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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Automatic defect detection plays crucial role in resilient manufacturing in terms of product quality and cost effectiveness. With reference to the 
smartphone front cameras production process, the most recurrent defects can be classified into no hole, inner hole burr, outer circle damage, hole 
deformation, outer circle fracture and hole position offset. Due to the fast production lines and the defects micro size, Sampling-based methods 
has huge uncertainty and limitation, and Machine learning-based methods are characterised by low efficiency. To tackle these issues, this paper 
proposes a machine vision-based detection methods of smartphone front camera based on a multi-step template matching algorithm to reduce the 
computational effort. Specifically, in order to improve the algorithm efficiency, the images of the smartphone front cameras, acquired using 
industrial image acquisition devices are pre-processed by performing Hough circle and line transformations respectively, then locate the exact 
defect area as a region of interest (ROI). Finally, a multi-step template matching algorithm is used to detect and classify a number of common 
defects. Experimental results show an excellent suitability of the proposed system in detecting front camera surface defects. A benchmarking 
with other available technologies highlights how the proposed system yields an improvement in the detection speed by 46%, along with an 
improvement in the detection accuracy by 9%. The successful industrial implementation is discussed with reference to the integration into an 
automatic defect detection system in a smartphone front camera manufacturing context.  
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1. Introduction 

Digital transformation of production processes and systems 
relies on Information and Communication Technologies (ICTs) 
to improve quality, productivity and sustainability [1, 2]. Such 
enabling technologies can effectively support the Zero-Defect 
Manufacturing (ZDM) paradigm, aimed at maximising the 
process reliability and the product quality by minimizing the 
defects on a production line [3]. At implementation level, the 
design and realisation of process monitoring systems can 
effectively reduce the overall product defect rate, strategic 

relevance in the long-term reliable operation of any automated 
controlled system [4]. Due to the increasing market share and 
constantly improved functionalities [5], an interesting 
manufacturing scope is represented by the smartphone front 
cameras production and assembly. A generic smartphone front 
camera internal structure is shown in Fig. 1. The overall 
assembly process is schematised in Fig. 2 and it can be 
summarised in the following steps: (1) manufacturing of lens 
and lens cone parts respectively; (2) lens and lens cone 
assembling and (3) light shield and spacer ring installation and 
gluing. 
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1. Introduction 

Digital transformation of production processes and systems 
relies on Information and Communication Technologies (ICTs) 
to improve quality, productivity and sustainability [1, 2]. Such 
enabling technologies can effectively support the Zero-Defect 
Manufacturing (ZDM) paradigm, aimed at maximising the 
process reliability and the product quality by minimizing the 
defects on a production line [3]. At implementation level, the 
design and realisation of process monitoring systems can 
effectively reduce the overall product defect rate, strategic 

relevance in the long-term reliable operation of any automated 
controlled system [4]. Due to the increasing market share and 
constantly improved functionalities [5], an interesting 
manufacturing scope is represented by the smartphone front 
cameras production and assembly. A generic smartphone front 
camera internal structure is shown in Fig. 1. The overall 
assembly process is schematised in Fig. 2 and it can be 
summarised in the following steps: (1) manufacturing of lens 
and lens cone parts respectively; (2) lens and lens cone 
assembling and (3) light shield and spacer ring installation and 
gluing. 



	 Nengsheng Bao  et al. / Procedia CIRP 103 (2021) 268–273� 269
2 Author name / Procedia CIRP 00 (2019) 000–000 

Following these steps, the camera is ready to be assembled 
to the PCB and image processor. During the assembly process, 
a critical step is represented by the performance defect 
classification inspection step (shaded box in Fig. 2). Due to its 
complexity, the assembly process is prone to a number of 
diverse uncertainties, including the technical factors, external 
environmental factors and human factors. Among them, the 
technical factors can be divided into parts aging, control system 
failure and nonlinear action and so on[6]. The external 
environmental factors of the project can be divided into 
unexpected climatic conditions and natural disasters. Human 
factors in engineering can be divided into engineering design 
concept defects, construction quality defects and operator 
malfeasance and other factors [6]. In this context, the prompt 
and accurate identification of production defects represents a 
critical aspect in the entire automated process inspection 
system, enabling the defects recognition and marking during 
the manufacturing process, allowing for a quick removal of 
defective parts from the assembly line and at the same time a 
statistical characterisation of defects for further statistical 
analysis. State-of-the-art defect detection methods for 
smartphone cameras can be classified in three types: 

• Sampling-based methods: qualified staff selects a batch of 
products to manually carry out a surface inspection using a 
microscope to visually determine the presence of defects.  

