vibration
signals coming from BTT sensors are used for the vibration parameters identification through a fitting
procedure. The fitting equation is given by Eq. 12. Due to nonlinear nature of this equation, the fitting
process is performed by a nonlinear least square optimization technique which is an iterative approach,
and the optimized vibration parameters (natural frequency, damping, amplitude and the modal factors) are
extracted via this approach.

5. Numerical validation

In this section, the identification method for BTT data is first applied on a numerical

model of a simple bladed disks. The validation process based on simulated data is very
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common for BTT analysts, before the method is applied on experimental measurements

[13, 55–57]. This is due to the advantage of testing the method performance for several

combinations of resonance parameters (e.g. damping, response amplitude, amount of mis-

tuning) through the generation of clean as well as noisy signals.

5.1. Simulated model

The proposed method is applied on simulated data obtained from a simple lumped

parameter model of a bladed disk. A closed loop structure of mass-spring systems connected

together is used to represent the bladed disk dynamics. Figure 4 shows the schematic layout

of this model representative of a bladed disk. It can be noted that each bladed disk sector

consists of two lumped masses having one DOF each. One DOF describes the motion of

the blade, while the other is related to the disk. The mass and stiffness of the blade are

denoted by mb and kb, while md and kd are the mass and stiffness of the disk sector. The

coupling stiffness between two neighboring sectors is indicated by kc. As shown in Figure 4,

the spring related to disk stiffness kd is fixed to the ground.

1

dm
dm

dm

bm
bm

bm

dk

dkdk

bk

bk
bk

ckck

fixed

Figure 4: Lumped parameters model used for simulation. This model expresses a discrete representation
of a real bladed disk assembly. It is a chain of mass-spring systems. Each sector of the bladed disks is
simplified as two masses (one represents the blade mass mb and the other one represents the disk sector
mass md). The stiffness of the blade and the disk sector are respectively represented by two springs, kb and
kd, and the sectors are connected through the intercoupling springs (kc). To avoid rigid body motion, the
spring associated with the disk stiffness is fixed to the ground.

The equations of motion for this system can be written as:

Mq̈(t) +Cq̇(t) +Kq(t) = F(t) (13)

13



where q is the vector of DOFs, M, C and K are the mass, damping and stiffness matri-

ces respectively. For further details on the structure of such matrices for mistuned cyclic

symmetric structure the reader can refer to [58, 59].

The damping matrix is obtained by applying the inverse modal transformation to the

modal damping matrix defined as:

ΦTCΦ = diag(2ζrωnrmr) (14)

where mr, ωnr and ζr are the modal mass, the natural angular frequency and the damping

ratio associated to the r-th mode. Φ represents the modal matrix whose column are the

eigenvectors of the undamped system.

The excitation force is applied to the blades in a traveling wave pattern. For a single EO

excitation, it is defined as:

Fi (t) = F0 cos
(
ωt− 2πEO

N
(i− 1)

)
; i = 1, 2, 3, ... , N (15)

where Fi is the force applied to the i-th blade, F0 is the constant force amplitude and N is

the number of blades.

The Runge-Kutta method is used to integrate Eq. 13 in order to find the vibratory

response of the bladed disk. Then, the blades displacements at the location of the sensors

can be extracted from their continuous time domain response at specific time instants, which

depend on the angular position of the sensors as well as on the vibratory motion of the blades.

The bladed disk parameters in the tuned (nominal) configuration are listed in Table 1.

Table 1: Parameters of the simulated bladed disks model.
Parameter Symbol Value Unit
Number of blades N 12
Blade mass mb 1 kg
Disk sector mass md 4 kg
Blade stiffness kb 1.80e6 N/m
Disk stiffness kd 4.35e6 N/m
Coupling stiffness kc 5.00e5 N/m

Mistuning is introduced through a small variation of the nominal blade mass based on a

random distribution with the standard deviation (SD) of 0.02. The blades’ masses are given

in Table 2.