• Machine learning-based methods: such approaches perform 
pattern recognition tasks to classify defects using supervised 
learning paradigms such neural networks [7], support vector 
machines [8], and deep learning [9]. 

• Machine vision-based detection methods [10]: utilizing 
template matching algorithms [11], localisation algorithms, 
image processing-based features extraction [12] such as 
denoising, enhancement, edge detection etc. Machine vision 
technology has been widely used in industrial  automation 
due to its flexible and efficient characteristics [13]. 

Sampling-based methods are characterised by high labour 
intensity and low detection efficiency, moreover detection 
results are easily affected by the skills and experience of the 
detection personnel [14], at the same time, when the defect size 
is less than 0.5 mm and there is no large optical deformation, 
the defect information cannot be detected by human eyes, 
representing an important limitation for large-scale industrial 
production. In addition, the quality of all front-facing cameras 
cannot be guaranteed due to the sampling-based inspection 
method, thus affecting the stability of product quality; machine 
learning methods generally have a higher accuracy in 
classification tasks, however they rely on the collection of a 
large number of samples to train the classifier [9], which is a 
complex process, and the real-time performance is poor, 
representing the most severe restriction in the application of 
such approaches. As regards the machine vision-based 
methods, although currently widely applied for matching 
purposes, they still present some drawbacks, such as excessive 
amount of computational effort, high time complexity and poor 
real-time performance [15, 16]. 

Taking into account the limitation of the current techniques, 
in order to carry out a reliable and efficient process monitoring, 
this paper proposes an optimised machine vision-based 
inspection system utilising an improved template matching 
algorithm. Such approach minimises the production chain 
interruptions caused by the non-conform front cameras, 
effectively reduces the error rate of the whole smartphone 
manufacturing process and improves the resilience of the 
automatic production system. Specifically, this paper adopts a 
strategy based on multi-step template matching, aimed at 
quickly identifying defects on the whole front camera surface 
during the production process, and qualitatively evaluates 
various defect types. 

2. Materials and experimental setup 

 The machine vision-based monitoring system proposed in 
this paper includes an image acquisition unit and the visual 
detection system. The experimental rig realised for is shown in 
Fig. 3.  The image acquisition unit consists in a charge-coupled 
device (CCD) digital industrial camera with a resolution of 
2048 × 1536 pixels (3 Mpx). The optical lens has a focal 
length 8-75mm, to fulfil appropriate magnification and object 

Fig. 1.  Internal structure of a smartphone front camera 

 

Fig. 2. Smartphone front camera production and assembly process 
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distance requirements. As regards the light source, this 
consists of two elements, respectively a coaxial light ring and 
a backlight placed under the sample. Such experimental 
configuration allows to increase the contrast between the 
region of interest and other regions, to improve the image 
signal-to-noise ratio and to reduce the influence of material 
reflection, angle, and other factors such as external light etc. 
The computer is an Intel® Xeon® CPU E2-2620 
v3@2.40GHz, Windows 10 operating system. 

The visual detection system is composed of a camera 
module, communication module, image processing module 
and data storage module. The camera module is responsible for 
the image acquisition of the whole system. The 
communication module mainly exchanges data with the 
computer. The image processing module is responsible for 
analysing and processing the collected images. The data 
storage module is responsible for saving the results of the 
processing images. 

3. Methodology 

The experimental rig described above is used for the 
smartphone front camera defects detection.. Fig. 4 shows the 
image processing workflow for the defect identification and 
assessment.  

The detailed procedure is reported in the remainder of this 
section. The proposed system focusses on the detection of six 
types of appearance defects of front camera reported as follows 
and illustrated in Fig. 5. 

• No hole: there is no camera hole in the smartphone case.  
•  Lens stain: stains were detected on the lens inside the 

camera, and this detection will reduce the shooting 
capabilities of the smartphone front camera. 

• Lens damage: this defect appears as a damage of the outer 
circle inner. It means the lens inside the camera is slightly 
 damaged. 

•  Hole deformation: the whole camera slot has an unusual 
shape, this is most likely due to improper operation or 
device malfunction during the integration process. 

• Lens cone fracture: this defect appears as a severe damage 
of the outer circle. It means the lens cone is totally broken 
and the ability of front camera to prevent dust is reduced. 

• Hole position offset: The whole camera slot is out of 
position. 

 

Fig. 3. Experimental setup 

 

Fig. 4. Image processing flowchart 

      
(a) (b) (c) (d) (e) (f) 

Fig. 5. Defects types: (a) No hole, (b) Lens stain, (c) Lens damage, (d) Hole deformation, (e) Lens cone fracture, (f) Hole position offset 
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3.1.  Image pre-processing 

Each smartphone camera raw image instance is subject to a 
pre-processing procedure aimed at identifying the region of 
interest containing the object to be detected and assessed, i.e. 
the smartphone front camera. Following the procedure 
reported in Fig. 4, the first step to identify the circular-shaped 
camera hole outline. In this respect, a Hough circle detection 
algorithm [17] is used to compute the coordinate (𝑥𝑥, 𝑦𝑦) of the 
centre of the circle. Such approach has been adopted due to its 
reliability in terms of low sensitivity to noise, occlusions and 
varying illumination conditions [18]. The specific algorithm 
steps as follows: 

Step 1. Input the digital image, set each edge points as 
(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑖𝑖 = 0, . . . , 𝑁𝑁 (𝑁𝑁 is the number of edge points); 

Step 2. Set the double loop 𝑥𝑥 = (0, 𝑀𝑀), 𝑦𝑦 = (0, 𝑀𝑀) (where 
𝑀𝑀 is the resolution of the accumulation array) [17]; 

Step 3. Calculate the value of 𝑅𝑅  by the formula 
R=√(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2, then, add the values  (𝑥𝑥, 𝑦𝑦, 𝑅𝑅) to 
the accumulator for evaluation; 

Step 4. Iterate over each edge point, finally the accumulator 
[𝑥𝑥, 𝑦𝑦, 𝑅𝑅] with the highest value is the detected circle. 

Based on the same basic principle, a Hough Line Detection 
(HLD) algorithm [19] is used in this paper to detect the upper 
and left edges of the smartphone. Specifically, with reference 
to Fig. 6, the ordinate (Line 1) and the abscissa (Line 2) are 
firstly  obtained via HLD, then the camera relative coordinates 
(∆𝑥𝑥, ∆𝑦𝑦) can be retrieved, as graphically shown in Fig. 6. In 
order to enable a reliable defect classification with  the 

minimum computation time, a Region of Interest (ROI) [19] is 
selected based on the information retrieved in the previous pre-
processing steps. This paper utilises a rectangular 80 × 60 
pixels ROI as shown in Fig. 6. 

3.2. Template Matching  

 This section describes the two classification approaches 
considered in this paper, i.e. the standard and the improved 
template matching algorithms. 

3.2.1. Standard Template Matching Algorithm 

 Template matching is an important part of digital image 
processing. Its essence is to measure the similarity between the 
input template and the sample. The best matching category of 
input template is the one with the largest similarity. The 
matching method is as follows: the input template is moved as 
a sliding window on the sample image from left to right and 
from top to bottom. After each pixel is moved, the "similarity" 
between image instance and template is calculated within the 
sliding window, and then compare the "similarity" results, the 
final maximum value is the best matching position of the input 
template in the sample.  Such mechanism is shown in Fig. 7, 
where the similarity value between the input template and the 
sample is determined by the correlation coefficient 𝑅𝑅 , 
computed as per Eq. (1) [20]:  

Where 𝑀𝑀 and 𝑁𝑁 are the width and the height of the template 
image respectively, 𝑅𝑅(𝑖𝑖, 𝑗𝑗)  is the correlation coefficient, 
𝑆𝑆(𝑚𝑚, 𝑛𝑛)  is the sample to be detected, 𝑆𝑆𝑖𝑖𝑖𝑖(𝑚𝑚, 𝑛𝑛)  is the sub-
graph of the sample to be detected, 𝑇𝑇(𝑚𝑚, 𝑛𝑛)  is the input 
template, and (𝑖𝑖, 𝑗𝑗) is the coordinate of the pixel in the upper 
left corner of the input template on the sample 𝑆𝑆 .  In 
correspondence of the largest value of 𝑅𝑅, the similarity value 
between the input template 𝑇𝑇 and the sample 𝑆𝑆 is the highest, 
and the best matching position is obtained.  