The natural frequencies corresponding to the first modal family for the tuned and mis-

tuned case are plotted in Figure 5. It can be noted that for each repeated mode shape,
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Table 2: Mass of the blades based on a random distribution.
Blade No. Blade mass (kg) Blade No. Blade mass (kg)
1 0.9940 7 1.0198
2 0.9820 8 1.0079
3 1.0127 9 1.0039
4 1.0013 10 1.0056
5 0.9963 11 1.0010
6 1.0058 12 0.9845

i.e. the modes with a number of nodal diameters (ND) larger than 0 and smaller than N/2,

the splitting frequency phenomenon occurs. In particular, it is shown that for the mode

with ND = 4, the repeated frequency of the tuned mode (green dot) split into two close

frequencies (red stars).
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Figure 5: Diagram of natural frequencies vs the number of nodal diameters for the first modal family of
the simulated lumped parameters model. The natural frequencies of the bladed disk in the tuned and
mistuned configurations are computed using the mass and stiffness parameters given in Table 1 and Table
2, respectively. The green circled lines show the frequency of the tuned system and the red stars shows the
frequencies of the mistuned system. Just as an example, the zoomed window displays the frequency splitting
for ND=4.
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5.2. Results

In this subsection the performances of the proposed method are tested on BTT signals

simulated on the mistuned bladed disk. In the numerical simulations the two tuned mode

shapes of the first modal family with ND = 4 are excited at resonance by a EO = 8 traveling

force. The different order associated to ND and EO is due to the occurrence of aliasing.

This happens because the EO = 8 traveling force is applied to 12 equally spaced blades, for

this reason the traveling force is naturally under-sampled by the limited number of discrete

location at which the disk is excited. The consequence is that the disk is actually excited

with an EO = 4 [18]. In general, a mode shape with a certain ND can be excited by the

EOs satisfying the following relationship:

EO = z · N± ND, ∀ z = 0, 1, 2, . . . (16)

Due to blade mass perturbation, the two mistuned modes with slightly different natural

frequencies (Figure 5) replace the two tuned modes and are excited simultaneously by the

EO = 8 traveling force.

The excitation frequency is varied linearly throughout each trial run. To this end, and

in order to involve the transient effect into the vibrating response, the sweeping rate of the

rotating speed is set to 0.10 Hz/s. The BTT simulated data are detected by two probes

located at the angular positions 0◦ and 30◦. Note that the angular position of the first probe

(i.e. 0◦) is arbitrarily chosen and taken as a reference for the angular location of the second

probe in the direction of the disk’s rotation (either clockwise or counter-clockwise).

Figure 6 shows the full vibrating response of the blade 1 with respect to the rotating

speed, as well as the associated simulated BTT sensors signals. For this case, the modal

damping ratios of the two active modes are assumed to be equal to 0.0005. The non-

stationary effect can be clearly observed as several beats propagate in the blade response

after the maximum amplitude is reached. Additionally, the contribution of the two modes

appears as a second large beat in the response causing a modulation as already shown in

Figure 1(b).

According to the flow chart in Figure 3, the fitting procedure is performed by Eq. 12

including all BTT sensor data. After having obtained the unknown vibration parameters

from the 2-DOFs non-linear least square fitting process, the response envelope or the sensors

signals can be reconstructed and compared with the exact response already computed by

numerical solution of the governing equations (Eq. 13).
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Figure 6: Vibration response and BTT sensor data associated to the mode ND = 4 excited by the EO = 8,
for a rotating speed sweep rate of 0.10Hz/s and modal damping ratios ζ1 = ζ2 = 0.0005 associated to the
two mistuned modes. The grey plot shows the whole vibration response of the blade, while the blue and red
curves are the signals captured by the sensor 1 (0◦) and sensor 2 (30◦), respectively. The sensors signals are
discrete while the vibration response (grey) is continuous.

Figure 7 shows the fitted displacement obtained by using the steady-state (Figure 7(a))

and transient methods in the form of response envelope (red curves).
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Figure 7: Comparison of the fitted envelopes obtained for blade 1 by three methods: steady-state (a), 1-DOF
transient (b), 2-DOFs transient (c). The blue dotted lines represents the response envelope and the red lines
shows the fitted curves. Modal damping ratios of ζ1 = ζ2 = 0.0005 associated to the two mistuned modes
are considered for the generation of numerical signals. The 2-DOFs transient method provides a perfect
matching with the response envelope while the 1-DOF based steady state and transient methods show poor
fitting performance.
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The transient fitting is performed by both 1-DOF and 2-DOFs models. For comparison

purposes the steady-state method based on a 1-DOF model is also shown in this Figure.