3.2.2. Improved Template Matching Algorithm 

 The standard template matching (STM) algorithm is based 
on a sliding window matching procedure characterised by a 
step size of 1 px, therefore it needs to carry out one-by-one 
matches (𝑊𝑊 −  𝑚𝑚 +  1) × (𝐻𝐻 −  𝑛𝑛 + 1) times, resulting in 
a high computational effort and reduced efficiency.  

 To overcome this issue, this paper proposes an improved 
template matching (ITM) algorithm based on multi-step 
matching strategy, in which the template is overlapped on the 
image instance from left to right and from top to bottom, and 
the matching degree is calculated by the correlation coefficient 
𝑅𝑅  as per during the scanning process, so as to realise the 
extraction of defects. This strategy in each step of the matching 
process can equably cover the entire search sub-graph, and use 
these data to calculate correlation coefficient R can largely 
reduce error detection, so the algorithm not only can relieve 
the contradictions effectively, and also guarantee the template 
matching accuracy. The specific algorithm as follows: 

Fig. 6.  Relative position of the camera and ROI extraction. 

Fig. 7. Template matching algorithm mechanism 

𝑅𝑅(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖(𝑚𝑚, 𝑛𝑛) ∗ 𝑇𝑇(𝑚𝑚, 𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1
(1) 
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Step 1. Upload the template 𝑇𝑇, superimpose it to 𝑆𝑆 on the 
top-left corner, the pixel coordinate is (𝑖𝑖, 𝑗𝑗). 

Step 2. Compute the correlation coefficient 𝑅𝑅 in the current 
position. 

Step 3. Set the template 𝑇𝑇 sliding window step size along 𝑥𝑥 
and 𝑦𝑦 directions respectively as 𝑆𝑆𝑥𝑥 = 𝑚𝑚/4 , 𝑆𝑆𝑦𝑦 = 𝑛𝑛/4. Such 
parameters have been experimentally determined. 

Step 4. Slide the 𝑇𝑇 window with 𝑆𝑆𝑥𝑥  and 𝑆𝑆𝑦𝑦  along 𝑥𝑥 and 𝑦𝑦 
directions respectively and calculate the correlation coefficient 
𝑅𝑅 using the Eq. 1 in correspondence of the current window 
position. 

Step 5. Repeat Step 4 Compute 𝑅𝑅  at every iteration 𝑖𝑖 , if 
𝑅𝑅𝑖𝑖 > 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  go to Step 6, else if 𝑅𝑅𝑖𝑖 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 then return Step 3. 

Step 6. Update 𝑆𝑆𝑥𝑥 = 𝑆𝑆𝑥𝑥/2 and 𝑆𝑆𝑦𝑦 = 𝑆𝑆𝑦𝑦/2, where 2 is an 
experimentally determined parameter selected to bring the 
matching value closer to the final position more accurately. 

Step 7. Set an experimental termination threshold: if the 
current 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦 >10E-6 then return to Step 4. Otherwise go 
to Step 8. 

Step 8. Record the current position of the template (𝑖𝑖, 𝑗𝑗) in 
correspondence of 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚. 

Step 9. Repeat Steps 3-8 until covering the entire image 𝑆𝑆; 

Step 10. Obtain 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  as the final maximum correlation 
coefficient, and the current recorded position as the template 
matching result.  