From Figure 7(c) it can be observed that the fitted curve obtained applying the presented

2-DOFs transient method (red plot) perfectly agrees with the exact response envelope (blue

plot). On the contrary, the 1-DOF transient model (Figure 7(b)) does not provide a good

fitting. The 2-DOFs transient model not only captures the beating shape due to the non-

stationary sweeping, but also well represents the overall shape of the envelope due to the

presence of two close modes: it starts increasing after the first amplitude peak and then

decreases. The 1-DOF transient method is not able to reconstruct such a behavior. It only

captures the beats caused by the transient effect in a gradual decreasing trend.

Moreover, the good performance of the 2-DOFs transient fitting process can be also

demonstrated directly on the BTT sensor signals. Figure 8 shows the result of the fitting

algorithms on the sensor signals.

It can be noted that the steady-state fit does not capture the blade’s displacements de-

tected by the sensors 1 and 2, while better fittings are provided by the transient method in

the 1-DOF and 2-DOFs fashion. In particular, it is assessed once again the superior per-

formance of the 2-DOFs transient method over the 1-DOF one: while the 2-DOFs transient

method perfectly follows the displacement oscillations measured by the sensors (green dots),

the 1-DOF algorithm usually over-estimates the detected displacement amplitudes.

In general, showing the results of the fitting on the reconstructed response envelope is

more effective rather than directly on the sensor signals. Therefore, only the first represen-

tation will be adopted from now on.

Table 3 lists the vibration parameters identified by the three methods. As it can be

observed, the transient method based on the 2-DOFs model provides excellent predictions

for both natural frequencies and damping ratios associated with the two active modes.

Table 3: Comparison of the vibration parameters identified by the steady-state and transient methods for
the blade 1, ζ1 = ζ2 = 0.0005.

Parameters Exact value Steady state (1-DOF) diff (%) Transient (1-DOF) diff (%) Transient (2-DOFs) diff (%)
Frequency 1 (Hz) 155.31 155.75 0.20 155.31 0.08 155.31 0
Frequency 2 (Hz) 155.55 — — — — 155.55 0
Damping ratio 1 5.00e-4 1.43e-3 186.23 3.24e-4 35.30 4.98e-4 0.36
Damping ratio 2 5.00e-4 — — — — 4.94e-4 1.20

Although the 1-DOF transient model is able to predict a good estimation for the natural

frequency, the damping ratio is identified with a considerable percentage of error (35%),

while for the steady-state method the error further increases up to 186%.
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Figure 8: Reconstructed sensor signal obtained by the steady-state and transient fitting methods for blade 1:
sensor 1 (a) and sensor 2 (b). Modal damping ratios of ζ1 = ζ2 = 0.0005 associated with the two mistuned
modes are considered for the generation of numerical signals. Green circles are the sensors signals, black
solid lines are steady state fitting, dashed lines shows the 1-DOF transient fitting and the dash-dotted lines
shows the fitting obtained by proposed 2-DOFs transient method. 2-DOFs transient method is able to fit
the sensor signals significantly better than 1-DOF based steady state and transient methods.

The damping ratios of two mistuned modes are not necessarily the same in real bladed

disks. Thus, a further validation is needed to check the proposed method when two different

damping ratios are associated to the mistuned modes. Figure 9 shows the results of the

transient fitting methods (i.e. 1-DOF and 2-DOFs) by assuming two distinct damping

ratio, i.e. 0.0006 and 0.0004 for the 1-st and 2-nd mode respectively. The results confirm

that even in this case the fitted curve obtained by the 2-DOFs transient model well overlaps

the exact response envelope.

The values of the vibration parameters identified by the three methods are reported in

Table 4.

Table 4: Comparison of the vibration parameters identified by the steady-state and transient models for
blades 1 and 3, assuming the damping ratios ζ1 = 0.0006 and ζ2 = 0.0004 for the mistuned modes.

Parameters Exact value Steady state (1-DOF) diff (%) Transient (1-DOF) diff (%) Transient (2-DOFs) diff (%)
Blade 1

Frequency 1 (Hz) 155.31 155.73 0.20 155.31 0.08 155.31 0.00
Frequency 2 (Hz) 155.55 — — — — 155.55 0.00
Damping ratio 1 6.00e-4 1.53e-3 206.80 3.60e-4 28.11 5.97e-4 0.47
Damping ratio 2 4.00e-4 — — — — 3.98e-4 0.55

Blade 3
Frequency 1 (Hz) 155.31 155.96 0.34 155.50 0.04 155.31 0.00
Frequency 2 (Hz) 155.55 — — — — 155.55 0.00
Damping ratio 1 6.00e-4 1.07e-3 114.72 8.02e-4 60.38 6.03e-4 0.47
Damping ratio 2 4.00e-4 — — — — 4.01e-4 0.26

The vibration frequencies and damping ratios are correctly identified by the 2-DOFs tran-

sient model (errors less that 0.5% with respect to the exact values), while the steady-state
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Figure 9: Comparison of the fitted envelopes obtained for blade 1 by the two transient methods: 1-DOF
transient method (a) and 2-DOFs transient method (b). The blue circle line represents the response envelop
and the red lines show the fitted curves. Modal damping ratios of ζ1 = 0.0006 and ζ2 = 0.0004 associated
with the two mistuned modes are considered for the generation of numerical signals. Again, 2-DOFs transient
method is clearly better than 1-DOF transient method in fitting.

and the 1-DOF transient model cannot predict the damping ratio with a satisfactory accu-

racy.

In order to enhance the validation process, the study performed on blade 1 is replicated

on blade 3. The results are plotted in Figure 10 and the estimated parameters are given in

the second part of Table 4.

The fitted curves and the identified parameters confirm the higher precision of the 2-DOFs

transient model against the 1-DOF based transient and steady-state models. Moreover,

from Table 4 it can be observed that the two frequencies and the theoretical damping values

(column Exact value) are the same for the two blades (blade 1 and blade 3). The disk is in

fact a unique system and the two frequency values are those of the two orthogonal modes.

Even though the BTT curves are different for blade 1 and blade 3, as can be seen from

Figure 9 and Figure 10, the transient 2-DOFs method is robust enough to predict very sim-

ilar frequency and damping values (with differences below 1%) between blade 1 and blade 3

(Transient 2-DOFs column in Table 4). The fact that, starting from two different data sets

(blade 1 and blade 3) with different signal shapes, the fitting procedure identified the same

parameters, as expected, confirms the goodness of the method.
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Figure 10: Comparison of the fitted envelopes obtained for blade 3 by the two transient methods: 1-DOF
transient method (a) and 2-DOFs transient method (b). The blue circle lines represent the response envelop
and the red lines show the fitted curves. Modal damping ratios of ζ1 = 0.0006 and ζ2 = 0.0004 associated
with the two mistuned modes are considered for the generation of numerical signals.

5.3. Effect of Noise

In the above case studies, the effectiveness of the proposed method was assessed for the

simulated signals in the absence of noise. The real BTT signals are usually polluted by

noise, which appears as a small dynamic disturbances in the BTT deflection signals [15, 60].

Although the noise is usually reduced by different filtering techniques, some sort of residual

noise still affects the measured signal [61, 62]. Therefore, to evaluate the performance of

the 2-DOFs transient method on a non-ideal framework, a noise study is carried out for the

simulated data.

The data of two probes are contaminated by an additive white Gaussian noise. Typical

noise levels [15, 60] are given in term of Signal to Noise Ratio (SNR). The noise generation

is repeated 10 times for each SNR.

The mean error and the relative standard deviation across all the random trails for the

damping ratios identification by the 2-DOFs transient model are plotted in Figure 11. As

expected, the results confirm that the noise affects the accuracy of the fitting especially for

low SNR. In fact, it is found that the smaller the SNR, the larger the percentage error in

the predicted damping ratio. However, despite the noise introduction into the signals, even

in the worst case (SNR = 10 dB), the errors are found to be less than 10% (i.e. actual vs

predicted damping ratio).
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Figure 11: Effects of noise on the damping ratio estimation. Modal damping ratios of ζ1 = 0.0006 , ζ2 =
0.0004 associated with the two mistuned modes are considered for the numerical signal generation. Noise
randomly generated (10 times per each SNR) based on the white Gaussian noise pattern. The plot exhibits
the mean value of the error and their standard deviation for 10 trials repeated for each SNR. The blue circle
line shows the error for the first split mode and the red square line shows the error for the second split
modes.

6. Experimental validation

To complete the validation process, an experimental campaign was organized to test the

performance of the proposed 2-DOFs transient model for the identification of the vibration

parameters from actual BTT measurements. The experimental results are presented and

discussed in the following.