4. Results and discussion 

Both STM and ITM algorithms have been applied to an 
image dataset made of 60 image instances with the aim of 
classifying the six types of defects on front camera images 
described in Fig. 5. Each image instance has been processed 
and classified three times to improve the statistical reliability. 
This yielded to a total dataset made of 180 image instances. 
Two examples of image instances have been reported in Fig. 
8. corresponding to lens cone fracture and hole position offset 
respectively.  During the experimental tests, the image 
instances were collected from samples containing a large 
number of random defects, and then processed with both STM 
algorithm and the improved template matching algorithm 
respectively. The results are reported in the confusion matrices 
in Figs. 9-10 for the Standard and Improved template -
matching algorithms respectively. 

 

(e) 
 

(f) 
Fig. 8. Example of test image instances: (e) Lens cone fracture, (f) Hole 
position offset. 

Specifically, the confusion matrix in Fig. 9 shows that the 
STM algorithm correctly classifies 158 out of 180 image 
instances, yielding a total accuracy of 87.78%. As regards the 
ITM algorithm, the confusion matrix in Fig. 10 shows that the 
correctly classified image instances are 167 out of 180, 
yielding a higher total accuracy of 92.78%. 

The benchmarking between the two algorithms under 
consideration includes the computation time. Such indicator 
has been computed as an average value over the total 180 
image instances. The results reported in Table 1 show that the 
STM requires a computation time of 156 ms on average. As 
regards the ITM, Table 1 shows that this algorithm requires 92 
ms on average. Table 1 indicates a very small worst 
performance of the ITM algorithm compared to the STM for 
the detection of hole deformation and hole position offset, 
although very small (2 ms).  

The template matching method has the advantages of 
simplicity and directness, but it requires a fixed position of the 
object of interest, which is however not difficult to achieve with 
industrial equipment. Moreover, in a real industrial scenario, a 
batch of products is likely to include a large number of 
acceptable products and a small number of defective products. 

 

 

Fig. 9. Standard Matching Template Confusion Matrix 

Fig. 10. Improved Matching Template Confusion Matrix 
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Table 1. Computation time comparison 

Defect Type 

Computation Time (ms) 

STM ITM 

Min Avg Max Min Avg Max 

No hole 198 203 209 104 109 114 

Inner hole burr 197 202 208 102 107 112 

Outer circle damages 198 203 210 103 108 113 

Outer circle fracture 199 204 211 102 107 112 

Hole deformation 57 62 68 55 60 61 

Hole position offset 57 62 68 55 60 61 

Total average 156 92 

The acceptable products, having a higher matching rate due 
to their higher similarity to the template, will be classified in a 
shorter time compared to the defective products. This is due to 
the rapid updating of the step size resulting in a faster detection 
speed. In the experimental campaign it was recorded the ITM 
classification speed for acceptable products of 46 ms on 
average, which was much faster than the classification speed of 
60 ms for acceptable products of the STM. Further 
improvement in terms of computation time can be achieved in 
an industrial environment with the use of more powerful 
computers, yielding to faster inspection capabilities compared 
to the laboratory scale. In terms of accuracy, there is still room 
for improvement. Higher definition cameras can be used to 
obtain clearer images, and uneven illumination correction 
method can also be carried out on the acquired images [21], so 
as to more accurately reflect the actual situation of the tested 
items and improve the accuracy of detection. 

5. Conclusions  

This paper proposed a machine vision-based inspection 
system aimed at detecting a number of defects during the 
assembly of smartphone front cameras using an improved 
template matching algorithm. In this context, an experimental 
campaign of image acquisition has been carried out on a 
tailored experimental rig. The acquired images were then 
subject to an image pre-processing procedure to identify the 
position of object of interest. i.e. the front camera unit. 
Subsequently, the template images were uploaded and the 
template matching algorithms were carried out on the image 
instances for the detection and the classification of six kinds of 
defects. Compared with the current manual inspection 
technique, the proposed method is more accurate, efficient and 
fast, with high degree of automation. These capabilities show 
a good potential suitability for industrial implementation both 
in terms of accuracy and computation time. In an actual 
industrial environment, each product could potentially have 
multiple defects. In this respect, future work will be focussed 
on the detection of overlapped defects, i.e. two or more defects 
simultaneously. Moreover, it is also necessary to address the 
trade-off between the matching accuracy and the 
computational speed, by improving the proposed algorithm in 
terms of a more efficient step size updating method. 
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