6.1. Experimental setup

As shown in Figure 12(a), the test case is an integral bladed disk (also called ’blisk’)

with N = 12 blades. It is made by aluminum and has a thickness of 5 mm. Each blade has

a length of 150 mm, a width of 25 mm and a tip radius of 220 mm.

The rotating test rig instrumented by BTT probes is shown in Figure 12(b). The test

chamber provides vacuum condition during the rotating tests. In order to excite the blade

vibration, a single magnet is installed at a given axial gap from the blades. This excitation

condition is such that each blade is excited by a single force pulse in one revolution, which

corresponds to excite the blisk with a superposition of traveling forces having increasing EO

(i.e. EO = 0, 1, 2, . . . ). The test rig was equipped with 7 BTT optical sensors mounted on a
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(a) (b)

Figure 12: Experimental test case and BTT setup: dummy blisk with 12 blades (a) and BTT setup illus-
trating the blisk at the center, sensors positioning and their numbering (b). Locations of the OPR reference
sensor as well as of the permanent magnet are also shown. The sensors, OPR and magnets are installed on
stationary flanges, while the test case is mounted on a rotating hub.

flange at the angular locations 0◦, 22.2◦, 56◦, 104◦, 130◦, 155◦ and 293◦. They measure the

blades deflection at the radius of 162 mm. A OPR sensor was also used as a reference.

Before the dynamic tests in rotating conditions, a hammer test was performed in order

to identify the blisk mode shapes and the corresponding resonance frequencies. The hammer

test was carried out on the blisk with the same constrains adopted during rotation. In par-

ticular, the blisk was installed in the test rig and the hammer test performed in non-rotating

conditions. A laser scanner vibrometer was used to measure the out-of-plane displacements

of the blisk at the locations of the blades (one measurement point for each blade, at the

same radius of the measured point by the BTT sensors), in order to identify the operative

deformed shape of each mode and the corresponding number of nodal diameters. Figure

13 shows the FRF identified for one of the blade, where the peaks are associated to the

resonance frequency of the first modal family in non-rotating conditions.

The resonance frequencies so obtained can be used as an initial guess for the non-linear

iterative fitting process described in Section 3.

6.2. Results

Among all the excited resonances in rotating conditions, the ND = 4 mode shape was

selected to test the performance of the 2-DOFs nonlinear fitting method on actual BTT
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Figure 13: FRF obtained by performing hammer test on the test case. Test performed on the blisk mounted
on the test rig in non-rotating condition. The blisk was excited by an hammer on the root region of the
blades and a laser scanner vibrometer measured the out-of-plane vibrations of the blades. The labeled peaks
are associated with the nodal diameters in the first modal family of the system, detected by the hammer
test.

measurements. This choice was made for different reasons. First, from the FRF of Figure

13, the double peak associated to the selected mode confirms the presence of mistuning.

Second, compared to the other mistuned mode (i.e. the mode with ND = 2), ND = 4 can

be assumed to be a high number with respect to the maximum ND admissible for the blisk

(i.e. ND = 6). This means that the mistuning is most likely the result of differences in the

blades’ geometry instead being related to the asymmetry of the disk-hub bolted connection.

Third, exploiting the aliasing (Eq. 16), the ND = 4 mode shape can be excited by the

traveling wave EO = 8 excitation. This ensures the resonance crossing for a rotation speed

that is lower than the maximum admissible value of 3000 rpm.

The resonance frequencies of the selected modes were crossed by increasing the rotation

speed linearly from 0 to 3000 rpm. The tests were carried out for two sweep rates: 0.05 Hz/s

and 0.10 Hz/s, that is two different acceleration conditions. After recording the BTT signals,

the fitting algorithm was implemented according to the procedure illustrated in Figure 3.

6.2.1. Sweep rate of 0.05 Hz/s

As already introduced in the numerical section, the vibration parameters of a bladed

disk are evaluated by curve fitting of the BTT signals, so that either the sensors signals

or the response curve can be reconstructed. In numerical simulation the response curve is

already known, whereas in the experimental conditions it is an unknown curve, which has
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to be identified from the measurements. For this reason, the response envelope is in this

case reconstructed by the traditional sine fitting algorithm [11]. This allows to obtain the

vibration amplitude at each value of the rotation speed, by fitting a sinusoidal function on

the measurements of at least three sensors, for one or more rotations at the same speed.

Step by step, for each speed value, the response curve visible in Figure 14 is thus constructed

(blue plot).
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Figure 14: Comparison of the fitted envelopes obtained for blade 1 by three methods: 1-DOF steady-state
(a), 1-DOF transient (b) and 2-DOFs transient (c), for a rotating speed sweep rate of 0.05 Hz/s. The blue
dotted lines represent the response amplitude constructed by sine fitting procedure and the red lines show
the fitted curves. Clearly the proposed 2-DOFs transient method shows superior fitting performance over
the 1-DOF steady and transient methods.

As already done for the numerical case, the results of the fitting for the three different

methods (i.e. steady-state, 1-DOF and 2-DOFs transient) can be presented either as a

comparison of response curves or as a direct comparison of the sensor signals (measured and

fitted).

Figure 14 compares the results of the steady-state and transient fit methods for blade 1

in terms of response envelope. Instead, Figure 15 shows the comparison in terms of sensor

signals.

From the previous figures it can be clearly observed that the 2-DOFs transient method fits

the response envelope and sensor signal better than its 1-DOF counterpart. The advantage of

using the 2-DOFs transient method is more evident in the plots showing the reconstructed

response curve (Figure 14). Furthermore, it can be observed that the typical oscillating

behavior due to the closeness of the two modes natural frequencies is clearly evident in the

response envelope figure. In fact, as also shown in the numerical simulations (Figure 1 and

7), a clear large beat appears modulating the maximum amplitude at a higher frequency

(right after the maximum amplitude).
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Figure 15: Reconstructed sensor signal obtained by the steady-state and transient fitting models for blade
1 at the rotating speed sweep rate of 0.05 Hz/s: sensor 1 (a) and sensor 2 (b). Green circle lines are the
sensors signals acquired by the BTT optical probes, black solid lines are steady state fitting, dashed lines
shows the 1-DOF transient fitting and the dash-dotted lines shows the fitting obtained by proposed 2-DOFs
transient method. The 2-DOFs transient method catches the transient behaviour better than the 1-DOF
steady state and transient methods.

Figure 16 presents the experimental results for a different blade, blade 10. Even in this

case, it must be noted that the 2-DOFs transient method performs better than the 1-DOF

one.

The blade vibration frequencies and damping ratios corresponding to the two mistuned

modes with ND = 4 are reported in Table 5. It can be observed that the damping value

estimated by the steady-state method is completely different than the damping value ob-

tained with the 2-DOFs transient method. Observing Table 5, the goodness of the method is

confirmed by the fact that very similar frequency and damping values are found for blade 1

and blade 10, even if they are obtained from two different BTT data sets. This result is also

confirmed from what was already noted in the numerical simulations, where the same vibra-

tion parameters were identified for two different blades, being the blisk a unique mechanical

system.

For the experimental case described in this subsection the difference on the damping

ratio obtained from the measurements of the blades 1 and 10 is at most the 10%. This value

can be considered acceptable since it results from the analysis of noisy experimental data.

Moreover, it must be noted that similar errors were found in the numerical simulations in

the predicted modal damping ratio with respect to the assumed one (i.e. about 10% for

SNR = 10 dB).

It might then be recommended to perform the measurement on more than one blade and

to average the values of the obtained parameters.
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Figure 16: Comparison of the fitted envelopes for blade 10 identified by two methods: 1-DOF transient
method (a) and 2-DOFs transient method (b), for a speed sweep rate of 0.05 Hz/s. The blue circle lines
represent the response amplitudes constructed by sine fitting procedure and the red lines show the fitted
curves. As seen, 2-DOFs transient method presents a better matching against the 1-DOF transient method.

Table 5: Comparison of the vibration parameters identified by the steady-state and transient models for
blades 1 and 10 for the rotating speed sweeping rate of 0.05 Hz/s.

Blade 1 Blade 10
Parameters Steady state (1-DOF) Transient (1-DOF) Transient (2-DOFs) Steady state (1-DOF) Transient (1-DOF) Transient (2-DOFs)

Frequency 1 (Hz) 154.33 154.02 154.07 154.33 154.01 154.07
Frequency 2 (Hz) — — 154.26 — — 154.25
Damping ratio 1 1.25e-3 7.16e-4 6.54e-4 1.34e-3 1.05e-3 7.31e-4
Damping ratio 2 — — 4.10e-4 — — 4.13e-4

6.2.2. Sweep rate of 0.10 Hz/s

In order to further assess the accuracy of the model, the tests were repeated for a higher

value of rotating speed sweep rate, that is 0.10 Hz/s. The results are reported in Figure 17 for

the blade 1 and 10, respectively. Table 6 quantitatively compares the identified vibration

parameters. As expected, the 2-DOFs transient model still exhibits a better matching

Table 6: Comparison of the vibration parameters identified by the steady-state and transient methods for
blades 1 and 10, for a speed sweep rate of 0.10 Hz/s.

Blade 1 Blade 10
Parameters Steady state (1-DOF) Transient (1-DOF) Transient (2-DOFs) Steady state (1-DOF) Transient (1-DOF) Transient (2-DOFs)

Frequency 1 (Hz) 154.53 154.04 154.06 154.53 154.02 154.06
Frequency 2 (Hz) — — 154.26 — — 154.25
Damping ratio 1 1.27e-3 6.00e-4 6.98e-4 1.34e-3 7.26e-4 7.56e-4
Damping ratio 2 — — 3.12e-4 — — 3.27e-4

compared to the 1-DOF transient model, thus confirming the advantage of its application

for the identification of transient resonances with dual mode contributions.
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Figure 17: Comparison of the fitted envelopes for blades 1 and 10 for a rotating speed sweep rate of 0.10 Hz/s,
identified by two methods: 1-DOF transient - blade 1 (a), 2-DOFs transient - blade 1 (b), 1-DOF transient
- blade 10 (c), 2-DOFs transient - blade 10 (d). The blue dotted lines represent the response amplitudes
constructed by sine fitting procedure and the red lines show the fitted curves. Once more, 2-DOFs transient
method exhibits better performance in fitting compared to the 1-DOF method for the higher acceleration
rate.

The method works well even if the data to fit are not so regular. In fact, it can be seen

that the response curve to be fitted (blue curve) is not as smooth as in the case of sweep rate

0.05 Hz/s. This can be attributed to the fact that lower numbers of samples are collected in

the higher acceleration rates. Despite these irregularities of the starting data, the percentage

difference in damping, obtained with the measurements on blade 1 and 10 is, in the worst

case, 8% (lower than in the previous sweep rate case), while no significant differences can

be found for the resonance frequencies.

7. Conclusions

This paper presents a novel modal identification technique (natural frequencies, modal

damping ratio, modal amplitudes) for BTT measurements of mistuned bladed disks in tran-
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sient resonance crossing. The technique is based on a 2-DOFs model and can be used for a

pair of mistuned isolated modes characterized by a couple of close natural frequencies.

Due to the transient crossing of the resonance region, due to fast variations of the disk

rotation speed, the dynamic response of mistuned bladed disks subjected to a traveling wave

EO excitation is typically characterized by two overlapping beating phenomena, which make

difficult the identification of vibration parameters from the analysis of measured BTT data.

The presented technique is based on a 2-DOFs non-linear least square fitting algorithm

which overcomes the limited performance of state of the art 1-DOF steady-state and tran-

sient fitting methods.

The method was numerically tested on a simulated BTT data set generated from a

lumped parameter model of a mistuned bladed disk, assuming the presence of two BTT

probes. It was proved that the 2-DOFs transient method could successfully predict the

different natural frequencies and modal damping ratios associated to the two active mistuned

modes, with errors globally less than 2%.

Furthermore, it was found that this small percentage error actually increased after the

introduction of noise into the signals. As expected, the highest error on the identification of

the damping ratio corresponded to the lowest SNR (i.e. percentage error was 10% for SNR

= 10 dB).

The 2-DOFs transient fitting algorithm was also validated with a real BTT data set,

measured on a rotating dummy bladed disk for two different acceleration rates. For both

acceleration rates, the 2-DOFs model proved to fit the experimental data much better than

the 1-DOF, which implies that the obtained vibration parameters are more reliable. Even

in the case of higher acceleration, although the experimental data are more under-sampled

and irregular, the method proved to be adequate to identify the main modal parameters of

the dynamic response.
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[43] B. Lübbe, C. Siewert, Optimization of the vibration behavior at speed-synchronous resonance of a large

turbine blade during speed-up and coast-down under consideration of mistuning, in: Turbo Expo: Power

for Land, Sea, and Air, Vol. 50954, American Society of Mechanical Engineers, 2017, p. V008T29A013.

[44] J. Tong, C. Zang, E. Petrov, High fidelity transient forced response analysis of mistuned bladed disks

under complex excitation and variable rotation speeds, in: Turbo Expo: Power for Land, Sea, and Air,

Vol. 84232, American Society of Mechanical Engineers, 2020, p. V011T30A023.

[45] T. Nakajima, K. Segawa, H. Kitahara, A. Seo, Y. Yamashita, T. Kudo, Experimental investigation

of the grouped blade vibration for steam turbine by non-contact sensors, in: Turbo Expo: Power for

Land, Sea, and Air, Vol. 50954, American Society of Mechanical Engineers, 2017, p. V008T29A025.

[46] S. Bornassi, H. Navazi, H. Haddadpour, Aeroelastic instability analysis of a turbomachinery cascade

with magnetorheological elastomer based adaptive blades, Thin-Walled Structures 130 (2018) 71–84.

[47] S. Bornassi, H. Navazi, H. Haddadpour, Coupled bending-torsion flutter investigation of mre tapered

sandwich blades in a turbomachinery cascade, Thin-Walled Structures 152 (2020) 106765.

[48] J. A. Kenyon, J. Griffin, Experimental demonstration of maximum mistuned bladed disk forced re-

sponse, in: Turbo Expo: Power for Land, Sea, and Air, Vol. 36878, 2003, pp. 195–205.

[49] C. Martel, R. Corral, Asymptotic description of maximum mistuning amplification of bladed disk forced

response, Journal of Engineering for Gas Turbines and Power 131 (2) (2009).

[50] S. Bornassi, C. M. Firrone, T. M. Berruti, Vibration parameters estimation by blade tip-timing in

32



mistuned bladed disks in presence of close resonances, Applied Sciences 10 (17) (2020) 5930.

[51] L. Carassale, V. Denoël, C. Martel, L. Panning-von Scheidt, Key features of the transient amplification

of mistuned systems, Journal of Engineering for Gas Turbines and Power 143 (3) (2001).

[52] M. Nikolic, New insights into the blade mistuning problem, Ph.D. thesis, University of London (2007).

[53] Y. J. Chan, Variability of blade vibration in mistuned bladed discs, Ph.D. thesis, Imperial College

London (University of London) (2009).

[54] S. S. Rao, Vibration of continuous systems, Vol. 464, Wiley Online Library, 2007.

[55] G. Dimitriadis, I. B. Carrington, J. R. Wright, J. E. Cooper, Blade-tip timing measurement of syn-

chronous vibrations of rotating bladed assemblies, Mechanical Systems and Signal Processing 16 (4)

(2002) 599–622.

[56] M. E. Mohamed, P. Bonello, P. Russhard, An experimentally validated modal model simulator for the

assessment of different blade tip timing algorithms, Mechanical Systems and Signal Processing 136

(2020) 106484.

[57] L. Piechowski, R. Rzadkowsk, P. Troka, P. Piechowski, L. Kubitz, R. Szczepanik, Tip-timing steam

turbine rotor blade simulator, Journal of Vibration Engineering & Technologies 6 (4) (2018) 317–323.

[58] S.-Y. Lee, M. Castanier, C. Pierre, Assessment of probabilistic methods for mistuned bladed disk

vibration, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference, 2005, p. 1990.

[59] T. Zhao, H. Yuan, W. Yang, H. Sun, Genetic particle swarm parallel algorithm analysis of optimization

arrangement on mistuned blades, Engineering Optimization 49 (12) (2017) 2095–2116.

[60] S. Wu, X. Chen, P. Russhard, R. Yan, S. Tian, S. Wang, Z. Zhao, Blade tip timing: From raw data to

parameters identification, in: 2019 IEEE International Instrumentation and Measurement Technology

Conference (I2MTC), IEEE, 2019, pp. 1–5.

[61] O. Jousselin, Development of Blade Tip Timing Techniques in Turbo Machinery, The University of

Manchester (United Kingdom), 2013.

[62] A. Vercoutter, M. Berthillier, A. Talon, B. Burgardt, J. Lardies, Estimation of turbomachinery blade

vibrations from tip-timing data, in: 10th International Conference on Vibrations in Rotating Machinery,

London, Sept, 2012, pp. 11–13.

33


